WO2020004338A1 - Resin-attached metal foil - Google Patents

Resin-attached metal foil Download PDF

Info

Publication number
WO2020004338A1
WO2020004338A1 PCT/JP2019/024975 JP2019024975W WO2020004338A1 WO 2020004338 A1 WO2020004338 A1 WO 2020004338A1 JP 2019024975 W JP2019024975 W JP 2019024975W WO 2020004338 A1 WO2020004338 A1 WO 2020004338A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal foil
resin
group
resin layer
porous resin
Prior art date
Application number
PCT/JP2019/024975
Other languages
French (fr)
Japanese (ja)
Inventor
敦美 山邊
細田 朋也
渉 笠井
達也 寺田
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to KR1020207029865A priority Critical patent/KR20210022533A/en
Priority to CN201980042799.1A priority patent/CN112334301A/en
Priority to JP2020527517A priority patent/JP7243724B2/en
Publication of WO2020004338A1 publication Critical patent/WO2020004338A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2327/00Polyvinylhalogenides
    • B32B2327/12Polyvinylhalogenides containing fluorine
    • B32B2327/18PTFE, i.e. polytetrafluoroethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards

Definitions

  • the present invention relates to a metal foil with resin.
  • a resin-coated metal foil having an insulating resin layer on the surface of the metal foil is used as a printed wiring board by processing the metal foil by etching or the like.
  • Printed wiring boards used for transmitting high-frequency signals are required to have excellent transmission characteristics.
  • a fluoropolymer such as polytetrafluoroethylene (PTFE) is known.
  • Patent Document 1 discloses a resin-attached metal foil having a fluoropolymer resin layer on the surface of a metal foil treated with a silane coupling agent.
  • Patent Document 2 discloses a resin-attached metal foil having a porous resin layer made of a fluoropolymer on the surface of the metal foil.
  • Patent Document 3 discloses a resin-attached metal foil having a resin layer made of a surface-modified fluoropolymer on the surface of the metal foil.
  • the resin-coated metal foils described in Patent Literatures 1 to 3 are prepared by adhering a metal foil and a fluoropolymer resin layer in order to suppress transmission loss due to a skin effect when used as a high-frequency printed wiring board.
  • the peel strength of the resin layer is increased.
  • a resin-attached metal foil in which a fluoropolymer resin layer having a large linear expansion coefficient is closely attached to a metal foil is likely to be warped due to expansion and contraction of the fluoropolymer.
  • the object of the present invention is to provide a resin-attached metal foil having a non-porous resin layer containing a fluoropolymer, which has a high peel strength, is hardly warped, and has excellent electric properties.
  • the present invention has the following aspects.
  • a warp rate of the resin-attached metal foil is 5% or less.
  • the tetrafluoroethylene-based polymer is a tetrafluoroethylene-based polymer having a temperature range exhibiting a storage elastic modulus of 0.1 to 5.0 MPa at 260 ° C. or lower and a melting point exceeding 260 ° C.
  • a polymer in which the tetrafluoroethylene-based polymer includes a unit based on tetrafluoroethylene and a unit based on at least one monomer selected from the group consisting of perfluoro (alkyl vinyl ether), hexafluoropropylene, and fluoroalkylethylene.
  • the metal foil with resin according to any one of [1] to [7].
  • the tetrafluoroethylene-based polymer is a polymer having at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group, an amide group, an amino group, and an isocyanate group.
  • the present invention it is possible to provide a resin-attached metal foil having a non-porous resin layer containing a fluoropolymer, which has a high peel strength, is hardly warped, and has excellent electric properties.
  • the resin-attached metal foil of the present invention has a high peel strength of the non-porous resin layer containing the fluoropolymer and is hardly warped, and thus can be suitably used as a material for a high-frequency printed wiring board in which loss due to the skin effect is suppressed.
  • Example 3 is an SEM image of a cross section of the metal foil with resin of Example 1.
  • the “arithmetic average roughness (Ra)” is a value obtained by measuring the surface of the non-porous resin layer in a range of 1 ⁇ m 2 using an atomic force microscope (AFM).
  • "Ten-point average roughness (Rz JIS )” is a value specified in Annex JA of JIS B 0601: 2013.
  • the storage elastic modulus of a polymer is a value measured based on ISO 6721-4: 1994 (JIS K 7244-4: 1999).
  • the melting temperature (melting point) of a polymer is the temperature corresponding to the maximum value of the melting peak of a polymer measured by differential scanning calorimetry (DSC).
  • “Powder D50” is a 50% volume-based cumulative diameter of the powder determined by a laser diffraction / scattering method. That is, the particle size distribution of the powder is measured by the laser diffraction / scattering method, and the cumulative curve is obtained by setting the total volume of the powder particle population to 100%, and the particle diameter at the point where the cumulative volume becomes 50% on the cumulative curve. is there.
  • “D90 of the powder” is a 90% diameter based on the volume of the powder obtained in the same manner as in the above D50.
  • the "warp rate of the metal foil with resin” is obtained by cutting a square test piece of 180 mm square from the metal foil with resin and measuring the test piece according to JIS C 6471: 1995 (corresponding international standard IEC 249-1: 1982).
  • the “heat-resistant resin” is a polymer compound having a melting point of 280 ° C. or more, or a polymer compound having a maximum continuous use temperature of 121 ° C. or more specified in JIS C 4003: 2010 (IEC 60085: 2007).
  • the “unit” in the polymer may be an atomic group formed directly from one molecule of the monomer by the polymerization reaction, and the polymer obtained by the polymerization reaction is treated by a predetermined method to convert a part of the structure. It may be the above atomic group.
  • a unit based on the monomer A may be represented as a “monomer A unit”.
  • the non-porous resin layer in the present invention is a non-porous dense layer containing a tetrafluoroethylene-based polymer having a large coefficient of linear expansion (hereinafter also referred to as “TFE-based polymer”).
  • TFE-based polymer a tetrafluoroethylene-based polymer having a large coefficient of linear expansion
  • the resin-attached metal foil in which the non-porous resin layer is brought into contact with the metal foil is expected to have excellent electrical properties (such as a small relative dielectric constant and a low dielectric loss tangent) and excellent physical properties such as acid resistance (such as etching resistance). On the other hand, it was expected that there was a drawback that it was easily warped.
  • the present inventors if a void is present at a part of the interface between the metal foil and the non-porous resin layer of the resin-coated metal foil, the void becomes a buffer for absorbing the expansion and contraction of the TFE-based polymer, We thought that the warpage of the metal foil could be suppressed.
  • voids were present at a part of the interface, it was expected that the contact area between the metal foil and the non-porous resin layer was reduced, and the peel strength of the non-porous resin layer was also reduced.
  • the present inventors paid attention to the surface shape of the metal foil, and as a result of diligent studies, they found a resin-attached metal foil having excellent physical properties while maintaining the peel strength of the non-porous resin layer.
  • a transmission circuit is formed by etching the metal foil, and soldering is performed by reflow method under heating, so that a high-performance printed wiring board can be efficiently manufactured.
  • the metal foil with resin of the present invention is a non-porous resin containing a metal foil having an uneven surface and a tetrafluoroethylene-based polymer (hereinafter, also referred to as “TFE-based polymer”) in contact with the uneven surface of the metal foil. And a void is present at a part of the interface between the metal foil and the non-porous resin layer.
  • TFE-based polymer tetrafluoroethylene-based polymer
  • the metal foil may have an uneven surface on both surfaces, and may have a non-porous resin layer on both surfaces of the metal foil.
  • the layer structure of the metal foil with resin of the present invention includes metal foil / non-porous resin layer, metal foil / non-porous resin layer / metal foil, non-porous resin layer / metal foil / non-porous resin layer, and the like. No. “Metal foil / non-porous resin layer” indicates that a metal foil and a non-porous resin layer are laminated in this order, and the same applies to other layer configurations.
  • the peel strength between the metal foil and the non-porous resin layer in the metal foil with resin is preferably 5 N / cm or more, more preferably 7 N / cm or more.
  • the peel strength is preferably 50 N / cm or less.
  • the warp rate of the resin-attached metal foil of the present invention is preferably 5% or less, more preferably 3% or less, and particularly preferably 1% or less. In this case, the handleability when processing the metal foil with resin into a printed wiring board and the transmission characteristics of the obtained printed wiring board are excellent.
  • the void in the present invention may be present only at the interface between the metal foil and the non-porous resin layer, or may be present at the interface and the vicinity thereof, or at least at the interface. Is preferred.
  • the distance between the void and the interface is preferably greater than 0 nm and 500 nm or less, more preferably greater than 0 nm and 300 nm or less, and particularly preferably greater than 0 nm and 100 nm or less. preferable.
  • “Distance between void and interface” means the shortest distance between void and interface.
  • the void is preferably present in the concave portion of the uneven surface of the metal foil in the interface between the metal foil and the non-porous resin layer, from the viewpoint of suppressing the warpage of the metal foil with resin and balancing the electrical characteristics.
  • the resin-attached metal foil of the present invention has a structure in which a nonporous resin layer forms a projection (projection) in contact with a concave portion (dent) of the metal foil.
  • the void preferably exists at the interface between the depression of the metal foil and the non-porous resin layer in contact with the projection. The existence of such voids can be confirmed by analyzing the cross section of the resin-attached metal foil of the present invention with an SEM image.
  • the void may be present in each of the convex portion and the concave portion of the uneven surface of the metal foil, but in this case, the number of voids present in the convex portion is smaller than the number of voids present in the concave portion. Is preferred from the viewpoint of maintaining the peel strength between the metal foil and the non-porous resin layer. Further, from the viewpoint of the peel strength of the non-porous resin layer, it is preferable that the void does not exist in the convex portion of the uneven surface of the metal foil in the interface between the metal foil and the non-porous resin layer.
  • the metal foil in the present invention has an uneven surface.
  • the shape of the concave portion and the convex portion of the concave-convex surface is not particularly limited, and may be a column shape, a weight shape, a curved shape, or a constricted shape.
  • the aspect ratio of the concave portion of the uneven surface of the metal foil is preferably 0.01 or more, more preferably 1.0 or more, particularly preferably 2.0 or more, and preferably 3.0 or more. Most preferred.
  • the upper limit of the aspect ratio is usually 5.0.
  • the aspect ratio of the concave portion is obtained as a ratio of a distance from a lower end of each end of the concave portion to a deepest portion of the concave portion with respect to a distance between both ends forming the concave portion.
  • the shape of the void can be confirmed by processing a cross section of a metal foil with resin embedded with an epoxy resin by a cross section polisher and observing the cross section with a scanning electron microscope (SEM).
  • the ten-point average roughness (Rz JIS ) of the surface of the uneven surface of the metal foil is preferably 0.005 ⁇ m or more, more preferably 0.01 ⁇ m or more, and preferably 0.2 ⁇ m or more.
  • the ten-point average roughness is preferably 4 ⁇ m or less, more preferably 1.5 ⁇ m or less, and particularly preferably 0.5 ⁇ m or less.
  • a preferred embodiment of the ten-point average roughness is 0.2 to 4 ⁇ m, a more preferred embodiment is 0.3 to 3.4 ⁇ m, and a still more preferred embodiment is 0.7 to 1.5 ⁇ m.
  • the surface Rz JIS is equal to or more than the lower limit of the above range, the adhesiveness with the non-porous resin layer becomes good.
  • the thickness of the metal foil is not particularly limited as long as a sufficient function can be exhibited in the application of the resin-attached metal foil, and is preferably 1 to 30 ⁇ m, more preferably 5 to 25 ⁇ m, and more preferably 8 to 20 ⁇ m. It is particularly preferred that there is.
  • the uneven surface of the metal foil is preferably treated with a silane coupling agent.
  • the fact that the uneven surface of the metal foil is treated with the silane coupling agent means that the uneven surface of the metal foil is analyzed by X-ray fluorescence spectroscopy (XRF), and the silicon atom and the atom specific to the functional group of the silane coupling agent are used. (Nitrogen atom, sulfur atom, etc.).
  • the detection amounts of silicon atoms and the above atoms may be at least the detection limit, and are preferably detected at 0.01% by mass or more, respectively.
  • the silane coupling agent treatment of the uneven surface of the metal foil may be performed on the entire uneven surface of the metal foil, or may be performed on a part of the uneven surface of the metal foil. From the viewpoint of the adhesiveness between the metal foil and the non-porous resin layer, it is preferable that the metal foil be part of the uneven surface of the metal foil.
  • a part of the uneven surface of the metal foil is treated with the silane coupling agent, without distinction between the concave portion and the convex portion of the uneven surface of the metal foil, a part thereof is treated with the silane coupling agent.
  • a mode in which the convex portion of the uneven surface of the metal foil is treated with a silane coupling agent is treated with the silane coupling agent.
  • the cross section of the metal foil is subjected to elemental analysis by an energy dispersive X-ray spectrometer (EDS), and a silicon atom and an atom (nitrogen specific to a functional group of the silane coupling agent) are analyzed. Atoms, sulfur atoms, etc.).
  • the metal foil in which a part of the uneven surface is treated with the silane coupling agent is obtained, for example, by spray-drying the silane coupling agent on the uneven surface of the metal foil.
  • spray drying method include the treatment methods described in WO-A-2015 / 40988, [0061] to [0064].
  • a specific spray-drying method a treatment solution containing a silane coupling agent and a solvent (alcohol, toluene, hexane, etc.) and the concentration of the silane coupling agent is adjusted to 0.5 to 1.5% by mass. Is sprayed onto the uneven surface of the metal foil and heated at 100 to 130 ° C. for 1 to 10 minutes.
  • the silane coupling agent is an organic compound having a hydrolyzable silyl group and a reactive group other than the hydrolyzable silyl group (hereinafter, also referred to as “reactive group”).
  • Silanol groups (Si—OH) formed by hydrolysis of hydrolyzable silyl groups interact with the surface of the metal foil to fix the silane coupling agent on the surface of the metal foil, and the reactive group is formed of a non-porous resin. Interaction with the layer surface improves the adhesion between the metal foil and the non-porous resin layer.
  • an alkoxysilyl group is preferable, a trialkoxysilyl group is more preferable, and a trimethoxysilyl group or a triethoxysilyl group is particularly preferable.
  • Examples of the organic compound having an alkoxysilyl group and an amino group include aminoalkoxysilane, and specific examples thereof include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, and N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltriethoxysilane, N-phenyl-3-amino Propyltrimethoxysilane and the like.
  • ketimines such as 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine
  • salts of aminoalkoxysilanes N-vinylbenzyl-2-aminoethyl-3) -Aminopropyltrimethoxysilane acetate
  • organic compound having an alkoxysilyl group and a mercapto group include mercaptoalkoxysilane, and specific examples thereof include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, and 3-mercaptopropyl (dimethoxy) methylsilane. And the like.
  • the material of the metal foil examples include copper, copper alloy, stainless steel, nickel, nickel alloy (including 42 alloy), aluminum, aluminum alloy, titanium, and titanium alloy.
  • a copper foil is preferable.
  • Specific examples of the copper foil include a rolled copper foil and an electrolytic copper foil.
  • the metal foil is preferably a metal foil having a metal foil main body and a rustproofing layer provided on the non-porous resin layer side of the metal foil main body. When the metal foil has a rust-proofing layer, the surface of the rust-proofing layer is treated with a silane coupling agent.
  • the rust-proofing layer is selected from the group consisting of nickel, zinc, tin, cobalt, molybdenum, copper, tungsten, phosphorus, arsenic, chromium, vanadium, titanium, aluminum, gold, silver, platinum group elements, iron, and tantalum.
  • the rust preventive layer may include the element as a metal or an alloy, or may include the element as an oxide, a nitride, or a silicide.
  • a layer containing cobalt oxide, nickel oxide or metallic zinc from the viewpoint of suppressing the oxidation of the metal foil for a long time and suppressing the increase in the relative dielectric constant and the dielectric loss tangent of the non-porous resin layer are preferred, and a layer of metallic zinc is particularly preferred.
  • a heat-resistant layer may be formed on the metal foil. Examples of the heat-resistant layer include a layer containing the same element as the rust-proofing layer.
  • the non-porous resin layer in the present invention has substantially no voids except for voids existing in the vicinity of the interface.
  • a resin layer containing a molten resin is preferable, and a resin layer made of a molten resin is preferable.
  • the thickness of the non-porous resin layer is preferably 0.05 ⁇ m or more, more preferably 1 ⁇ m or more, and particularly preferably 2 ⁇ m or more.
  • the thickness is preferably 100 ⁇ m or less, more preferably 10 ⁇ m or less, and particularly preferably 7 ⁇ m or less.
  • a preferred embodiment of the thickness is 0.05 to 100 ⁇ m, and a more preferred embodiment is 6 to 60 ⁇ m.
  • the resin-attached metal foil has a non-porous resin layer on both sides of the metal foil, the composition and thickness of each non-porous resin layer are the same from the viewpoint of suppressing the warpage of the resin-attached metal foil. Is preferred.
  • the thickness of the non-porous resin layer can be set to be larger than the thickness of the metal foil.
  • the ratio of the thickness of the non-porous resin layer to the thickness of the metal foil is preferably from 0.01 to 10.0, more preferably from 0.05 to 7.5, and particularly preferably from 0.2 to 5.0.
  • the ratio of the thickness of the non-porous resin layer to the thickness of the metal foil is equal to or more than the lower limit of the above range, the electrical characteristics of the TFE-based polymer can be easily sufficiently exhibited. If the ratio of the thickness of the non-porous resin layer to the thickness of the metal foil is equal to or less than the upper limit of the above range, it is more difficult to warp.
  • the water contact angle on the surface of the non-porous resin layer is preferably from 70 to 100 °, particularly preferably from 70 to 90 °.
  • the water contact angle is an angle formed between a water droplet and the surface of the non-porous resin layer when pure water (about 2 ⁇ L) is placed on the surface of the non-porous resin layer of the metal foil with resin at 25 ° C.
  • the relative permittivity of the non-porous resin layer is preferably from 2.0 to 3.5, and more preferably from 2.0 to 3.0. In this case, both the electrical properties and adhesiveness of the non-porous resin layer are excellent, and a resin-attached metal foil can be suitably used for a printed wiring board or the like that requires a low dielectric constant.
  • Ra on the surface of the non-porous resin layer is less than the thickness of the non-porous resin layer, and preferably 1 to 10 nm. Within this range, it is easy to balance the adhesiveness and workability of another substrate.
  • the non-porous resin layer in the present invention contains a TFE-based polymer.
  • the TFE-based polymer is preferably a hot-melt TFE-based polymer.
  • the melting point of the TFE polymer is preferably higher than 260 ° C., more preferably higher than 260 ° C. and 320 ° C. or less, and particularly preferably 275 to 320 ° C.
  • the TFE-based polymer is baked while maintaining the adhesiveness based on its elasticity, so that a dense non-porous resin layer is more easily formed.
  • the TFE-based polymer preferably has a temperature region exhibiting a storage modulus of 0.1 to 5.0 MPa at 260 ° C. or lower.
  • the storage elastic modulus of the TFE-based polymer is preferably from 0.2 to 4.4 MPa, particularly preferably from 0.5 to 3.0 MPa.
  • the temperature range in which the TFE-based polymer exhibits such storage modulus is preferably from 180 to 260 ° C., particularly preferably from 200 to 260 ° C. In the temperature range, the TFE-based polymer tends to effectively exhibit adhesiveness based on its elasticity.
  • the TFE-based polymer is a polymer having TFE units.
  • the TFE-based polymer may be a homopolymer of TFE or a copolymer of TFE and another monomer copolymerizable with TFE (hereinafter also referred to as a comonomer).
  • the TFE-based polymer preferably has 75 to 100 mol% of TFE units and 0 to 25 mol% of units based on a comonomer, based on all units constituting the polymer.
  • Examples of the comonomer include perfluoro (alkyl vinyl ether) (hereinafter also referred to as “PAVE”), fluoroalkylethylene (hereinafter also referred to as “FAE”), hexafluoropropylene (hereinafter also referred to as “HFP”), olefin, and the like. Is mentioned.
  • TFE-based polymer examples include polytetrafluoroethylene, a copolymer of TFE and ethylene, a copolymer of TFE and propylene, a copolymer of TFE and PAVE, a copolymer of TFE and HFP, a copolymer of TFE and FAE, and a copolymer of TFE and chlorotrifluoroethylene.
  • a polymer containing a TFE unit and a unit based on at least one monomer selected from the group consisting of PAVE, HFP and FAE (hereinafter also referred to as “comonomer unit F”) is also exemplified.
  • the polymer preferably has 90 to 99 mol% of TFE units and 1 to 10 mol% of comonomer units F based on all units constituting the polymer.
  • the polymer may be composed of only the TFE unit and the comonomer unit F, and may further contain other units.
  • the TFE-based polymer from the viewpoint of the adhesiveness between the non-porous resin layer and the metal foil, selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group, an amide group, an amino group and an isocyanate group.
  • a polymer having TFE units hereinafter, also referred to as “polymer F 1 ”) having at least one type of functional group (hereinafter, also referred to as “functional group”).
  • Functional groups may be contained in the units in the TFE-based polymers may be contained in the end groups of the main chain of the polymer F 1.
  • Examples of the latter polymer include a polymer having a functional group as a terminal group derived from a polymerization initiator, a chain transfer agent, or the like.
  • the polymer F 1 a polymer having the units and TFE units having a functional group are preferred.
  • the polymer F 1 in this case, further preferably has other units, particularly preferably has a comonomer unit F.
  • the functional group is preferably a carbonyl group-containing group from the viewpoint of adhesion between the non-porous resin layer and the metal foil.
  • Examples of the carbonyl group-containing group include a carbonate group, a carboxy group, a haloformyl group, an alkoxycarbonyl group, an acid anhydride residue (—C (O) OC (O) —), and a fatty acid residue.
  • Anhydride residues are preferred.
  • the unit having a functional group is preferably a unit based on a monomer having a functional group, and is a unit based on a monomer having a carbonyl group, a unit based on a monomer having a hydroxy group, a unit based on a monomer having an epoxy group, and an isocyanate group.
  • a unit based on a monomer having a carbonyl group is more preferable, and a unit based on a monomer having a carbonyl group-containing group is particularly preferable.
  • a cyclic monomer having an acid anhydride residue As the monomer having a carbonyl group-containing group, a cyclic monomer having an acid anhydride residue, a monomer having a carboxy group, a vinyl ester and a (meth) acrylate are preferable, and a cyclic monomer having an acid anhydride residue is particularly preferable.
  • a cyclic monomer itaconic anhydride, citraconic anhydride, 5-norbornene-2,3-dicarboxylic anhydride (also called hymic anhydride; hereinafter also referred to as “NAH”) and maleic anhydride are preferable.
  • Specific examples of such polymers F 1, are polymers described in WO 2018/16644 (X) can be mentioned.
  • the proportion of TFE units in the polymer F 1 is the total units constituting the polymer F 1, is preferably 90 to 99 mol%.
  • Proportion of PAVE units in the polymer F 1 is the total units constituting the polymer F 1, is preferably 0.5 to 9.97 mol%.
  • the proportion of units having functional groups in the polymer F 1 is the total units constituting the polymer F 1, is preferably 0.01 to 3 mol%.
  • the method for producing a resin-attached metal foil according to the present invention includes a powder dispersion containing a powder containing a TFE-based polymer (hereinafter also referred to as “F powder”) and a liquid medium on the uneven surface of the metal foil having an uneven surface. Is applied, the liquid medium is removed by heating the powder dispersion on the uneven surface of the metal foil, and then the F powder is baked to obtain the resin-attached metal foil of the present invention.
  • F powder a powder dispersion containing a powder containing a TFE-based polymer
  • the liquid medium is removed by heating the powder dispersion on the uneven surface of the metal foil, and then the F powder is baked to obtain the resin-attached metal foil of the present invention.
  • the liquid medium is a dispersion medium, which is a liquid medium that is inert at 25 ° C. and does not react with the F powder, has a lower boiling point than components other than the liquid medium contained in the powder dispersion, and is volatilized by heating or the like. Liquid media that can be removed are preferred.
  • liquid medium examples include water, alcohols (methanol, ethanol, isopropanol, etc.), nitrogen-containing compounds (N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, etc.), sulfur-containing compounds (dimethyl Sulfoxides), ethers (diethyl ether, dioxane, etc.), esters (ethyl lactate, ethyl acetate, etc.), ketones (methyl ethyl ketone, methyl isopropyl ketone, cyclopentanone, cyclohexanone, etc.), glycol ethers (ethylene glycol monoisopropyl ether, etc.), Cellosolve (methyl cellosolve, ethyl cellosolve, etc.) and the like. Two or more liquid media may be used in combination.
  • liquid medium a liquid medium that does not volatilize instantaneously is preferable, a liquid medium having a boiling point of 80 to 275 ° C is preferable, and a liquid medium having a boiling point of 125 to 250 ° C is particularly preferable. Within this range, the stability of the wet film formed from the powder dispersion applied to the surface of the metal foil is high.
  • organic compounds are preferable, and cyclohexane (boiling point: 81 ° C.), 2-propanol (boiling point: 82 ° C.), 1-propanol (boiling point: 97 ° C.), 1-butanol (boiling point: 117 ° C.), 1-butanol Methoxy-2-propanol (boiling point: 119 ° C), N-methylpyrrolidone (boiling point: 202 ° C), ⁇ -butyrolactone (boiling point: 204 ° C), cyclohexanone (boiling point: 156 ° C) and cyclopentanone (boiling point: 131 ° C) are more preferable, and N-methylpyrrolidone, ⁇ -butyrolactone, cyclohexanone and cyclopentanone are particularly preferable.
  • the ⁇ F powder may contain components other than the TFE-based polymer as long as the effects of the present invention are not impaired, but it is preferable that the F-powder be mainly composed of the TFE-based polymer.
  • the content of the TFE-based polymer in the F powder is preferably 80% by mass or more, and particularly preferably 100% by mass.
  • the D50 of the F powder is preferably from 0.05 to 6.0 ⁇ m, more preferably from 0.1 to 3.0 ⁇ m, and particularly preferably from 0.2 to 3.0 ⁇ m. Within this range, the fluidity and dispersibility of the F powder are good, and the electrical properties (such as a low dielectric constant) and the heat resistance of the non-porous resin layer are most easily exhibited.
  • the D90 of the F powder is preferably 8 ⁇ m or less, more preferably 6 ⁇ m or less, and particularly preferably 5 ⁇ m or less.
  • the D90 of the powder is preferably at least 0.3 ⁇ m, particularly preferably at least 0.8 ⁇ m.
  • the fluidity and dispersibility of the F powder are good, and the electrical properties (such as a low dielectric constant) and the heat resistance of the non-porous resin layer are most easily exhibited.
  • the method for producing the F powder is not particularly limited, and the methods described in [0065] to [0069] of WO 2016/017801 can be employed.
  • the F powder if desired powder is commercially available, it may be used.
  • the proportion of the F powder in the powder dispersion is preferably 5 to 60% by mass, particularly preferably 35 to 50% by mass. Within this range, the relative dielectric constant and dielectric loss tangent of the non-porous resin layer can be easily controlled to be low. Further, the powder dispersion has high uniform dispersibility, and the non-porous resin layer has excellent mechanical strength.
  • the proportion of the liquid medium in the powder dispersion is preferably from 15 to 65% by mass, particularly preferably from 25 to 50% by mass. Within this range, the applicability of the powder dispersion is excellent, and poor appearance of the non-porous resin layer is unlikely to occur.
  • the powder dispersion may contain other materials as long as the effects of the present invention are not impaired. Other materials may or may not dissolve in the powder dispersion.
  • the other material may be a non-curable resin or a curable resin.
  • the non-curable resin include a heat-meltable resin and a non-meltable resin.
  • the heat-fusible resin include thermoplastic polyimide.
  • the non-fusible resin include a cured product of a curable resin.
  • the curable resin include a polymer having a reactive group, an oligomer having a reactive group, a low molecular compound, and a low molecular compound having a reactive group.
  • the reactive group include a carbonyl group-containing group, a hydroxy group, an amino group, and an epoxy group.
  • epoxy resin thermosetting polyimide, polyamic acid as a polyimide precursor, thermosetting acrylic resin, phenol resin, thermosetting polyester resin, thermosetting polyolefin resin, modified polyphenylene ether resin, polyfunctional Examples include a cyanate ester resin, a polyfunctional maleimide-cyanate ester resin, a polyfunctional maleimide resin, a vinyl ester resin, a urea resin, a diallyl phthalate resin, a melamine resin, a guanamine resin, and a melamine-urea cocondensation resin.
  • thermosetting polyimide polyimide precursor, epoxy resin, acrylic resin, bismaleimide resin and polyphenylene ether resin are preferable as thermosetting resin from the viewpoint of being useful for printed wiring board applications, and epoxy resin and polyphenylene ether are preferable. Resins are particularly preferred.
  • the epoxy resin examples include naphthalene type epoxy resin, cresol novolak type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, alicyclic epoxy resin, aliphatic chain epoxy resin, Cresol novolak type epoxy resin, phenol novolak type epoxy resin, alkylphenol novolak type epoxy resin, aralkyl type epoxy resin, biphenol type epoxy resin, dicyclopentadiene type epoxy resin, trishydroxyphenylmethane type epoxy compound, having phenol and phenolic hydroxyl group Epoxidized condensate with aromatic aldehyde, diglycidyl ether of bisphenol, diglycidyl ether of naphthalene diol, phenol Glycidyl ethers, diglycidyl ethers of alcohols, triglycidyl isocyanurate.
  • the bismaleimide resin a resin composition (BT resin) in which a bisphenol A-type cyanate ester resin and a bismaleimide compound are used in combination, which is described in JP-A-7-70315, described in WO2013 / 008667 And the background art.
  • Polyamic acid typically has a reactive group capable of reacting with the functional groups of the polymer F 1.
  • Examples of the diamine and polycarboxylic acid dianhydride forming a polyamic acid include [0020] of Japanese Patent No. 5766125, [0019] of Japanese Patent No. 5766125, and [0055] of Japanese Patent Application Laid-Open No. 2012-145676. , [0057] and the like.
  • aromatic diamines such as 4,4'-diaminodiphenyl ether and 2,2-bis [4- (4-aminophenoxy) phenyl] propane, and pyromellitic dianhydride, 3,3 ', 4,4 Polyamic acids comprising a combination with an aromatic polycarboxylic dianhydride such as '-biphenyltetracarboxylic dianhydride and 3,3', 4,4'-benzophenonetetracarboxylic dianhydride are preferred.
  • thermoplastic resin such as thermoplastic polyimide
  • thermoplastic polyimide a thermoplastic resin
  • thermoplastic polyimide a thermoplastic resin
  • styrene resin polycarbonate
  • thermoplastic polyimide polyarylate
  • polysulfone polyarylsulfone
  • aromatic polyamide aromatic polyetheramide
  • polyphenylene sulfide polyaryletherketone
  • Polyamide imide liquid crystalline polyester, polyphenylene ether and the like
  • thermoplastic polyimide, liquid crystalline polyester and polyphenylene ether are preferable.
  • a dispersant such as a styrene foam, a styrene foam, a styrene foam, a styrene foam, a styrene foam, a styrene foam, a styrene foam, a styrene foam, a styrene foam, a styrene foam, a styrene, sodium sulfate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium sulfate, sodium bicarbonate, sodium sulfate, sodium bicarbonate, sodium sulfate, sodium bicarbonate, sodium sulf
  • the method of applying the powder dispersion to the uneven surface of the metal foil may be any method that forms a stable wet film made of the powder dispersion on the uneven surface of the metal foil after application, such as a spray method, a roll coating method, and a spin coating method. Coating method, gravure coating method, microgravure coating method, gravure offset method, knife coating method, kiss coating method, bar coating method, die coating method, fountain Meyer bar method, slot die coating method and the like.
  • the TFE-based polymer After the powder dispersion is applied to the uneven surface of the metal foil, the TFE-based polymer has a storage elastic modulus of 0.1 to 5.0 MPa at a temperature within a temperature range (hereinafter, also referred to as “holding temperature”). It is preferable to hold the metal foil. The holding temperature indicates the temperature of the atmosphere.
  • the state of the wet film may be adjusted by heating the metal foil at a temperature lower than the temperature range. The adjustment of the state of the wet film is performed to such an extent that the liquid medium does not completely volatilize, and is usually performed to the extent that 50% by mass or less of the liquid medium is volatilized.
  • the holding after the application of the powder dispersion may be performed in one stage, or may be performed in multiple stages at different temperatures.
  • Examples of the holding method include a method using an oven, a method using a ventilation drying oven, and a method of irradiating heat rays such as infrared rays.
  • the atmosphere in the holding may be under normal pressure or reduced pressure.
  • the holding atmosphere may be any of an oxidizing gas atmosphere such as an oxygen gas atmosphere, a reducing gas atmosphere such as a hydrogen gas atmosphere, and an inert gas atmosphere such as a helium gas, a neon gas, an argon gas, and a nitrogen gas.
  • an atmosphere for the holding an atmosphere containing an oxygen gas is preferable from the viewpoint of improving the adhesiveness of the non-porous resin layer.
  • the oxygen gas concentration (by volume) in an atmosphere containing oxygen gas is preferably from 1 ⁇ 10 2 to 3 ⁇ 10 5 ppm, particularly preferably from 0.5 ⁇ 10 3 to 1 ⁇ 10 4 ppm. Within this range, it is easy to balance the adhesiveness of the non-porous resin layer and the suppression of oxidation of the metal foil.
  • the holding temperature is preferably from 150 to 260 ° C, particularly preferably from 200 to 260 ° C.
  • the holding time at the holding temperature is preferably from 0.1 to 10 minutes, particularly preferably from 0.5 to 5 minutes.
  • the powder dispersion contains a thermofusible resin
  • a non-porous resin layer composed of a mixture of a TFE-based polymer and a heat-fusible resin is formed.
  • a thermosetting resin a thermosetting resin
  • a TFE-based polymer is formed.
  • a non-porous resin layer composed of a cured product of the thermosetting resin is formed.
  • the heating method examples include a method using an oven, a method using a ventilation drying oven, and a method of irradiating heat rays such as infrared rays.
  • a heating plate In order to increase the smoothness of the surface of the non-porous resin layer, pressure may be applied with a heating plate, a heating roll, or the like.
  • a heating method a method of irradiating far-infrared rays is preferable because it can be fired in a short time and the far-infrared ray furnace is relatively compact.
  • the heating method may be a combination of infrared heating and hot air heating.
  • the effective wavelength band of the far infrared ray is preferably 2 to 20 ⁇ m, more preferably 3 to 7 ⁇ m, from the viewpoint of promoting uniform fusion of the TFE-based polymer.
  • the atmosphere in the firing may be under normal pressure or under reduced pressure.
  • the atmosphere in the firing may be any of an oxidizing gas atmosphere such as an oxygen gas, a reducing gas atmosphere such as a hydrogen gas, and an inert gas atmosphere such as a helium gas, a neon gas, an argon gas, and a nitrogen gas.
  • the atmosphere is preferably a reducing gas atmosphere or an inert gas atmosphere.
  • a gas atmosphere composed of an inert gas and having a low oxygen gas concentration is preferable, and a gas atmosphere composed of nitrogen gas and having an oxygen gas concentration (by volume) of less than 500 ppm is preferable.
  • the oxygen gas concentration (by volume) is particularly preferably 300 ppm or less. Further, the oxygen gas concentration (based on volume) is usually 1 ppm or more.
  • the firing temperature is preferably higher than 320 ° C., particularly preferably 330 to 380 ° C. In this case, the TFE-based polymer more easily forms a dense non-porous resin layer.
  • the holding time at the firing temperature is preferably from 30 seconds to 5 minutes, and particularly preferably from 1 to 2 minutes.
  • the resin layer of the resin-attached metal foil is a conventional insulating material (a cured product of a thermosetting resin such as polyimide), long-time heating is required to cure the thermosetting resin.
  • the non-porous resin layer can be formed by heating for a short time by fusing the TFE-based polymer.
  • the firing temperature can be lowered.
  • the resin-attached metal foil of the present invention has a small heat load on the metal foil when the non-porous resin layer is formed at the time of manufacturing, and has a small damage to the metal foil.
  • the surface of the non-porous resin layer Processing may be performed.
  • Surface treatment methods for the surface of the non-porous resin layer include annealing treatment, corona discharge treatment, atmospheric pressure plasma treatment, vacuum plasma treatment, UV ozone treatment, excimer treatment, chemical etching, silane coupling agent treatment, and fine rough surface. And the like.
  • the temperature in the annealing treatment is preferably from 80 to 190 ° C., particularly preferably from 120 to 180 ° C.
  • the pressure in the annealing treatment is preferably 0.001 to 0.030 MPa, particularly preferably 0.005 to 0.015 MPa.
  • the annealing time is preferably from 10 to 300 minutes, particularly preferably from 30 to 120 minutes.
  • Examples of the plasma irradiation apparatus in the plasma processing include a high-frequency induction method, a capacitive coupling electrode method, a corona discharge electrode-plasma jet method, a parallel plate type, a remote plasma type, an atmospheric pressure plasma type, an ICP type high density plasma type, and the like.
  • Examples of a gas used for the plasma treatment include an oxygen gas, a nitrogen gas, a rare gas (eg, argon), a hydrogen gas, and an ammonia gas, and a rare gas and a nitrogen gas are preferable.
  • Specific examples of the gas used for the plasma treatment include argon gas, a mixed gas of hydrogen gas and nitrogen gas, and a mixed gas of hydrogen gas, nitrogen gas, and argon gas.
  • the atmosphere in the plasma treatment is preferably an atmosphere having a volume fraction of a rare gas or a nitrogen gas of 70% by volume or more, and particularly preferably an atmosphere having a volume fraction of 100% by volume. Within this range, it is easy to form fine irregularities on the surface of the non-porous resin layer.
  • the metal foil with resin of the present invention described above has a high peel strength of the non-porous resin layer and is hardly warped. Therefore, it can be easily laminated with another substrate.
  • Other substrates include a heat-resistant resin film, a prepreg that is a precursor of a fiber-reinforced resin plate, a laminate having a heat-resistant resin film layer, a laminate having a prepreg layer, and the like.
  • the prepreg is a sheet-like substrate in which a thermosetting resin or a thermoplastic resin is impregnated into a base material (tow, woven fabric, or the like) of a reinforcing fiber (glass fiber, carbon fiber, or the like).
  • the heat-resistant resin film is a film containing at least one kind of heat-resistant resin, and may be a single-layer film or a multilayer film.
  • heat-resistant resin examples include polyimide, polyarylate, polysulfone, polyallylsulfone, aromatic polyamide, aromatic polyetheramide, polyphenylene sulfide, polyallyletherketone, polyamideimide, and liquid crystalline polyester.
  • the pressing temperature is preferably equal to or lower than the melting point of the TFE-based polymer, more preferably from 120 to 300 ° C, and particularly preferably from 160 to 220 ° C. Within this range, the non-porous resin layer and the prepreg can be firmly bonded while suppressing thermal deterioration of the prepreg.
  • the pressing temperature is preferably from 310 to 400 ° C. Within this range, the non-porous resin layer and the heat-resistant resin film can be firmly bonded while suppressing the thermal deterioration of the heat-resistant resin film.
  • the hot pressing is preferably performed under a reduced pressure atmosphere, and particularly preferably performed at a degree of vacuum of 20 kPa or less. Within this range, the incorporation of bubbles into the interface between the non-porous resin layer and the substrate in the laminate can be suppressed, and deterioration due to oxidation can be suppressed.
  • the pressure in the hot press is preferably 0.2 MPa or more. Further, the upper limit of the pressure is preferably 10 MPa or less. Within this range, the non-porous resin layer and the substrate can be firmly adhered while suppressing damage to the substrate.
  • the resin-attached metal foil and the laminate thereof of the present invention can be used as a flexible copper-clad laminate or a rigid copper-clad laminate for the production of printed wiring boards. Since the metal foil with resin of the present invention has a high peel strength of the non-porous resin layer and is hard to be warped, it can be suitably used as a material for a high-frequency printed wiring board in which loss due to a skin effect is suppressed.
  • a method of processing the metal foil of the resin-coated metal foil of the present invention into a transmission circuit (pattern circuit) having a predetermined pattern by an etching process or the like, or a method of electroplating the resin-coated metal foil of the present invention (semi-additive method (SAP)) ), A modified semi-additive method (MSAP method), etc.), a printed wiring board can be manufactured from the resin-attached metal foil of the present invention.
  • an interlayer insulating film may be formed over the transmission circuit, and the transmission circuit may be further formed over the interlayer insulating film.
  • the interlayer insulating film can be formed by, for example, the powder dispersion described above.
  • a solder resist may be laminated on a transmission circuit.
  • the solder resist can be formed by, for example, the powder dispersion described above.
  • a coverlay film may be laminated on a transmission circuit.
  • the cover lay film can be formed by, for example, the powder dispersion described above.
  • the relative dielectric constant and the dielectric loss tangent at 20 GHz were determined using -100 RHO (manufactured by Yamayo Testing Machine Co., Ltd.). (Warpage rate) A test piece was cut out from the metal foil with resin and measured. As the warpage ratio is smaller, lamination failure when laminating the metal foil with resin with another material can be suppressed, and a composite flat body (printed wiring board or the like) with suppressed warpage and high flatness can be obtained.
  • peel strength A position of 50 mm from one end in the length direction of a single-sided copper-clad laminate cut out into a rectangular shape (length 100 mm, width 10 mm) is fixed, and a pull-up speed of 50 mm / min is applied to a single-sided copper-clad laminate from one end in the length direction.
  • Polymer (1) a copolymer containing 97.9 mol%, 0.1 mol%, and 2.0 mol% of a unit based on TFE, a unit based on NAH and a unit based on PPVE in this order, and has a storage elasticity at 260 ° C.
  • Copper foil (1) a copper foil having an uneven surface, a ten-point surface roughness of the uneven surface being 1.1 ⁇ m, and the uneven surface being treated with a silane coupling agent (thickness 18 ⁇ m, silicon atomic weight on the foil surface) 0.05 mass%, sulfur atomic weight 0.01 mass%.)
  • Example 1 120 g of a powder (D50: 2.6 ⁇ m, D90: 7.1 ⁇ m) composed of the polymer (1), 12 g of a nonionic fluorinated surfactant (manufactured by Neos, Phantagent 710FL), and 234 g of methyl ethyl ketone
  • the solution is applied to the surface of the copper foil (1) treated with the silane coupling agent, dried under a nitrogen atmosphere at 100 ° C. for 15 minutes, further heated at 350 ° C. for 15 minutes, gradually cooled, and cooled from the polymer (1).
  • a non-porous resin layer (thickness: 7 ⁇ m) and a copper foil (1) were directly laminated to obtain a resin-attached metal foil.
  • the physical properties of the obtained resin-attached metal foil were measured, and a copper-clad laminate was manufactured using the same.
  • FIG. 1 shows an SEM image of the cross section.
  • SEM Hitachi High-Tech Co., SU8230, acceleration voltage 0.7 kV.
  • FIG. 1 shows an SEM image of the cross section.
  • the aspect ratio of the concave portion was 1.0 or more, and the warp ratio of the metal foil with resin was 3%.
  • the location of the void was clearly concentrated in the concave portion.
  • a plasma processing apparatus (AP-1000, manufactured by NORDSON MARCH), RF output: 300 W, gap between electrodes: 2 inches, introduced gas: argon gas, introduced gas amount: 50 cm 3 / min, pressure: 13 Pa, processing Time: The non-porous resin layer side of the metal foil with resin was subjected to plasma treatment under the condition of 1 minute. Ra on the surface of the non-porous resin layer after the plasma treatment was 8 nm.
  • an FR-4 sheet prepared by Hitachi Chemical Co., Ltd., reinforcing fiber: glass fiber, matrix resin: epoxy resin, product name: CEA-67N 0.2 t) (HAN), thickness: 0.2 mm
  • heat-pressed under vacuum temperature: 185 ° C., pressure: 3.0 MPa, time: 60 minutes
  • a single-sided copper-clad laminate in which the layer and the copper foil (1) were laminated in this order was obtained.
  • a single-sided copper-clad laminate was placed on each side of the FR-4 sheet so that a copper foil (1) was formed as the outermost layer.
  • the peel strength between the copper foil (1) and the non-porous resin layer in the obtained single-sided copper-clad laminate was 14 N / cm. Swelling and warpage of the non-porous resin layer were suppressed.
  • the electrical characteristics of the printed wiring board formed by forming a transmission circuit on the obtained double-sided copper-clad laminate were 4.5 or less in relative dielectric constant and 0.015 or less in dielectric loss tangent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The purpose of the present invention is to provide: a resin-attached metal foil which has a non-porous resin layer including a fluoropolymer and which has high peeling strength, is hard to warp, and has excellent electric characteristics; and a method for manufacturing a print wiring board using the resin-attached metal foil. This resin-attached metal foil has: a metal foil with an uneven surface; and a non-porous resin layer which includes a tetra fluoro ethylene-based polymer and which abuts the uneven surface of the metal foil, wherein a void is present in a portion of the interface between the metal foil and the non-porous resin layer.

Description

樹脂付金属箔Metal foil with resin
 本発明は、樹脂付金属箔に関する。 The present invention relates to a metal foil with resin.
 金属箔の表面に絶縁樹脂層を有する樹脂付金属箔は、金属箔をエッチング等によって加工することによってプリント配線板として用いられる。
 高周波信号の伝送に用いられるプリント配線板には、伝送特性に優れることが要求される。伝送特性を高めるには、プリント配線板の絶縁樹脂層として、比誘電率及び誘電正接が低い樹脂を用いる必要がある。比誘電率及び誘電正接が小さい樹脂としては、ポリテトラフルオロエチレン(PTFE)等のフルオロポリマーが知られている。
A resin-coated metal foil having an insulating resin layer on the surface of the metal foil is used as a printed wiring board by processing the metal foil by etching or the like.
Printed wiring boards used for transmitting high-frequency signals are required to have excellent transmission characteristics. In order to enhance the transmission characteristics, it is necessary to use a resin having a low relative dielectric constant and a low dielectric loss tangent as the insulating resin layer of the printed wiring board. As a resin having a small relative dielectric constant and a small dielectric loss tangent, a fluoropolymer such as polytetrafluoroethylene (PTFE) is known.
 特許文献1には、金属箔のシランカップリング剤処理された表面にフルオロポリマーの樹脂層を有する樹脂付金属箔が開示されている。特許文献2には、金属箔の表面にフルオロポリマーからなる多孔質性樹脂層を有する樹脂付金属箔が開示されている。特許文献3には、金属箔の表面に、表面改質されたフルオロポリマーからなる樹脂層を有する樹脂付金属箔が開示されている。 Patent Document 1 discloses a resin-attached metal foil having a fluoropolymer resin layer on the surface of a metal foil treated with a silane coupling agent. Patent Document 2 discloses a resin-attached metal foil having a porous resin layer made of a fluoropolymer on the surface of the metal foil. Patent Document 3 discloses a resin-attached metal foil having a resin layer made of a surface-modified fluoropolymer on the surface of the metal foil.
国際公開第2014/192718号International Publication No. WO 2014/192718 特開2016-046433号公報JP 2016-044333 A 特開2016-225524号公報JP 2016-225524 A
 特許文献1~3に記載の樹脂付金属箔は、高周波プリント配線板として使用した際の表皮効果による伝送損失を抑制するために、金属箔とフルオロポリマーの樹脂層とを密着させて、フルオロポリマーの樹脂層の剥離強度を高めている。しかし、線膨張率が概して大きいフルオロポリマーの樹脂層を金属箔に密着させた樹脂付金属箔は、フルオロポリマーの膨張伸縮によって反りやすい。そのため、樹脂付金属箔の金属箔をエッチング処理して伝送回路を形成し、リフロー方式による半田付けでプリント配線板に加工する際に、基板の反りが問題となり、プリント配線板を効率的に製造できない。このように、金属箔の表面にフルオロポリマーの樹脂層を有する樹脂付金属箔では、プリント配線板に加工する際に、樹脂層の剥離強度と樹脂付金属箔の反りとの両立が困難である。 The resin-coated metal foils described in Patent Literatures 1 to 3 are prepared by adhering a metal foil and a fluoropolymer resin layer in order to suppress transmission loss due to a skin effect when used as a high-frequency printed wiring board. The peel strength of the resin layer is increased. However, a resin-attached metal foil in which a fluoropolymer resin layer having a large linear expansion coefficient is closely attached to a metal foil is likely to be warped due to expansion and contraction of the fluoropolymer. Therefore, when forming a transmission circuit by etching the metal foil of the resin-coated metal foil and processing it into a printed wiring board by soldering by the reflow method, the warpage of the board becomes a problem, and the printed wiring board is manufactured efficiently. Can not. As described above, in the case of a resin-coated metal foil having a fluoropolymer resin layer on the surface of the metal foil, it is difficult to achieve both peel strength of the resin layer and warpage of the resin-coated metal foil when processing the printed wiring board. .
 本発明は、剥離強度が高く、反りにくい、電気特性に優れた、フルオロポリマーを含む非多孔性樹脂層を有する樹脂付金属箔の提供を目的とする。 The object of the present invention is to provide a resin-attached metal foil having a non-porous resin layer containing a fluoropolymer, which has a high peel strength, is hardly warped, and has excellent electric properties.
 本発明は、以下の態様を有する。
 [1]凹凸面を有する金属箔と、前記金属箔の凹凸面に当接したテトラフルオロエチレン系ポリマーを含む非多孔性樹脂層とを有し、前記金属箔と前記非多孔性樹脂層の界面の一部に空隙が存在する、樹脂付金属箔。
 [2]前記空隙が、前記金属箔の凹凸面の凹状部に存在する、[1]の樹脂付金属箔。
 [3]前記樹脂付金属箔の反り率が、5%以下である、[1]又は[2]の樹脂付金属箔。
 [4]前記金属箔と前記非多孔性樹脂層の剥離強度が、5N/cm以上である、[1]~[3]のいずれかの樹脂付金属箔。
 [5]前記金属箔の厚さが5~25μmであり、前記非多孔性樹脂層の厚さが0.05~100μmであり、前記金属箔の厚さに対する前記非多孔性樹脂層の厚さの比が0.1~10.0である、[1]~[4]のいずれかの樹脂付金属箔。
 [6]前記金属箔の凹凸面の表面の十点平均粗さが、0.2~4μmである、[1]~[5]のいずれかの樹脂付金属箔。
 [7]前記テトラフルオロエチレン系ポリマーが、0.1~5.0MPaの貯蔵弾性率を示す温度領域を260℃以下に有し、融点が260℃超のテトラフルオロエチレン系ポリマーである、[1]~[6]のいずれかの樹脂付金属箔。
 [8]前記テトラフルオロエチレン系ポリマーが、テトラフルオロエチレンに基づく単位と、ペルフルオロ(アルキルビニルエーテル)、ヘキサフルオロプロピレン及びフルオロアルキルエチレンからなる群から選ばれる少なくとも1種のモノマーに基づく単位とを含むポリマーである、[1]~[7]のいずれかの樹脂付金属箔。
 [9]前記テトラフルオロエチレン系ポリマーが、カルボニル基含有基、ヒドロキシ基、エポキシ基、アミド基、アミノ基及びイソシアネート基からなる群から選ばれる少なくとも1種の官能基を有するポリマーである、[1]~[8]のいずれかの樹脂付金属箔。
 [10][1]~[9]のいずれかの樹脂付金属箔の金属箔をエッチング処理して伝送回路を形成してプリント配線板を得る、プリント配線板の製造方法。
The present invention has the following aspects.
[1] A metal foil having an uneven surface, and a non-porous resin layer containing a tetrafluoroethylene-based polymer in contact with the uneven surface of the metal foil, and an interface between the metal foil and the non-porous resin layer Metallic foil with resin in which voids exist in a part of.
[2] The resin-attached metal foil according to [1], wherein the void exists in a concave portion of the uneven surface of the metal foil.
[3] The resin-attached metal foil according to [1] or [2], wherein a warp rate of the resin-attached metal foil is 5% or less.
[4] The resin-attached metal foil according to any one of [1] to [3], wherein a peel strength between the metal foil and the non-porous resin layer is 5 N / cm or more.
[5] The thickness of the metal foil is 5 to 25 μm, the thickness of the non-porous resin layer is 0.05 to 100 μm, and the thickness of the non-porous resin layer with respect to the thickness of the metal foil The resin-coated metal foil according to any one of [1] to [4], wherein the ratio is 0.1 to 10.0.
[6] The resin-coated metal foil according to any one of [1] to [5], wherein the surface of the uneven surface of the metal foil has a ten-point average roughness of 0.2 to 4 μm.
[7] The tetrafluoroethylene-based polymer is a tetrafluoroethylene-based polymer having a temperature range exhibiting a storage elastic modulus of 0.1 to 5.0 MPa at 260 ° C. or lower and a melting point exceeding 260 ° C. [1] ] A metal foil with resin according to any one of [6] to [6].
[8] A polymer in which the tetrafluoroethylene-based polymer includes a unit based on tetrafluoroethylene and a unit based on at least one monomer selected from the group consisting of perfluoro (alkyl vinyl ether), hexafluoropropylene, and fluoroalkylethylene. The metal foil with resin according to any one of [1] to [7].
[9] The tetrafluoroethylene-based polymer is a polymer having at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group, an amide group, an amino group, and an isocyanate group. ] A metal foil with resin according to any one of [8] to [8].
[10] A method for manufacturing a printed wiring board, wherein a transmission circuit is formed by etching a metal foil of the resin-attached metal foil according to any one of [1] to [9] to obtain a printed wiring board.
 本発明によれば、剥離強度が高く、反りにくい、電気特性に優れた、フルオロポリマーを含む非多孔性樹脂層を有する樹脂付金属箔を提供できる。
 本発明の樹脂付金属箔は、フルオロポリマーを含む非多孔性樹脂層の剥離強度が高く、反りにくいため、表皮効果による損失が抑制された高周波プリント配線板の材料として好適に使用できる。
According to the present invention, it is possible to provide a resin-attached metal foil having a non-porous resin layer containing a fluoropolymer, which has a high peel strength, is hardly warped, and has excellent electric properties.
The resin-attached metal foil of the present invention has a high peel strength of the non-porous resin layer containing the fluoropolymer and is hardly warped, and thus can be suitably used as a material for a high-frequency printed wiring board in which loss due to the skin effect is suppressed.
実施例1の樹脂付金属箔の断面のSEM画像である。3 is an SEM image of a cross section of the metal foil with resin of Example 1.
 以下の用語は、以下の意味を有する。
 「算術平均粗さ(Ra)」は、原子間力顕微鏡(AFM)を用いて、非多孔性樹脂層の1μm範囲の表面を測定して求められる値である。
 「十点平均粗さ(RzJIS)」は、JIS B 0601:2013の附属書JAで規定される値である。
 「ポリマーの貯蔵弾性率」は、ISO 6721-4:1994(JIS K 7244-4:1999)に基づき測定される値である。
 「ポリマーの溶融温度(融点)」は、示差走査熱量測定(DSC)法で測定した、ポリマーの融解ピークの最大値に対応する温度である。
 「パウダーのD50」は、レーザー回折・散乱法によって求められるパウダーの体積基準累積50%径である。すなわち、レーザー回折・散乱法によってパウダーの粒度分布を測定し、パウダーの粒子の集団の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が50%となる点の粒子径である。
 「パウダーのD90」は、上記D50と同様にして求められるパウダーの体積基準累積90%径である。
 「樹脂付金属箔の反り率」は、樹脂付金属箔から180mm角の四角い試験片を切り出し、試験片についてJIS C 6471:1995(対応国際規格IEC 249-1:1982)に規定される測定方法にしたがって測定される値である。
 「比誘電率」及び「誘電正接」はそれぞれ、ASTM D 150準拠の変成器ブリッジ法にて、温度を23℃±2℃の範囲内、相対湿度を50%±5%RHの範囲内に保持した試験環境において、20GHzで求めた値である。
 「耐熱性樹脂」は、融点が280℃以上の高分子化合物、又はJIS C 4003:2010(IEC 60085:2007)で規定される最高連続使用温度が121℃以上の高分子化合物である。
 ポリマーにおける「単位」は、重合反応によってモノマー1分子から直接形成された原子団であってもよく、重合反応によって得られたポリマーを所定の方法で処理して、構造の一部が変換された上記原子団であってもよい。なお、モノマーAに基づく単位を、「モノマーA単位」として表すことがある。
The following terms have the following meanings:
The “arithmetic average roughness (Ra)” is a value obtained by measuring the surface of the non-porous resin layer in a range of 1 μm 2 using an atomic force microscope (AFM).
"Ten-point average roughness (Rz JIS )" is a value specified in Annex JA of JIS B 0601: 2013.
"The storage elastic modulus of a polymer" is a value measured based on ISO 6721-4: 1994 (JIS K 7244-4: 1999).
"The melting temperature (melting point) of a polymer" is the temperature corresponding to the maximum value of the melting peak of a polymer measured by differential scanning calorimetry (DSC).
“Powder D50” is a 50% volume-based cumulative diameter of the powder determined by a laser diffraction / scattering method. That is, the particle size distribution of the powder is measured by the laser diffraction / scattering method, and the cumulative curve is obtained by setting the total volume of the powder particle population to 100%, and the particle diameter at the point where the cumulative volume becomes 50% on the cumulative curve. is there.
“D90 of the powder” is a 90% diameter based on the volume of the powder obtained in the same manner as in the above D50.
The "warp rate of the metal foil with resin" is obtained by cutting a square test piece of 180 mm square from the metal foil with resin and measuring the test piece according to JIS C 6471: 1995 (corresponding international standard IEC 249-1: 1982). Is a value measured according to
"Relative permittivity" and "Dielectric loss tangent" are each maintained at a temperature of 23 ° C ± 2 ° C and a relative humidity of 50% ± 5% RH by a transformer bridge method based on ASTM D150. It is a value obtained at 20 GHz in the test environment.
The “heat-resistant resin” is a polymer compound having a melting point of 280 ° C. or more, or a polymer compound having a maximum continuous use temperature of 121 ° C. or more specified in JIS C 4003: 2010 (IEC 60085: 2007).
The “unit” in the polymer may be an atomic group formed directly from one molecule of the monomer by the polymerization reaction, and the polymer obtained by the polymerization reaction is treated by a predetermined method to convert a part of the structure. It may be the above atomic group. In addition, a unit based on the monomer A may be represented as a “monomer A unit”.
 本発明の樹脂付金属箔が、剥離強度が高く、反りにくい理由は、必ずしも明確ではないが、以下のように考えられる。
 本発明における非多孔性樹脂層は、線膨張率が概して大きいテトラフルオロエチレン系ポリマー(以下、「TFE系ポリマー」とも記す。)を含む、非多孔性の緻密な層である。前記非多孔性樹脂層を金属箔に当接させた樹脂付金属箔は、電気特性(比誘電率及び誘電正接が小さい等。)や耐酸性(エッチング耐性等。)の物性に優れると予想される反面、反りやすい欠点があると予想された。
The reason why the resin-attached metal foil of the present invention has high peel strength and is hardly warped is not necessarily clear, but is considered as follows.
The non-porous resin layer in the present invention is a non-porous dense layer containing a tetrafluoroethylene-based polymer having a large coefficient of linear expansion (hereinafter also referred to as “TFE-based polymer”). The resin-attached metal foil in which the non-porous resin layer is brought into contact with the metal foil is expected to have excellent electrical properties (such as a small relative dielectric constant and a low dielectric loss tangent) and excellent physical properties such as acid resistance (such as etching resistance). On the other hand, it was expected that there was a drawback that it was easily warped.
 本発明者らは、かかる樹脂付金属箔の金属箔と非多孔性樹脂層の界面の一部に空隙を存在させれば、その空隙がTFE系ポリマーの膨張伸縮を吸収するバッファーとなり、樹脂付金属箔の反りを抑制できると考えた。一方、界面の一部に空隙が存在する場合は金属箔と非多孔性樹脂層の当接面積が減少し、非多孔性樹脂層の剥離強度が低下するとも予想された。そこで、本発明者らは、金属箔の表面形状に注目し、鋭意検討した結果、非多孔性樹脂層の剥離強度を保持しつつ、前記物性に優れ、反りにくい樹脂付金属箔を知見した。本発明の樹脂付金属箔を用いれば、金属箔をエッチング処理して伝送回路を形成し、加熱下にてはんだ付けをリフロー方式で行って、高性能なプリント配線板を効率的に製造できる。 The present inventors, if a void is present at a part of the interface between the metal foil and the non-porous resin layer of the resin-coated metal foil, the void becomes a buffer for absorbing the expansion and contraction of the TFE-based polymer, We thought that the warpage of the metal foil could be suppressed. On the other hand, when voids were present at a part of the interface, it was expected that the contact area between the metal foil and the non-porous resin layer was reduced, and the peel strength of the non-porous resin layer was also reduced. Then, the present inventors paid attention to the surface shape of the metal foil, and as a result of diligent studies, they found a resin-attached metal foil having excellent physical properties while maintaining the peel strength of the non-porous resin layer. When the metal foil with resin of the present invention is used, a transmission circuit is formed by etching the metal foil, and soldering is performed by reflow method under heating, so that a high-performance printed wiring board can be efficiently manufactured.
 本発明の樹脂付金属箔は、凹凸面を有する金属箔と、前記金属箔の凹凸面に当接したテトラフルオロエチレン系ポリマー(以下、「TFE系ポリマー」とも記す。)を含む非多孔性樹脂層を有し、前記金属箔と前記非多孔性樹脂層の界面の一部に空隙が存在する。「界面の一部に空隙が存在する」とは、金属箔と非多孔性樹脂層が直接接触しており、その接触面の一部に空隙が存在することを意味する。 The metal foil with resin of the present invention is a non-porous resin containing a metal foil having an uneven surface and a tetrafluoroethylene-based polymer (hereinafter, also referred to as “TFE-based polymer”) in contact with the uneven surface of the metal foil. And a void is present at a part of the interface between the metal foil and the non-porous resin layer. "A gap is present at a part of the interface" means that the metal foil and the non-porous resin layer are in direct contact with each other, and a gap is present at a part of the contact surface.
 本発明の樹脂付金属箔は、金属箔が両面に凹凸面を有し、かかる金属箔の両面に非多孔性樹脂層を有してもよい。
 本発明の樹脂付金属箔の層構成としては、金属箔/非多孔性樹脂層、金属箔/非多孔性樹脂層/金属箔、非多孔性樹脂層/金属箔/非多孔性樹脂層等が挙げられる。「金属箔/非多孔性樹脂層」とは、金属箔、非多孔性樹脂層がこの順に積層されていることを示し、他の層構成も同様である。
In the metal foil with resin of the present invention, the metal foil may have an uneven surface on both surfaces, and may have a non-porous resin layer on both surfaces of the metal foil.
The layer structure of the metal foil with resin of the present invention includes metal foil / non-porous resin layer, metal foil / non-porous resin layer / metal foil, non-porous resin layer / metal foil / non-porous resin layer, and the like. No. “Metal foil / non-porous resin layer” indicates that a metal foil and a non-porous resin layer are laminated in this order, and the same applies to other layer configurations.
 樹脂付金属箔における金属箔と非多孔性樹脂層の剥離強度は、5N/cm以上であることが好ましく、7N/cm以上であることがより好ましい。前記剥離強度は、50N/cm以下であることが好ましい。
 本発明の樹脂付金属箔の反り率は、5%以下であることが好ましく、3%以下であることがより好ましく、1%以下であることが特に好ましい。この場合、樹脂付金属箔をプリント配線板に加工する際のハンドリング性と、得られるプリント配線板の伝送特性が優れる。
The peel strength between the metal foil and the non-porous resin layer in the metal foil with resin is preferably 5 N / cm or more, more preferably 7 N / cm or more. The peel strength is preferably 50 N / cm or less.
The warp rate of the resin-attached metal foil of the present invention is preferably 5% or less, more preferably 3% or less, and particularly preferably 1% or less. In this case, the handleability when processing the metal foil with resin into a printed wiring board and the transmission characteristics of the obtained printed wiring board are excellent.
 本発明における空隙は、金属箔と非多孔性樹脂層との界面のみに存在していてもよく、前記界面と、その近傍とに存在していてもよく、少なくとも前記界面に存在していることが好ましい。
 空隙が界面の近傍にも存在する場合、その空隙と界面との距離は、0nm超500nm以下であることが好ましく、0nm超300nm以下であることがより好ましく、0nm超100nm以下であることが特に好ましい。この場合、電気特性や耐酸性に優れるというTFE系ポリマーの物性と、TFE系ポリマーの膨張伸縮による樹脂付金属箔の反りの抑制とをバランスさせやすい。「空隙と界面の距離」とは、空隙と界面の最短距離を意味する。
The void in the present invention may be present only at the interface between the metal foil and the non-porous resin layer, or may be present at the interface and the vicinity thereof, or at least at the interface. Is preferred.
When a void is also present near the interface, the distance between the void and the interface is preferably greater than 0 nm and 500 nm or less, more preferably greater than 0 nm and 300 nm or less, and particularly preferably greater than 0 nm and 100 nm or less. preferable. In this case, it is easy to balance physical properties of the TFE-based polymer, which is excellent in electrical properties and acid resistance, with suppression of warpage of the metal foil with resin due to expansion and contraction of the TFE-based polymer. “Distance between void and interface” means the shortest distance between void and interface.
 空隙は、樹脂付金属箔の反りの抑制及び電気特性をバランスさせる点から、金属箔と非多孔性樹脂層の界面のうち、金属箔の凹凸面の凹状部に存在することが好ましい。
 本発明の樹脂付金属箔は、金属箔の凹部(窪み)に非多孔性樹脂層が凸部(突起)を形成して当接している構造を有するとも言える。換言すれば、空隙は、この金属箔の窪みと非多孔性樹脂層が突起との当接面の界面に存在することが好ましい。かかる空隙の存在は、本発明の樹脂付金属箔の断面をSEM画像により解析すると確認できる。
 空隙は、金属箔の凹凸面の凸状部と凹状部のそれぞれに存在していてもよいが、この場合、凸状部に存在する空隙の個数は凹状部に存在する空隙の個数より少ないことが、金属箔と非多孔性樹脂層の剥離強度を保持する観点から好ましい。
 また、空隙は、非多孔性樹脂層の剥離強度の点から、金属箔と非多孔性樹脂層の界面のうち、金属箔の凹凸面の凸状部には存在しないことが好ましい。
The void is preferably present in the concave portion of the uneven surface of the metal foil in the interface between the metal foil and the non-porous resin layer, from the viewpoint of suppressing the warpage of the metal foil with resin and balancing the electrical characteristics.
It can be said that the resin-attached metal foil of the present invention has a structure in which a nonporous resin layer forms a projection (projection) in contact with a concave portion (dent) of the metal foil. In other words, the void preferably exists at the interface between the depression of the metal foil and the non-porous resin layer in contact with the projection. The existence of such voids can be confirmed by analyzing the cross section of the resin-attached metal foil of the present invention with an SEM image.
The void may be present in each of the convex portion and the concave portion of the uneven surface of the metal foil, but in this case, the number of voids present in the convex portion is smaller than the number of voids present in the concave portion. Is preferred from the viewpoint of maintaining the peel strength between the metal foil and the non-porous resin layer.
Further, from the viewpoint of the peel strength of the non-porous resin layer, it is preferable that the void does not exist in the convex portion of the uneven surface of the metal foil in the interface between the metal foil and the non-porous resin layer.
 本発明における金属箔は、凹凸面を有する。
 凹凸面の凹状部と凸状部の形状は、それぞれ、特に限定されず、柱状であってもよく、錘状であってもよく、湾曲していてもよく、くびれていてもよい。
 金属箔の凹凸面の凹状部のアスペクト比は、0.01以上が好ましく、1.0以上であることがより好ましく、2.0以上であることが特に好ましく、3.0以上であることが最も好ましい。前記アスペクト比の上限は、通常、5.0である。凹状部のアスペクト比は、凹部を形成する両端の距離に対する、凹部の両端の低い方の端部から凹状部の最深部までの距離の比率として求められる。
 空隙の形状は、エポキシ樹脂にて包埋処理した樹脂付金属箔をクロスセクションポリッシャーにより断面加工して、その断面を走査型電子顕微鏡(SEM)により観察することによって確認できる。
The metal foil in the present invention has an uneven surface.
The shape of the concave portion and the convex portion of the concave-convex surface is not particularly limited, and may be a column shape, a weight shape, a curved shape, or a constricted shape.
The aspect ratio of the concave portion of the uneven surface of the metal foil is preferably 0.01 or more, more preferably 1.0 or more, particularly preferably 2.0 or more, and preferably 3.0 or more. Most preferred. The upper limit of the aspect ratio is usually 5.0. The aspect ratio of the concave portion is obtained as a ratio of a distance from a lower end of each end of the concave portion to a deepest portion of the concave portion with respect to a distance between both ends forming the concave portion.
The shape of the void can be confirmed by processing a cross section of a metal foil with resin embedded with an epoxy resin by a cross section polisher and observing the cross section with a scanning electron microscope (SEM).
 金属箔の凹凸面の表面の十点平均粗さ(RzJIS)としては、0.005μm以上が好ましく、0.01μm以上がより好ましく、0.2μm以上が好ましい。前記十点平均粗さとしては、4μm以下が好ましく、1.5μm以下がより好ましく、0.5μm以下が特に好ましい。前記十点平均粗さの好適な態様としては0.2~4μmが、より好適な態様としては0.3~3.4μmが、さらに好適な態様としては0.7~1.5μmが、挙げられる。表面のRzJISが前記範囲の下限値以上であれば、非多孔性樹脂層との接着性が良好となる。金属箔の表面のRzJISが前記範囲の上限値以下であれば、金属箔の粗さに起因する電気的伝送損失を低減できる。
 金属箔の厚さは、樹脂付金属箔の用途において充分な機能が発揮できる厚さであればよく、1~30μmであることが好ましく、5~25μmであることがより好ましく、8~20μmであることが特に好ましい。
The ten-point average roughness (Rz JIS ) of the surface of the uneven surface of the metal foil is preferably 0.005 μm or more, more preferably 0.01 μm or more, and preferably 0.2 μm or more. The ten-point average roughness is preferably 4 μm or less, more preferably 1.5 μm or less, and particularly preferably 0.5 μm or less. A preferred embodiment of the ten-point average roughness is 0.2 to 4 μm, a more preferred embodiment is 0.3 to 3.4 μm, and a still more preferred embodiment is 0.7 to 1.5 μm. Can be When the surface Rz JIS is equal to or more than the lower limit of the above range, the adhesiveness with the non-porous resin layer becomes good. When the Rz JIS of the surface of the metal foil is equal to or less than the upper limit of the above range, the electric transmission loss caused by the roughness of the metal foil can be reduced.
The thickness of the metal foil is not particularly limited as long as a sufficient function can be exhibited in the application of the resin-attached metal foil, and is preferably 1 to 30 μm, more preferably 5 to 25 μm, and more preferably 8 to 20 μm. It is particularly preferred that there is.
 金属箔の凹凸面は、シランカップリング剤で処理されていることが好ましい。
 金属箔の凹凸面がシランカップリング剤で処理されていることは、金属箔の凹凸面を蛍光X線分析(XRF)法で分析し、ケイ素原子とシランカップリング剤の官能基に特有の原子(窒素原子、硫黄原子等)とを検出することによって確認できる。ケイ素原子と前記原子の検出量は、検出限界以上であればよく、それぞれ0.01質量%以上検出されることが好ましい。
 金属箔の凹凸面のシランカップリング剤処理は、金属箔の凹凸面の全体にされていてもよく、金属箔の凹凸面の一部にされていてもよく、樹脂付金属箔の電気特性及び金属箔と非多孔性樹脂層の接着性の点から、金属箔の凹凸面の一部にされていることが好ましい。
The uneven surface of the metal foil is preferably treated with a silane coupling agent.
The fact that the uneven surface of the metal foil is treated with the silane coupling agent means that the uneven surface of the metal foil is analyzed by X-ray fluorescence spectroscopy (XRF), and the silicon atom and the atom specific to the functional group of the silane coupling agent are used. (Nitrogen atom, sulfur atom, etc.). The detection amounts of silicon atoms and the above atoms may be at least the detection limit, and are preferably detected at 0.01% by mass or more, respectively.
The silane coupling agent treatment of the uneven surface of the metal foil may be performed on the entire uneven surface of the metal foil, or may be performed on a part of the uneven surface of the metal foil. From the viewpoint of the adhesiveness between the metal foil and the non-porous resin layer, it is preferable that the metal foil be part of the uneven surface of the metal foil.
 金属箔の凹凸面の一部がシランカップリング剤で処理されている態様としては、金属箔の凹凸面の凹状部と凸状部の区別なく、その一部がシランカップリング剤で処理されている態様であってもよく、金属箔の凹凸面の凸状部がシランカップリング剤で処理されている態様であってもよい。金属箔の凹凸面のシランカップリング剤処理の態様は、金属箔断面をエネルギー分散型X線分光器(EDS)により元素分析し、ケイ素原子とシランカップリング剤の官能基に特有の原子(窒素原子、硫黄原子等)とを検出することによっても確認できる。 As an aspect in which a part of the uneven surface of the metal foil is treated with the silane coupling agent, without distinction between the concave portion and the convex portion of the uneven surface of the metal foil, a part thereof is treated with the silane coupling agent. Or a mode in which the convex portion of the uneven surface of the metal foil is treated with a silane coupling agent. In the aspect of the silane coupling agent treatment of the uneven surface of the metal foil, the cross section of the metal foil is subjected to elemental analysis by an energy dispersive X-ray spectrometer (EDS), and a silicon atom and an atom (nitrogen specific to a functional group of the silane coupling agent) are analyzed. Atoms, sulfur atoms, etc.).
 凹凸面の一部がシランカップリング剤で処理された金属箔は、例えば、シランカップリング剤を金属箔の凹凸面に噴霧乾燥して得られる。噴霧乾燥の方法としては、国際公開第2015/40988号の[0061]~[0064]に記載された処理方法が挙げられる。
 具体的な噴霧乾燥の方法としては、シランカップリング剤と溶媒(アルコール、トルエン、ヘキサン等)とを含み、シランカップリング剤の濃度が0.5~1.5質量%に調整された処理液を、金属箔の凹凸面に噴霧し、100~130℃で1~10分間加熱する方法が挙げられる。
The metal foil in which a part of the uneven surface is treated with the silane coupling agent is obtained, for example, by spray-drying the silane coupling agent on the uneven surface of the metal foil. Examples of the spray drying method include the treatment methods described in WO-A-2015 / 40988, [0061] to [0064].
As a specific spray-drying method, a treatment solution containing a silane coupling agent and a solvent (alcohol, toluene, hexane, etc.) and the concentration of the silane coupling agent is adjusted to 0.5 to 1.5% by mass. Is sprayed onto the uneven surface of the metal foil and heated at 100 to 130 ° C. for 1 to 10 minutes.
 シランカップリング剤は、加水分解性シリル基と、加水分解性シリル基以外の反応性基(以下、「反応性基」とも記す。)を有する有機化合物である。加水分解性シリル基の加水分解により形成されるシラノール基(Si-OH)が金属箔の表面と相互作用してシランカップリング剤が金属箔の表面に固定され、反応性基が非多孔性樹脂層表面と相互作用することによって、金属箔と非多孔性樹脂層との接着性が向上する。 The silane coupling agent is an organic compound having a hydrolyzable silyl group and a reactive group other than the hydrolyzable silyl group (hereinafter, also referred to as “reactive group”). Silanol groups (Si—OH) formed by hydrolysis of hydrolyzable silyl groups interact with the surface of the metal foil to fix the silane coupling agent on the surface of the metal foil, and the reactive group is formed of a non-porous resin. Interaction with the layer surface improves the adhesion between the metal foil and the non-porous resin layer.
 加水分解性シリル基としては、アルコキシシリル基が好ましく、トリアルコキシシリル基がより好ましく、トリメトキシシリル基又はトリエトキシシリル基が特に好ましい。
 反応性官能基としては、水酸基、カルボキシ基、カルボニル基、アミノ基、アミド基、スルフィド基、スルホニル基、スルホ基、スルホニルジオキシ基、エポキシ基、アクリル基、メタクリル基、メルカプト基、イソシアネート基、イソシアヌレート基、ウレイド基が挙げられ、メルカプト基、アミノ基、イソシアネート基、イソシアヌレート基及びウレイド基が好ましく、メルカプト基及びアミノ基がより好ましく、メルカプト基が特に好ましい。
As the hydrolyzable silyl group, an alkoxysilyl group is preferable, a trialkoxysilyl group is more preferable, and a trimethoxysilyl group or a triethoxysilyl group is particularly preferable.
As the reactive functional group, hydroxyl group, carboxy group, carbonyl group, amino group, amide group, sulfide group, sulfonyl group, sulfo group, sulfonyldioxy group, epoxy group, acrylic group, methacryl group, mercapto group, isocyanate group, An isocyanurate group and an ureido group are mentioned, a mercapto group, an amino group, an isocyanate group, an isocyanurate group and an ureido group are preferred, a mercapto group and an amino group are more preferred, and a mercapto group is particularly preferred.
 アルコキシシリル基とアミノ基を有する有機化合物としては、アミノアルコキシシランが挙げられ、その具体例としては、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン等が挙げられる。また、アミノアルコキシシランの誘導体として、ケチミン(3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン等)、アミノアルコキシシランの塩(N-ビニルベンジル-2-アミノエチル-3-アミノプロピルトリメトキシシラン酢酸塩等)等も挙げられる。
 アルコキシシリル基とメルカプト基を有する有機化合物としては、メルカプトアルコキシシランが挙げられ、その具体例としては、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピル(ジメトキシ)メチルシラン等が挙げられる。
Examples of the organic compound having an alkoxysilyl group and an amino group include aminoalkoxysilane, and specific examples thereof include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, and N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltriethoxysilane, N-phenyl-3-amino Propyltrimethoxysilane and the like. As derivatives of aminoalkoxysilanes, ketimines (such as 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine) and salts of aminoalkoxysilanes (N-vinylbenzyl-2-aminoethyl-3) -Aminopropyltrimethoxysilane acetate).
Examples of the organic compound having an alkoxysilyl group and a mercapto group include mercaptoalkoxysilane, and specific examples thereof include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, and 3-mercaptopropyl (dimethoxy) methylsilane. And the like.
 金属箔の材質としては、銅、銅合金、ステンレス鋼、ニッケル、ニッケル合金(42合金も含む)、アルミニウム、アルミニウム合金、チタン、チタン合金等が挙げられる。
 金属箔としては、銅箔が好ましい。銅箔の具体例としては、圧延銅箔、電解銅箔が挙げられる。
 金属箔は、金属箔本体と、金属箔本体の非多孔性樹脂層の側に設けられた防錆処理層とを有する金属箔が好ましい。なお、金属箔が防錆処理層を有する場合には、防錆処理層の表面がシランカップリング剤で処理されている。
Examples of the material of the metal foil include copper, copper alloy, stainless steel, nickel, nickel alloy (including 42 alloy), aluminum, aluminum alloy, titanium, and titanium alloy.
As the metal foil, a copper foil is preferable. Specific examples of the copper foil include a rolled copper foil and an electrolytic copper foil.
The metal foil is preferably a metal foil having a metal foil main body and a rustproofing layer provided on the non-porous resin layer side of the metal foil main body. When the metal foil has a rust-proofing layer, the surface of the rust-proofing layer is treated with a silane coupling agent.
 防錆処理層としては、ニッケル、亜鉛、錫、コバルト、モリブデン、銅、タングステン、リン、ヒ素、クロム、バナジウム、チタン、アルミニウム、金、銀、白金族元素、鉄、及びタンタルからなる群から選ばれる1種以上の元素を含む層が挙げられる。防錆処理層は、前記元素を金属又は合金として含んでいてもよく、前記元素を酸化物、窒化物又はケイ化物として含んでいてもよい。
 防錆処理層としては、金属箔の酸化を長期間抑制し、非多孔性樹脂層の比誘電率及び誘電正接の上昇が抑制する点から、コバルト酸化物、ニッケル酸化物又は金属亜鉛を含む層が好ましく、金属亜鉛の層が特に好ましい。
 金属箔には、耐熱層が形成されていてもよい。耐熱層としては、防錆処理層と同様な元素を含む層が挙げられる。
The rust-proofing layer is selected from the group consisting of nickel, zinc, tin, cobalt, molybdenum, copper, tungsten, phosphorus, arsenic, chromium, vanadium, titanium, aluminum, gold, silver, platinum group elements, iron, and tantalum. A layer containing one or more elements. The rust preventive layer may include the element as a metal or an alloy, or may include the element as an oxide, a nitride, or a silicide.
As the rust-preventive treatment layer, a layer containing cobalt oxide, nickel oxide or metallic zinc, from the viewpoint of suppressing the oxidation of the metal foil for a long time and suppressing the increase in the relative dielectric constant and the dielectric loss tangent of the non-porous resin layer Are preferred, and a layer of metallic zinc is particularly preferred.
A heat-resistant layer may be formed on the metal foil. Examples of the heat-resistant layer include a layer containing the same element as the rust-proofing layer.
 本発明における非多孔性樹脂層は、界面の近傍に空隙が存在する場合の空隙を除けば、空隙を実質的に有さない。かかる緻密な樹脂層である非多孔性樹脂層としては、樹脂の溶融物を含む樹脂層が好ましく、樹脂の溶融物からなる樹脂層が好ましい。
 非多孔性樹脂層の厚さとしては、0.05μm以上が好ましく、1μm以上がより好ましく、2μm以上が特に好ましい。前記厚さとしては、100μm以下が好ましく、10μm以下がより好ましく、7μm以下が特に好ましい。前記厚さの好適な態様としては0.05~100μmが、より好適な態様としては6~60μmが、挙げられる。この範囲において、プリント配線板の伝送特性と樹脂付金属箔の反り抑制とをバランスさせやすい。
 樹脂付金属箔が金属箔の両面に非多孔性樹脂層を有する場合、それぞれの非多孔性樹脂層の組成及び厚さは、樹脂付金属箔の反りを抑制する点から、それぞれ同じであることが好ましい。
The non-porous resin layer in the present invention has substantially no voids except for voids existing in the vicinity of the interface. As the non-porous resin layer which is such a dense resin layer, a resin layer containing a molten resin is preferable, and a resin layer made of a molten resin is preferable.
The thickness of the non-porous resin layer is preferably 0.05 μm or more, more preferably 1 μm or more, and particularly preferably 2 μm or more. The thickness is preferably 100 μm or less, more preferably 10 μm or less, and particularly preferably 7 μm or less. A preferred embodiment of the thickness is 0.05 to 100 μm, and a more preferred embodiment is 6 to 60 μm. Within this range, it is easy to balance the transmission characteristics of the printed wiring board and the suppression of warpage of the metal foil with resin.
When the resin-attached metal foil has a non-porous resin layer on both sides of the metal foil, the composition and thickness of each non-porous resin layer are the same from the viewpoint of suppressing the warpage of the resin-attached metal foil. Is preferred.
 本発明の樹脂付金属箔は、反りにくいため、金属箔の厚さに対する非多孔性樹脂層の厚さを大きく設定できる。
 金属箔の厚さに対する非多孔性樹脂層の厚さの比としては、0.01~10.0が好ましく、0.05~7.5が好ましく、0.2~5.0が特に好ましい。金属箔の厚さに対する非多孔性樹脂層の厚さの比が前記範囲の下限値以上であれば、TFE系ポリマーの電気特性が充分に発現しやすい。金属箔の厚さに対する非多孔性樹脂層の厚さの比が前記範囲の上限値以下であれば、より反りにくい。
Since the metal foil with resin of the present invention is not easily warped, the thickness of the non-porous resin layer can be set to be larger than the thickness of the metal foil.
The ratio of the thickness of the non-porous resin layer to the thickness of the metal foil is preferably from 0.01 to 10.0, more preferably from 0.05 to 7.5, and particularly preferably from 0.2 to 5.0. When the ratio of the thickness of the non-porous resin layer to the thickness of the metal foil is equal to or more than the lower limit of the above range, the electrical characteristics of the TFE-based polymer can be easily sufficiently exhibited. If the ratio of the thickness of the non-porous resin layer to the thickness of the metal foil is equal to or less than the upper limit of the above range, it is more difficult to warp.
 非多孔性樹脂層の表面の水接触角は、70~100°であることが好ましく、70~90°であることが特に好ましい。前記範囲が上限以下であれば、非多孔性樹脂層と他の基材との接着性がより優れる。前記範囲が下限以上であれば、非多孔性樹脂層の電気特性(低誘電損失と低誘電率)がより優れる。
 水接触角は、25℃にて樹脂付金属箔の非多孔性樹脂層の表面に純水(約2μL)を置いた際の、水滴と非多孔性樹脂層の表面とのなす角度である。
The water contact angle on the surface of the non-porous resin layer is preferably from 70 to 100 °, particularly preferably from 70 to 90 °. When the above range is equal to or less than the upper limit, the adhesiveness between the non-porous resin layer and another substrate is more excellent. When the above range is equal to or more than the lower limit, the electrical characteristics (low dielectric loss and low dielectric constant) of the non-porous resin layer are more excellent.
The water contact angle is an angle formed between a water droplet and the surface of the non-porous resin layer when pure water (about 2 μL) is placed on the surface of the non-porous resin layer of the metal foil with resin at 25 ° C.
 非多孔性樹脂層の比誘電率は、2.0~3.5であることが好ましく、2.0~3.0であることがより好ましい。この場合、非多孔性樹脂層の電気特性及び接着性の双方が優れ、低誘電率が求められるプリント配線板等に樹脂付金属箔を好適に使用できる。
 非多孔性樹脂層の表面のRaは、非多孔性樹脂層の厚さ未満であり、1~10nmであることが好ましい。この範囲において、他の基板の接着性と加工性とをバランスさせやすい。
The relative permittivity of the non-porous resin layer is preferably from 2.0 to 3.5, and more preferably from 2.0 to 3.0. In this case, both the electrical properties and adhesiveness of the non-porous resin layer are excellent, and a resin-attached metal foil can be suitably used for a printed wiring board or the like that requires a low dielectric constant.
Ra on the surface of the non-porous resin layer is less than the thickness of the non-porous resin layer, and preferably 1 to 10 nm. Within this range, it is easy to balance the adhesiveness and workability of another substrate.
 本発明における非多孔性樹脂層は、TFE系ポリマーを含む。TFE系ポリマーは、熱溶融性のTFE系ポリマーであることが好ましい。
 TFE系ポリマーの融点は、260℃超であることが好ましく、260℃超320℃以下であることがより好ましく、275~320℃であることが特に好ましい。TFE系ポリマーの融点が前記範囲内であれば、TFE系ポリマーが、その弾性に基づく粘着性を保持しつつ焼成されて、緻密な非多孔性樹脂層をより形成しやすい。
The non-porous resin layer in the present invention contains a TFE-based polymer. The TFE-based polymer is preferably a hot-melt TFE-based polymer.
The melting point of the TFE polymer is preferably higher than 260 ° C., more preferably higher than 260 ° C. and 320 ° C. or less, and particularly preferably 275 to 320 ° C. When the melting point of the TFE-based polymer is within the above range, the TFE-based polymer is baked while maintaining the adhesiveness based on its elasticity, so that a dense non-porous resin layer is more easily formed.
 TFE系ポリマーは、0.1~5.0MPaの貯蔵弾性率を示す温度領域を260℃以下に有することが好ましい。TFE系ポリマーが示す貯蔵弾性率としては、0.2~4.4MPaであるのが好ましく、0.5~3.0MPaであるのが特に好ましい。また、TFE系ポリマーがかかる貯蔵弾性率を示す温度領域としては、180~260℃が好ましく、200~260℃が特に好ましい。前記温度領域においてTFE系ポリマーが、その弾性に基づく粘着性を効果的に発現しやすい。 The TFE-based polymer preferably has a temperature region exhibiting a storage modulus of 0.1 to 5.0 MPa at 260 ° C. or lower. The storage elastic modulus of the TFE-based polymer is preferably from 0.2 to 4.4 MPa, particularly preferably from 0.5 to 3.0 MPa. Further, the temperature range in which the TFE-based polymer exhibits such storage modulus is preferably from 180 to 260 ° C., particularly preferably from 200 to 260 ° C. In the temperature range, the TFE-based polymer tends to effectively exhibit adhesiveness based on its elasticity.
 TFE系ポリマーは、TFE単位を有するポリマーである。TFE系ポリマーは、TFEのホモポリマーであってもよく、TFEと、TFEと共重合可能な他のモノマー(以下、コモノマーとも記す。)とのコポリマーであってもよい。TFE系ポリマーは、ポリマーを構成する全単位に対して、TFE単位を75~100モル%有し、コモノマーに基づく単位を0~25モル%有することが好ましい。
 コモノマーとしては、ペルフルオロ(アルキルビニルエーテル)(以下、「PAVE」とも記す。)、フルオロアルキルエチレン(以下、「FAE」とも記す。)、ヘキサフルオロプロピレン(以下、「HFP」とも記す。)、オレフィン等が挙げられる。
The TFE-based polymer is a polymer having TFE units. The TFE-based polymer may be a homopolymer of TFE or a copolymer of TFE and another monomer copolymerizable with TFE (hereinafter also referred to as a comonomer). The TFE-based polymer preferably has 75 to 100 mol% of TFE units and 0 to 25 mol% of units based on a comonomer, based on all units constituting the polymer.
Examples of the comonomer include perfluoro (alkyl vinyl ether) (hereinafter also referred to as “PAVE”), fluoroalkylethylene (hereinafter also referred to as “FAE”), hexafluoropropylene (hereinafter also referred to as “HFP”), olefin, and the like. Is mentioned.
 TFE系ポリマーとしては、例えば、ポリテトラフルオロエチレン、TFEとエチレンのコポリマー、TFEとプロピレンのコポリマー、TFEとPAVEのコポリマー、TFEとHFPのコポリマー、TFEとFAEのコポリマー、TFEとクロロトリフルオロエチレンのコポリマーが挙げられる。
 PAVEとしては、CF=CFOCF、CF=CFOCFCF、CF=CFOCFCFCF(PPVE)、CF=CFOCFCFCFCF、CF=CFO(CFFが挙げられる。
 FAEとしては、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CF(CFH、CH=CF(CFHが挙げられる。
Examples of the TFE-based polymer include polytetrafluoroethylene, a copolymer of TFE and ethylene, a copolymer of TFE and propylene, a copolymer of TFE and PAVE, a copolymer of TFE and HFP, a copolymer of TFE and FAE, and a copolymer of TFE and chlorotrifluoroethylene. And copolymers.
PAVE includes CF 2 = CFOCF 3 , CF 2 = CFOCF 2 CF 3 , CF 2 = CFOCF 2 CF 2 CF 3 (PPVE), CF 2 = CFOCF 2 CF 2 CF 2 CF 3 , CF 2 = CFO (CF 2 ) 8 F.
As FAE, CH 2 CHCH (CF 2 ) 2 F, CH 2 CHCH (CF 2 ) 3 F, CH 2 CHCH (CF 2 ) 4 F, CH 2 CFCF (CF 2 ) 3 H, CH 2 CFCF (CF 2 ) 4 H.
 TFE系ポリマーの好適な態様としては、TFE単位と、PAVE、HFP及びFAEからなる群から選ばれる少なくとも1種のモノマーに基づく単位(以下、「コモノマー単位F」とも記す。)を含むポリマーも挙げられる。
 前記ポリマーは、ポリマーを構成する全単位に対して、TFE単位を90~99モル%有し、コモノマー単位Fを1~10モル%有するのが好ましい。前記ポリマーは、TFE単位とコモノマー単位Fのみからなっていてもよく、さらに他の単位を含んでいてもよい。
As a preferable embodiment of the TFE-based polymer, a polymer containing a TFE unit and a unit based on at least one monomer selected from the group consisting of PAVE, HFP and FAE (hereinafter also referred to as “comonomer unit F”) is also exemplified. Can be
The polymer preferably has 90 to 99 mol% of TFE units and 1 to 10 mol% of comonomer units F based on all units constituting the polymer. The polymer may be composed of only the TFE unit and the comonomer unit F, and may further contain other units.
 TFE系ポリマーの好適な態様としては、非多孔性樹脂層と金属箔との接着性の点から、カルボニル基含有基、ヒドロキシ基、エポキシ基、アミド基、アミノ基及びイソシアネート基からなる群から選ばれる少なくとも1種の官能基(以下、「官能基」とも記す。)を有する、TFE単位を有するポリマー(以下、「ポリマーF」とも記す。)も挙げられる。
 官能基は、TFE系ポリマー中の単位に含まれていてもよく、ポリマーFの主鎖の末端基に含まれていてもよい。後者のポリマーとしては、官能基を、重合開始剤、連鎖移動剤等に由来する末端基として有するポリマーが挙げられる。
 ポリマーFとしては、官能基を有する単位とTFE単位とを有するポリマーが好ましい。また、この場合のポリマーFは、さらに他の単位を有するのが好ましく、コモノマー単位Fを有するのが特に好ましい。
 官能基は、非多孔性樹脂層と金属箔との接着性の点から、カルボニル基含有基が好ましい。カルボニル基含有基としては、カーボネート基、カルボキシ基、ハロホルミル基、アルコキシカルボニル基、酸無水物残基(-C(O)OC(O)-)、脂肪酸残基等が挙げられ、カルボキシ基及び酸無水物残基が好ましい。
As a preferred embodiment of the TFE-based polymer, from the viewpoint of the adhesiveness between the non-porous resin layer and the metal foil, selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group, an amide group, an amino group and an isocyanate group. And a polymer having TFE units (hereinafter, also referred to as “polymer F 1 ”) having at least one type of functional group (hereinafter, also referred to as “functional group”).
Functional groups may be contained in the units in the TFE-based polymers may be contained in the end groups of the main chain of the polymer F 1. Examples of the latter polymer include a polymer having a functional group as a terminal group derived from a polymerization initiator, a chain transfer agent, or the like.
The polymer F 1, a polymer having the units and TFE units having a functional group are preferred. The polymer F 1 in this case, further preferably has other units, particularly preferably has a comonomer unit F.
The functional group is preferably a carbonyl group-containing group from the viewpoint of adhesion between the non-porous resin layer and the metal foil. Examples of the carbonyl group-containing group include a carbonate group, a carboxy group, a haloformyl group, an alkoxycarbonyl group, an acid anhydride residue (—C (O) OC (O) —), and a fatty acid residue. Anhydride residues are preferred.
 官能基を有する単位としては、官能基を有するモノマーに基づく単位が好ましく、カルボニル基含有基を有するモノマーに基づく単位、ヒドロキシ基を有するモノマーに基づく単位、エポキシ基を有するモノマーに基づく単位及びイソシアネート基を有するモノマーに基づく単位がより好ましく、カルボニル基含有基を有するモノマーに基づく単位が特に好ましい。
 カルボニル基含有基を有するモノマーとしては、酸無水物残基を有する環状モノマー、カルボキシ基を有するモノマー、ビニルエステル及び(メタ)アクリレートが好ましく、酸無水物残基を有する環状モノマーが特に好ましい。
 前記環状モノマーとしては、無水イタコン酸、無水シトラコン酸、5-ノルボルネン-2,3-ジカルボン酸無水物(別称:無水ハイミック酸。以下、「NAH」とも記す。)及び無水マレイン酸が好ましい。
The unit having a functional group is preferably a unit based on a monomer having a functional group, and is a unit based on a monomer having a carbonyl group, a unit based on a monomer having a hydroxy group, a unit based on a monomer having an epoxy group, and an isocyanate group. A unit based on a monomer having a carbonyl group is more preferable, and a unit based on a monomer having a carbonyl group-containing group is particularly preferable.
As the monomer having a carbonyl group-containing group, a cyclic monomer having an acid anhydride residue, a monomer having a carboxy group, a vinyl ester and a (meth) acrylate are preferable, and a cyclic monomer having an acid anhydride residue is particularly preferable.
As the cyclic monomer, itaconic anhydride, citraconic anhydride, 5-norbornene-2,3-dicarboxylic anhydride (also called hymic anhydride; hereinafter also referred to as “NAH”) and maleic anhydride are preferable.
 ポリマーFとしては、官能基を有する単位とTFE単位と、PAVE単位又はHFP単位とを含むポリマーが好ましい。かかるポリマーFの具体例としては、国際公開第2018/16644号に記載された重合体(X)が挙げられる。
 ポリマーFにおけるTFE単位の割合は、ポリマーFを構成する全単位に対して、90~99モル%であることが好ましい。
 ポリマーFにおけるPAVE単位の割合は、ポリマーFを構成する全単位に対して、0.5~9.97モル%であることが好ましい。
 ポリマーFにおける官能基を有する単位の割合は、ポリマーFを構成する全単位に対して、0.01~3モル%であることが好ましい。
The polymer F 1, and the units and TFE units having a functional group, polymers comprising the PAVE units or HFP unit preferable. Specific examples of such polymers F 1, are polymers described in WO 2018/16644 (X) can be mentioned.
The proportion of TFE units in the polymer F 1 is the total units constituting the polymer F 1, is preferably 90 to 99 mol%.
Proportion of PAVE units in the polymer F 1 is the total units constituting the polymer F 1, is preferably 0.5 to 9.97 mol%.
The proportion of units having functional groups in the polymer F 1 is the total units constituting the polymer F 1, is preferably 0.01 to 3 mol%.
 本発明の樹脂付金属箔の製造方法としては、凹凸面を有する金属箔の凹凸表面に、TFE系ポリマーを含むパウダー(以下、「Fパウダー」とも記す。)と液状媒体とを含むパウダー分散液を塗布し、金属箔の凹凸面のパウダー分散液を加熱することで液状媒体を除去し、次いでFパウダーを焼成して、本発明の樹脂付金属箔を得る方法が挙げられる。かかるパウダー分散液を用いた方法の条件調整により、金属箔と非多孔性樹脂層の界面に存在する空隙の状態を容易に調整できる。例えば、Fパウダーを焼成する際の、温度を低くする又は時間を短くすると、金属箔と非多孔性樹脂層の界面の存在する空隙の数を増やしやすい。 The method for producing a resin-attached metal foil according to the present invention includes a powder dispersion containing a powder containing a TFE-based polymer (hereinafter also referred to as “F powder”) and a liquid medium on the uneven surface of the metal foil having an uneven surface. Is applied, the liquid medium is removed by heating the powder dispersion on the uneven surface of the metal foil, and then the F powder is baked to obtain the resin-attached metal foil of the present invention. By adjusting the conditions of the method using such a powder dispersion, the state of the void existing at the interface between the metal foil and the non-porous resin layer can be easily adjusted. For example, when the temperature or the time during firing of the F powder is lowered, the number of voids at the interface between the metal foil and the non-porous resin layer tends to increase.
 液状媒体は、分散媒であり、25℃で液状の不活性かつFパウダーと反応しない液状媒体であり、パウダー分散液に含まれる液状媒体以外の成分よりも低沸点であり、加熱等によって揮発し除去できる液状媒体が好ましい。
 液状媒体としては、水、アルコール(メタノール、エタノール、イソプロパノール等)、含窒素化合物(N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等)、含硫黄化合物(ジメチルスルホキシド等)、エーテル(ジエチルエーテル、ジオキサン等)、エステル(乳酸エチル、酢酸エチル等)、ケトン(メチルエチルケトン、メチルイソプロピルケトン、シクロペンタノン、シクロヘキサノン等)、グリコールエーテル(エチレングリコールモノイソプロピルエーテル等)、セロソルブ(メチルセロソルブ、エチルセロソルブ等)等が挙げられる。液状媒体は、2種以上を併用してもよい。
The liquid medium is a dispersion medium, which is a liquid medium that is inert at 25 ° C. and does not react with the F powder, has a lower boiling point than components other than the liquid medium contained in the powder dispersion, and is volatilized by heating or the like. Liquid media that can be removed are preferred.
Examples of the liquid medium include water, alcohols (methanol, ethanol, isopropanol, etc.), nitrogen-containing compounds (N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, etc.), sulfur-containing compounds (dimethyl Sulfoxides), ethers (diethyl ether, dioxane, etc.), esters (ethyl lactate, ethyl acetate, etc.), ketones (methyl ethyl ketone, methyl isopropyl ketone, cyclopentanone, cyclohexanone, etc.), glycol ethers (ethylene glycol monoisopropyl ether, etc.), Cellosolve (methyl cellosolve, ethyl cellosolve, etc.) and the like. Two or more liquid media may be used in combination.
 液状媒体としては、瞬間的に揮発しない液状媒体が好ましく、沸点80~275℃の液状媒体が好ましく、沸点125~250℃の液状媒体が特に好ましい。この範囲において、金属箔の表面に塗布したパウダー分散液から形成されるウェット膜の安定性が高い。
 液状媒体としては、有機化合物が好ましく、シクロヘキサン(沸点:81℃)、2-プロパノール(沸点:82℃)、1-プロパノール(沸点:97℃)、1-ブタノール(沸点:117℃)、1-メトキシ-2-プロパノール(沸点:119℃)、N-メチルピロリドン(沸点:202℃)、γ-ブチロラクトン(沸点:204℃)、シクロヘキサノン(沸点:156℃)及びシクロペンタノン(沸点:131℃)がより好ましく、N-メチルピロリドン、γ-ブチロラクトン、シクロヘキサノン及びシクロペンタノンが特に好ましい。
As the liquid medium, a liquid medium that does not volatilize instantaneously is preferable, a liquid medium having a boiling point of 80 to 275 ° C is preferable, and a liquid medium having a boiling point of 125 to 250 ° C is particularly preferable. Within this range, the stability of the wet film formed from the powder dispersion applied to the surface of the metal foil is high.
As the liquid medium, organic compounds are preferable, and cyclohexane (boiling point: 81 ° C.), 2-propanol (boiling point: 82 ° C.), 1-propanol (boiling point: 97 ° C.), 1-butanol (boiling point: 117 ° C.), 1-butanol Methoxy-2-propanol (boiling point: 119 ° C), N-methylpyrrolidone (boiling point: 202 ° C), γ-butyrolactone (boiling point: 204 ° C), cyclohexanone (boiling point: 156 ° C) and cyclopentanone (boiling point: 131 ° C) Are more preferable, and N-methylpyrrolidone, γ-butyrolactone, cyclohexanone and cyclopentanone are particularly preferable.
 Fパウダーは、本発明の効果を損なわない範囲において、TFE系ポリマー以外の成分を含んでいてもよいが、TFE系ポリマーを主成分とすることが好ましい。FパウダーにおけるTFE系ポリマーの含有量は、80質量%以上であることが好ましく、100質量%であることが特に好ましい。 The ΔF powder may contain components other than the TFE-based polymer as long as the effects of the present invention are not impaired, but it is preferable that the F-powder be mainly composed of the TFE-based polymer. The content of the TFE-based polymer in the F powder is preferably 80% by mass or more, and particularly preferably 100% by mass.
 FパウダーのD50としては、0.05~6.0μmが好ましく、0.1~3.0μmがより好ましく、0.2~3.0μmが特に好ましい。この範囲において、Fパウダーの流動性と分散性が良好となり、非多孔性樹脂層の電気特性(低誘電率等)や耐熱性が最も発現しやすい。
 FパウダーのD90としては、8μm以下が好ましく、6μm以下がより好ましく、5μm以下が特に好ましい。パウダーのD90としては、0.3μm以上が好ましく、0.8μm以上が特に好ましい。この範囲において、Fパウダーの流動性と分散性が良好となり、非多孔性樹脂層の電気特性(低誘電率等)や耐熱性が最も発現しやすい。
 Fパウダーの製造方法としては、特に限定されず、国際公開第2016/017801号の[0065]~[0069]に記載の方法を採用できる。なお、Fパウダーは、所望のパウダーが市販されていればそれを用いてもよい。
The D50 of the F powder is preferably from 0.05 to 6.0 μm, more preferably from 0.1 to 3.0 μm, and particularly preferably from 0.2 to 3.0 μm. Within this range, the fluidity and dispersibility of the F powder are good, and the electrical properties (such as a low dielectric constant) and the heat resistance of the non-porous resin layer are most easily exhibited.
The D90 of the F powder is preferably 8 μm or less, more preferably 6 μm or less, and particularly preferably 5 μm or less. The D90 of the powder is preferably at least 0.3 μm, particularly preferably at least 0.8 μm. Within this range, the fluidity and dispersibility of the F powder are good, and the electrical properties (such as a low dielectric constant) and the heat resistance of the non-porous resin layer are most easily exhibited.
The method for producing the F powder is not particularly limited, and the methods described in [0065] to [0069] of WO 2016/017801 can be employed. As the F powder, if desired powder is commercially available, it may be used.
 パウダー分散液中のFパウダーの割合は、5~60質量%であることが好ましく、35~50質量%であることが特に好ましい。この範囲において、非多孔性樹脂層の比誘電率及び誘電正接を低く制御しやすい。また、パウダー分散液の均一分散性が高く、非多孔性樹脂層の機械的強度に優れる。
 パウダー分散液中の液状媒体の割合は、15~65質量%であることが好ましく、25~50質量部であることが特に好ましい。この範囲において、パウダー分散液の塗布性が優れ、かつ非多孔性樹脂層の外観不良が起こりにくい。
The proportion of the F powder in the powder dispersion is preferably 5 to 60% by mass, particularly preferably 35 to 50% by mass. Within this range, the relative dielectric constant and dielectric loss tangent of the non-porous resin layer can be easily controlled to be low. Further, the powder dispersion has high uniform dispersibility, and the non-porous resin layer has excellent mechanical strength.
The proportion of the liquid medium in the powder dispersion is preferably from 15 to 65% by mass, particularly preferably from 25 to 50% by mass. Within this range, the applicability of the powder dispersion is excellent, and poor appearance of the non-porous resin layer is unlikely to occur.
 パウダー分散液は、本発明の効果を損なわない範囲で、他の材料を含んでいてもよい。他の材料は、パウダー分散液に溶解してもよく、溶解しなくてもよい。
 他の材料は、非硬化性樹脂であってもよく、硬化性樹脂であってもよい。
 非硬化性樹脂としては、熱溶融性樹脂、非溶融性樹脂が挙げられる。熱溶融性樹脂としては、熱可塑性ポリイミド等が挙げられる。非溶融性樹脂としては、硬化性樹脂の硬化物等が挙げられる。
 硬化性樹脂としては、反応性基を有するポリマー、反応性基を有するオリゴマー、低分子化合物、反応性基を有する低分子化合物等が挙げられる。反応性基としては、カルボニル基含有基、ヒドロキシ基、アミノ基、エポキシ基等が挙げられる。
The powder dispersion may contain other materials as long as the effects of the present invention are not impaired. Other materials may or may not dissolve in the powder dispersion.
The other material may be a non-curable resin or a curable resin.
Examples of the non-curable resin include a heat-meltable resin and a non-meltable resin. Examples of the heat-fusible resin include thermoplastic polyimide. Examples of the non-fusible resin include a cured product of a curable resin.
Examples of the curable resin include a polymer having a reactive group, an oligomer having a reactive group, a low molecular compound, and a low molecular compound having a reactive group. Examples of the reactive group include a carbonyl group-containing group, a hydroxy group, an amino group, and an epoxy group.
 硬化性樹脂としては、エポキシ樹脂、熱硬化性ポリイミド、ポリイミド前駆体であるポリアミック酸、熱硬化性アクリル樹脂、フェノール樹脂、熱硬化性ポリエステル樹脂、熱硬化性ポリオレフィン樹脂、変性ポリフェニレンエーテル樹脂、多官能シアン酸エステル樹脂、多官能マレイミド-シアン酸エステル樹脂、多官能性マレイミド樹脂、ビニルエステル樹脂、尿素樹脂、ジアリルフタレート樹脂、メラミン樹脂、グアナミン樹脂、メラミン-尿素共縮合樹脂が挙げられる。なかでも、プリント配線板用途に有用な点から、熱硬化性樹脂としては、熱硬化性ポリイミド、ポリイミド前駆体、エポキシ樹脂、アクリル樹脂、ビスマレイミド樹脂及びポリフェニレンエーテル樹脂が好ましく、エポキシ樹脂及びポリフェニレンエーテル樹脂が特に好ましい。 As the curable resin, epoxy resin, thermosetting polyimide, polyamic acid as a polyimide precursor, thermosetting acrylic resin, phenol resin, thermosetting polyester resin, thermosetting polyolefin resin, modified polyphenylene ether resin, polyfunctional Examples include a cyanate ester resin, a polyfunctional maleimide-cyanate ester resin, a polyfunctional maleimide resin, a vinyl ester resin, a urea resin, a diallyl phthalate resin, a melamine resin, a guanamine resin, and a melamine-urea cocondensation resin. Among them, thermosetting polyimide, polyimide precursor, epoxy resin, acrylic resin, bismaleimide resin and polyphenylene ether resin are preferable as thermosetting resin from the viewpoint of being useful for printed wiring board applications, and epoxy resin and polyphenylene ether are preferable. Resins are particularly preferred.
 エポキシ樹脂の具体例としては、ナフタレン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、アルキルフェノールノボラック型エポキシ樹脂、アラルキル型エポキシ樹脂、ビフェノール型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスヒドロキシフェニルメタン型エポキシ化合物、フェノールとフェノール性水酸基を有する芳香族アルデヒドとの縮合物のエポキシ化物、ビスフェノールのジグリシジルエーテル化物、ナフタレンジオールのジグリシジルエーテル化物、フェノールのグリシジルエーテル化物、アルコールのジグリシジルエーテル化物、トリグリシジルイソシアヌレート等が挙げられる。 Specific examples of the epoxy resin include naphthalene type epoxy resin, cresol novolak type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, alicyclic epoxy resin, aliphatic chain epoxy resin, Cresol novolak type epoxy resin, phenol novolak type epoxy resin, alkylphenol novolak type epoxy resin, aralkyl type epoxy resin, biphenol type epoxy resin, dicyclopentadiene type epoxy resin, trishydroxyphenylmethane type epoxy compound, having phenol and phenolic hydroxyl group Epoxidized condensate with aromatic aldehyde, diglycidyl ether of bisphenol, diglycidyl ether of naphthalene diol, phenol Glycidyl ethers, diglycidyl ethers of alcohols, triglycidyl isocyanurate.
 ビスマレイミド樹脂としては、特開平7-70315号公報に記載される、ビスフェノールA型シアン酸エステル樹脂とビスマレイミド化合物とを併用した樹脂組成物(BTレジン)、国際公開第2013/008667号に記載の発明、その背景技術に記載のものが挙げられる。
 ポリアミック酸は、通常、ポリマーFの官能基と反応しうる反応性基を有している。
 ポリアミック酸を形成するジアミン、多価カルボン酸二無水物としては、例えば、特許第5766125号公報の[0020]、特許第5766125号公報の[0019]、特開2012-145676号公報の[0055]、[0057]等に記載のものが挙げられる。なかでも、4,4’-ジアミノジフェニルエーテル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン等の芳香族ジアミンと、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物等の芳香族多価カルボン酸二無水物との組合せからなるポリアミック酸が好ましい。
As the bismaleimide resin, a resin composition (BT resin) in which a bisphenol A-type cyanate ester resin and a bismaleimide compound are used in combination, which is described in JP-A-7-70315, described in WO2013 / 008667 And the background art.
Polyamic acid typically has a reactive group capable of reacting with the functional groups of the polymer F 1.
Examples of the diamine and polycarboxylic acid dianhydride forming a polyamic acid include [0020] of Japanese Patent No. 5766125, [0019] of Japanese Patent No. 5766125, and [0055] of Japanese Patent Application Laid-Open No. 2012-145676. , [0057] and the like. Among them, aromatic diamines such as 4,4'-diaminodiphenyl ether and 2,2-bis [4- (4-aminophenoxy) phenyl] propane, and pyromellitic dianhydride, 3,3 ', 4,4 Polyamic acids comprising a combination with an aromatic polycarboxylic dianhydride such as '-biphenyltetracarboxylic dianhydride and 3,3', 4,4'-benzophenonetetracarboxylic dianhydride are preferred.
 熱溶融性の樹脂としては、熱可塑性ポリイミド等の熱可塑性樹脂、硬化性の樹脂の熱溶融性の硬化物が挙げられる。
 熱可塑性樹脂としては、ポリエステル樹脂、ポリオレフィン樹脂、スチレン樹脂、ポリカーボネート、熱可塑性ポリイミド、ポリアリレート、ポリスルホン、ポリアーリルスルホン、芳香族ポリアミド、芳香族ポリエーテルアミド、ポリフェニレンスルファイド、ポリアリールエーテルケトン、ポリアミドイミド、液晶性ポリエステル、ポリフェニレンエーテル等が挙げられ、熱可塑性ポリイミド、液晶性ポリエステル及びポリフェニレンエーテルが好ましい。
Examples of the heat-fusible resin include a thermoplastic resin such as thermoplastic polyimide, and a heat-fusible cured product of a curable resin.
As the thermoplastic resin, polyester resin, polyolefin resin, styrene resin, polycarbonate, thermoplastic polyimide, polyarylate, polysulfone, polyarylsulfone, aromatic polyamide, aromatic polyetheramide, polyphenylene sulfide, polyaryletherketone, Polyamide imide, liquid crystalline polyester, polyphenylene ether and the like are mentioned, and thermoplastic polyimide, liquid crystalline polyester and polyphenylene ether are preferable.
 さらに、パウダー分散液に含まれ得る他の材料として、分散剤、バインダー、チキソ性付与剤、消泡剤、無機フィラー、反応性アルコキシシラン、脱水剤、可塑剤、耐候剤、酸化防止剤、熱安定剤、滑剤、帯電防止剤、増白剤、着色剤、導電剤、離型剤、表面処理剤、粘度調節剤、難燃剤等も挙げられる。 Further, other materials that may be contained in the powder dispersion include a dispersant, a binder, a thixotropy-imparting agent, an antifoaming agent, an inorganic filler, a reactive alkoxysilane, a dehydrating agent, a plasticizer, a weathering agent, an antioxidant, and heat. Stabilizers, lubricants, antistatic agents, brighteners, coloring agents, conductive agents, release agents, surface treatment agents, viscosity modifiers, flame retardants and the like are also included.
 金属箔の凹凸面へのパウダー分散液の塗布方法は、塗布後の金属箔の凹凸面にパウダー分散液からなる安定したウェット膜を形成する方法であればよく、スプレー法、ロールコート法、スピンコート法、グラビアコート法、マイクログラビアコート法、グラビアオフセット法、ナイフコート法、キスコート法、バーコート法、ダイコート法、ファウンテンメイヤーバー法、スロットダイコート法等が挙げられる。 The method of applying the powder dispersion to the uneven surface of the metal foil may be any method that forms a stable wet film made of the powder dispersion on the uneven surface of the metal foil after application, such as a spray method, a roll coating method, and a spin coating method. Coating method, gravure coating method, microgravure coating method, gravure offset method, knife coating method, kiss coating method, bar coating method, die coating method, fountain Meyer bar method, slot die coating method and the like.
 パウダー分散液を金属箔の凹凸面に塗布した後には、TFE系ポリマーが0.1~5.0MPaの貯蔵弾性率を示す温度領域内の温度(以下、「保持温度」とも示す。)にて金属箔を保持することが好ましい。保持温度は、雰囲気の温度を示す。
 また、前記温度領域に金属箔を供する前に、前記温度領域未満の温度にて金属箔を加熱して、ウェット膜の状態を調整してもよい。なお、ウェット膜の状態の調整は、液状媒体が完全に揮発しない程度にて行われ、50質量%以下の液状媒体を揮発させる程度に通常は行われる。
After the powder dispersion is applied to the uneven surface of the metal foil, the TFE-based polymer has a storage elastic modulus of 0.1 to 5.0 MPa at a temperature within a temperature range (hereinafter, also referred to as “holding temperature”). It is preferable to hold the metal foil. The holding temperature indicates the temperature of the atmosphere.
In addition, before providing the metal foil in the temperature range, the state of the wet film may be adjusted by heating the metal foil at a temperature lower than the temperature range. The adjustment of the state of the wet film is performed to such an extent that the liquid medium does not completely volatilize, and is usually performed to the extent that 50% by mass or less of the liquid medium is volatilized.
 パウダー分散液の塗布後の保持は、1段階で実施してもよく、異なる温度にて多段階で実施してもよい。
 保持の方法としては、オーブンを用いる方法、通風乾燥炉を用いる方法、赤外線等の熱線を照射する方法等が挙げられる。
 保持における雰囲気は、常圧下、減圧下のいずれの状態であってよい。また、前記保持における雰囲気は、酸素ガス等の酸化性ガス雰囲気、水素ガス等の還元性ガス雰囲気、ヘリウムガス、ネオンガス、アルゴンガス、窒素ガス等の不活性ガス雰囲気のいずれであってもよい。
 保持における雰囲気としては、非多孔性樹脂層の接着性が向上する観点から、酸素ガスを含む雰囲気が好ましい。
 酸素ガスを含む雰囲気における酸素ガス濃度(体積基準)は、1×10~3×10ppmであることが好ましく、0.5×10~1×10ppmであることが特に好ましい。この範囲において、非多孔性樹脂層の接着性と金属箔の酸化抑制とをバランスさせやすい。
The holding after the application of the powder dispersion may be performed in one stage, or may be performed in multiple stages at different temperatures.
Examples of the holding method include a method using an oven, a method using a ventilation drying oven, and a method of irradiating heat rays such as infrared rays.
The atmosphere in the holding may be under normal pressure or reduced pressure. The holding atmosphere may be any of an oxidizing gas atmosphere such as an oxygen gas atmosphere, a reducing gas atmosphere such as a hydrogen gas atmosphere, and an inert gas atmosphere such as a helium gas, a neon gas, an argon gas, and a nitrogen gas.
As an atmosphere for the holding, an atmosphere containing an oxygen gas is preferable from the viewpoint of improving the adhesiveness of the non-porous resin layer.
The oxygen gas concentration (by volume) in an atmosphere containing oxygen gas is preferably from 1 × 10 2 to 3 × 10 5 ppm, particularly preferably from 0.5 × 10 3 to 1 × 10 4 ppm. Within this range, it is easy to balance the adhesiveness of the non-porous resin layer and the suppression of oxidation of the metal foil.
 保持温度としては、150~260℃が好ましく、200~260℃が特に好ましい。
 保持温度に保持する時間としては、0.1~10分間が好ましく、0.5~5分間が特に好ましい。
 保持を行う場合は保持後に、TFE系ポリマーを焼成させて金属箔の表面に非多孔性樹脂層を形成する。焼成温度は、TFE系ポリマーの焼成時の雰囲気の温度を示す。本発明においては、Fパウダーが密にパッキングした状態でTFE系ポリマーの融着が進行するため、均質性に優れる非多孔性樹脂層が形成され、樹脂付金属箔が反りにくい。なお、パウダー分散液が熱溶融性樹脂を含めばTFE系ポリマーと熱溶融性樹脂との混合物からなる非多孔性樹脂層が形成され、パウダー分散液が熱硬化性樹脂を含めばTFE系ポリマーと熱硬化性樹脂の硬化物とからなる非多孔性樹脂層が形成される。
The holding temperature is preferably from 150 to 260 ° C, particularly preferably from 200 to 260 ° C.
The holding time at the holding temperature is preferably from 0.1 to 10 minutes, particularly preferably from 0.5 to 5 minutes.
When holding, after holding, the TFE-based polymer is fired to form a non-porous resin layer on the surface of the metal foil. The firing temperature indicates the temperature of the atmosphere during firing of the TFE-based polymer. In the present invention, the fusion of the TFE-based polymer proceeds in a state where the F powder is densely packed, so that a non-porous resin layer having excellent homogeneity is formed, and the resin-attached metal foil is not easily warped. If the powder dispersion contains a thermofusible resin, a non-porous resin layer composed of a mixture of a TFE-based polymer and a heat-fusible resin is formed. If the powder dispersion contains a thermosetting resin, a TFE-based polymer is formed. A non-porous resin layer composed of a cured product of the thermosetting resin is formed.
 加熱の方法としては、オーブンを用いる方法、通風乾燥炉を用いる方法、赤外線等の熱線を照射する方法等が挙げられる。非多孔性樹脂層の表面の平滑性を高めるために、加熱板、加熱ロール等で加圧してもよい。加熱の方法としては、短時間で焼成でき、遠赤外線炉が比較的コンパクトである点から、遠赤外線を照射する方法が好ましい。加熱の方法は、赤外線加熱と熱風加熱とを組み合わせてもよい。
 遠赤外線の有効波長帯としては、TFE系ポリマーの均質な融着を促す点から、2~20μmが好ましく、3~7μmがより好ましい。
Examples of the heating method include a method using an oven, a method using a ventilation drying oven, and a method of irradiating heat rays such as infrared rays. In order to increase the smoothness of the surface of the non-porous resin layer, pressure may be applied with a heating plate, a heating roll, or the like. As a heating method, a method of irradiating far-infrared rays is preferable because it can be fired in a short time and the far-infrared ray furnace is relatively compact. The heating method may be a combination of infrared heating and hot air heating.
The effective wavelength band of the far infrared ray is preferably 2 to 20 μm, more preferably 3 to 7 μm, from the viewpoint of promoting uniform fusion of the TFE-based polymer.
 焼成における雰囲気は、常圧下、減圧下のいずれの状態であってよい。また、前記焼成における雰囲気は、酸素ガス等の酸化性ガス雰囲気、水素ガス等の還元性ガス雰囲気、ヘリウムガス、ネオンガス、アルゴンガス、窒素ガス等の不活性ガス雰囲気のいずれであってもよく、金属箔、形成される非多孔性樹脂層それぞれの酸化劣化を抑制する観点から、還元性ガス雰囲気又は不活性ガス雰囲気であることが好ましい。
 焼成における雰囲気としては、不活性ガスから構成され酸素ガス濃度が低いガス雰囲気が好ましく、窒素ガスから構成され酸素ガス濃度(体積基準)が500ppm未満のガス雰囲気が好ましい。酸素ガス濃度(体積基準)としては、300ppm以下が特に好ましい。また、酸素ガス濃度(体積基準)は、通常、1ppm以上である。
 焼成温度としては、320℃超が好ましく、330~380℃が特に好ましい。この場合、TFE系ポリマーが、緻密な非多孔性樹脂層をより形成しやすい。
 焼成温度に保持する時間は、30秒~5分間であることが好ましく、1~2分間であることが特に好ましい。
The atmosphere in the firing may be under normal pressure or under reduced pressure. The atmosphere in the firing may be any of an oxidizing gas atmosphere such as an oxygen gas, a reducing gas atmosphere such as a hydrogen gas, and an inert gas atmosphere such as a helium gas, a neon gas, an argon gas, and a nitrogen gas. From the viewpoint of suppressing the oxidative deterioration of the metal foil and the non-porous resin layer to be formed, the atmosphere is preferably a reducing gas atmosphere or an inert gas atmosphere.
As the atmosphere for firing, a gas atmosphere composed of an inert gas and having a low oxygen gas concentration is preferable, and a gas atmosphere composed of nitrogen gas and having an oxygen gas concentration (by volume) of less than 500 ppm is preferable. The oxygen gas concentration (by volume) is particularly preferably 300 ppm or less. Further, the oxygen gas concentration (based on volume) is usually 1 ppm or more.
The firing temperature is preferably higher than 320 ° C., particularly preferably 330 to 380 ° C. In this case, the TFE-based polymer more easily forms a dense non-porous resin layer.
The holding time at the firing temperature is preferably from 30 seconds to 5 minutes, and particularly preferably from 1 to 2 minutes.
 樹脂付金属箔における樹脂層が従来の絶縁材料(ポリイミド等の熱硬化性樹脂の硬化物。)の場合、熱硬化性樹脂を硬化させるために長時間の加熱が必要である。一方、本発明においては、TFE系ポリマーの融着により短時間の加熱で非多孔性樹脂層を形成できる。また、パウダー分散液が熱硬化性樹脂を含む場合、焼成温度を低くできる。このように、本発明の樹脂付金属箔は、製造時に非多孔性樹脂層を形成する際の金属箔への熱負荷が小さく、金属箔へのダメージが小さい。 (4) When the resin layer of the resin-attached metal foil is a conventional insulating material (a cured product of a thermosetting resin such as polyimide), long-time heating is required to cure the thermosetting resin. On the other hand, in the present invention, the non-porous resin layer can be formed by heating for a short time by fusing the TFE-based polymer. When the powder dispersion contains a thermosetting resin, the firing temperature can be lowered. As described above, the resin-attached metal foil of the present invention has a small heat load on the metal foil when the non-porous resin layer is formed at the time of manufacturing, and has a small damage to the metal foil.
 本発明の樹脂付金属箔においては、非多孔性樹脂層の線膨張係数を制御したり、非多孔性樹脂層の接着性をさらに改善したりするために、非多孔性樹脂層の表面に表面処理をしてもよい。
 非多孔性樹脂層の表面にする表面処理方法としては、アニール処理、コロナ放電処理、大気圧プラズマ処理、真空プラズマ処理、UVオゾン処理、エキシマ処理、ケミカルエッチング、シランカップリング剤処理、微粗面化処理等が挙げられる。
 アニール処理における温度としては、80~190℃が好ましく、120~180℃が特に好ましい。
 アニール処理における圧力としては、0.001~0.030MPaが好ましく、0.005~0.015MPaが特に好ましい。
 アニール処理の時間としては、10~300分間が好ましく、30~120分間が特に好ましい。
In the metal foil with resin of the present invention, in order to control the linear expansion coefficient of the non-porous resin layer or to further improve the adhesiveness of the non-porous resin layer, the surface of the non-porous resin layer Processing may be performed.
Surface treatment methods for the surface of the non-porous resin layer include annealing treatment, corona discharge treatment, atmospheric pressure plasma treatment, vacuum plasma treatment, UV ozone treatment, excimer treatment, chemical etching, silane coupling agent treatment, and fine rough surface. And the like.
The temperature in the annealing treatment is preferably from 80 to 190 ° C., particularly preferably from 120 to 180 ° C.
The pressure in the annealing treatment is preferably 0.001 to 0.030 MPa, particularly preferably 0.005 to 0.015 MPa.
The annealing time is preferably from 10 to 300 minutes, particularly preferably from 30 to 120 minutes.
 プラズマ処理におけるプラズマ照射装置としては、高周波誘導方式、容量結合型電極方式、コロナ放電電極-プラズマジェット方式、平行平板型、リモートプラズマ型、大気圧プラズマ型、ICP型高密度プラズマ型等が挙げられる。
 プラズマ処理に用いるガスとしては、酸素ガス、窒素ガス、希ガス(アルゴン等)、水素ガス、アンモニアガス等が挙げられ、希ガス及び窒素ガスが好ましい。プラズマ処理に用いるガスの具体例としては、アルゴンガス、水素ガスと窒素ガスの混合ガス、水素ガスと窒素ガスとアルゴンガスの混合ガスが挙げられる。
 プラズマ処理における雰囲気としては、希ガス又は窒素ガスの体積分率が70体積%以上の雰囲気が好ましく、100体積%の雰囲気が特に好ましい。この範囲において、非多孔性樹脂層の表面に微細凹凸を形成しやすい。
Examples of the plasma irradiation apparatus in the plasma processing include a high-frequency induction method, a capacitive coupling electrode method, a corona discharge electrode-plasma jet method, a parallel plate type, a remote plasma type, an atmospheric pressure plasma type, an ICP type high density plasma type, and the like. .
Examples of a gas used for the plasma treatment include an oxygen gas, a nitrogen gas, a rare gas (eg, argon), a hydrogen gas, and an ammonia gas, and a rare gas and a nitrogen gas are preferable. Specific examples of the gas used for the plasma treatment include argon gas, a mixed gas of hydrogen gas and nitrogen gas, and a mixed gas of hydrogen gas, nitrogen gas, and argon gas.
The atmosphere in the plasma treatment is preferably an atmosphere having a volume fraction of a rare gas or a nitrogen gas of 70% by volume or more, and particularly preferably an atmosphere having a volume fraction of 100% by volume. Within this range, it is easy to form fine irregularities on the surface of the non-porous resin layer.
 以上説明した本発明の樹脂付金属箔は、非多孔性樹脂層の剥離強度が高く、かつ反りにくい。そのため、他の基板と容易に積層できる。
 他の基板としては、耐熱性樹脂フィルム、繊維強化樹脂板の前駆体であるプリプレグ、耐熱性樹脂フィルム層を有する積層体、プリプレグ層を有する積層体等が挙げられる。
 プリプレグは、強化繊維(ガラス繊維、炭素繊維等。)の基材(トウ、織布等。)に熱硬化性樹脂又は熱可塑性樹脂を含浸させたシート状の基板である。
 耐熱性樹脂フィルムは、耐熱性樹脂の1種以上を含むフィルムであり、単層フィルムであっても多層フィルムであってもよい。
The metal foil with resin of the present invention described above has a high peel strength of the non-porous resin layer and is hardly warped. Therefore, it can be easily laminated with another substrate.
Other substrates include a heat-resistant resin film, a prepreg that is a precursor of a fiber-reinforced resin plate, a laminate having a heat-resistant resin film layer, a laminate having a prepreg layer, and the like.
The prepreg is a sheet-like substrate in which a thermosetting resin or a thermoplastic resin is impregnated into a base material (tow, woven fabric, or the like) of a reinforcing fiber (glass fiber, carbon fiber, or the like).
The heat-resistant resin film is a film containing at least one kind of heat-resistant resin, and may be a single-layer film or a multilayer film.
 耐熱性樹脂としては、ポリイミド、ポリアリレート、ポリスルホン、ポリアリルスルホン、芳香族ポリアミド、芳香族ポリエーテルアミド、ポリフェニレンスルフィド、ポリアリルエーテルケトン、ポリアミドイミド、液晶性ポリエステル等が挙げられる。 Examples of the heat-resistant resin include polyimide, polyarylate, polysulfone, polyallylsulfone, aromatic polyamide, aromatic polyetheramide, polyphenylene sulfide, polyallyletherketone, polyamideimide, and liquid crystalline polyester.
 本発明の樹脂付金属箔の非多孔性樹脂層の表面に他の基材を積層する方法としては、樹脂付金属箔と他の基板とを熱プレスする方法が挙げられる。
 他の基板がプリプレグの場合のプレス温度としては、TFE系ポリマーの融点以下が好ましく、120~300℃がより好ましく、160~220℃が特に好ましい。この範囲において、プリプレグの熱劣化を抑制しつつ、非多孔性樹脂層とプリプレグを強固に接着できる。
 基板が耐熱性樹脂フィルムの場合のプレス温度としては、310~400℃が好ましい。この範囲において、耐熱性樹脂フィルムの熱劣化を抑制しつつ、非多孔性樹脂層と耐熱性樹脂フィルムを強固に接着できる。
As a method of laminating another base material on the surface of the non-porous resin layer of the metal foil with resin of the present invention, a method of hot pressing the metal foil with resin and another substrate is exemplified.
When the other substrate is a prepreg, the pressing temperature is preferably equal to or lower than the melting point of the TFE-based polymer, more preferably from 120 to 300 ° C, and particularly preferably from 160 to 220 ° C. Within this range, the non-porous resin layer and the prepreg can be firmly bonded while suppressing thermal deterioration of the prepreg.
When the substrate is a heat-resistant resin film, the pressing temperature is preferably from 310 to 400 ° C. Within this range, the non-porous resin layer and the heat-resistant resin film can be firmly bonded while suppressing the thermal deterioration of the heat-resistant resin film.
 熱プレスは、減圧雰囲気下で行うことが好ましく、20kPa以下の真空度で行うことが特に好ましい。この範囲において、積層体における非多孔性樹脂層と基板の界面への気泡混入が抑制でき、酸化による劣化を抑制できる。
 また、熱プレス時は前記真空度に到達した後に昇温することが好ましい。前記真空度に到達する前に昇温すると、非多孔性樹脂層が軟化した状態、すなわち一定程度の流動性、密着性がある状態にて圧着されてしまい、気泡の原因となる。
 熱プレスにおける圧力としては、0.2MPa以上が好ましい。また、圧力の上限は、10MPa以下であることが好ましい。この範囲において、基板の破損を抑制しつつ、非多孔性樹脂層と基板とを強固に密着できる。
The hot pressing is preferably performed under a reduced pressure atmosphere, and particularly preferably performed at a degree of vacuum of 20 kPa or less. Within this range, the incorporation of bubbles into the interface between the non-porous resin layer and the substrate in the laminate can be suppressed, and deterioration due to oxidation can be suppressed.
In the case of hot pressing, it is preferable to raise the temperature after reaching the above-mentioned degree of vacuum. If the temperature is raised before reaching the degree of vacuum, the non-porous resin layer is pressed in a softened state, that is, in a state having a certain degree of fluidity and adhesion, causing bubbles.
The pressure in the hot press is preferably 0.2 MPa or more. Further, the upper limit of the pressure is preferably 10 MPa or less. Within this range, the non-porous resin layer and the substrate can be firmly adhered while suppressing damage to the substrate.
 本発明の樹脂付金属箔やその積層体は、フレキシブル銅張積層板やリジッド銅張積層板として、プリント配線板の製造に使用できる。本発明の樹脂付金属箔は、非多孔性樹脂層の剥離強度が高く、反りにくいため、表皮効果による損失が抑制された高周波プリント配線板の材料として好適に使用できる。 樹脂 The resin-attached metal foil and the laminate thereof of the present invention can be used as a flexible copper-clad laminate or a rigid copper-clad laminate for the production of printed wiring boards. Since the metal foil with resin of the present invention has a high peel strength of the non-porous resin layer and is hard to be warped, it can be suitably used as a material for a high-frequency printed wiring board in which loss due to a skin effect is suppressed.
 例えば、本発明の樹脂付金属箔の金属箔をエッチング処理等によって所定のパターンの伝送回路(パターン回路)に加工する方法や、本発明の樹脂付金属箔を電解めっき法(セミアディティブ法(SAP法)、モディファイドセミアディティブ法(MSAP法)等。)によって伝送回路に加工する方法を使用すれば、本発明の樹脂付金属箔からプリント配線板を製造できる。 For example, a method of processing the metal foil of the resin-coated metal foil of the present invention into a transmission circuit (pattern circuit) having a predetermined pattern by an etching process or the like, or a method of electroplating the resin-coated metal foil of the present invention (semi-additive method (SAP)) ), A modified semi-additive method (MSAP method), etc.), a printed wiring board can be manufactured from the resin-attached metal foil of the present invention.
 プリント配線板の製造においては、伝送回路を形成した後に、伝送回路上に層間絶縁膜を形成し、層間絶縁膜上にさらに伝送回路を形成してもよい。層間絶縁膜は、例えば、前記したパウダー分散液によって形成できる。
 プリント配線板の製造においては、伝送回路上にソルダーレジストを積層してもよい。ソルダーレジストは、例えば、前記したパウダー分散液によって形成できる。
 プリント配線板の製造においては、伝送回路上にカバーレイフィルムを積層してもよい。カバーレイフィルムは、例えば、前記したパウダー分散液によって形成できる。
In manufacturing a printed wiring board, after forming a transmission circuit, an interlayer insulating film may be formed over the transmission circuit, and the transmission circuit may be further formed over the interlayer insulating film. The interlayer insulating film can be formed by, for example, the powder dispersion described above.
In manufacturing a printed wiring board, a solder resist may be laminated on a transmission circuit. The solder resist can be formed by, for example, the powder dispersion described above.
In manufacturing a printed wiring board, a coverlay film may be laminated on a transmission circuit. The cover lay film can be formed by, for example, the powder dispersion described above.
 以下、実施例によって本発明を具体的に説明するが、本発明は以下の記載によっては限定されない。
 以下の方法によって、各種評価を行った。
 (ポリマーの貯蔵弾性率)
 動的粘弾性測定装置(SIIナノテクノロジー社製、DMS6100)を用い、周波数10Hz、静的力0.98N、動的変位0.035%の条件にて、TFE系ポリマーを2℃/分の速度で20℃から昇温させ、260℃における貯蔵弾性率を測定した。
 (ポリマーの融点)
 示差走査熱量計(セイコーインスツル社製、DSC-7020)を用い、TFE系ポリマーを10℃/分の速度で昇温させて測定した。
 (パウダーのD50及びD90)
 レーザー回折・散乱式粒度分布測定装置(堀場製作所社製、LA-920測定器)を用い、パウダーを水中に分散させて測定した。
Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited by the following description.
Various evaluations were performed by the following methods.
(Storage modulus of polymer)
Using a dynamic viscoelasticity measurement device (DMS6100, manufactured by SII Nano Technology), the TFE polymer was heated at a rate of 2 ° C./min at a frequency of 10 Hz, a static force of 0.98 N, and a dynamic displacement of 0.035%. And the storage elastic modulus at 260 ° C. was measured.
(Melting point of polymer)
Using a differential scanning calorimeter (DSC-7020, manufactured by Seiko Instruments Inc.), the TFE polymer was heated at a rate of 10 ° C./min and measured.
(Powder D50 and D90)
The powder was dispersed in water and measured using a laser diffraction / scattering type particle size distribution analyzer (LA-920 measuring device manufactured by Horiba, Ltd.).
 (非多孔性樹脂層の表面のRa)
 原子間力顕微鏡(Oxford Instruments社製)を用いて、プローブをAC160TS-C3(先端R <7nm、バネ定数 26N/m)とし、測定モードをAC-Airとし、Scan Rateを1Hzとする測定条件にて測定した。
 (比誘電率(20GHz)及び誘電正接(20GHz))
 ASTM D 150準拠の変成器ブリッジ法にて、温度を23℃±2℃の範囲内、相対湿度を50%±5%RHの範囲内に保持した試験環境において、絶縁破壊試験装置(YSY-243-100RHO(ヤマヨ試験機社製))にて、20GHzでの比誘電率及び誘電正接を求めた。
 (反り率)
 樹脂付金属箔から試験片を切り出して測定した。反り率が小さいほど、樹脂付金属箔を他材料と積層加工した際の積層不良を抑制でき、反りが抑制された平坦性の高い複合積層体(プリント配線板等。)が得られる。
 (剥離強度)
 矩形状(長さ100mm、幅10mm)に切り出した片面銅張積層体の長さ方向の一端から50mmの位置を固定し、引張り速度50mm/分で、長さ方向の片端から片面銅張積層体に対して90°、金属箔と非多孔性樹脂層を剥離させた際にかかる最大荷重を剥離強度(N/cm)とした。
(Ra on the surface of the non-porous resin layer)
Using an atomic force microscope (manufactured by Oxford Instruments), the probe was set to AC160TS-C3 (tip R <7 nm, spring constant 26 N / m), the measurement mode was set to AC-Air, and the scan rate was set to 1 Hz. Measured.
(Relative permittivity (20 GHz) and dielectric loss tangent (20 GHz))
In a test environment where the temperature is kept within a range of 23 ° C. ± 2 ° C. and the relative humidity is kept within a range of 50% ± 5% RH by a transformer bridge method based on ASTM D150, a dielectric breakdown test apparatus (YSY-243) is used. The relative dielectric constant and the dielectric loss tangent at 20 GHz were determined using -100 RHO (manufactured by Yamayo Testing Machine Co., Ltd.).
(Warpage rate)
A test piece was cut out from the metal foil with resin and measured. As the warpage ratio is smaller, lamination failure when laminating the metal foil with resin with another material can be suppressed, and a composite flat body (printed wiring board or the like) with suppressed warpage and high flatness can be obtained.
(Peel strength)
A position of 50 mm from one end in the length direction of a single-sided copper-clad laminate cut out into a rectangular shape (length 100 mm, width 10 mm) is fixed, and a pull-up speed of 50 mm / min is applied to a single-sided copper-clad laminate from one end in the length direction. The maximum load applied when the metal foil and the non-porous resin layer were peeled off at 90 ° was defined as the peel strength (N / cm).
 使用したTFE系ポリマーと金属箔を以下に示す。
 ポリマー(1):TFEに基づく単位、NAHに基づく単位及びPPVEに基づく単位を、この順に97.9モル%、0.1モル%、2.0モル%含むコポリマーであり、260℃における貯蔵弾性率が1.0MPaであり、融点が300℃であるポリマー。
 銅箔(1):凹凸面を有し、前記凹凸面の十点表面粗さが1.1μmであり、前記凹凸面をシランカップリング剤処理した銅箔(厚さ18μm、箔表面のケイ素原子量0.05質量%、硫黄原子量0.01質量%。)。
The TFE polymer and metal foil used are shown below.
Polymer (1): a copolymer containing 97.9 mol%, 0.1 mol%, and 2.0 mol% of a unit based on TFE, a unit based on NAH and a unit based on PPVE in this order, and has a storage elasticity at 260 ° C. A polymer having a rate of 1.0 MPa and a melting point of 300 ° C.
Copper foil (1): a copper foil having an uneven surface, a ten-point surface roughness of the uneven surface being 1.1 μm, and the uneven surface being treated with a silane coupling agent (thickness 18 μm, silicon atomic weight on the foil surface) 0.05 mass%, sulfur atomic weight 0.01 mass%.)
 [実施例1]
 ポリマー(1)からなるパウダー(D50:2.6μm、D90:7.1μm)の120g、ノニオン性フッ素系界面活性剤(ネオス社製、フタージェント710FL)の12g、及びメチルエチルケトンの234gからなるパウダー分散液を、銅箔(1)のシランカップリング剤処理面に塗布し、窒素雰囲気下、100℃で15分乾燥し、さらに350℃で15分間加熱し、徐冷して、ポリマー(1)からなる非多孔性樹脂層(膜厚7μm)と銅箔(1)とが直接積層された樹脂付金属箔を得た。
 以下、得られた樹脂付金属箔の物性を測定するとともに、それを用いて銅張積層体を製造した。
[Example 1]
120 g of a powder (D50: 2.6 μm, D90: 7.1 μm) composed of the polymer (1), 12 g of a nonionic fluorinated surfactant (manufactured by Neos, Phantagent 710FL), and 234 g of methyl ethyl ketone The solution is applied to the surface of the copper foil (1) treated with the silane coupling agent, dried under a nitrogen atmosphere at 100 ° C. for 15 minutes, further heated at 350 ° C. for 15 minutes, gradually cooled, and cooled from the polymer (1). A non-porous resin layer (thickness: 7 μm) and a copper foil (1) were directly laminated to obtain a resin-attached metal foil.
Hereinafter, the physical properties of the obtained resin-attached metal foil were measured, and a copper-clad laminate was manufactured using the same.
 樹脂付金属箔をエポキシ樹脂に包埋後、クロスセクションポリッシャーにより断面加工して、断面をSEM(日立ハイテク社製 SU8230、加速電圧0.7kV)により観察した。断面のSEM画像を図1に示す。図1に示すように、銅箔と非多孔性樹脂層の界面に空隙が存在し、その空隙が前記金属箔の凹凸面の凹状部に存在することが確認された。凹状部のアスペクト比は1.0以上であり、樹脂付金属箔の反り率は、3%であった。また、空隙の存在箇所が、明らかに凹状部に集中していた。 (4) After embedding the resin-attached metal foil in the epoxy resin, a cross section was processed by a cross section polisher, and the cross section was observed with an SEM (Hitachi High-Tech Co., SU8230, acceleration voltage 0.7 kV). FIG. 1 shows an SEM image of the cross section. As shown in FIG. 1, it was confirmed that voids existed at the interface between the copper foil and the non-porous resin layer, and the voids existed in the concave portions of the uneven surface of the metal foil. The aspect ratio of the concave portion was 1.0 or more, and the warp ratio of the metal foil with resin was 3%. In addition, the location of the void was clearly concentrated in the concave portion.
 また、プラズマ処理装置(NORDSON MARCH社製、AP-1000)を用い、RF出力:300W、電極間ギャップ:2インチ、導入ガス:アルゴンガス、導入ガス量:50cm/分、圧力:13Pa、処理時間:1分間の条件で、樹脂付金属箔の非多孔性樹脂層側をプラズマ処理した。プラズマ処理後の非多孔性樹脂層の表面のRaは8nmであった。 Also, using a plasma processing apparatus (AP-1000, manufactured by NORDSON MARCH), RF output: 300 W, gap between electrodes: 2 inches, introduced gas: argon gas, introduced gas amount: 50 cm 3 / min, pressure: 13 Pa, processing Time: The non-porous resin layer side of the metal foil with resin was subjected to plasma treatment under the condition of 1 minute. Ra on the surface of the non-porous resin layer after the plasma treatment was 8 nm.
 次に、樹脂付金属箔の非多孔性樹脂層の表面に、プリプレグであるFR-4シート(日立化成社製、強化繊維:ガラス繊維、マトリックス樹脂:エポキシ樹脂、品名:CEA-67N 0.2t(HAN)、厚さ:0.2mm)を重ねて設置し、真空熱プレス(温度:185℃、圧力:3.0MPa、時間:60分間)して、プリプレグの硬化物層、非多孔性樹脂層、銅箔(1)がこの順に積層された片面銅張積層体を得た。
 また、前記FR-4シートの各面それぞれに、片面銅張積層体を最外層に銅箔(1)が構成されるように設置し、プレス温度:185℃、プレス圧:3.0MPa、プレス時間:60分間の条件で真空熱プレスして両面銅張積層体を得た。
 得られた片面銅張積層体における銅箔(1)と非多孔性樹脂層の剥離強度は14N/cmであり、300℃の半田浴に漬ける半田リフロー試験を3回繰り返しても、銅箔と非多孔性樹脂層の膨れや反りが抑制されていた。得られた両面銅張積層体に伝送回路を形成してなるプリント配線板が示す電気特性は、比誘電率で4.5以下であり、誘電正接で0.015以下であった。
 なお、金属箔と非多孔性樹脂層の界面に空隙が存在しない片面銅張積層体は、剥離強度が保持される反面、半田リフロー試験における膨れが生じ、反りによるカールが大きい。
 なお、2018年06月27日に出願された日本特許出願2018-122106号の明細書、特許請求の範囲、要約書及び図面の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
Next, on the surface of the non-porous resin layer of the metal foil with resin, an FR-4 sheet (prepared by Hitachi Chemical Co., Ltd., reinforcing fiber: glass fiber, matrix resin: epoxy resin, product name: CEA-67N 0.2 t) (HAN), thickness: 0.2 mm), and heat-pressed under vacuum (temperature: 185 ° C., pressure: 3.0 MPa, time: 60 minutes) to form a cured prepreg layer, a non-porous resin A single-sided copper-clad laminate in which the layer and the copper foil (1) were laminated in this order was obtained.
A single-sided copper-clad laminate was placed on each side of the FR-4 sheet so that a copper foil (1) was formed as the outermost layer. A press temperature: 185 ° C., a press pressure: 3.0 MPa, and a press Time: Vacuum hot pressing under the condition of 60 minutes to obtain a double-sided copper-clad laminate.
The peel strength between the copper foil (1) and the non-porous resin layer in the obtained single-sided copper-clad laminate was 14 N / cm. Swelling and warpage of the non-porous resin layer were suppressed. The electrical characteristics of the printed wiring board formed by forming a transmission circuit on the obtained double-sided copper-clad laminate were 4.5 or less in relative dielectric constant and 0.015 or less in dielectric loss tangent.
The single-sided copper-clad laminate in which no void exists at the interface between the metal foil and the non-porous resin layer retains the peel strength, but swells in a solder reflow test and has a large curl due to warpage.
In addition, the entire contents of the specification, claims, abstract and drawings of Japanese Patent Application No. 2018-122106 filed on June 27, 2018 are cited herein, and the disclosure of the specification of the present invention is as follows. Incorporate.

Claims (10)

  1.  凹凸面を有する金属箔と、前記金属箔の凹凸面に当接したテトラフルオロエチレン系ポリマーを含む非多孔性樹脂層とを有し、前記金属箔と前記非多孔性樹脂層の界面の一部に空隙が存在する、樹脂付金属箔。 A metal foil having an uneven surface, and a non-porous resin layer containing a tetrafluoroethylene-based polymer in contact with the uneven surface of the metal foil, a part of the interface between the metal foil and the non-porous resin layer Metal foil with resin, which has voids.
  2.  前記空隙が、前記金属箔の凹凸面の凹状部に存在する、請求項1に記載の樹脂付金属箔。 樹脂 The resin-attached metal foil according to claim 1, wherein the void exists in a concave portion of the uneven surface of the metal foil.
  3.  前記樹脂付金属箔の反り率が、5%以下である、請求項1又は2に記載の樹脂付金属箔。 The resin-coated metal foil according to claim 1 or 2, wherein the resin-coated metal foil has a warpage of 5% or less.
  4.  前記金属箔と前記非多孔性樹脂層の剥離強度が、5N/cm以上である、請求項1~3のいずれか一項に記載の樹脂付金属箔。 The metal foil with resin according to any one of claims 1 to 3, wherein the peel strength between the metal foil and the non-porous resin layer is 5 N / cm or more.
  5.  前記金属箔の厚さが5~25μmであり、前記非多孔性樹脂層の厚さが0.05~100μmであり、前記金属箔の厚さに対する前記非多孔性樹脂層の厚さの比が0.01~10.0である、請求項1~4のいずれか一項に記載の樹脂付金属箔。 The thickness of the metal foil is 5 to 25 μm, the thickness of the non-porous resin layer is 0.05 to 100 μm, and the ratio of the thickness of the non-porous resin layer to the thickness of the metal foil is The metal foil with resin according to any one of claims 1 to 4, which is 0.01 to 10.0.
  6.  前記金属箔の凹凸面の表面の十点平均粗さが、0.2~4μmである、請求項1~5のいずれか一項に記載の樹脂付金属箔。 The metal foil with resin according to any one of claims 1 to 5, wherein the ten-point average roughness of the uneven surface of the metal foil is 0.2 to 4 μm.
  7.  前記テトラフルオロエチレン系ポリマーが、0.1~5.0MPaの貯蔵弾性率を示す温度領域を260℃以下に有し、融点が260℃超のテトラフルオロエチレン系ポリマーである、請求項1~6のいずれか一項に記載の樹脂付金属箔。 7. The tetrafluoroethylene-based polymer having a temperature range exhibiting a storage elastic modulus of 0.1 to 5.0 MPa at 260 ° C. or lower and a melting point exceeding 260 ° C. The metal foil with resin according to any one of the above.
  8.  前記テトラフルオロエチレン系ポリマーが、テトラフルオロエチレンに基づく単位と、ペルフルオロ(アルキルビニルエーテル)、ヘキサフルオロプロピレン及びフルオロアルキルエチレンからなる群から選ばれる少なくとも1種のモノマーに基づく単位とを含むポリマーである、請求項1~7のいずれか一項に記載の樹脂付金属箔。 The tetrafluoroethylene-based polymer is a polymer including a unit based on tetrafluoroethylene and a unit based on at least one monomer selected from the group consisting of perfluoro (alkyl vinyl ether), hexafluoropropylene and fluoroalkylethylene. The metal foil with resin according to any one of claims 1 to 7.
  9.  前記テトラフルオロエチレン系ポリマーが、カルボニル基含有基、ヒドロキシ基、エポキシ基、アミド基、アミノ基及びイソシアネート基からなる群から選ばれる少なくとも1種の官能基を有するポリマーである、請求項1~8のいずれか一項に記載の樹脂付金属箔。 9. The polymer according to claim 1, wherein the tetrafluoroethylene-based polymer is a polymer having at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group, an amide group, an amino group, and an isocyanate group. The metal foil with resin according to any one of the above.
  10.  請求項1~9のいずれか一項に記載の樹脂付金属箔の金属箔をエッチング処理して伝送回路を形成してプリント配線板を得る、プリント配線板の製造方法。 (10) A method for manufacturing a printed wiring board, wherein a transmission circuit is formed by etching the metal foil of the resin-attached metal foil according to any one of (1) to (9) to obtain a printed wiring board.
PCT/JP2019/024975 2018-06-27 2019-06-24 Resin-attached metal foil WO2020004338A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207029865A KR20210022533A (en) 2018-06-27 2019-06-24 Metal foil with resin
CN201980042799.1A CN112334301A (en) 2018-06-27 2019-06-24 Metal foil with resin
JP2020527517A JP7243724B2 (en) 2018-06-27 2019-06-24 metal foil with resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-122106 2018-06-27
JP2018122106 2018-06-27

Publications (1)

Publication Number Publication Date
WO2020004338A1 true WO2020004338A1 (en) 2020-01-02

Family

ID=68987186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024975 WO2020004338A1 (en) 2018-06-27 2019-06-24 Resin-attached metal foil

Country Status (5)

Country Link
JP (1) JP7243724B2 (en)
KR (1) KR20210022533A (en)
CN (1) CN112334301A (en)
TW (1) TWI809135B (en)
WO (1) WO2020004338A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022163065A1 (en) * 2021-01-26 2022-08-04 東洋紡株式会社 Method for producing layered body, layered body, and multilayered body

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI796650B (en) * 2021-03-16 2023-03-21 台虹科技股份有限公司 Metal-clad laminate
CN113099605B (en) * 2021-06-08 2022-07-12 广州方邦电子股份有限公司 Metal foil, metal foil with carrier, copper-clad laminate, and printed wiring board

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018016644A1 (en) * 2016-07-22 2018-01-25 旭硝子株式会社 Liquid composition, and method for manufacturing film and layered body using same
WO2018043683A1 (en) * 2016-09-01 2018-03-08 旭硝子株式会社 Metal laminate, method for producing same and method for producing printed board
WO2018070437A1 (en) * 2016-10-12 2018-04-19 旭硝子株式会社 Laminate and method for manufacturing same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10383215B2 (en) * 2013-05-31 2019-08-13 Sumitomo Electric Industries, Ltd. Radio-frequency printed circuit board and wiring material
WO2014192718A1 (en) 2013-05-31 2014-12-04 住友電気工業株式会社 Metal-resin composite body, wiring material, and method for producing metal-resin composite body
JP2016046433A (en) 2014-08-25 2016-04-04 住友電工ファインポリマー株式会社 Printed wiring board and substrate for printed wiring board
CN107107475B (en) * 2014-12-26 2019-03-12 Agc株式会社 The manufacturing method of plywood and flexible printed board
JP6665990B2 (en) 2015-06-02 2020-03-13 住友電工プリントサーキット株式会社 Base material for high-frequency printed wiring board, high-frequency printed wiring board, method for manufacturing base material for high-frequency printed wiring board, and method for manufacturing high-frequency printed wiring board
CN107708999A (en) * 2015-08-25 2018-02-16 三井金属矿业株式会社 The manufacture method of the metal foil of tape tree lipid layer, metal-clad and printed circuit board (PCB)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018016644A1 (en) * 2016-07-22 2018-01-25 旭硝子株式会社 Liquid composition, and method for manufacturing film and layered body using same
WO2018043683A1 (en) * 2016-09-01 2018-03-08 旭硝子株式会社 Metal laminate, method for producing same and method for producing printed board
WO2018070437A1 (en) * 2016-10-12 2018-04-19 旭硝子株式会社 Laminate and method for manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022163065A1 (en) * 2021-01-26 2022-08-04 東洋紡株式会社 Method for producing layered body, layered body, and multilayered body

Also Published As

Publication number Publication date
CN112334301A (en) 2021-02-05
JPWO2020004338A1 (en) 2021-09-02
KR20210022533A (en) 2021-03-03
TWI809135B (en) 2023-07-21
TW202010636A (en) 2020-03-16
JP7243724B2 (en) 2023-03-22

Similar Documents

Publication Publication Date Title
JP7115589B2 (en) LIQUID COMPOSITIONS AND METHOD FOR MANUFACTURING FILM AND LAMINATES USING SAME LIQUID COMPOSITIONS
US11370200B2 (en) Fluororesin film and laminate, and method for producing hot pressed laminate
TWI824049B (en) Dispersions
TWI826452B (en) Method for manufacturing resin-coated metal foil, resin-coated metal foil, laminate and printed circuit board
WO2020004338A1 (en) Resin-attached metal foil
TWI820138B (en) Method for manufacturing metal foil with resin and metal foil with resin
JPWO2019235439A1 (en) Dispersion liquid, method for manufacturing metal foil with resin, and method for manufacturing printed circuit board
JP7400722B2 (en) Laminate, printed circuit board and manufacturing method thereof
WO2020158604A1 (en) Laminate, method for producing same, method for producing composite laminate, and method for producing polymer film
JP7248022B2 (en) LAMINATED PRODUCTION METHOD AND LAMINATED PRODUCT
JP2021075030A (en) Laminate, method for producing laminate, sheet and printed circuit board
JP2020083990A (en) Manufacturing method of composite, and composite
JP2020055241A (en) Metal foil with resin and method for producing metal foil with resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19824987

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020527517

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19824987

Country of ref document: EP

Kind code of ref document: A1