WO2020004075A1 - 受信装置、及び受信方法 - Google Patents

受信装置、及び受信方法 Download PDF

Info

Publication number
WO2020004075A1
WO2020004075A1 PCT/JP2019/023691 JP2019023691W WO2020004075A1 WO 2020004075 A1 WO2020004075 A1 WO 2020004075A1 JP 2019023691 W JP2019023691 W JP 2019023691W WO 2020004075 A1 WO2020004075 A1 WO 2020004075A1
Authority
WO
WIPO (PCT)
Prior art keywords
code
decoding
fsm
state
control information
Prior art date
Application number
PCT/JP2019/023691
Other languages
English (en)
French (fr)
Inventor
塁 阪井
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to BR112020026365-6A priority Critical patent/BR112020026365A2/pt
Publication of WO2020004075A1 publication Critical patent/WO2020004075A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H40/00Arrangements specially adapted for receiving broadcast information
    • H04H40/18Arrangements characterised by circuits or components specially adapted for receiving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/04Speed or phase control by synchronisation signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/435Processing of additional data, e.g. decrypting of additional data, reconstructing software from modules extracted from the transport stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/438Interfacing the downstream path of the transmission network originating from a server, e.g. retrieving encoded video stream packets from an IP network

Definitions

  • the present technology relates to a receiving device and a receiving method, and more particularly, to a receiving device and a receiving method that can reduce a time required for acquiring transmission control information.
  • ISDB-T Integrated Services Digital Broadcasting Terrestrial
  • TMCC transmission multiplexing configuration control
  • the transmission system of the transmission control information is different from the current system, and the time until the transmission control information to be transmitted is obtained is shortened. Proposals for are being requested.
  • the present technology has been made in view of such a situation, and is intended to reduce the time required to acquire transmission control information.
  • the receiving apparatus when receiving a physical layer frame including transmission control information in a plurality of codewords, sequentially transitions a code to be decoded from among the plurality of codewords for each code sequence.
  • the receiving device includes a control unit that performs a control of acquiring the transmission control information included in the codewords obtained as a result of the decoding while confirming the success of the decoding.
  • the receiving method when the receiving apparatus receives a physical layer frame including transmission control information in a plurality of codewords, for each code sequence, the decoding target of the plurality of codewords This is a reception method for confirming the success of decoding while sequentially changing codes, and performing control for acquiring the transmission control information included in the plurality of codewords obtained as a result of the decoding.
  • the receiving device and the receiving method when receiving a physical layer frame including transmission control information in a plurality of codewords, a target to be decoded from among the plurality of codewords for each code sequence. , The success of decoding is confirmed while sequentially changing the codes, and control for acquiring the transmission control information included in the plurality of codewords obtained as a result of the decoding is performed.
  • the receiving device may be an independent device, or may be an internal block configuring one device.
  • FIG. 1 is a diagram illustrating a configuration of an embodiment of a transmission system to which the present technology is applied. It is a figure explaining the difference between the present system of transmission control information used in terrestrial digital television broadcasting, and the assumed next-generation system.
  • FIG. 11 is a diagram illustrating an example of a case where a storage type is applied to a current system.
  • FIG. 3 is a diagram illustrating an example of a configuration of a frame of a next-generation system. It is a figure showing an example at the time of applying a storage type to a next-generation system.
  • FIG. 9 is a diagram illustrating an example of a case where the time until transmission control information is obtained is the shortest.
  • FIG. 11 is a diagram illustrating an example of a case where a storage type is applied to a current system.
  • FIG. 3 is a diagram illustrating an example of a configuration of a frame of a next-generation system. It is a figure showing an example at the time of applying a storage type to a
  • FIG. 9 is a diagram illustrating an example of a case where the time until transmission control information is obtained is the longest. It is a block diagram which shows the example of a structure of a receiver.
  • FIG. 3 is a block diagram illustrating an example of a configuration of a demodulation unit. It is a block diagram which shows the example of a structure of an error correction decoding process part.
  • FIG. 3 is a block diagram illustrating an example of a configuration of a reception state control unit.
  • FIG. 9 is a diagram illustrating an example of a state transition of the FSM. 6 is a flowchart showing a flow of state transition of each FSM.
  • FIG. 7 is a diagram schematically illustrating a frame reception state in a time series when FSM 2 becomes an effective state transition function when FSM 1 to FSM 3 are used.
  • FIG. 4 is a diagram schematically illustrating a frame reception state in a time series when the FSM 3 has an effective state transition function when FSM 1 to FSM 3 are used.
  • FIG. 14 is a diagram illustrating another example of the state transition of the FSM.
  • FIG. 14 is a diagram illustrating another example of the state transition of the FSM. It is a flowchart explaining the flow of a receiving process. It is a flowchart explaining the flow of a demodulation process.
  • FIG. 11 is a diagram illustrating a configuration example of a computer.
  • FIG. 1 is a diagram illustrating a configuration of an embodiment of a transmission system to which the present technology is applied. Note that a system refers to a system in which a plurality of devices are logically aggregated.
  • the transmission system 1 is a system corresponding to a broadcasting system such as digital terrestrial television broadcasting.
  • the transmission system 1 includes data processing devices 10-1 to 10-i (i is an integer of 1 or more) installed in facilities related to each broadcasting station, a transmission device 20 installed in a transmitting station, and a user-owned device.
  • the data processing devices 10-1 to 10-i and the transmitting device 20 are connected via communication lines 40-1 to 40-i.
  • the communication lines 40-1 to 40-i can be dedicated lines, for example.
  • the data processing device 10-1 performs necessary processing on data of broadcast content (for example, a broadcast program or the like) produced by the broadcasting station A, and transmits transmission data obtained as a result via the communication line 40-1 to the transmission device. 20.
  • broadcast content for example, a broadcast program or the like
  • the data processing devices 10-2 to 10-i similarly to the data processing device 10-1, the data of the broadcast content produced by each broadcasting station such as the broadcasting station B and the broadcasting station Z is processed.
  • the transmitted transmission data is transmitted to the transmission device 20 via the communication lines 40-2 to 40-i.
  • the transmission device 20 receives the transmission data transmitted from the data processing devices 10-1 to 10-i on the broadcast station side via the communication lines 40-1 to 40-i.
  • the transmitting device 20 performs necessary processing on the transmission data from the data processing devices 10-1 to 10-i, and transmits the resulting broadcast signal from a transmitting antenna provided at a transmitting station.
  • the broadcast signal from the transmitting device 20 at the transmitting station is transmitted to the receiving devices 30-1 to 30-j by radio waves in a predetermined frequency band.
  • the receiving devices 30-1 to 30-j are configured as fixed receivers such as a television receiver and a set top box (STB), and are installed at the user's home. In the following description, the receiving devices 30-1 to 30-j will be simply referred to as the receiving device 30 unless it is particularly necessary to distinguish them.
  • the receiving device 30-1 receives a broadcast signal transmitted from the transmitting device 20 by a radio wave of a predetermined frequency band and performs necessary processing, so that a broadcast content (for example, broadcast Program).
  • a broadcast content for example, broadcast Program
  • the broadcast signal from the transmitting device 20 is processed, and the broadcast content corresponding to the channel selection operation by the user is reproduced.
  • the receiving device 30 since the video of the broadcast content is displayed on the display and the audio synchronized with the video is output from the speaker, the user can view the broadcast content such as a broadcast program. .
  • a control signal including transmission control information for notifying the receiving device 30 of a transmission parameter of the main signal is transmitted.
  • a control signal including transmission control information for notifying the receiving device 30 of a transmission parameter of the main signal.
  • a TMCC signal is transmitted as a control signal (for example, see Non-Patent Document 1 described above).
  • the receiver 30 demodulates the signal received from the transmitter 20 to obtain (transmission parameters for) the transmission control information, and then demodulates the main signal using the transmission parameters. Since the main signal is demodulated after receiving and demodulating the transmission control information, the time until the receiving device 30 outputs the video or audio of the broadcast content depends on the demodulation processing time of the transmission control information. Therefore, it is desirable that the demodulation process of the transmission control information be performed in a shorter time.
  • the error correction code to be decoded is also referred to as a code, and when the code is successfully decoded, (part of) the transmission control information included in the corresponding codeword is obtained. Further, for convenience of explanation, the reference numerals and code words are given corresponding numbers (# 1, # 2, etc.).
  • an OFDM symbol which is a transmission symbol of an OFDM signal, is illustrated as a time direction from left to right in the figure, but a frame (physical layer frame) is configured by a plurality of OFDM symbols. You.
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDM Orthogonal Frequency Division Multiplexing
  • PSK Phase Shift Keying
  • QAM Quadrature Amplitude Modulation
  • the OFDM symbol is obtained by converting a plurality of OFDM segments, and includes a data carrier and a control signal carrier.
  • FIG. 2 shows transmission control information transmitted on a control signal carrier and a main signal (payload) transmitted on a data carrier for each frame in the current system and the next-generation system.
  • one frame (physical layer frame) for transmitting transmission control information is composed of reference bits, synchronization words, and codes. That is, the frame of the current system is composed of a synchronization word (synchronization signal) and a code including one codeword, and the transmission control information is transmitted by one codeword.
  • one frame (physical layer frame) for transmitting transmission control information is composed of a reference bit, a synchronization word, code # 1, and code # 2. That is, the frame of the next-generation system is composed of a synchronization word (synchronization signal) and code # 1 and code # 2, and the transmission control information includes two codewords # 1 and # 2 as the information increases. Transmitted by 2.
  • each square in the figure represents an error correction code block (FEC (Forward Error Correction) block), and in the next-generation system, the size thereof is smaller than that of the current system. Is getting bigger.
  • FEC Forward Error Correction
  • the beginning of each frame coincides with the beginning of the FEC block of the payload.
  • the head of the frame does not match the head of the FEC block of the payload (the breaks do not match).
  • the transmission control information is transmitted by one codeword, and the codeword does not change.
  • the transmission control information is increased with an increase in information such as offset information.
  • the code words change (information to be coded changes).
  • the transmission control information basically includes the same information in each frame, and the code words subjected to error correction coding do not change. Further, the reception signal of the transmission control information is composed of a synchronization word (synchronization signal) and one code word, and the same bit string is repeatedly transmitted periodically.
  • the receiving device 30 receives the synchronization word and the code word in any region if the received signal for one frame is accumulated in any region. Then, the receiving device 30 can always decode the transmission control information with one frame of the received signal by extracting the codeword from the received signal and performing the decoding process.
  • this area A1 corresponds to a received signal for one frame, and a code included in the first frame and In the code included in the second frame following the one frame, the code word does not change. Therefore, in the current system, in the area A1 surrounded by the dotted line, a signal of a part of the code included in the first frame (the code C1 in the drawing) and the remaining one of the codes included in the second frame are included. By accumulating the signal of the section (code C2 in the figure), a codeword can be obtained, and transmission control information can be obtained.
  • transmission control information is transmitted by two codewords # 1 and # 2, and the codeword changes for each frame.
  • the direction from the left side to the right side is the time direction, and the frame length of one frame is, for example, about 350 msec at maximum, which is longer than the frame length of the current system (257 msec at maximum). It is assumed that
  • the transmission control information includes information that changes every frame, and in the error correction coding, when the information sequence changes, the parity sequence also changes. For this reason, in the next-generation system, similar to the current system shown in FIG. 3, even if one frame of received signal is accumulated, the sequence may not become a codeword, and as a result, code (error correction code) # 1 , # 2 may fail.
  • this area A2 corresponds to a signal for one frame.
  • the code # 1 included in the second frame following the first frame the code word has changed. Therefore, in the next-generation system, the code # 1 included in the second frame together with the signal of the code # 1 (code C1 in the figure) included in the first frame is included in the area A2 surrounded by the dotted line. Even if the signal of the remaining part of 1 (code C2 in the figure) is accumulated, it may not be a codeword.
  • the accumulation type method it is necessary to accumulate an area including all the codewords included in the received signal. For example, if a signal of another codeword is stored in addition to a received signal of one frame, a synchronization word and all codewords are always included. However, in the current system, only the synchronization word and one codeword are extracted. In the next-generation system, the synchronization word and a plurality of codewords (codewords # 1, # 2) are used for a wider area. The need to extract comes out.
  • the code word length is about 0.5 frame
  • the amount of signal to be stored increases compared to the current system.
  • Patent Document 3 described above describes a method of acquiring transmission control information when a storage type method is not used. According to Patent Document 3, since a code word is arranged immediately after a synchronization word in the transmission specification, first, a coincidence check of the synchronization word is performed from the received signal, and then the decoding of the code word is performed. Control information is being acquired.
  • the transmission control information can be obtained with a received signal for two frames as the maximum time.
  • FIG. 6 and FIG. 7 show a case where the time until the transmission control information is acquired is the shortest and a case where the time is the longest, respectively.
  • FIG. 6 shows an example in which the time until the transmission control information is obtained is the shortest.
  • the timing (time t11) of the start of input of the received signal substantially coincides with the start position of the synchronization word.
  • the decoding of the code # 1 and the code # 2 succeeds (time t13, t14), and the transmission control information is obtained.
  • the case where the transmission control information is acquired with the waiting time of about one frame shown in FIG. 6 is the case where the time until the acquisition of the transmission control information is the shortest.
  • FIG. 7 shows an example in which the time until the transmission control information is obtained is the longest.
  • the timing (time t21) of the start of the input of the received signal substantially coincides with the middle position of the synchronization word. Succeeds (time t22), decoding of code # 1 and code # 2 succeeds (time t23, t24), and transmission control information is acquired.
  • the time from the start of input of the received signal at time t21 to the successful check of the synchronization word at time t22 is during the synchronization word check, and a waiting time of about one frame occurs. I have.
  • the transmission control information is acquired with the waiting time of about two frames shown in FIG. 7 when the time until the transmission control information is acquired is the longest.
  • the receiving device 30 when receiving the broadcast signal (OFDM signal), the receiving device 30 starts the operation without recognizing (the position of) the beginning of the frame, but acquires transmission control information (TMCC signal) (synchronization). (Successful decoding in agreement with the word), the position of the synchronization word and the code to be decoded can be recognized, and the beginning (position) of the frame can be recognized. In the receiving device 30, once the transmission control information (TMCC signal) can be obtained, the positions of the synchronization word and the code are periodic. Become.
  • the transmission method of transmission control information is different from that of the current system, but if storage is simply performed, the maximum is about 2 It takes time for a frame, and it takes some time to acquire transmission control information.
  • the present technology proposes a technology for shortening the time required to acquire transmission control information included in a transmitted frame in the next-generation system.
  • a configuration for acquiring transmission control information in a shorter time in receiving apparatus 30 compatible with the next-generation scheme will be described.
  • FIG. 8 is a block diagram illustrating an example of a configuration of the receiving device 30 in FIG.
  • the receiving device 30 includes a tuner unit 101, a demodulation unit 102, and a processing unit 103.
  • the tuner unit 101 is configured as, for example, a tuner compatible with a next-generation system.
  • the tuner unit 101 performs necessary processing on a broadcast signal (OFDM signal) received via the antenna 31 and supplies a received signal obtained as a result to the demodulation unit 102.
  • OFDM signal broadcast signal
  • the demodulation unit 102 is configured as a demodulation device such as a demodulation IC compatible with the next-generation system.
  • the demodulation unit 102 performs demodulation processing including processing such as demodulation and decoding of an error correction code on the received signal supplied from the tuner unit 101, and supplies the resulting stream to the processing unit 103.
  • the processing unit 103 is configured as, for example, a system-on-chip (SoC).
  • SoC system-on-chip
  • the processing unit 103 performs necessary processing such as decoding on the stream supplied from the demodulation unit 102, and outputs the resulting video and audio data to a subsequent processing unit and output unit (for example, a display and a speaker). Etc.).
  • FIG. 9 is a block diagram illustrating an example of a configuration of the demodulation unit 102 in FIG.
  • the demodulation unit 102 includes a synchronization word check unit 111, an error correction decoding processing unit 112, a reception state control unit 113, and an alignment / interpretation unit 114.
  • the synchronization word check unit 111 confirms that an input sequence as a reception signal (reception signal after demodulation) input thereto matches a predetermined synchronization word sequence.
  • the synchronization word check unit 111 supplies the reception state control unit 113 with a synchronization flag corresponding to the result of confirming the input sequence with the synchronization word sequence.
  • a synchronization flag indicating that fact is notified.
  • the error correction decoding processing section 112 performs a predetermined error correction code decoding process on an input sequence as a received signal (a demodulated received signal) input thereto.
  • the error correction decoding processing unit 112 adds, to the decoded sequence obtained as a result of the decoding process, a transmission parameter (transmission Information) is included, it is determined which codeword it is.
  • the error correction decoding processing unit 112 supplies a decoding success flag according to the codeword determination result to the reception state control unit 113.
  • codeword # 1 and codeword # 2 if it is confirmed that the decoded sequence includes transmission parameters specific to codeword # 1, A decoding success flag F1 indicating that decoding of 1 has succeeded and the result is codeword # 1 is notified. On the other hand, if it is confirmed that the decoded sequence includes a transmission parameter unique to codeword # 2, decoding indicating that code # 2 was successfully decoded and the result is codeword # 2 The success flag F2 is notified.
  • the error correction decoding unit 112 supplies the decoding results A and B of the decoding process to the sorting / interpreting unit 114.
  • the decoding results A and B indicate the decoding result of one of the codes # 1 and # 2.
  • the decoding result B indicates the decoding result of the code # 2.
  • the decoding result B indicates the decoding result of the code # 1.
  • the reception state control unit 113 receives the synchronization flag supplied from the synchronization word check unit 111 and the decoding success flags F1 and F2 supplied from the error correction decoding processing unit 112, and receives a finite state machine (FSM: Finite @ State). By performing a state transition of “Machine”, the reception state of the transmission control information is controlled. That is, the reception state control unit 113 performs control for acquiring transmission control information by performing FSM state transition.
  • FSM Finite @ State
  • the reception state control unit 113 outputs a frame synchronization signal corresponding to the result of the FSM state transition to a subsequent circuit that performs processing using the frame synchronization signal. If the order of the decoded codewords (codewords # 1 and # 2) is different from the predetermined order and needs to be changed, the reception state control unit 113 sets an order indicating that fact. The replacement flag is supplied to the sorting / interpreting unit 114.
  • the alignment / interpretation unit 114 interprets the bit strings of the decoding results A and B (the decoding results of the code # 1 and the code # 2) supplied from the error correction decoding processing unit 112 and converts the bit strings into transmission control information. Each transmission parameter included in the information is output to a subsequent circuit that processes the target transmission parameter.
  • the alignment / interpretation unit 114 interprets the target code word (code # 2, code # 1) when interpreting the decoding results A and B (code # 2 and code # 1).
  • the order of the code words # 2 and # 1) is exchanged. That is, in this order permutation processing, information (decoded bits) obtained from a plurality of codewords is rearranged in a control signal format order (predetermined order) based on the synchronization word position, and the control signal Interpretation in an order according to the format is possible.
  • FIG. 10 is a block diagram illustrating an example of a detailed configuration of the error correction decoding processing unit 112 in FIG.
  • error correction decoding processing section 112 includes error correction decoding section 121, transmission parameter checking section 122-1 and transmission parameter checking section 122-2.
  • the error correction decoding unit 121 performs a predetermined decoding process on a code (error correction code) included in the received signal input thereto.
  • the error correction decoding unit 121 supplies the decoding results A and B of the decoding process to the sorting / interpreting unit 114.
  • the error correction decoding unit 121 supplies information on the decoded sequence together with the decoding completion flag to the transmission parameter checking unit 122-1 and the transmission parameter checking unit 122-2.
  • the transmission parameter checking unit 122-1 includes, in the information on the decoded sequence from the error correction decoding unit 121, the transmission unique to the code word # 1 specified by the transmission specification. By confirming whether or not a parameter is included, it is determined whether the decoding result A or B of the decoding process is the code word # 1. When it is determined that the decoding result A or B is the codeword # 1, the transmission parameter checking unit 122-1 supplies the decoding success flag F1 to the reception state control unit 113.
  • transmission parameter checking section 122-2 determines whether or not the information on the decoded sequence from error correction decoding section 121 includes a transmission parameter specific to codeword # 2. Is determined, whether the decoding result A or B of the decoding process is the code word # 2. When it is determined that the decoding result A or B is the codeword # 2, the transmission parameter checking unit 122-2 supplies a decoding success flag F2 to the reception state control unit 113.
  • FIG. 11 is a block diagram illustrating an example of a detailed configuration of the reception state control unit 113 in FIG.
  • the reception state control unit 113 includes an FSM unit 131-1, an FSM unit 131-2, an FSM unit 131-3, and an OR operation unit 132.
  • the FSM units 131-1 to 131-3 include a synchronization flag supplied from the synchronization word check unit 111 (FIG. 9), a decoding success flag F1 supplied from the error correction decoding processing unit 112 (FIG. 9), and a decoding success The flag F2 is input.
  • the FSM units 131-1 to 131-3 receive the synchronization flag, the decoding success flag F1, and the decoding success flag F2, and perform the state transition of the FSMs 1 to 3 as shown in FIG. However, the FSM unit 131-1 to 131-3, the state transition of the FSM 1 to FSM 3 are operated simultaneously.
  • the FSM unit 131-1 checks the state of the flag input thereto, and when each flag indicates a success state in the order of the synchronization flag, the decoding success flag F1, and the decoding success flag F2, the FSM 1 in FIG. Is performed, and the state changes to the acquisition completed state, and the effect is notified to the OR operation unit 132.
  • the FSM unit 131-2 checks the state of the flag input thereto, and when each flag indicates a success state in the order of the decoding success flag F1, the decoding success flag F2, and the synchronization flag, the FSM 2 in FIG. Is performed, and the state changes to the acquisition completed state, and the effect is notified to the OR operation unit 132.
  • the FSM unit 131-3 checks the state of the flag input thereto, and when each flag indicates a success state in the order of the decoding success flag F2, the synchronization flag, and the decoding success flag F1, the FSM 3 shown in FIG. Is performed, and the state changes to the acquisition completed state, and the effect is notified to the OR operation unit 132.
  • the order change flag is turned on in response to the notification, and the sorting / interpreting unit 114 is turned on.
  • the code words obtained as a result of decoding the error correction code (code) are in the order of the code word # 2 and the code word # 1, and the FSM 1 and the FSM 1 Since the order is opposite to that in the case of the state transition of No. 2, the order change flag is turned on so that the codewords (codewords # 2 and # 1) are replaced at the time of interpretation by the sorting / interpreting unit 114. .
  • the OR operation unit 132 When a notification indicating the acquisition completion state is input from any of the FSM units 131-1 to 131-3, the OR operation unit 132 outputs a frame synchronization signal corresponding to the notification to a subsequent circuit.
  • FIG. 13 shows an example of the state transition of the FSM.
  • FSM unit 131-1 all the functions are in the reset state, and the state of the FSM 1 is in the initial state (S11). At this time, the states of FSM 2 and FSM 3 are also initialized.
  • the synchronization word check unit 111 compares the bit sequence obtained from the reception signals with a synchronization word bit sequence defined in the transmission specification to check the synchronization word. Is performed (S12).
  • the transmission specification defines that the synchronization word is 16 bits
  • a comparison between 16-bit bit strings is performed.
  • the FSM unit 131-1 confirms that the synchronization word has been successfully detected, and changes the state of the FSM 1 from the synchronization word check state to the decoding state of code # 1.
  • step S13 If the bit string obtained from the received signal does not match the sync word bit string (mismatch) due to the sync word check processing, and no sync word is detected (“NO” in S13), the process proceeds to step S13. Returning to S11, the subsequent processing is repeated.
  • the error correction decoding unit 112 decodes the code # 1 after receiving a predetermined number (predetermined time) of received signals (S14). Here, it waits for the decoding process to start until a predetermined number of reception signals capable of decoding code # 1 are received.
  • reception and decoding of the received signal are repeated to confirm the success of the decoding of the code # 1 and to check the transmission parameter of the code word # 1 (S14).
  • the FSM 131-1 the success of decoding of the code # 1 is confirmed, and the state of the FSM 1 changes from the decoding state of the code # 1 to the decoding state of the code # 2.
  • the error correction decoding unit 112 decodes the code # 2 after a predetermined number (predetermined time) of received signals are received (S16). Here, it waits for the decoding process to start until a predetermined number of received signals that enable decoding of code # 2 are received.
  • reception and decoding of the received signal are repeated to confirm the success of decoding of code # 2 and to check the transmission parameter of code word # 2 (S16).
  • the FSM unit 131-1 confirms that the decoding of the code # 2 is successful, and changes the state of the FSM 1 from the decoding state of the code # 2 to the acquisition completion state (S18).
  • the transmission order of the information contained in the received signal, the synchronization word, code # 1 when the order of the code # 2 a in this case, the state of the FSM 1 is synchronization word checked (S12), decoding the state of the code # 1 (S14), and transitions in the order of decoding states of the code # 2 (S16), the state of the FSM 1 Transmission control information included in the code words # 1 and # 2 decoded in the reception state corresponding to the transition is obtained.
  • the FSM 2 and the FSM 3 also operate at the same time as the FSM 1.
  • the transmission order of information included in the received signal (the order of the synchronization word, code # 1, code # 2)
  • FSM 1 The state of FSM 2 and FSM 3 does not become the acquisition completion state until the state of the FSM 1 becomes the acquisition completion state, and the transmission control information can be acquired in the reception state according to the state transition of FSM 1 . Is preferred.
  • FSM 1 is schematically represented in a time-series reception state of the frame when the valid state transitions functions.
  • the state of FSM 1 changes from the synchronization word check state to the decoding state of code # 1. Then, decoding of code # 1 input following the synchronization word is performed, and at time t33, success of decoding of code # 1 is confirmed.
  • the state of FSM 1 changes from the decoding state of code # 1 to the decoding state of code # 2. Then, decoding of code # 2 input following code # 1 is performed, and at time t34, decoding of code # 2 is confirmed to be successful, and the state of FSM 1 is obtained from the decoding state of code # 2. Transition to the state.
  • the FSM 1 Is an effective state transition function.
  • the period from the start of input of the received signal at time t31 to the successful decoding of code # 2 at time t34 is approximately 1.5 frames. That is, if there in a conventional manner, it was necessary to wait about two frames at most of the FSM 1 to FSM 3, that FSM 1 operates effectively, can be reduced to about 1.5 frames.
  • FSM unit 131-2 all the functions are in the reset state, and the state of the FSM 2 is in the initial state (S21). At this time, the states of FSM 1 and FSM 3 are also initialized.
  • the error correction decoding processing unit 112 decodes the code # 1 after receiving a predetermined number (predetermined time) of reception signals (S22).
  • a predetermined number predetermined time
  • the process waits until a received signal capable of decoding code # 1 is received.
  • reception and decoding of the received signal are repeated to confirm the success of the decoding of the code # 1 and to check the transmission parameter of the code word # 1 (S22).
  • the decoding success flag F1 is raised and the FSM unit 131-1 to 131-3 are input.
  • the FSM unit 131-2 the success of the decoding of the code # 1 is confirmed, and the state of the FSM 2 transits from the decoding state of the code # 1 to the decoding state of the code # 2.
  • the error correction decoding unit 112 decodes the code # 2 after receiving a predetermined number (predetermined time) of received signals (S24). Here, when starting the decoding process, the process waits until a received signal capable of decoding code # 2 is received.
  • reception and decoding of the received signal are repeated in order to confirm the success of the decoding of the code # 2 and to check the transmission parameter of the code word # 2 (S24).
  • the decoding success flag F2 is raised and the FSM unit 131-1 to 131-3 are input.
  • the FSM unit 131-2 the success of the decoding of the code # 2 is confirmed, and the state of the FSM 2 transits from the decoding state of the code # 2 to the synchronization word check state.
  • the synchronization word check unit 111 After receiving a predetermined number (predetermined time) of received signals, the synchronization word check unit 111 compares the bit sequence obtained from the received signal with a synchronization word bit sequence defined in the transmission specification, so that the synchronization word is determined. A check is made (S26).
  • the decoding process fails to decode the code # 1 or fails to check the transmission parameter of the code word # 1 ("NO" in S23), the decoding of the code # 2 fails. Or if the transmission parameter of codeword # 2 fails to be confirmed (“NO" in S25), or the synchronization word check process does not match the bit string obtained from the received signal with the synchronization word bit string. If no word is detected ("NO" in S27), the process returns to step S21, and the subsequent processes are repeated.
  • the FSM 2 operates effectively when the information included in the received signal is transmitted in the order of the code # 1, the code # 2, and the synchronization word.
  • the state of the FSM 2 decoding the state of the code # 1 (S22), decoding the state of the code # 2 (S24), and transitions in the order of the synchronization word checked (S26), the state of the FSM 2 Transmission control information included in the code words # 1 and # 2 decoded in the reception state corresponding to the transition is obtained.
  • the FSM 1 and the FSM 3 also operate at the same time as the FSM 2.
  • the FSM 2 is used according to the transmission order of the information included in the received signal (the order of the code # 1, the code # 2, and the synchronization word).
  • the state of FSM 1 and FSM 3 does not become the acquisition completion state until the state of the FSM 1 becomes the acquisition completion state, and the transmission control information can be acquired in the reception state according to the state transition of FSM 2 . Is preferred.
  • FIG. 15 schematically shows, in chronological order, a reception state of a frame when FSM 2 becomes an effective state transition function when FSM 1 to FSM 3 are used.
  • the state of FSM 2 changes from the decoding state of code # 1 to the decoding state of code # 2. Then, decoding of code # 2 input following code # 1 is performed, and at time t43, successful decoding of code # 2 is confirmed.
  • the state of FSM 2 changes from the decoding state of code # 2 to the synchronization word check state. Then, the synchronization word input following code # 2 is checked, and at time t44, successful detection of the synchronization word is confirmed, and the state of FSM 2 transits from the synchronization word check state to the acquisition completed state.
  • the period from the start of input of the received signal at time t41 to the successful check of the synchronization word at time t44 is approximately 1.1 frames. That is, in the conventional method, it is necessary to wait for a maximum of about two frames. However, by effectively operating the FSM 2 among the FSMs 1 to 3 , it can be reduced to about 1.1 frames.
  • FSM unit 131-3 all the functions are in the reset state, and the state of the FSM 3 is in the initial state (S31). At this time, the states of FSM 1 and FSM 2 are also initialized.
  • the error correction decoding unit 112 decodes the code # 2 after receiving a predetermined number (predetermined time) of received signals (S32). Here, when starting the decoding process, the process waits until a received signal capable of decoding code # 2 is received.
  • reception and decoding of the received signal are repeated in order to confirm the success of decoding of the code word # 2 and to check the transmission parameter of the code word # 2 (S32).
  • the decoding success flag F2 is raised and the FSM unit 131-1 to 131-3 are input.
  • the FSM unit 131-3 the success of the decoding of the code # 2 is confirmed, and the state of the FSM 3 transits from the decoding state of the code # 2 to the synchronization word check state.
  • the synchronization word check unit 111 After receiving a predetermined number (predetermined time) of received signals, the synchronization word check unit 111 compares the bit sequence obtained from the received signal with a synchronization word bit sequence defined in the transmission specification, so that the synchronization word is determined. A check is made (S34).
  • the error correction decoding processing section 112 further decodes the code # 1 after receiving a predetermined number (predetermined time) of received signals (S36).
  • a predetermined number predetermined time
  • the process waits until a received signal capable of decoding code # 1 is received.
  • reception and decoding of the received signal are repeated in order to confirm the success of decoding of the code word # 1 and to check the transmission parameter of the code word # 1 (S36).
  • the decoding success flag F1 is raised and the FSM unit 131-1 to 131-3 are input.
  • the success of the decoding of the code # 1 is confirmed, and the state of the FSM 3 transits from the decoding state of the code # 1 to the acquisition completion state (S38).
  • the synchronization word check process performs If the obtained bit string does not match the synchronization word bit string and no synchronization word is detected ("NO" in S35), or if decoding of code # 1 fails due to decoding processing (S36), or If the transmission parameter of the word # 1 has failed to be confirmed ("NO" in S37), the process returns to step S31, and the subsequent processes are repeated.
  • the FSM 1 and the FSM 2 also operate at the same time as the FSM 3.
  • the FSM 3 until the state becomes the acquisition completion state, FSM 1, the state of the FSM 2 is never an acquisition completion state, to allow obtaining transmission control information in a reception state corresponding to the state transition of the FSM 3 Is preferred.
  • FIG. 16 schematically shows, in chronological order, the reception state of a frame when the FSM 3 becomes an effective state transition function when FSM 1 to FSM 3 are used.
  • the state of the FSM 3 transits from the decoding state of the code # 2 to the synchronization word check state. Then, the synchronization word input following code # 2 is checked, and at time t53, successful detection of the synchronization word is confirmed.
  • the state of the FSM 3 changes from the synchronization word check state to the decoding state of the code # 1. Then, decoding of code # 1 input following the synchronization word is performed, and at time t54, successful decoding of code # 1 is confirmed. The state of FSM 3 changes from the decoding state of code # 1 to the acquisition completion state. Transitions to.
  • FSM 3 is an effective state transition function.
  • the period from the start of input of the received signal at time t51 to the successful decoding of code # 1 at time t54 is about 1.5 frames. That is, if there in a conventional manner, it was necessary to wait about two frames at most of the FSM 1 to FSM 3, that FSM 3 operates effectively, can be reduced to about 1.5 frames.
  • FIG. 17 illustrates an example of a state transition function when transmission control information is transmitted using N codewords.
  • FSM 1 to FSM N + 1 are listed, but among the state transitions of N + 1 FSMs, state transitions of FSM 1 , FSM 2 , FSM 3 , FSM N , and FSM N + 1 are exemplified. are doing.
  • FSM 1 has a synchronization word check state, a decoding state of code # 1, a decoding state of code # 2,..., A decoding state of code # N-2, a decoding state of code # N-1, and a code #N In the order of the decryption state.
  • FSM 2 has a decoding state of code # 1, a decoding state of code # 2,..., A decoding state of code # N-2, a decoding state of code # N-1, a decoding state of code #N, and a synchronization word check. It transits in order of a state.
  • the FSM 3 has a decoding state of code # 2, a decoding state of code # 3,..., A decoding state of code # N-1, a decoding state of code #N, a synchronization word check state, and a decoding state of code # 1. Transition in order.
  • FSM N is the decoding state of code # N-1, the decoding state of code #N, the synchronization word check state, the decoding state of code # 1, the decoding state of code # 2, ..., the decoding of code # N-2. It transits in order of a state.
  • FSM N + 1 is a decoding state of code #N, a synchronization word check state, a decoding state of code # 1, a decoding state of code # 2,..., A decoding state of code # N-2, a code # N-1 In the order of the decryption state.
  • the code to be decoded is sequentially shifted from the synchronization word and the plurality of codewords for each sequence of the synchronization word and each code. That is, by circulating the sequence of the synchronization word, code # 1, code # 2,..., Code #N, and detecting the synchronization word or confirming the success of decoding the code to be decoded, N + 1 Transmission control information can be acquired according to one state transition among (FSM 1 to FSM N + 1 ) state transitions.
  • the reception state control unit 113 notifies the sorting / interpretation unit 114 of the change of the order. Thereby, based on the notification from the reception state control unit 113, the sorting / interpreting unit 114 can rearrange the target codewords in the format order based on the synchronization word position when interpreting the decoding result.
  • FIG. 18 shows an example of a state transition function when a transmission word is not transmitted when transmission control information is transmitted using N code words.
  • FSM 1 to FSM N are listed, but among the N FSM state transitions, the state transitions of FSM 1 , FSM 2 , FSM N ⁇ 1 , and FSM N are illustrated.
  • FSM 1 has a decoding state of code # 1, a decoding state of code # 2,..., A decoding state of code # N-2, a decoding state of code # N-1, and a decoding state of code #N. Transition.
  • the FSM 2 transits in the order of the decoding state of the code # 2, the decoding state of the code # 3,..., The decoding state of the code # N-1, the decoding state of the code #N, and the decoding state of the code # 1.
  • FSM N-1 is the decoding state of code # N-1, the decoding state of code #N, the decoding state of code # 1, the decoding state of code # 2, ..., the decoding state of code # N-2. Transition. FSM N transitions in the order of the decoding state of code #N, the decoding state of code # 1, the decoding state of code # 2,..., The decoding state of code # N-2, and the decoding state of code # N-1. .
  • the code to be decoded is sequentially transited from the plurality of codewords for each code sequence even when the synchronization word does not exist. , That is, by circulating through the sequence of code # 1, code # 2,..., Code #N, and confirming the success of decoding of the code to be decoded, N (FSM 1 to FSM N).
  • the transmission control information can be acquired according to one state transition among the state transitions of ()).
  • the receiving state control unit 113 notifies the order change, and the sorting / interpreting unit 114 uses the synchronization word position as a reference when interpreting the decoding result based on the notification from the receiving state control unit 113. You can rearrange words.
  • step S11 the tuner unit 101 receives a broadcast signal (OFDM signal) via the antenna 31 and performs necessary processing.
  • a broadcast signal OFDM signal
  • step S12 the demodulation unit 102 performs demodulation processing on the received signal received in the processing in step S11, including, for example, demodulation and decoding of an error correction code.
  • demodulation processing including, for example, demodulation and decoding of an error correction code.
  • step S13 the processing unit 103 processes the stream obtained in the processing in step S12.
  • processing such as decoding of video and audio is performed, and the resulting video and audio data is output.
  • step S31 the synchronization word check unit 111 checks the synchronization word by comparing the bit string obtained from the received signal input thereto with the synchronization word bit string defined in the transmission specification. By the synchronization word check processing, the synchronization flag is input to the reception state control unit 113.
  • step S32 the error correction decoding processing unit 112 performs an error correction decoding process on the error correction code (code) included in the received signal input thereto, and generates a code (for example, code # 1 or code # 2). Is decrypted.
  • decoding success flags F1 and F2 are input to the reception state control unit 113.
  • the decoding results A and B of the error correction decoding process (for example, the decoding result of code # 1 or code # 2) are input to the sorting / interpreting unit 114.
  • step S33 the reception state control unit 113 receives the synchronization flag in the processing in step S31 and the decoding success flags F1 and F2 in the processing in step S32, and checks the states of those flags. Perform FSM state transition.
  • the FSM unit 131-1 to 131-3 the state transition of the FSM 1 to FSM 3 according to the confirmation result of the state of the flag to be input (FIG. 12) are operated simultaneously.
  • step S34 the reception state control unit 113 determines, for example, whether or not any of the FSMs 1 to 3 is in the acquisition completed state.
  • step S34 If it is determined in step S34 that there is no FSM in the acquisition completed state, the process returns to step S31, and the above-described process is repeated. Then, the state transition of the FSM that has received the input of the synchronization flag and the decoding success flags F1 and F2 is repeated, and if it is determined that there is an FSM in the acquisition completed state, the process proceeds to step S35.
  • step S35 the alignment / interpretation unit 114 interprets the bit strings of the decoding results A and B (for example, the decoding results of code # 1 and code # 2) obtained in the process of step S32 and converts them into transmission control information.
  • the order of the codewords is changed when the decoding results A and B are interpreted.
  • step S35 ends, the process returns to the process in step S12 in FIG. 19, and the subsequent processes are performed.
  • the state transition of the FSM 1 to the FSM 3 operates simultaneously by performing the state transition of the FSM shown in FIG. 12 and FIG. 13, when the FSM 1 becomes an effective state transition function
  • the period from the start of input of the received signal to the successful decoding of code # 2 is about 1.5 frames.
  • the FSM 2 becomes a valid state transition function for example, as shown in FIG. 15, a period from the start of input of a received signal to a successful check of a synchronization word is about 1.1 frames.
  • the FSM 3 becomes a valid state transition function, for example, as shown in FIG. 16, it takes about 1.5 frames from the start of the input of the received signal to the successful decoding of the code # 1. It becomes.
  • transmission control information is assumed to be transmitted by two codewords with an increase in information when transmission control information is transmitted.
  • decoding of an error correction code code
  • the storage type that was effective in the current system cannot be said to be perfect. Then, for example, as shown in FIGS.
  • the time can be reduced to about 1.5 frames at the longest, so that the time until transmission control information is obtained can be reduced.
  • the time until the presentation of the broadcast content can be reduced (for example, the video output of the broadcast program can be speeded up).
  • the present technology proposes a method for acquiring transmission control information in a short time in a broadcasting system such as the next-generation terrestrial digital television broadcasting.
  • a broadcasting system such as the next-generation terrestrial digital television broadcasting.
  • the transmission control information changes every frame
  • second the problem that the amount of transmission control information increases and the number of code words increases
  • transmission control information can be acquired in a shorter time.
  • a reception state control function (a plurality of reception control functions) that operates regardless of where in the transmission order of the transmission control information (for example, the order of the synchronization word, codeword # 1, and codeword # 2) is started.
  • the transmission control information can be obtained in a maximum of 1.5 frames, no matter where the reception starts. That is, in the conventional method, it takes a maximum of two frames (for example, 800 msec at maximum) to acquire the transmission control information, but in the method of the present technology, the transmission control information is acquired in 1.5 frames (for example, 600 msec). It is possible to do.
  • ISDB Integrated Services Digital Broadcasting
  • DVB Digital Video Broadcasting
  • the transmission system 1 (FIG. 1) is described as supporting a broadcasting system such as terrestrial digital television broadcasting.
  • a broadcasting satellite in addition to terrestrial broadcasting (terrestrial broadcasting), for example, a broadcasting satellite ( The present invention can be applied to a broadcasting system such as a satellite broadcast using a BS (Broadcasting @ Satellite) or a communication satellite (CS: Communications @ Satellite), or a cable broadcast using a cable (CATV: Common @ Antenna @ TeleVision).
  • the receiving device 30 (FIG. 1) is described as being configured as a fixed receiver such as a television receiver or a set-top box (STB). , A game machine, a personal computer, a network storage, and other electronic devices. Further, the receiving device 30 is not limited to a fixed receiver. For example, a mobile receiver such as a smartphone, a mobile phone, or a tablet computer, a vehicle-mounted device such as a vehicle-mounted television, or a head-mounted display (HMD: Head). An electronic device such as a wearable computer such as a mounted display may be included.
  • a mobile receiver such as a smartphone, a mobile phone, or a tablet computer
  • a vehicle-mounted device such as a vehicle-mounted television
  • HMD head-mounted display
  • An electronic device such as a wearable computer such as a mounted display may be included.
  • the demodulating unit 102 (for example, a demodulating device such as a demodulating IC) in FIG. 8 may be regarded as a receiving device or a demodulating device to which the present technology is applied. .
  • the receiving device 30 (FIG. 1) having a communication function is configured such that various servers are connected to a communication line such as the Internet.
  • Various data such as contents and applications may be received by accessing various servers and performing bidirectional communication via a communication line such as the Internet.
  • FIG. 21 is a diagram illustrating a configuration example of hardware of a computer that executes the above-described series of processing by a program.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • An input / output interface 1005 is further connected to the bus 1004.
  • An input unit 1006, an output unit 1007, a recording unit 1008, a communication unit 1009, and a drive 1010 are connected to the input / output interface 1005.
  • the input unit 1006 includes a keyboard, a mouse, a microphone, and the like.
  • the output unit 1007 includes a display, a speaker, and the like.
  • the recording unit 1008 includes a hard disk, a nonvolatile memory, and the like.
  • the communication unit 1009 includes a network interface and the like.
  • the drive 1010 drives a removable recording medium 1011 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.
  • the CPU 1001 loads the program recorded in the ROM 1002 or the recording unit 1008 into the RAM 1003 via the input / output interface 1005 and the bus 1004, and executes the program. A series of processing is performed.
  • the program executed by the computer 1000 can be provided by being recorded on a removable recording medium 1011 as a package medium or the like, for example.
  • the program can be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
  • the program can be installed in the recording unit 1008 via the input / output interface 1005 by attaching the removable recording medium 1011 to the drive 1010. Further, the program can be received by the communication unit 1009 via a wired or wireless transmission medium and installed in the recording unit 1008. In addition, the program can be installed in the ROM 1002 or the recording unit 1008 in advance.
  • the processing performed by the computer according to the program does not necessarily have to be performed in chronological order according to the order described in the flowchart. That is, the processing performed by the computer according to the program includes processing executed in parallel or individually (for example, parallel processing or processing by an object). Further, the program may be processed by one computer (processor) or may be processed in a distributed manner by a plurality of computers.
  • the present technology can have the following configurations.
  • a receiving device comprising: a control unit that controls to acquire the transmission control information included in the plurality of codewords obtained as a result of the decoding.
  • the physical layer frame further includes a synchronization signal, The control unit confirms the success of detection or decoding while sequentially transitioning the synchronization signal and the code to be decoded for each sequence of the synchronization signal and each code, the plurality of codes obtained as a result of decoding.
  • the receiving device (3) The receiving device according to (1) or (2), wherein when the order of the decoded codewords is different from a predetermined order, the control unit changes the order of the target codewords.
  • the control unit according to the state transition of a finite state machine (FSM), performs the transition of the synchronization signal and the code to be decoded sequentially, and confirms the success of the detection or the decoding. Receiver.
  • the receiving device (4), wherein the control unit simultaneously operates the synchronization signal and the state transition of each code sequence.
  • the control unit when one state transition among the state transitions for each series of the synchronization signal and each code is completed, enables the transmission control information to be acquired according to the completed state transition.
  • the receiving device according to (1).
  • a synchronization signal detection unit that detects the synchronization signal included in the physical layer frame, An error correction decoding unit that decodes the decoding target code, The control unit, based on the detection result of the synchronization signal by the synchronization signal detection unit, and the decoding result of each code by the error correction decoding processing unit, based on the state transition for each series of the synchronization signal and each code Perform The receiving device according to (5) or (6).
  • the error correction decoding unit notifies the decoding result of each code by confirming whether or not transmission information unique to each code word is included for each of the plurality of code words. (7) Receiving device.
  • An alignment interpreting unit that interprets the decoding result of each code and converts the result into the transmission control information
  • the control unit when the transmission control information can be obtained by one state transition, when the order of the plurality of decoded codewords is different from a predetermined order, replaces the order of the target codeword.
  • Notify the alignment interpreter The receiving device according to (7) or (8), wherein the alignment interpreting unit changes the order of target codewords based on a notification from the control unit when interpreting a decoding result of each code.
  • the receiving device according to any one of (1) to (9), wherein the transmission control information is included in the plurality of codewords and information to be encoded changes.
  • the receiving device wherein the transmission control information includes offset information from a head of an error correction code including a main signal including video and audio of the content.
  • the transmission control information is included in a first codeword and a second codeword, and information to be encoded changes.
  • the control unit includes: A first FSM in which a state transition is performed in the order of detection of the synchronization signal, decoding of a first code including the first codeword, and decoding of a second code including the second codeword; A second FSM in which a state transition is performed in the order of decoding of the first code, decoding of the second code, and detection of the synchronization signal; The third FSM in which the state transition is performed in the order of the decoding of the second code, the detection of the synchronization signal, and the decoding of the first code is simultaneously operated. (5) to (9). Receiving device.
  • the controller when one state transition among the state transitions of the first FSM, the second FSM, and the third FSM is completed, transmits the transmission control information according to the completed state transition.
  • the control unit when the state transition of the third FSM is completed, when interpreting the decoding result of the first code and the second code, the first codeword and the second codeword.
  • the receiving device according to any one of (1) to (14), wherein the physical layer frame includes a main signal including video and audio of a content and the transmission control information for notifying a transmission parameter of the main signal. .
  • the receiving device according to any one of (1) to (15), wherein the physical layer frame conforms to a broadcast system of digital terrestrial television broadcasting.
  • the receiving device is Upon receiving a physical layer frame including transmission control information in a plurality of codewords, confirming the success of decoding while sequentially transiting the code to be decoded from among the plurality of codewords for each code sequence, A receiving method for performing control to acquire the transmission control information included in the plurality of codewords obtained as a result of the decoding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

本技術は、伝送制御情報を取得するまでの時間を短縮することができるようにする受信装置、及び受信方法に関する。 伝送制御情報を複数の符号語に含めた物理層フレームを受信するに際し、各符号の系列ごとに複数の符号語の中から復号対象の符号を順次遷移させながら復号の成功の確認を行い、その復号の結果得られる複数の符号語に含まれる伝送制御情報を取得する制御を行う制御部を備える受信装置が提供される。本技術は、例えば、所定の放送方式に対応したデータ伝送に適用することができる。

Description

受信装置、及び受信方法
 本技術は、受信装置、及び受信方法に関し、特に、伝送制御情報を取得するまでの時間を短縮することができるように受信装置、及び受信方法に関する。
 例えば、地上デジタルテレビジョン放送の放送方式として、日本等が採用するISDB-T(Integrated Services Digital Broadcasting - Terrestrial)がある。ISDB-Tでは、放送コンテンツの映像及び音声を含む主信号のほか、主信号の伝送パラメータを受信機に通知するための伝送制御情報を含む制御信号として、TMCC(Transmission Multiplexing Configuration Control)信号が規定されている(例えば非特許文献1参照)。
 ここで、日本では、地上デジタルテレビジョン放送の次世代化に向けた高度化の検討が行われている。次世代の地上デジタルテレビジョン放送に関する技術として、データフレームの先頭に含まれる誤り訂正符号ブロックの先頭位置を示すポインタを送信する技術が開示されている(例えば特許文献1参照)。
 また、地上デジタルテレビジョン放送において、受信機側で、伝送制御情報(TMCC信号)を取得するための手法として、例えば、特許文献2,3に開示されている技術が知られている。
特開2015-65627号公報 特開2005-277716号公報 特開2005-278111号公報
ARIB STD-B31 2.2版 地上デジタルテレビジョン放送の伝送方式 一般社団法人 電波産業会
 ところで、次世代の地上デジタルテレビジョン放送等の放送方式においては、現行方式と比べて伝送制御情報の伝送方式が異なることが想定され、伝送される伝送制御情報を取得するまでの時間を短縮するための提案が要請されている。
 本技術はこのような状況に鑑みてなされたものであり、伝送制御情報を取得するまでの時間を短縮することができるようにするものである。
 本技術の一側面の受信装置は、伝送制御情報を複数の符号語に含めた物理層フレームを受信するに際し、各符号の系列ごとに前記複数の符号語の中から復号対象の符号を順次遷移させながら復号の成功の確認を行い、その復号の結果得られる前記複数の符号語に含まれる前記伝送制御情報を取得する制御を行う制御部を備える受信装置である。
 本技術の一側面の受信方法は、受信装置が、伝送制御情報を複数の符号語に含めた物理層フレームを受信するに際し、各符号の系列ごとに前記複数の符号語の中から復号対象の符号を順次遷移させながら復号の成功の確認を行い、その復号の結果得られる前記複数の符号語に含まれる前記伝送制御情報を取得する制御を行う受信方法である。
 本技術の一側面の受信装置、及び受信方法においては、伝送制御情報を複数の符号語に含めた物理層フレームを受信するに際し、各符号の系列ごとに前記複数の符号語の中から復号対象の符号を順次遷移させながら復号の成功の確認が行われ、その復号の結果得られる前記複数の符号語に含まれる前記伝送制御情報が取得するための制御が行われる。
 なお、本技術の一側面の受信装置は、独立した装置であってもよいし、1つの装置を構成している内部ブロックであってもよい。
 本技術の一側面によれば、伝送制御情報を取得するまでの時間を短縮することができる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本技術を適用した伝送システムの一実施の形態の構成を示す図である。 地上デジタルテレビジョン放送で用いられる伝送制御情報の現行方式と想定する次世代方式との相違点を説明する図である。 現行方式に蓄積型を適用した場合の例を示す図である。 次世代方式のフレームの構成の例を示す図である。 次世代方式に蓄積型を適用した場合の例を示す図である。 伝送制御情報を取得するまでの時間が最短となる場合の例を示す図である。 伝送制御情報を取得するまでの時間が最長となる場合の例を示す図である。 受信装置の構成の例を示すブロック図である。 復調部の構成の例を示すブロック図である。 誤り訂正復号処理部の構成の例を示すブロック図である。 受信状態制御部の構成の例を示すブロック図である。 FSMの状態遷移の例を示す図である。 各FSMの状態遷移の流れを示すフローチャートである。 FSM乃至FSMを用いる場合にFSMが有効な状態遷移機能となるときのフレームの受信状態を時系列で模式的に表した図である。 FSM乃至FSMを用いる場合にFSMが有効な状態遷移機能となるときのフレームの受信状態を時系列で模式的に表した図である。 FSM乃至FSMを用いる場合にFSMが有効な状態遷移機能となるときのフレームの受信状態を時系列で模式的に表した図である。 FSMの状態遷移の他の例を示す図である。 FSMの状態遷移の他の例を示す図である。 受信処理の流れを説明するフローチャートである。 復調処理の流れを説明するフローチャートである。 コンピュータの構成例を示す図である。
 以下、図面を参照しながら本技術の実施の形態について説明する。なお、説明は以下の順序で行うものとする。
1.本技術の実施の形態
2.変形例
3.コンピュータの構成
<1.本技術の実施の形態>
(伝送システムの構成例)
 図1は、本技術を適用した伝送システムの一実施の形態の構成を示す図である。なお、システムとは、複数の装置が論理的に集合したものをいう。
 図1において、伝送システム1は、地上デジタルテレビジョン放送等の放送方式に対応したシステムである。伝送システム1は、各放送局に関連する施設に設置されるデータ処理装置10-1乃至10-i(iは1以上の整数)と、送信所に設置される送信装置20と、ユーザが所有する受信装置30-1乃至30-j(jは1以上の整数)から構成される。
 また、この伝送システム1において、データ処理装置10-1乃至10-iと、送信装置20とは、通信回線40-1乃至40-iを介して、接続されている。なお、通信回線40-1乃至40-iは、例えば専用線とすることができる。
 データ処理装置10-1は、放送局Aにより制作された放送コンテンツ(例えば放送番組等)のデータに必要な処理を施し、その結果得られる伝送データを、通信回線40-1を介して送信装置20に送信する。
 データ処理装置10-2乃至10-iにおいては、データ処理装置10-1と同様に、放送局Bや放送局Z等の各放送局により制作された放送コンテンツのデータが処理され、その結果得られる伝送データが、通信回線40-2乃至40-iを介して、送信装置20に送信される。
 送信装置20は、通信回線40-1乃至40-iを介して、放送局側のデータ処理装置10-1乃至10-iから送信されてくる伝送データを受信する。送信装置20は、データ処理装置10-1乃至10-iからの伝送データに必要な処理を施し、その結果得られる放送信号を、送信所に設置された送信用アンテナから送信する。
 これにより、送信所側の送信装置20からの放送信号は、所定の周波数帯の電波によって、受信装置30-1乃至30-jにそれぞれ送信される。
 受信装置30-1乃至30-jは、例えば、テレビ受像機やセットトップボックス(STB:Set Top Box)などの固定受信機として構成され、ユーザの自宅に設置される。なお、以下の説明では、受信装置30-1乃至30-jを、特に区別する必要がない場合には、単に受信装置30と記述する。
 受信装置30-1は、所定の周波数帯の電波によって、送信装置20から送信されてくる放送信号を受信して必要な処理を施すことで、ユーザによる選局操作に応じた放送コンテンツ(例えば放送番組等)を再生する。
 受信装置30-2乃至30-jにおいては、受信装置30-1と同様に、送信装置20からの放送信号が処理され、ユーザによる選局操作に応じた放送コンテンツが再生される。
 このようにして、受信装置30においては、放送コンテンツの映像がディスプレイに表示され、その映像に同期した音声がスピーカから出力されるため、ユーザは、放送番組等の放送コンテンツを視聴することができる。
 ところで、地上デジタルテレビジョン放送では、放送番組等の放送コンテンツの映像及び音声を含む主信号のほか、主信号の伝送パラメータを受信装置30に通知するための伝送制御情報を含む制御信号を伝送することになる。例えば、ISDB-Tでは、制御信号としてTMCC信号を伝送する(例えば、上述した非特許文献1参照)。
 受信装置30では、送信装置20からの受信信号を復調して伝送制御情報(の伝送パラメータ)を取得した後に、その伝送パラメータを用いて主信号の復調が行われる。伝送制御情報を受信及び復調してから、主信号の復調が行われるため、受信装置30が放送コンテンツの映像や音声を出力するまでの時間は、伝送制御情報の復調処理時間に依存する。そのため、伝送制御情報の復調処理がより短時間で行われることが望ましい。
 また、日本では、地上デジタルテレビジョン放送の次世代化に向けた高度化の検討が行われている。次世代方式では、現行方式と比べて、データの伝送効率を向上させるために、毎フレームごとに変化する情報としてポインタの伝送が検討されている。ここで、現行方式の伝送制御情報(TMCC信号)の情報量に加えてポインタを伝送する場合、現行方式の伝送制御情報(TMCC信号)の誤り訂正符号では、情報長が不足してしまう。そのため、次世代方式では、複数の誤り訂正符号(符号)を用いて、伝送制御情報を伝送することが想定される。
 ここで、図2を参照しながら、地上デジタルテレビジョン放送で用いられる伝送制御情報の現行方式と想定する次世代方式との相違点を説明する。なお、以下の説明では、復号対象の誤り訂正符号を、符号ともいい、この符号の復号に成功した場合に、対応する符号語に含まれる伝送制御情報(の一部)が得られる。また、説明の都合上、符号と符号語には、対応する番号(#1,#2等)を付している。
 図2においては、OFDM信号の伝送シンボルであるOFDMシンボルを、図中の左側から右側に向かう方向を時間の方向として図示しているが、複数のOFDMシンボルによってフレーム(物理層フレーム)が構成される。
 ここで、OFDM(Orthogonal Frequency Division Multiplexing)は、直交周波数分割多重と呼ばれる変調方式の1つであって、伝送帯域内に多数の直交するサブキャリアを用意し、それぞれのサブキャリアの振幅及び位相にデータを割り当て、例えばPSK(Phase Shift Keying)やQAM(Quadrature Amplitude Modulation)等によりデジタル変調する方式である。図1の伝送システム1においては、送信装置20から送信され、所定の周波数帯の電波によって、受信装置30により受信される放送信号が、OFDM信号に相当する。
 OFDMシンボルは、複数のOFDMセグメントを変換して得られるものであり、データのキャリアと制御信号のキャリアがある。図2では、現行方式と次世代方式について、制御信号のキャリアで伝送される伝送制御情報と、データのキャリアで伝送される主信号(ペイロード)を、1フレーム単位でそれぞれ示している。
 現行方式において、伝送制御情報を伝送する1フレーム(物理層フレーム)は、基準ビット、同期ワード、及び符号から構成される。すなわち、現行方式のフレームは、同期ワード(同期信号)と、1つの符号語を含む符号で構成されており、伝送制御情報は、1つの符号語により伝送される。
 一方で、次世代方式において、伝送制御情報を伝送する1フレーム(物理層フレーム)は、基準ビット、同期ワード、符号#1、及び符号#2から構成される。すなわち、次世代方式のフレームは、同期ワード(同期信号)と、符号#1、符号#2で構成されており、伝送制御情報は、その情報の増加に伴い、2つの符号語#1,#2により伝送される。
 また、主信号を伝送するペイロードであるが、図中の四角は、誤り訂正符号ブロック(FEC(Forward Error Correction)ブロック)をそれぞれ表しており、次世代方式では、現行方式と比べて、そのサイズが大きくなっている。また、現行方式においては、毎フレームごとにその先頭が、ペイロードのFECブロックの先頭と一致している。一方で、次世代方式においては、フレームの先頭と、ペイロードのFECブロックの先頭とが一致していない(切れ目が不一致となる)。
 すなわち、次世代方式の場合には、第1のフレームと、第1のフレームに続く第2のフレームにおいて、第1のフレームと第2のフレームの境界(切れ目)と、ペイロードにおけるFECブロックの境界(切れ目)が不一致となっている。そのため、第2のフレームにおけるFECブロックの先頭からのオフセット(オフセット情報)を、伝送制御情報に含めて送る必要がある。このオフセット情報は、フレームごとに異なる情報となるため、符号化する情報が変化することとなって、伝送制御情報を2つの符号語#1,#2で伝送するに際しては、フレームごとに符号語が変化することになる。
 このように、現行方式では、伝送制御情報が1つの符号語により伝送され、かつ、その符号語に変化はなかったが、次世代方式では、オフセット情報等の情報の増加に伴い、伝送制御情報が2つの符号語#1,#2で伝送され、かつ、それらの符号語が変化する(符号化される情報が変化する)。
 ここで、現行方式のように、伝送制御情報が1つの符号語により伝送される場合に、伝送制御情報を短時間で取得するための方法として、1フレーム分の伝送制御情報の受信信号を蓄積する方法がある(例えば、上述した特許文献2参照)。
 すなわち、現行方式において、伝送制御情報は、基本的に毎フレームで同一の情報が含まれており、誤り訂正符号化された符号語も変化しない。また、伝送制御情報の受信信号は、同期ワード(同期信号)と1つの符号語で構成され、周期的に同一のビット列が繰り返し伝送されることになる。
 そのため、受信装置30では、どのような領域でも、1フレーム分の受信信号を蓄積すれば、同期ワードと符号語を受信することになる。そして、受信装置30は、受信信号から符号語を抽出して復号処理を行うことで、必ず1フレーム分の受信信号で、伝送制御情報を解くことが可能とされる。
 例えば、図3において、伝送されるフレームのうち、点線で囲まれた領域A1に注目すれば、この領域A1が1フレーム分の受信信号に相当し、第1のフレームに含まれる符号と、第1のフレームに続く第2のフレームに含まれる符号では、その符号語に変化がない。そのため、現行方式においては、点線で囲まれた領域A1内で、第1のフレームに含まれる符号の一部(図中の符号C1)の信号とともに第2のフレームに含まれる符号の残りの一部(図中の符号C2)の信号を蓄積することで符号語が得られ、伝送制御情報を取得することができる。
 一方で、図4に示すように、次世代方式の場合には、伝送制御情報が2つの符号語#1,#2により伝送され、フレームごとに符号語が変化する。なお、図4においては、左側から右側に向かう方向が時間の方向とされ、1フレームのフレーム長は、例えば最大で約350msecとされ、現行方式のフレーム長(最大で257msec)と比べて長くなることが想定される。
 すなわち、次世代方式において、伝送制御情報は、毎フレームで変化する情報が含まれており、誤り訂正符号化において、情報系列が変化するとパリティ系列も変化する。そのため、次世代方式において、図3に示した現行方式と同様に、1フレーム分の受信信号を蓄積してもその系列が符号語にならない場合があり、結果として符号(誤り訂正符号)#1,#2の復号に失敗する可能性がある。
 例えば、図5において、伝送されるフレームのうち、点線で囲まれた領域A2に注目すれば、この領域A2が1フレーム分の信号に相当するが、第1のフレームに含まれる符号#1と、第1のフレームに続く第2のフレームに含まれる符号#1では、符号語が変化している。そのため、次世代方式においては、点線で囲まれた領域A2内で、第1のフレームに含まれる符号#1の一部(図中の符号C1)の信号とともに第2のフレームに含まれる符号#1の残りの一部(図中の符号C2)の信号を蓄積しても、符号語にならない場合がある。
 このように、次世代方式の場合には、現行方式と同様に1フレーム分の受信信号を蓄積する蓄積型の方式を用いても、符号語にならないときがあり、そのときには、伝送制御情報を取得することができない。
 すなわち、蓄積型の方式を用いる場合には、受信信号に含まれる符号語の全てが含まれる領域を蓄積する必要がある。例えば、1フレーム分の受信信号に加えて、さらにもう1つ分の符号語の信号を蓄積すれば必ず、同期ワードと全ての符号語が含まれることになる。しかしながら、現行方式であれば、同期ワードと1つの符号語の抽出だけであったが、次世代方式では、より広い領域に対して同期ワードと複数の符号語(符号語#1,#2)を抽出する必要が出てくる。
 ここで、例えば、符号語長が約0.5フレームであるとした場合、約1.5フレーム分の受信信号の蓄積を行った後で復調を行うため、最大時間として1.5フレームで伝送制御情報を取得することが可能となる。しかしながら、この場合には、現行方式よりも蓄積する信号量が増加してしまう。
 上述した特許文献3には、蓄積型の方式を用いない場合に、伝送制御情報を取得する方法について記載されている。特許文献3では、伝送仕様において同期ワードの直後に符号語が配置されていることから、まず、受信信号から同期ワードの一致確認を行ってから、その後に符号語の復号を行うことで、伝送制御情報を取得している。
 この方法を採用した場合には、先に同期ワードの一致確認を行うため、同期信号が検出されるまで待つ必要がある。ここで、現行方式では、同期ワードがフレームの先頭に配置されているため、最大時間として2フレーム分の受信信号で、伝送制御情報を取得することができる。例えば、伝送制御情報を取得するまでの時間が最短となる場合と、最長となる場合をそれぞれ示せば、図6と図7に示すようになる。
 図6は、伝送制御情報を取得するまでの時間が最短となる場合の例を示している。
 図6においては、受信信号(復調後の受信信号)の入力開始のタイミング(時刻t11)が、同期ワードの開始位置と略一致しており、約1フレーム分の受信信号で、同期ワードのチェック(検出)が成功(時刻t12)した後に、符号#1と符号#2の復号が成功(時刻t13,t14)し、伝送制御情報が取得されている。
 このように、図6に示した約1フレーム分の待ち時間で、伝送制御情報が取得されるケースが、伝送制御情報を取得するまでの時間が最短となる場合である。
 図7は、伝送制御情報を取得するまでの時間が最長となる場合の例を示している。
 図7においては、受信信号(復調後の受信信号)の入力開始のタイミング(時刻t21)が、同期ワードの途中位置と略一致しており、約2フレーム分の受信信号で、同期ワードのチェックが成功(時刻t22)した後に、符号#1と符号#2の復号が成功(時刻t23,t24)し、伝送制御情報が取得されている。ここでは、時刻t21にて受信信号の入力が開始してから、時刻t22にて同期ワードのチェックが成功するまでの時間が同期ワードチェック中であって、約1フレーム分の待ち時間が生じている。
 このように、図7に示した約2フレーム分の待ち時間で、伝送制御情報が取得されるケースが、伝送制御情報を取得するまでの時間が最長となる場合である。
 なお、受信装置30は、放送信号(OFDM信号)の受信に際して、フレームの先頭(の位置)を認識していない状態で動作を開始するが、伝送制御情報(TMCC信号)を取得すること(同期ワードに一致して復号に成功すること)で、同期ワードと復号対象の符号の位置を認識して、フレームの先頭(の位置)を認識することができる。そして、受信装置30では、一度、伝送制御情報(TMCC信号)を取得することができれば、同期ワードと符号の位置は周期的であるため、それ以降は一定周期での処理を行えばよいことになる。
 以上のように、次世代の地上デジタルテレビジョン放送においては、現行方式と比べて伝送制御情報の伝送方式が異なることが想定されるが、単純に蓄積を行った場合には、最長で約2フレーム分の時間が必要となって、伝送制御情報を取得するまでにある程度の時間を要する。そこで、本技術では、次世代方式において、伝送されるフレームに含まれる伝送制御情報を取得するまでの時間を短縮するための技術を提案する。以下、次世代方式に対応した受信装置30において、より短い時間で伝送制御情報を取得するための構成について説明する。
(受信装置の構成の例)
 図8は、図1の受信装置30の構成の例を示すブロック図である。
 図8において、受信装置30は、チューナ部101、復調部102、及び処理部103を含む。
 チューナ部101は、例えば、次世代方式に対応したチューナとして構成される。チューナ部101は、アンテナ31を介して受信した放送信号(OFDM信号)に必要な処理を施し、その結果得られる受信信号を、復調部102に供給する。
 復調部102は、例えば、次世代方式に対応した復調IC等の復調デバイスとして構成される。復調部102は、チューナ部101から供給される受信信号に対し、例えば復調や誤り訂正符号の復号等の処理を含む復調処理を行い、その結果得られるストリームを、処理部103に供給する。
 処理部103は、例えば、システムオンチップ(SoC:System on Chip)として構成される。処理部103は、復調部102から供給されるストリームに対し、例えばデコード等の必要な処理を行い、その結果得られる映像や音声のデータを、後段の処理部や出力部(例えば、ディスプレイやスピーカ等)に出力する。
(復調部の構成の例)
 図9は、図8の復調部102の構成の例を示すブロック図である。
 図9において、復調部102は、同期ワードチェック部111、誤り訂正復号処理部112、受信状態制御部113、及び整列・解釈部114を含む。
 同期ワードチェック部111は、そこに入力される受信信号(復調後の受信信号)としての入力系列に対して所定の同期ワード系列との一致確認を行う。同期ワードチェック部111は、入力系列に対する同期ワード系列との確認の結果に応じた同期フラグを、受信状態制御部113に供給する。ここでは、系列の一致確認によって同期ワード(同期信号)の検出に成功した場合には、その旨を示す同期フラグが通知される。
 誤り訂正復号処理部112は、そこに入力される受信信号(復調後の受信信号)としての入力系列に対して所定の誤り訂正符号の復号処理を行う。ここで、伝送制御情報を含む符号語が複数存在する場合、誤り訂正復号処理部112は、復号処理の結果得られる復号系列に、伝送仕様により規定される各符号語に固有な伝送パラメータ(伝送情報)が含まれるかどうかを確認することで、いずれの符号語であるかを判別する。
 誤り訂正復号処理部112は、符号語の判別結果に応じた復号成功フラグを、受信状態制御部113に供給する。
 ここで、例えば、符号語#1と符号語#2の2つの符号語が存在する場合において、復号系列に、符号語#1に固有な伝送パラメータが含まれることが確認された場合、符号#1の復号に成功してその結果が符号語#1であることを示す復号成功フラグF1が通知される。一方で、復号系列に、符号語#2に固有な伝送パラメータが含まれることが確認された場合には、符号#2の復号に成功してその結果が符号語#2であることを示す復号成功フラグF2が通知される。
 また、誤り訂正復号処理部112は、復号処理の復号結果A,Bを、整列・解釈部114に供給する。
 ここで、復号結果A,Bは、符号#1及び符号#2のうち、いずれか一方の符号の復号結果を示している。例えば、復号結果Aが符号#1の復号結果を示す場合には、復号結果Bは、符号#2の復号結果を示している。一方で、例えば、復号結果Aが符号#2の復号結果を示す場合には、復号結果Bは、符号#1の復号結果を示している。
 受信状態制御部113は、同期ワードチェック部111から供給される同期フラグ、及び誤り訂正復号処理部112から供給される復号成功フラグF1,F2の入力を受けて、有限状態機械(FSM:Finite State Machine)の状態遷移を行うことで、伝送制御情報の受信状態を制御する。すなわち、受信状態制御部113は、FSMの状態遷移を行うことで、伝送制御情報を取得するための制御を行っている。
 受信状態制御部113は、FSMの状態遷移の結果に応じたフレーム同期信号を、そのフレーム同期信号を用いた処理を行う後段の回路に出力する。また、受信状態制御部113は、復号された複数の符号語(符号語#1,#2)の順序が所定の順序と異なって、順序を入れ替える必要がある場合には、その旨を示す順序入替フラグを、整列・解釈部114に供給する。
 整列・解釈部114は、誤り訂正復号処理部112から供給される復号結果A,B(符号#1,符号#2の復号結果)のビット列を解釈して伝送制御情報に変換し、その伝送制御情報に含まれる各伝送パラメータを、対象の伝送パラメータの処理を行う後段の回路にそれぞれ出力する。
 また、整列・解釈部114は、受信状態制御部113から順序入替フラグが供給された場合、復号結果A,B(符号#2,符号#1の復号結果)の解釈時に、対象の符号語(符号語#2,#1)の順序を入れ替える。すなわち、この順序の入れ替え処理では、同期ワード位置を基準にして、複数の符号語から得られた情報(復号ビット)が、制御信号のフォーマット順(所定の順序)に並び変えられ、制御信号のフォーマットに応じた順序での解釈が可能とされる。
(誤り訂正復号部の構成の例)
 図10は、図9の誤り訂正復号処理部112の詳細な構成の例を示すブロック図である。
 図10において、誤り訂正復号処理部112は、誤り訂正復号部121、伝送パラメータ確認部122-1、及び伝送パラメータ確認部122-2を含む。
 誤り訂正復号部121は、そこに入力される受信信号に含まれる符号(誤り訂正符号)に対し、所定の復号処理を行う。誤り訂正復号部121は、復号処理の復号結果A,Bを、整列・解釈部114に供給する。
 また、誤り訂正復号部121は、復号処理が完了(成功)したとき、復号完了フラグとともに、復号系列に関する情報を、伝送パラメータ確認部122-1、及び伝送パラメータ確認部122-2に供給する。
 伝送パラメータ確認部122-1は、復号完了フラグにより復号処理の完了が通知されたとき、誤り訂正復号部121からの復号系列に関する情報に、伝送仕様により規定される符号語#1に固有な伝送パラメータが含まれるかどうかを確認することで、当該復号処理の復号結果A又はBが符号語#1であるかを判別する。伝送パラメータ確認部122-1は、復号結果A又はBが符号語#1であると判別された場合、復号成功フラグF1を、受信状態制御部113に供給する。
 伝送パラメータ確認部122-2は、復号完了フラグにより復号処理の完了が通知されたとき、誤り訂正復号部121からの復号系列に関する情報に、符号語#2に固有な伝送パラメータが含まれるかどうかを確認することで、当該復号処理の復号結果A又はBが符号語#2であるかを判別する。伝送パラメータ確認部122-2は、復号結果A又はBが符号語#2であると判別された場合、復号成功フラグF2を、受信状態制御部113に供給する。
(受信状態制御部の構成の例)
 図11は、図9の受信状態制御部113の詳細な構成の例を示すブロック図である。
 図11において、受信状態制御部113は、FSM部131-1、FSM部131-2、FSM部131-3、及びOR演算部132を含む。
 FSM部131-1乃至131-3には、同期ワードチェック部111(図9)から供給される同期フラグと、誤り訂正復号処理部112(図9)から供給される復号成功フラグF1及び復号成功フラグF2が入力される。
 FSM部131-1乃至131-3においては、同期フラグ、復号成功フラグF1、及び復号成功フラグF2の入力を受けて、図12に示すようなFSM乃至FSMの状態遷移を行う。ただし、FSM部131-1乃至131-3において、FSM乃至FSMの状態遷移は、同時に動作される。
 FSM部131-1は、そこに入力されるフラグの状態を確認して、同期フラグ、復号成功フラグF1、復号成功フラグF2の順に、各フラグが成功状態を示した場合、図12のFSMの状態遷移を行い、取得完了状態となって、その旨を、OR演算部132に通知する。
 FSM部131-2は、そこに入力されるフラグの状態を確認して、復号成功フラグF1、復号成功フラグF2、同期フラグの順に、各フラグが成功状態を示した場合、図12のFSMの状態遷移を行い、取得完了状態となって、その旨を、OR演算部132に通知する。
 FSM部131-3は、そこに入力されるフラグの状態を確認して、復号成功フラグF2、同期フラグ、復号成功フラグF1の順に、各フラグが成功状態を示した場合、図12のFSMの状態遷移を行い、取得完了状態となって、その旨を、OR演算部132に通知する。
 また、FSM部131-1乃至131-3のうち、FSM部131-3が取得完了状態となった場合には、その通知に応じて順序入替フラグがオン状態となって、整列・解釈部114(図9)に供給される。すなわち、FSM部131-3におけるFSMの状態遷移では、誤り訂正符号(符号)の復号の結果得られる符号語が、符号語#2,符号語#1の順となって、FSM及びFSMの状態遷移の場合と順序が逆になっているので、整列・解釈部114による解釈時に符号語(符号語#2,符号語#1)を入れ替えるように、順序入替フラグをオン状態にする。
 OR演算部132は、FSM部131-1乃至131-3のいずれかから取得完了状態を示す通知が入力された場合、その通知に応じたフレーム同期信号を、後段の回路に出力する。
(FSMの状態遷移)
 図13は、FSMの状態遷移の例を示している。
 まず、図13のA及び図14を参照して、FSM乃至FSMのうち、FSMが有効(効果的)に動作する場合について説明する。ただし、このとき、FSM及びFSMの状態遷移は、FSMの状態遷移と同時に動作しているものとする。
 FSM部131-1においては、全機能がリセット状態となって、FSMの状態は、初期状態となる(S11)。このとき、FSM,FSMの状態についても初期状態とされる。
 同期ワードチェック部111では、所定数(所定時間)の受信信号が受信された後に、受信信号から得られるビット列を、伝送仕様にて定義された同期ワードビット列と比較することで、同期ワードがチェックされる(S12)。ここでは、例えば、伝送仕様において、同期ワードが16ビットであることが定義されている場合には、16ビットのビット列同士の比較が行われる。
 この同期ワードチェック処理によって、受信信号から得られるビット列が、同期ワードビット列に一致して同期ワードが検出された場合(S13の「YES」)、同期フラグが上がって(例えばSync_Flag = "1"となって)、FSM部131-1乃至131-3にそれぞれ入力される。FSM部131-1においては、同期ワードの検出の成功が確認され、FSMの状態が、同期ワードチェック状態から、符号#1の復号状態に遷移する。
 また、同期ワードチェック処理によって、受信信号から得られるビット列と、同期ワードビット列とが一致せずに(不一致となり)、同期ワードが検出されなかった場合(S13の「NO」)、処理は、ステップS11に戻り、それ以降の処理が繰り返される。
 誤り訂正復号処理部112では、さらに所定数(所定時間)の受信信号が受信された後に、符号#1の復号が行われる(S14)。なお、ここでは、符号#1を復号可能となる所定数の受信信号を受信するまでは、復号処理を開始するのを待つことになる。
 この復号処理では、符号#1の復号の成功を確認し、かつ、その符号語#1の伝送パラメータを確認するために、受信信号の受信と復号が繰り返される(S14)。そして、この復号処理によって、符号#1の復号に成功し、かつ、その符号語#1の伝送パラメータの確認に成功した場合(S15の「YES」)、復号成功フラグF1が上がって(例えばDec_Flg1 = "1"となって)、FSM部131-1乃至131-3にそれぞれ入力される。FSM部131-1においては、符号#1の復号の成功が確認され、FSMの状態が、符号#1の復号状態から、符号#2の復号状態に遷移する。
 また、復号処理(S14)によって、符号#1の復号に失敗した場合、又は符号語#1の伝送パラメータの確認に失敗した場合(S15の「NO」)、処理は、ステップS11に戻り、それ以降の処理が繰り返される。
 誤り訂正復号処理部112では、さらに所定数(所定時間)の受信信号が受信された後に、符号#2の復号が行われる(S16)。なお、ここでは、符号#2を復号可能となる所定数の受信信号を受信するまでは、復号処理を開始するのを待つことになる。
 この復号処理では、符号#2の復号の成功を確認し、かつ、その符号語#2の伝送パラメータを確認するために、受信信号の受信と復号が繰り返される(S16)。そして、この復号処理によって、符号#2の復号に成功し、かつ、その符号語#2の伝送パラメータの確認に成功した場合(S17の「YES」)、復号成功フラグF2が上がって(例えばDec_Flg2 = "1"となって)、FSM部131-1乃至131-3にそれぞれ入力される。FSM部131-1においては、符号#2の復号の成功が確認され、FSMの状態が、符号#2の復号状態から、取得完了状態に遷移する(S18)。
 また、復号処理(S16)によって、符号#2の復号に失敗した場合、又は符号語#2の伝送パラメータの確認に失敗した場合(S17の「NO」)、処理は、ステップS11に戻り、それ以降の処理が繰り返される。
 以上のように、FSM乃至FSMのうち、FSMが有効に動作する場合としては、受信信号に含まれる情報の伝送順が、同期ワード、符号#1、符号#2の順となるときであって、このとき、FSMの状態が、同期ワードチェック状態(S12)、符号#1の復号状態(S14)、符号#2の復号状態(S16)の順に遷移し、このFSMの状態遷移に応じた受信状態で復号された符号語#1及び符号語#2に含まれる伝送制御情報が取得される。
 なお、このとき、FSM,FSMについても、FSMと同時に動作するが、受信信号に含まれる情報の伝送順(同期ワード、符号#1、符号#2の順)からすれば、FSMの状態が取得完了状態となるまでの間に、FSM,FSMの状態が取得完了状態となることはなく、FSMの状態遷移に応じた受信状態で伝送制御情報を取得可能とするのが好適である。
 図14は、FSM乃至FSMを用いる場合に、FSMが有効な状態遷移機能となるときのフレームの受信状態を時系列で模式的に表している。
 図14において、時刻t31に、受信信号の入力が開始されたとき、FSMの状態は、同期ワードチェック状態となるため、同期ワードのチェックが行われる。ここで、受信信号の入力開始の直後には、符号#2が入力されているため、同期ワードは検出されないが、その後、符号#2に続いて入力される同期ワードがチェックされ、時刻t32に、同期ワードの検出の成功が確認される。
 同期ワードの検出の成功が確認されると、FSMの状態は、同期ワードチェック状態から符号#1の復号状態に遷移する。そして、同期ワードに続いて入力される符号#1の復号が行われ、時刻t33に、符号#1の復号の成功が確認される。
 符号#1の復号の成功が確認されると、FSMの状態は、符号#1の復号状態から符号#2の復号状態に遷移する。そして、符号#1に続いて入力される符号#2の復号が行われ、時刻t34に、符号#2の復号の成功が確認され、FSMの状態は、符号#2の復号状態から取得完了状態に遷移する。
 このように、例えば符号#2の途中から入力が開始された場合には、同期ワード、符号#1、及び符号#2のうち、次に入力されるのが、同期ワードとなるため、FSMが有効な状態遷移機能となる。図14の例では、時刻t31に受信信号の入力が開始されてから、時刻t34に符号#2の復号が成功するまでの間が、約1.5フレームとされる。すなわち、従来の手法であると、最大で約2フレーム待つ必要があったが、FSM乃至FSMのうち、FSMが有効に動作することで、約1.5フレームに短縮することができる。
 次に、図13のB及び図15を参照して、FSM乃至FSMのうち、FSMが有効(効果的)に動作する場合について説明する。ただし、このとき、FSM及びFSMの状態遷移は、FSMの状態遷移と同時に動作しているものとする。
 FSM部131-2においては、全機能がリセット状態となって、FSMの状態は、初期状態となる(S21)。このとき、FSM,FSMの状態についても初期状態とされる。
 誤り訂正復号処理部112では、所定数(所定時間)の受信信号が受信された後に、符号#1の復号が行われる(S22)。ここで、復号処理を開始するに際しては、符号#1を復号可能となる受信信号を受信するまで待機する。
 この復号処理では、符号#1の復号の成功を確認し、かつ、その符号語#1の伝送パラメータを確認するために、受信信号の受信と復号が繰り返される(S22)。そして、この復号処理によって、符号#1の復号に成功し、かつ、その符号語#1の伝送パラメータの確認に成功した場合(S23の「YES」)、復号成功フラグF1が上がって、FSM部131-1乃至131-3にそれぞれ入力される。FSM部131-2においては、符号#1の復号の成功が確認され、FSMの状態が、符号#1の復号状態から、符号#2の復号状態に遷移する。
 誤り訂正復号処理部112では、さらに所定数(所定時間)の受信信号が受信された後に、符号#2の復号が行われる(S24)。ここで、復号処理を開始するに際しては、符号#2を復号可能となる受信信号を受信するまで待機する。
 この復号処理では、符号#2の復号の成功を確認し、かつ、その符号語#2の伝送パラメータを確認するために、受信信号の受信と復号が繰り返される(S24)。そして、この復号処理によって、符号#2の復号に成功し、かつ、その符号語#2の伝送パラメータの確認に成功した場合(S25の「YES」)、復号成功フラグF2が上がって、FSM部131-1乃至131-3にそれぞれ入力される。FSM部131-2においては、符号#2の復号の成功が確認され、FSMの状態が、符号#2の復号状態から、同期ワードチェック状態に遷移する。
 同期ワードチェック部111では、さらに所定数(所定時間)の受信信号が受信された後に、受信信号から得られるビット列を、伝送仕様にて定義された同期ワードビット列と比較することで、同期ワードがチェックされる(S26)。
 この同期ワードチェック処理によって、受信信号から得られるビット列が、同期ワードビット列に一致して同期ワードが検出された場合(S27の「YES」)、同期フラグが上がって、FSM部131-1乃至131-3にそれぞれ入力される。FSM部131-2においては、同期ワードの検出の成功が確認され、FSMの状態が、同期ワードチェック状態から、取得完了状態に遷移する(S28)。
 なお、復号処理(S22,S24)によって、符号#1の復号に失敗した場合、若しくは符号語#1の伝送パラメータの確認に失敗した場合(S23の「NO」)、符号#2の復号に失敗した場合、若しくは符号語#2の伝送パラメータの確認に失敗した場合(S25の「NO」)、又は同期ワードチェック処理によって、受信信号から得られるビット列と同期ワードビット列とが一致せずに、同期ワードが検出されなかった場合(S27の「NO」)、処理は、ステップS21に戻り、それ以降の処理が繰り返される。
 以上のように、FSM乃至FSMのうち、FSMが有効に動作する場合としては、受信信号に含まれる情報の伝送順が、符号#1、符号#2、同期ワードの順となるときであって、このとき、FSMの状態が、符号#1の復号状態(S22)、符号#2の復号状態(S24)、同期ワードチェック状態(S26)の順に遷移し、このFSMの状態遷移に応じた受信状態で復号された符号語#1及び符号語#2に含まれる伝送制御情報が取得される。
 なお、このとき、FSM,FSMについても、FSMと同時に動作するが、受信信号に含まれる情報の伝送順(符号#1、符号#2、同期ワードの順)からすれば、FSMの状態が取得完了状態となるまでの間に、FSM,FSMの状態が取得完了状態となることはなく、FSMの状態遷移に応じた受信状態で伝送制御情報を取得可能とするのが好適である。
 図15は、FSM乃至FSMを用いる場合に、FSMが有効な状態遷移機能となるときのフレームの受信状態を時系列で模式的に表している。
 図15において、時刻t41に、受信信号の入力が開始されたとき、FSMの状態は、符号#1の復号状態となる。ここで、受信信号の入力開始の直後には、同期ワードが入力されているため、符号#1は復号されないが、その後、同期ワードに続いて入力される符号#1の復号が行われ、時刻t42に、符号#1の復号の成功が確認される。
 符号#1の復号の成功が確認されると、FSMの状態は、符号#1の復号状態から符号#2の復号状態に遷移する。そして、符号#1に続いて入力される符号#2の復号が行われ、時刻t43に、符号#2の復号の成功が確認される。
 符号#2の復号の成功が確認されると、FSMの状態は、符号#2の復号状態から同期ワードチェック状態に遷移する。そして、符号#2に続いて入力される同期ワードがチェックされ、時刻t44に、同期ワードの検出の成功が確認され、FSMの状態は、同期ワードチェック状態から取得完了状態に遷移する。
 このように、例えば同期ワードの途中から入力が開始された場合には、同期ワード、符号#1、及び符号#2のうち、次に入力されるのが、符号#1となるため、FSMが有効な状態遷移機能となる。図15の例では、時刻t41に受信信号の入力が開始されてから、時刻t44に同期ワードのチェックが成功するまでの間が、約1.1フレームとされる。すなわち、従来の手法であると、最大で約2フレーム待つ必要があったが、FSM乃至FSMのうち、FSMが有効に動作することで、約1.1フレームに短縮することができる。
 次に、図13のC及び図16を参照して、FSM乃至FSMのうち、FSMが有効(効果的)に動作する場合について説明する。ただし、このとき、FSM及びFSMの状態遷移は、FSMの状態遷移と同時に動作しているものとする。
 FSM部131-3においては、全機能がリセット状態となって、FSMの状態は、初期状態となる(S31)。このとき、FSM,FSMの状態についても初期状態とされる。
 誤り訂正復号処理部112では、所定数(所定時間)の受信信号が受信された後に、符号#2の復号が行われる(S32)。ここで、復号処理を開始するに際しては、符号#2を復号可能となる受信信号を受信するまで待機する。
 この復号処理では、符号#2の復号の成功を確認し、かつ、その符号語#2の伝送パラメータを確認するために、受信信号の受信と復号が繰り返される(S32)。そして、この復号処理によって、符号#2の復号に成功し、かつ、その符号語#2の伝送パラメータの確認に成功した場合(S33の「YES」)、復号成功フラグF2が上がって、FSM部131-1乃至131-3にそれぞれ入力される。FSM部131-3においては、符号#2の復号の成功が確認され、FSMの状態が、符号#2の復号状態から、同期ワードチェック状態に遷移する。
 同期ワードチェック部111では、さらに所定数(所定時間)の受信信号が受信された後に、受信信号から得られるビット列を、伝送仕様にて定義された同期ワードビット列と比較することで、同期ワードがチェックされる(S34)。
 この同期ワードチェック処理によって、受信信号から得られるビット列が、同期ワードビット列に一致して同期ワードが検出された場合(S35の「YES」)、同期フラグが上がって、FSM部131-1乃至131-3にそれぞれ入力される。FSM部131-3においては、同期ワードの検出の成功が確認され、FSMの状態が、同期ワードチェック状態から、符号#1の復号状態に遷移する。
 誤り訂正復号処理部112では、さらに所定数(所定時間)の受信信号が受信された後に、符号#1の復号が行われる(S36)。ここで、復号処理を開始するに際しては、符号#1を復号可能となる受信信号を受信するまで待機する。
 この復号処理では、符号#1の復号の成功を確認し、かつ、その符号語#1の伝送パラメータを確認するために、受信信号の受信と復号が繰り返される(S36)。そして、この復号処理によって、符号#1の復号に成功し、かつ、その符号語#1の伝送パラメータの確認に成功した場合(S37の「YES」)、復号成功フラグF1が上がって、FSM部131-1乃至131-3にそれぞれ入力される。FSM部131-3においては、符号#1の復号の成功が確認され、FSMの状態が、符号#1の復号状態から、取得完了状態に遷移する(S38)。
 なお、復号処理(S32)によって、符号#2の復号に失敗した場合、若しくは符号語#2の伝送パラメータの確認に失敗した場合(S33の「NO」)、同期ワードチェック処理によって、受信信号から得られるビット列と同期ワードビット列とが一致せずに、同期ワードが検出されなかった場合(S35の「NO」)、又は復号処理(S36)によって、符号#1の復号に失敗した場合、若しくは符号語#1の伝送パラメータの確認に失敗した場合(S37の「NO」)、処理は、ステップS31に戻り、それ以降の処理が繰り返される。
 以上のように、FSM乃至FSMのうち、FSMが有効に動作する場合としては、受信信号に含まれる情報の伝送順が、符号#2、同期ワード、符号#1の順となるときであって、このとき、FSMの状態が、符号#2の復号状態(S32)、同期ワードチェック状態(S34)、符号#1の復号状態(S36)の順に遷移し、このFSMの状態遷移に応じた受信状態で復号された符号語#1及び符号語#2に含まれる伝送制御情報が取得される。
 ただし、FSMにおいては、その状態が取得完了状態になったとき、符号語#2が符号語#1よりも先に復号が完了しているため、整列・解釈部114にて、符号語#2と符号語#1とで復号系列の順序を入れ替えた上で解釈を行うことで、伝送制御情報が得られる。
 なお、このとき、FSM,FSMについても、FSMと同時に動作するが、受信信号に含まれる情報の伝送順(符号#2、同期ワード、符号#1の順)からすれば、FSMの状態が取得完了状態となるまでの間に、FSM,FSMの状態が取得完了状態となることはなく、FSMの状態遷移に応じた受信状態で伝送制御情報を取得可能とするのが好適である。
 図16は、FSM乃至FSMを用いる場合に、FSMが有効な状態遷移機能となるときのフレームの受信状態を時系列で模式的に表している。
 図16において、時刻t51に、受信信号の入力が開始されたとき、FSMの状態は、符号#2の復号状態となる。ここで、受信信号の入力開始の直後には、符号#1が入力されているため、符号#2は復号されないが、その後、符号#1に続いて入力される符号#2の復号が行われ、時刻t52に、符号#2の復号の成功が確認される。
 符号#2の復号の成功が確認されると、FSMの状態は、符号#2の復号状態から同期ワードチェック状態に遷移する。そして、符号#2に続いて入力される同期ワードがチェックされ、時刻t53に、同期ワードの検出の成功が確認される。
 同期ワードの検出の成功が確認されると、FSMの状態は、同期ワードチェック状態から符号#1の復号状態に遷移する。そして、同期ワードに続いて入力される符号#1の復号が行われ、時刻t54に、符号#1の復号の成功が確認され、FSMの状態は、符号#1の復号状態から取得完了状態に遷移する。
 このように、例えば符号語#1の途中から入力が開始された場合には、同期ワード、符号#1、及び符号#2のうち、次に入力されるのが、符号#2となるため、FSMが有効な状態遷移機能となる。図16の例では、時刻t51に受信信号の入力が開始されてから、時刻t54に符号#1の復号が成功するまでの間が、約1.5フレームとされる。すなわち、従来の手法であると、最大で約2フレーム待つ必要があったが、FSM乃至FSMのうち、FSMが有効に動作することで、約1.5フレームに短縮することができる。
(N個の符号語の場合の状態遷移機能)
 上述した説明では、伝送制御情報を2つの符号語により伝送する場合に、FSM乃至FSMの3つの状態遷移機能を同時に動作させることで、伝送制御情報を取得するまでの時間を短縮する手法を説明したが、符号語の数は2つに限定されるものではない。そこで、次に、3以上の符号語によって伝送制御情報を伝送する場合のFSMの状態遷移について説明する。
 図17は、N個の符号語によって伝送制御情報を伝送する場合の状態遷移機能の例を示している。図17においては、FSM乃至FSMN+1が列挙されているが、N+1個のFSMの状態遷移のうち、FSM、FSM、FSM、FSMN、FSMN+1の状態遷移を例示している。
 すなわち、FSMは、同期ワードチェック状態、符号#1の復号状態、符号#2の復号状態、・・・、符号#N-2の復号状態、符号#N-1の復号状態、符号#Nの復号状態の順に遷移する。FSMは、符号#1の復号状態、符号#2の復号状態、・・・、符号#N-2の復号状態、符号#N-1の復号状態、符号#Nの復号状態、同期ワードチェック状態の順に遷移する。FSMは、符号#2の復号状態、符号#3の復号状態、・・・、符号#N-1の復号状態、符号#Nの復号状態、同期ワードチェック状態、符号#1の復号状態の順に遷移する。
 FSMNは、符号#N-1の復号状態、符号#Nの復号状態、同期ワードチェック状態、符号#1の復号状態、符号#2の復号状態、・・・、符号#N-2の復号状態の順に遷移する。FSMN+1は、符号#Nの復号状態、同期ワードチェック状態、符号#1の復号状態、符号#2の復号状態、・・・、符号#N-2の復号状態、符号#N-1の復号状態の順に遷移する。
 このように、伝送制御情報が複数の符号語によって伝送される場合であっても、同期ワード及び各符号の系列ごとに同期ワード及び複数の符号語の中から復号対象の符号を順次遷移させながら、すなわち、同期ワード、符号#1、符号#2、・・・、符号#Nの系列を巡回させて、同期ワードの検出又は復号対象の符号の復号の成功の確認を行うことで、N+1個(FSM1乃至FSMN+1)の状態遷移のうち、1つの状態遷移に応じて伝送制御情報が取得可能とされる。
 なお、FSM乃至FSMN+1のうち、FSM乃至FSMN+1の状態遷移については、復号される符号語#1乃至符号語#Nの順序が、所定の順序(フォーマット順)と異なっており、対象の符号語の順序を入れ替える必要があるため、受信状態制御部113が、整列・解釈部114に対し、順序の入れ替えを通知することになる。これにより、整列・解釈部114では、受信状態制御部113からの通知に基づき、復号結果の解釈時に、対象の符号語を、同期ワード位置を基準にしてフォーマット順に並び変えることができる。
(同期ワードを含まない場合の状態遷移機能)
 また、上述した説明では、受信信号に同期ワードが存在する場合にFSMの状態として同期ワードチェック状態を含めた場合を説明したが、必ずしも同期ワードを含める必要はない。そこで、次に、同期ワードを含めない場合のFSMの状態遷移について説明する。
 図18は、N個の符号語によって伝送制御情報を伝送する場合に、同期ワードが存在しないときの状態遷移機能の例を示している。図18においては、FSM乃至FSMが列挙されているが、N個のFSMの状態遷移のうち、FSM、FSM、FSMN-1、FSMNの状態遷移を例示している。
 すなわち、FSMは、符号#1の復号状態、符号#2の復号状態、・・・、符号#N-2の復号状態、符号#N-1の復号状態、符号#Nの復号状態の順に遷移する。FSMは、符号#2の復号状態、符号#3の復号状態、・・・、符号#N-1の復号状態、符号#Nの復号状態、符号#1の復号状態の順に遷移する。
 FSMN-1は、符号#N-1の復号状態、符号#Nの復号状態、符号#1の復号状態、符号#2の復号状態、・・・、符号#N-2の復号状態の順に遷移する。FSMNは、符号#Nの復号状態、符号#1の復号状態、符号#2の復号状態、・・・、符号#N-2の復号状態、符号#N-1の復号状態の順に遷移する。
 このように、伝送制御情報が複数の符号語によって伝送される場合に、同期ワードが存在しないときであっても、各符号の系列ごとに複数の符号語の中から復号対象の符号を順次遷移させながら、すなわち、符号#1、符号#2、・・・、符号#Nの系列を巡回させて、復号対象の符号の復号の成功の確認を行うことで、N個(FSM1乃至FSMN)の状態遷移のうち、1つの状態遷移に応じて伝送制御情報が取得可能とされる。
 なお、FSM乃至FSMNのうち、FSM乃至FSMNの状態遷移については、復号される符号語#1乃至符号語#Nの順序が、所定の順序(フォーマット順)と異なっているため、受信状態制御部113が、順序の入れ替えを通知することで、整列・解釈部114では、受信状態制御部113からの通知に基づき、復号結果の解釈時に、同期ワード位置を基準にして対象の符号語を並び変えることができる。
(受信処理)
 次に、図19のフローチャートを参照して、受信装置30により実行される受信処理の流れを説明する。
 ステップS11において、チューナ部101は、アンテナ31を介して放送信号(OFDM信号)を受信し、必要な処理を施す。
 ステップS12において、復調部102は、ステップS11の処理で受信された受信信号に対し、例えば復調や誤り訂正符号の復号等の処理を含む復調処理を行う。なお、この復調処理の詳細は、図20のフローチャートを参照して後述する。
 ステップS13において、処理部103は、ステップS12の処理で得られるストリームを処理する。ここでは、例えば映像や音声のデコード等の処理が行われ、その結果得られる映像や音声のデータが出力される。
 以上、受信処理の流れを説明した。
(復調処理)
 次に、図20のフローチャートを参照して、図19のステップS12の処理に対応する復調処理の流れを説明する。
 ステップS31において、同期ワードチェック部111は、そこに入力される受信信号から得られるビット列を、伝送仕様にて定義された同期ワードビット列と比較することで、同期ワードをチェックする。この同期ワードチェック処理によって、同期フラグが受信状態制御部113に入力される。
 ステップS32において、誤り訂正復号処理部112は、そこに入力される受信信号に含まれる誤り訂正符号(符号)に対して誤り訂正復号処理を行い、符号(例えば、符号#1又は符号#2)を復号する。この誤り訂正復号処理によって、復号成功フラグF1,F2が受信状態制御部113に入力される。また、誤り訂正復号処理の復号結果A,B(例えば、符号#1又は符号#2の復号結果)は、整列・解釈部114に入力される。
 ステップS33において、受信状態制御部113は、ステップS31の処理での同期フラグ、及びステップS32の処理での復号成功フラグF1,F2の入力を受けて、それらのフラグの状態を確認することで、FSMの状態遷移を行う。ここでは、例えば、FSM部131-1乃至131-3において、入力されるフラグの状態の確認結果に応じたFSM乃至FSMの状態遷移(図12)が、同時に動作される。
 ステップS34において、受信状態制御部113は、例えば、FSM乃至FSMのうち、取得完了状態となったFSMがあるかどうかを判定する。
 ステップS34において、取得完了状態となったFSMがないと判定された場合、処理は、ステップS31に戻り、上述した処理が繰り返される。そして、同期フラグ、及び復号成功フラグF1,F2の入力を受けたFSMの状態遷移が繰り返され、取得完了状態となったFSMがあると判定された場合、処理は、ステップS35に進められる。
 ステップS35において、整列・解釈部114は、ステップS32の処理で得られる復号結果A,B(例えば、符号#1,符号#2の復号結果)のビット列を解釈して伝送制御情報に変換する。なお、ここでは、ステップS34の処理で順序入替フラグの入力を受け付けた場合には、復号結果A,Bの解釈時に、符号語の順序が入れ替えられる。
 ステップS35の処理が終了すると、処理は、図19のステップS12の処理に戻り、それ以降の処理が行われる。
 以上、復調処理の流れを説明した。この復調処理では、放送信号(に含まれる物理層フレーム)を受信するに際して、同期信号(同期ワード)及び各符号の系列ごとに、同期信号(同期ワード)及び複数の符号語(例えば符号語#1,符号語#2)の中から復号対象の符号を順次遷移させながら、同期信号(同期ワード)の検出又は復号対象の符号の復号の成功の確認が行われることで、その復号の結果得られる複数の符号語(例えば符号語#1,符号語#2)に含まれる伝送制御情報が取得される。
 ここでは、例えば、図12及び図13に示したFSMの状態遷移が行われることで、FSM乃至FSMの状態遷移が同時に動作する場合に、FSMが有効な状態遷移機能となったとき、例えば、図14に示したように、受信信号の入力が開始されてから符号#2の復号が成功するまでの間が、約1.5フレームとなる。また、FSMが有効な状態遷移機能となったとき、例えば、図15に示したように、受信信号の入力が開始されてから同期ワードのチェックが成功するまでの間が、約1.1フレームとなる。さらに、FSMが有効な状態遷移機能となったとき、例えば、図16に示したように、受信信号の入力が開始されてから符号#1の復号が成功するまでの間が、約1.5フレームとなる。
 上述したように、地上デジタルテレビジョン放送の次世代方式では、伝送制御情報を伝送するに際し、情報の増加に伴い、2つの符号語により伝送することが想定され、この点が1つの符号語を用いている現行方式と異なっており、1フレーム分の伝送制御情報の受信信号を蓄積しても、その系列が符号語にならずに誤り訂正符号(符号)の復号に失敗する可能性が高い(次世代方式の場合には、現行方式で有効であった蓄積型が完全であるとは言えない)。そして、例えば、図6及び図7に示したように、伝送制御情報を取得するために単純に蓄積を行った場合、最長で約2フレーム分の待ち時間が発生してしまうため、本技術では、この時間を短縮するための技術として、例えば、図12及び図13に示したFSMの状態遷移が行われるようにしている。
 すなわち、単純に蓄積を行った場合には、図7に示したように、最長で約2フレーム分の時間が必要であったところ、本技術を適用して蓄積を行った場合には、図14乃至図16に示したように、最長でも、約1.5フレーム分の時間に抑えることができるため、伝送制御情報を取得するまでの時間を短縮することができる。その結果として、例えばテレビ受像機として構成される受信装置30では、放送コンテンツを提示するまでの時間を短縮することができる(例えば放送番組の映像出力を高速化することができる)。
 以上をまとめると、次のようになる。すなわち、本技術は、次世代の地上デジタルテレビジョン放送等の放送方式において、伝送制御情報を短時間で取得するための手法を提案するものがあるが、例えば、次世代方式で予想される2つの課題、つまり、第1に、伝送制御情報が毎フレーム変化することと、第2に、伝送制御情報の情報量が増えて符号語の数が増加することという課題に対して、従来の手法と比べて、より短い時間で伝送制御情報を取得することが可能となる。
 具体的には、本技術の手法では、伝送制御情報の伝送順(例えば同期ワード、符号語#1、符号語#2の順)のどこから受信を開始しても動作する受信状態制御機能(複数のFSMで構成する制御機能)を有していることから、どこから受信を開始したとしても最大で1.5フレームで伝送制御情報を取得することができる。つまり、従来手法であれば、伝送制御情報を取得するまでに、最大で2フレーム(例えば最大800msec)を要したが、本技術の手法では、1.5フレーム(例えば最大600msec)で伝送制御情報を取得することが可能となる。
<2.変形例>
(他の放送方式への適用)
 上述した説明では、デジタルテレビ放送の放送方式として、日本等で採用されている方式であるISDB(Integrated Services Digital Broadcasting)を中心に説明したが、本技術は、米国等が採用する方式であるATSC(Advanced Television Systems Committee)や、欧州の各国等が採用する方式であるDVB(Digital Video Broadcasting)などに適用するようにしてもよい。
 また、上述した説明では、伝送システム1(図1)が、地上デジタルテレビジョン放送等の放送方式に対応しているとして説明したが、地上波(地上波放送)のほか、例えば、放送衛星(BS:Broadcasting Satellite)や通信衛星(CS:Communications Satellite)を利用した衛星放送、あるいは、ケーブルを用いた有線放送(CATV:Common Antenna TeleVision)などの放送方式に適用することができる。
(受信装置の他の構成)
 また、上述した説明では、受信装置30(図1)は、テレビ受像機やセットトップボックス(STB)などの固定受信機として構成されるとして説明したが、固定受信機には、例えば、録画機、ゲーム機、パーソナルコンピュータ、ネットワークストレージなどの電子機器を含めるようにしてもよい。さらに、受信装置30としては、固定受信機に限らず、例えば、スマートフォンや携帯電話機、タブレット型コンピュータ等のモバイル受信機、車載テレビ等の車両に搭載される車載機器、ヘッドマウントディスプレイ(HMD:Head Mounted Display)等のウェアラブルコンピュータなどの電子機器を含めるようにしてもよい。
 さらに、受信装置30(図1)を構成する各部のうち、図8の復調部102(例えば復調IC等の復調デバイス)を、本技術を適用した受信装置又は復調装置として捉えるようにしてもよい。
(通信回線を含む構成)
 また、伝送システム1(図1)においては、図示していないが、インターネット等の通信回線に対し、各種のサーバが接続されるようにして、通信機能を有する受信装置30(図1)が、インターネット等の通信回線を介して、各種のサーバにアクセスして双方向の通信を行うことで、コンテンツやアプリケーション等の各種のデータを受信できるようにしてもよい。
(その他)
 なお、本明細書において記述されている用語は、一例であって、他の用語が用いられるのを意図的に排除するものではない。例えば、上述した説明において、フレームは、例えば、パケットなどの他の用語で置き換えられる場合がある。
<3.コンピュータの構成>
 上述した一連の処理は、ハードウェアにより実行することもできるし、ソフトウェアにより実行することもできる。一連の処理をソフトウェアにより実行する場合には、そのソフトウェアを構成するプログラムが、コンピュータにインストールされる。図21は、上述した一連の処理をプログラムにより実行するコンピュータのハードウェアの構成例を示す図である。
 コンピュータ1000において、CPU(Central Processing Unit)1001、ROM(Read Only Memory)1002、RAM(Random Access Memory)1003は、バス1004により相互に接続されている。バス1004には、さらに、入出力インターフェース1005が接続されている。入出力インターフェース1005には、入力部1006、出力部1007、記録部1008、通信部1009、及び、ドライブ1010が接続されている。
 入力部1006は、キーボード、マウス、マイクロフォンなどよりなる。出力部1007は、ディスプレイ、スピーカなどよりなる。記録部1008は、ハードディスクや不揮発性のメモリなどよりなる。通信部1009は、ネットワークインターフェースなどよりなる。ドライブ1010は、磁気ディスク、光ディスク、光磁気ディスク、又は半導体メモリなどのリムーバブル記録媒体1011を駆動する。
 以上のように構成されるコンピュータ1000では、CPU1001が、ROM1002や記録部1008に記録されているプログラムを、入出力インターフェース1005及びバス1004を介して、RAM1003にロードして実行することにより、上述した一連の処理が行われる。
 コンピュータ1000(CPU1001)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブル記録媒体1011に記録して提供することができる。また、プログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線又は無線の伝送媒体を介して提供することができる。
 コンピュータ1000では、プログラムは、リムーバブル記録媒体1011をドライブ1010に装着することにより、入出力インターフェース1005を介して、記録部1008にインストールすることができる。また、プログラムは、有線又は無線の伝送媒体を介して、通信部1009で受信し、記録部1008にインストールすることができる。その他、プログラムは、ROM1002や記録部1008に、あらかじめインストールしておくことができる。
 ここで、本明細書において、コンピュータがプログラムに従って行う処理は、必ずしもフローチャートとして記載された順序に沿って時系列に行われる必要はない。すなわち、コンピュータがプログラムに従って行う処理は、並列的あるいは個別に実行される処理(例えば、並列処理あるいはオブジェクトによる処理)も含む。また、プログラムは、1のコンピュータ(プロセッサ)により処理されるものであってもよいし、複数のコンピュータによって分散処理されるものであってもよい。
 なお、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
 また、本技術は、以下のような構成をとることができる。
(1)
 伝送制御情報を複数の符号語に含めた物理層フレームを受信するに際し、各符号の系列ごとに前記複数の符号語の中から復号対象の符号を順次遷移させながら復号の成功の確認を行い、その復号の結果得られる前記複数の符号語に含まれる前記伝送制御情報を取得する制御を行う制御部を備える
 受信装置。
(2)
 前記物理層フレームは、同期信号をさらに含み、
 前記制御部は、前記同期信号及び前記各符号の系列ごとに前記同期信号及び前記復号対象の符号を順次遷移させながら検出又は復号の成功の確認を行い、その復号の結果得られる前記複数の符号語に含まれる前記伝送制御情報を取得する制御を行う
 前記(1)に記載の受信装置。
(3)
 前記制御部は、復号された前記複数の符号語の順序が所定の順序と異なる場合、対象の符号語の順序が入れ替えられるようにする
 前記(1)又は(2)に記載の受信装置。
(4)
 前記制御部は、有限状態機械(FSM:Finite State Machine)の状態遷移に従い、前記同期信号及び前記復号対象の符号を順次遷移させながら検出又は復号の成功の確認を行う
 前記(2)に記載の受信装置。
(5)
 前記制御部は、前記同期信号及び前記各符号の系列ごとの状態遷移を同時に動作させる
 前記(4)に記載の受信装置。
(6)
 前記制御部は、前記同期信号及び前記各符号の系列ごとの状態遷移のうち、1つの状態遷移が完了としたとき、完了した状態遷移に応じて前記伝送制御情報を取得可能とする
 前記(5)に記載の受信装置。
(7)
 前記物理層フレームに含まれる前記同期信号を検出する同期信号検出部と、
 前記復号対象の符号を復号する誤り訂正復号処理部と
 をさらに備え、
 前記制御部は、前記同期信号検出部による前記同期信号の検出結果、及び前記誤り訂正復号処理部による前記各符号の復号結果に基づいて、前記同期信号及び前記各符号の系列ごとの状態遷移を行う
 前記(5)又は(6)に記載の受信装置。
(8)
 前記誤り訂正復号処理部は、前記複数の符号語ごとに、各符号語に固有な伝送情報が含まれるかどうかを確認することで、前記各符号の復号結果を通知する
 前記(7)に記載の受信装置。
(9)
 前記各符号の復号結果を解釈して前記伝送制御情報に変換する整列解釈部をさらに備え、
 前記制御部は、1つの状態遷移によって前記伝送制御情報が取得可能となった場合に、復号された前記複数の符号語の順序が所定の順序と異なるとき、対象の符号語の順序の入れ替えを、前記整列解釈部に通知し、
 前記整列解釈部は、前記各符号の復号結果の解釈時に、前記制御部からの通知に基づき、対象の符号語の順序を入れ替える
 前記(7)又は(8)に記載の受信装置。
(10)
 前記伝送制御情報は、前記複数の符号語に含まれ、かつ、符号化される情報が変化する
 前記(1)乃至(9)のいずれかに記載の受信装置。
(11)
 前記伝送制御情報は、コンテンツの映像及び音声を含む主信号を含む誤り訂正符号の先頭からのオフセット情報を含む
 前記(10)に記載の受信装置。
(12)
 前記伝送制御情報は、第1の符号語と第2の符号語に含まれ、かつ、符号化される情報が変化し、
 前記制御部は、
  前記同期信号の検出、前記第1の符号語を含む第1の符号の復号、前記第2の符号語を含む第2の符号の復号の順に状態遷移がなされる第1のFSMと、
  前記第1の符号の復号、前記第2の符号の復号、前記同期信号の検出の順に状態遷移がなされる第2のFSMと、
  前記第2の符号の復号、前記同期信号の検出、前記第1の符号の復号の順に状態遷移がなされる第3のFSMと
 を同時に動作させる
 前記(5)乃至(9)のいずれかに記載の受信装置。
(13)
 前記制御部は、前記第1のFSM、前記第2のFSM、及び前記第3のFSMの状態遷移のうち、1つの状態遷移が完了したとき、完了した状態遷移に応じて前記伝送制御情報を取得可能とする
 前記(12)に記載の受信装置。
(14)
 前記制御部は、前記第3のFSMの状態遷移が完了したとき、前記第1の符号及び前記第2の符号の復号結果の解釈時に、前記第1の符号語と前記第2の符号語との順序が入れ替えられるようにする
 前記(13)に記載の受信装置。
(15)
 前記物理層フレームは、コンテンツの映像及び音声を含む主信号とともに、前記主信号の伝送パラメータを通知するための前記伝送制御情報を含む
 前記(1)乃至(14)のいずれかに記載の受信装置。
(16)
 前記物理層フレームは、地上デジタルテレビジョン放送の放送方式に準拠している
 前記(1)乃至(15)のいずれかに記載の受信装置。
(17)
 受信装置が、
 伝送制御情報を複数の符号語に含めた物理層フレームを受信するに際し、各符号の系列ごとに前記複数の符号語の中から復号対象の符号を順次遷移させながら復号の成功の確認を行い、その復号の結果得られる前記複数の符号語に含まれる前記伝送制御情報を取得する制御を行う
 受信方法。
 1 伝送システム, 10 データ処理装置, 20 送信装置, 30 受信装置, 101 チューナ部, 102 復調部, 103 処理部, 111 同期ワードチェック部, 112 誤り訂正復号処理部, 113 受信状態制御部, 114 整列・解釈部, 121 誤り訂正復号部, 122-1,122-2 伝送パラメータ確認部, 131-1,131-2,131-3 FSM部, 132 OR演算部, 1000 コンピュータ, 1001 CPU

Claims (17)

  1.  伝送制御情報を複数の符号語に含めた物理層フレームを受信するに際し、各符号の系列ごとに前記複数の符号語の中から復号対象の符号を順次遷移させながら復号の成功の確認を行い、その復号の結果得られる前記複数の符号語に含まれる前記伝送制御情報を取得する制御を行う制御部を備える
     受信装置。
  2.  前記物理層フレームは、同期信号をさらに含み、
     前記制御部は、前記同期信号及び前記各符号の系列ごとに前記同期信号及び前記復号対象の符号を順次遷移させながら検出又は復号の成功の確認を行い、その復号の結果得られる前記複数の符号語に含まれる前記伝送制御情報を取得する制御を行う
     請求項1に記載の受信装置。
  3.  前記制御部は、復号された前記複数の符号語の順序が所定の順序と異なる場合、対象の符号語の順序が入れ替えられるようにする
     請求項1に記載の受信装置。
  4.  前記制御部は、有限状態機械(FSM:Finite State Machine)の状態遷移に従い、前記同期信号及び前記復号対象の符号を順次遷移させながら検出又は復号の成功の確認を行う
     請求項2に記載の受信装置。
  5.  前記制御部は、前記同期信号及び前記各符号の系列ごとの状態遷移を同時に動作させる
     請求項4に記載の受信装置。
  6.  前記制御部は、前記同期信号及び前記各符号の系列ごとの状態遷移のうち、1つの状態遷移が完了としたとき、完了した状態遷移に応じて前記伝送制御情報を取得可能とする
     請求項5に記載の受信装置。
  7.  前記物理層フレームに含まれる前記同期信号を検出する同期信号検出部と、
     前記復号対象の符号を復号する誤り訂正復号処理部と
     をさらに備え、
     前記制御部は、前記同期信号検出部による前記同期信号の検出結果、及び前記誤り訂正復号処理部による前記各符号の復号結果に基づいて、前記同期信号及び前記各符号の系列ごとの状態遷移を行う
     請求項5に記載の受信装置。
  8.  前記誤り訂正復号処理部は、前記複数の符号語ごとに、各符号語に固有な伝送情報が含まれるかどうかを確認することで、前記各符号の復号結果を通知する
     請求項7に記載の受信装置。
  9.  前記各符号の復号結果を解釈して前記伝送制御情報に変換する整列解釈部をさらに備え、
     前記制御部は、1つの状態遷移によって前記伝送制御情報が取得可能となった場合に、復号された前記複数の符号語の順序が所定の順序と異なるとき、対象の符号語の順序の入れ替えを、前記整列解釈部に通知し、
     前記整列解釈部は、前記各符号の復号結果の解釈時に、前記制御部からの通知に基づき、対象の符号語の順序を入れ替える
     請求項7に記載の受信装置。
  10.  前記伝送制御情報は、前記複数の符号語に含まれ、かつ、符号化される情報が変化する
     請求項1に記載の受信装置。
  11.  前記伝送制御情報は、コンテンツの映像及び音声を含む主信号を含む誤り訂正符号の先頭からのオフセット情報を含む
     請求項10に記載の受信装置。
  12.  前記伝送制御情報は、第1の符号語と第2の符号語に含まれ、かつ、符号化される情報が変化し、
     前記制御部は、
      前記同期信号の検出、前記第1の符号語を含む第1の符号の復号、前記第2の符号語を含む第2の符号の復号の順に状態遷移がなされる第1のFSMと、
      前記第1の符号の復号、前記第2の符号の復号、前記同期信号の検出の順に状態遷移がなされる第2のFSMと、
      前記第2の符号の復号、前記同期信号の検出、前記第1の符号の復号の順に状態遷移がなされる第3のFSMと
     を同時に動作させる
     請求項5に記載の受信装置。
  13.  前記制御部は、前記第1のFSM、前記第2のFSM、及び前記第3のFSMの状態遷移のうち、1つの状態遷移が完了したとき、完了した状態遷移に応じて前記伝送制御情報を取得可能とする
     請求項12に記載の受信装置。
  14.  前記制御部は、前記第3のFSMの状態遷移が完了したとき、前記第1の符号及び前記第2の符号の復号結果の解釈時に、前記第1の符号語と前記第2の符号語との順序が入れ替えられるようにする
     請求項13に記載の受信装置。
  15.  前記物理層フレームは、コンテンツの映像及び音声を含む主信号とともに、前記主信号の伝送パラメータを通知するための前記伝送制御情報を含む
     請求項1に記載の受信装置。
  16.  前記物理層フレームは、地上デジタルテレビジョン放送の放送方式に準拠している
     請求項1に記載の受信装置。
  17.  受信装置が、
     伝送制御情報を複数の符号語に含めた物理層フレームを受信するに際し、各符号の系列ごとに前記複数の符号語の中から復号対象の符号を順次遷移させながら復号の成功の確認を行い、その復号の結果得られる前記複数の符号語に含まれる前記伝送制御情報を取得する制御を行う
     受信方法。
PCT/JP2019/023691 2018-06-29 2019-06-14 受信装置、及び受信方法 WO2020004075A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BR112020026365-6A BR112020026365A2 (pt) 2018-06-29 2019-06-14 Dispositivo e método de recepção.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-124956 2018-06-29
JP2018124956A JP2021170693A (ja) 2018-06-29 2018-06-29 受信装置、及び受信方法

Publications (1)

Publication Number Publication Date
WO2020004075A1 true WO2020004075A1 (ja) 2020-01-02

Family

ID=68986464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023691 WO2020004075A1 (ja) 2018-06-29 2019-06-14 受信装置、及び受信方法

Country Status (3)

Country Link
JP (1) JP2021170693A (ja)
BR (1) BR112020026365A2 (ja)
WO (1) WO2020004075A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024065771A (ja) * 2022-10-31 2024-05-15 ザインエレクトロニクス株式会社 受信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005065219A (ja) * 2003-07-30 2005-03-10 Matsushita Electric Ind Co Ltd フレーム同期検出回路、フレーム同期検出方法、制御情報検出回路、制御情報復号方法、受信装置
JP2014512118A (ja) * 2011-03-25 2014-05-19 サムスン エレクトロニクス カンパニー リミテッド 放送/通信システムにおける制御情報を送受信する方法及び装置
JP2015037312A (ja) * 2013-08-14 2015-02-23 エフシーアイ インク 高速伝送多重制御データ獲得方法及び装置
JP2018078554A (ja) * 2016-10-31 2018-05-17 日本放送協会 送信装置、受信装置及びチップ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005065219A (ja) * 2003-07-30 2005-03-10 Matsushita Electric Ind Co Ltd フレーム同期検出回路、フレーム同期検出方法、制御情報検出回路、制御情報復号方法、受信装置
JP2014512118A (ja) * 2011-03-25 2014-05-19 サムスン エレクトロニクス カンパニー リミテッド 放送/通信システムにおける制御情報を送受信する方法及び装置
JP2015037312A (ja) * 2013-08-14 2015-02-23 エフシーアイ インク 高速伝送多重制御データ獲得方法及び装置
JP2018078554A (ja) * 2016-10-31 2018-05-17 日本放送協会 送信装置、受信装置及びチップ

Also Published As

Publication number Publication date
BR112020026365A2 (pt) 2021-03-30
JP2021170693A (ja) 2021-10-28

Similar Documents

Publication Publication Date Title
RU2461128C2 (ru) Приемное устройство и способ приема, программа и приемная система
EP2339805B1 (en) Reception apparatus, reception method, program, and reception system
US20050089068A1 (en) Method and apparatus for providing signal acquisition and frame synchronization in a hierarchical modulation scheme
CN102111238B (zh) 接收器、接收方法、程序和接收系统
JP2008502186A (ja) 無線移動装置
RU2459234C2 (ru) Устройство обработки сигналов, способ обработки сигналов и приемная система
JP7521657B2 (ja) 送信装置、送信方法、受信装置、及び受信方法
CN102163983B (zh) 接收设备和信息处理方法
WO2020004075A1 (ja) 受信装置、及び受信方法
US8547970B2 (en) Receiver, reception method and program
US8929404B2 (en) Reception apparatus and method, program and reception system
WO2005119956A1 (en) Wireless mobile device
EP2858253B1 (en) Reception device, reception method, and program
EP2858252B1 (en) Reception device, reception method, and program
WO2023218981A1 (ja) 送信装置、送信方法、受信装置、及び受信方法
US11431536B2 (en) Receiving device, receiving method, transmitting device, and transmitting method
JP7046809B2 (ja) 受信装置および受信方法
US9118865B2 (en) Receiving device, receiving method, program, and receiving system
JP4691953B2 (ja) ディジタル信号送受信システム、並びにそれに用いるディジタル信号送信装置及びディジタル信号受信装置
JP2010118812A (ja) 受信装置
JP2013115694A (ja) 無線受信装置及び無線受信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19824972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020026365

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020026365

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20201222

122 Ep: pct application non-entry in european phase

Ref document number: 19824972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP