WO2020003896A1 - 端末装置、ロケーションサーバー及び通信方法 - Google Patents

端末装置、ロケーションサーバー及び通信方法 Download PDF

Info

Publication number
WO2020003896A1
WO2020003896A1 PCT/JP2019/021866 JP2019021866W WO2020003896A1 WO 2020003896 A1 WO2020003896 A1 WO 2020003896A1 JP 2019021866 W JP2019021866 W JP 2019021866W WO 2020003896 A1 WO2020003896 A1 WO 2020003896A1
Authority
WO
WIPO (PCT)
Prior art keywords
prs
terminal device
information
cell
resource
Prior art date
Application number
PCT/JP2019/021866
Other languages
English (en)
French (fr)
Inventor
良太 山田
宏道 留場
Original Assignee
シャープ株式会社
鴻穎創新有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社, 鴻穎創新有限公司 filed Critical シャープ株式会社
Priority to KR1020217001592A priority Critical patent/KR20210024025A/ko
Priority to CN201980043119.8A priority patent/CN112314020B/zh
Priority to US17/255,735 priority patent/US11310760B2/en
Priority to EP19827000.1A priority patent/EP3817468A4/en
Publication of WO2020003896A1 publication Critical patent/WO2020003896A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/06Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/10Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements, e.g. omega or decca systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/005Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by adjustment in the receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0018Transmission from mobile station to base station
    • G01S5/0027Transmission from mobile station to base station of actual mobile position, i.e. position determined on mobile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0018Transmission from mobile station to base station
    • G01S5/0036Transmission from mobile station to base station of measured values, i.e. measurement on mobile and position calculation on base station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination

Definitions

  • the present invention relates to a terminal device, a location server, and a communication method.
  • This application claims priority based on Japanese Patent Application No. 2018-123022 for which it applied to Japan on June 28, 2018, and uses the content here.
  • NR which is a 3GPP 5G system, employs beamforming with a large number of antennas, and is also expected to improve the accuracy of position information of terminal devices (see Non-Patent Document 2).
  • beamforming employed in 3GPP NR is a technology for data communication, and it is difficult to use beamforming as it is for improving the accuracy of position information.
  • One embodiment of the present invention has been made in view of such circumstances, and an object of the present invention is to provide a terminal device, a location server, and a method for improving position estimation accuracy by using beamforming.
  • configurations of a base station device, a terminal device, and a communication method according to an aspect of the present invention are as follows.
  • a terminal device includes a receiving unit that receives a PRS from a reference cell and one or a plurality of neighboring cells with a plurality of positioning reference signal (PRS) resources, and a position measuring unit that measures position information.
  • a reference signal time difference (RSTD) is obtained from the obtained reception timing, and the position information including the RSTD, the information (PRI) indicating the PRS resource of the reference cell used for the RSTD calculation, and the PRI of the adjacent cell is transmitted. .
  • the terminal device in the plurality of PRS resources, when the PRS is transmitted by a transmission filter in the same spatial domain, whether the received power of the PRS exceeds a threshold value Is transmitted including the information indicating the location.
  • the reception power of the PRS is set to a threshold. If so, the location information including the PRI and the RSTD is transmitted.
  • a location server includes a transmitting unit that transmits setting information of a plurality of positioning reference signal (PRS) resources to each of a reference cell and one or a plurality of neighboring cells, and a receiving unit that receives position information.
  • PRS positioning reference signal
  • the reference signal time difference which is used for calculating the RSTD
  • PRI information
  • the location server in the plurality of PRS resources, when the PRS is transmitted by a transmission filter in the same spatial region, whether the received power of the PRS exceeds a threshold value Receiving the position information including the information indicating.
  • the reception power of the PRS may be a threshold. If so, receiving the location information including the PRI and the RSTD.
  • the method according to an aspect of the present invention is a method in a terminal device, comprising: receiving a PRS from a reference cell and a plurality of positioning reference signal (PRS) resources from each of one or a plurality of neighboring cells; Measuring the information and transmitting the location information, the reception timing obtained by one of the plurality of PRSs received from the reference cell and the reception timing of the plurality of PRSs received from the adjacent cell.
  • a reference signal time difference (RSTD) is obtained from the reception timing obtained by one of the above, and the RSTD includes the RSTD, information (PRI) indicating a PRS resource of the reference cell used for the RSTD calculation, and a PRI of the adjacent cell.
  • FIG. 1 is a diagram illustrating an example of a communication system according to an embodiment.
  • FIG. 1 is a diagram illustrating an example of a communication system according to an embodiment.
  • FIG. 3 is a block diagram illustrating a configuration example of a base station device according to the present embodiment.
  • FIG. 2 is a block diagram illustrating a configuration example of a terminal device according to the present embodiment.
  • FIG. 2 is a block diagram illustrating a configuration example of a location server according to the embodiment.
  • FIG. 4 is a diagram illustrating an example of reception timing in a plurality of PRS resources according to the embodiment.
  • FIG. 5 is a diagram illustrating an example of reception timing in a PRS resource according to the present embodiment.
  • FIG. 3 is a diagram illustrating an example of received power between a base station device and a terminal device according to the present embodiment.
  • the communication system includes a base station device (transmitting device, cell, transmitting point, transmitting antenna group, transmitting antenna port group, component carrier, eNodeB, transmitting point, transmitting / receiving point, transmitting panel, access point, sub-array) and terminal It includes devices (terminals, mobile terminals, receiving points, receiving terminals, receiving devices, receiving antennas, receiving antenna ports, UEs, receiving points, receiving panels, stations, sub-arrays) and a location server.
  • the location server includes, for example, E-SMLC (Enhanced Mobile Mobile Location Centre), SUPL (Secure User Plane Location), and SLP (SUPL Location Platform).
  • a base station device connected to a terminal device is also called a serving cell.
  • the base station device and the terminal device according to the present embodiment can communicate in a frequency band requiring a license (license band) and / or in a frequency band not requiring a license (unlicensed band).
  • X / Y includes the meaning of “X or Y”. In the present embodiment, “X / Y” includes the meaning of “X and Y”. In the present embodiment, “X / Y” includes the meaning of “X and / or Y”.
  • FIG. 1 is a diagram illustrating an example of a communication system according to the present embodiment.
  • the communication system according to the present embodiment includes a base station device 1A and a terminal device 2A.
  • the coverage 1-1 is a range (communication area) in which the base station device 1A can connect to the terminal device.
  • Base station device 1A is also simply referred to as a base station device.
  • the terminal device 2A is also simply referred to as a terminal device.
  • the following uplink physical channels are used in uplink wireless communication from the terminal device 2A to the base station device 1A.
  • the uplink physical channel is used for transmitting information output from an upper layer.
  • ⁇ PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • PRACH Physical Random Access Channel
  • PUCCH is used to transmit uplink control information (Uplink Control Information: UCI).
  • the uplink control information includes ACK (a positive acknowledgment) or NACK (a negative acknowledgment) (ACK / NACK) for downlink data (downlink transport block, Downlink-Shared Channel: DL-SCH).
  • ACK / NACK for downlink data is also referred to as HARQ-ACK or HARQ feedback.
  • the uplink control information includes channel state information (Channel State Information: CSI) for the downlink.
  • the uplink control information includes a scheduling request (Scheduling Request: SR) used to request resources of the uplink shared channel (Uplink-Shared Channel: UL-SCH).
  • the channel state information includes a rank indicator RI (Rank @ Indicator) specifying a suitable number of spatial multiplexing, a precoding matrix indicator PMI (Precoding @ Matrix @ Indicator) specifying a suitable precoder, and a channel quality indicator CQI specifying a suitable transmission rate.
  • CSI-RS Reference Signal
  • CRI CSI-RS Resource Indicator
  • SS Synchronization Signal
  • L1-RSRP Layer-1-Reference-Signal-Received-Power
  • the channel quality indicator CQI (hereinafter, CQI value) may be a suitable modulation scheme (for example, QPSK, 16QAM, 64QAM, 256QAM, etc.) in a predetermined band (details will be described later), and a coding rate (coding rate). it can.
  • the CQI value can be an index (CQI Index) determined by the modulation scheme and the coding rate.
  • the CQI value can be a value predetermined in the system.
  • the CRI indicates a CSI-RS resource having a preferable reception power / reception quality from a plurality of CSI-RS resources.
  • the rank index and the precoding quality index may be predetermined in the system.
  • the rank index or the precoding matrix index may be an index defined by the number of spatial multiplexing and precoding matrix information.
  • a part or all of the CQI value, the PMI value, the RI value, and the CRI value are also collectively referred to as a CSI value.
  • PUSCH is used to transmit uplink data (uplink transport block, UL-SCH). Also, the PUSCH may be used to transmit ACK / NACK and / or channel state information along with uplink data. Further, the PUSCH may be used to transmit only the uplink control information.
  • PU PUSCH is used for transmitting RRC messages.
  • the RRC message is information / signal processed in a radio resource control (Radio Resource Control: $ RRC) layer.
  • PUSCH is used for transmitting MAC @ CE (Control @ Element).
  • MAC @ CE is information / signal processed (transmitted) in a medium access control (MAC: ⁇ Medium ⁇ Access ⁇ Control) layer.
  • the power headroom may be included in the MAC @ CE and reported via the PUSCH. That is, the MAC @ CE field may be used to indicate the power headroom level.
  • PRACH is used for transmitting a random access preamble.
  • an uplink reference signal (Uplink Reference Signal: UL RS) is used as an uplink physical signal.
  • the uplink physical signal is not used for transmitting information output from the upper layer, but is used by the physical layer.
  • the uplink reference signal includes DMRS (Demodulation Reference Signal), SRS (Sounding Reference Signal), and PT-RS (Phase-Tracking reference signal).
  • DMRS is related to the transmission of PUSCH or PUCCH.
  • the base station apparatus 1A uses DMRS to perform propagation path correction on PUSCH or PUCCH.
  • the base station apparatus 1A uses the SRS to measure an uplink channel state.
  • the SRS is used for uplink observation (sounding).
  • PT-RS is used to compensate for phase noise.
  • the uplink DMRS is also called an uplink DMRS.
  • the following downlink physical channels are used in downlink wireless communication from the base station device 1A to the terminal device 2A.
  • the downlink physical channel is used for transmitting information output from an upper layer.
  • PBCH Physical Broadcast Channel
  • PCFICH Physical Control Format Indicator Channel
  • PHICH Physical Hybrid automatic repeat request Indicator Channel
  • PDCCH Physical Downlink Control Channel
  • EPDCCH Enhanced Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • the PBCH is used to broadcast a master information block (Master Information Block: MIB, Broadcast Channel: BCH) commonly used in the terminal device.
  • MIB Master Information Block
  • BCH Broadcast Channel
  • PCFICH is used to transmit information indicating a region used for transmitting the PDCCH (for example, the number of OFDM (Orthogonal Frequency Division Multiplexing) symbols).
  • MIB is also called minimum system information.
  • $ PHICH is used to transmit ACK / NACK for uplink data (transport block, codeword) received by base station apparatus 1A. That is, PHICH is used to transmit a HARQ indicator (HARQ feedback) indicating ACK / NACK for uplink data. ACK / NACK is also referred to as HARQ-ACK.
  • the terminal device 2A notifies the upper layer of the received ACK / NACK.
  • the ACK / NACK is ACK indicating that the data was correctly received, NACK indicating that the data was not correctly received, and DTX indicating that there was no corresponding data. If there is no PHICH for the uplink data, the terminal device 2A notifies the upper layer of an ACK.
  • the PDCCH and EPDCCH are used to transmit downlink control information (Downlink Control Information: DCI).
  • DCI Downlink Control Information
  • a plurality of DCI formats are defined for transmission of downlink control information. That is, the field for the downlink control information is defined in the DCI format and mapped to information bits.
  • a DCI format 1A used for scheduling one PDSCH (transmission of one downlink transport block) in one cell is defined.
  • the DCI format for the downlink includes information on PDSCH resource allocation, information on the MCS (Modulation and Coding Scheme) for the PDSCH, and downlink control information such as a TPC command for the PUCCH.
  • the DCI format for the downlink is also referred to as a downlink grant (or downlink assignment).
  • DCI format 0 used for scheduling one PUSCH (transmission of one uplink transport block) in one cell is defined as the DCI format for the uplink.
  • the DCI format for the uplink includes information on PUSCH resource allocation, information on MCS for PUSCH, and uplink control information such as a TPC command for PUSCH.
  • the DCI format for the uplink is also called an uplink grant (or uplink assignment).
  • the DCI format for the uplink can be used to request downlink channel state information (CSI; Channel ⁇ State ⁇ Information; also referred to as reception quality information).
  • CSI downlink channel state information
  • reception quality information also referred to as reception quality information
  • the DCI format for the uplink can be used for the setting indicating the uplink resource that maps the channel state information report (CSI feedback report) that the terminal device feeds back to the base station device.
  • the channel state information report can be used for setting indicating an uplink resource that periodically reports channel state information (Periodic @ CSI).
  • the channel state information report can be used for a mode setting (CSI @ report @ mode) for periodically reporting the channel state information.
  • the channel state information report can be used for setting indicating an uplink resource for reporting irregular channel state information (Aperiodic CSI).
  • the channel state information report can be used for a mode setting (CSI @ report @ mode) for reporting the channel state information irregularly.
  • the channel state information report can be used for setting indicating an uplink resource for reporting semi-persistent channel state information (semi-persistent CSI).
  • the channel state information report can be used for mode setting (CSI @ report @ mode) for semi-permanently reporting channel state information.
  • the semi-permanent CSI report is a CSI report that is periodically performed during a period of deactivation after being activated by an upper layer signal or downlink control information.
  • the DCI format for the uplink can be used for setting indicating the type of channel state information report that the terminal device feeds back to the base station device.
  • the types of the channel state information report include a wideband CSI (for example, Wideband @ CQI) and a narrowband CSI (for example, Subband @ CQI).
  • the terminal device When the PDSCH resource is scheduled using the downlink assignment, the terminal device receives the downlink data on the scheduled PDSCH. Also, when a PUSCH resource is scheduled using an uplink grant, the terminal device transmits uplink data and / or uplink control information on the scheduled PUSCH.
  • the PDSCH is used for transmitting downlink data (downlink transport block, DL-SCH).
  • the PDSCH is used for transmitting a system information block type 1 message.
  • the system information block type 1 message is cell-specific (cell-specific) information.
  • the PDPDSCH is used to transmit a system information message.
  • the system information message includes a system information block X other than the system information block type 1.
  • the system information message is cell-specific (cell-specific) information.
  • PD PDSCH is used to transmit RRC messages.
  • the RRC message transmitted from the base station device may be common to a plurality of terminal devices in the cell.
  • the RRC message transmitted from the base station device 1A may be a message dedicated to a certain terminal device 2A (also referred to as dedicated signaling). That is, user device-specific (user device-specific) information is transmitted to a certain terminal device using a dedicated message.
  • PDSCH is used for transmitting MAC @ CE.
  • the RRC message and / or the MAC CE are also referred to as higher layer signaling.
  • the PDSCH can also be used to request downlink channel state information. Further, the PDSCH can be used to transmit an uplink resource that maps a channel state information report (CSI feedback_report) that the terminal device feeds back to the base station device.
  • CSI feedback_report a channel state information report
  • the channel state information report can be used for setting indicating an uplink resource that periodically reports channel state information (Periodic @ CSI).
  • the channel state information report can be used for a mode setting (CSI @ report @ mode) for periodically reporting the channel state information.
  • the types of downlink channel state information reports include broadband CSI (eg, Wideband CSI) and narrowband CSI (eg, Subband CSI).
  • Broadband CSI calculates one piece of channel state information for a system band of a cell.
  • the narrowband CSI divides a system band into predetermined units, and calculates one piece of channel state information for the division.
  • a synchronization signal (Synchronization signal: SS) and a downlink reference signal (Downlink Reference signal: DL RS) are used as downlink physical signals.
  • the downlink physical signal is not used for transmitting information output from the upper layer, but is used by the physical layer.
  • the synchronization signal includes a primary synchronization signal (Primary @ Synchronization @ Signal: @PSS) and a secondary synchronization signal (Secondary @ Synchronization @ Signal: @SSS).
  • the synchronization signal is used by the terminal device to synchronize the downlink frequency domain and the time domain.
  • the synchronization signal is used to measure reception power, reception quality, or a signal-to-interference-and-noise-to-noise-power ratio (SINR).
  • SINR Signal-to-interference-and-noise-to-noise-power ratio
  • the received power measured by the synchronization signal is SS-RSRP (Synchronization Signal-Reference Signal Received Power)
  • the reception quality measured by the synchronization signal is SS-RSRQ (Reference Signal Received Quality)
  • SINR measured by the synchronization signal is SS-RSRP.
  • SINR SINR
  • SS-RSRQ is the ratio of SS-RSRP to RSSI.
  • RSSI Receiveived ⁇ Signal ⁇ Strength ⁇ Indicator
  • RSSI Received ⁇ Signal ⁇ Strength ⁇ Indicator
  • the synchronization signal / downlink reference signal is used by the terminal device to perform channel correction of the downlink physical channel.
  • the synchronization signal / downlink reference signal is used by the terminal device to calculate downlink channel state information.
  • the downlink reference signals include DMRS (Demodulation Reference Signal), NZP CSI-RS (Non-Zero Power Channel State Information Information-Reference Signal), and ZP CSI-RS (Zero Power Channel State-Information Information Reference). Signal), PT-RS, TRS (Tracking Reference Signal), and PRS (Positioning Reference Signal).
  • the downlink DMRS is also called a downlink DMRS. Note that, in the following embodiments, when simply referred to as CSI-RS, it includes NZP @ CSI-RS and / or ZP @ CSI-RS.
  • the DMRS is transmitted in a subframe and a band used for transmission of the PDSCH / PBCH / PDCCH / EPDCCH to which the DMRS is related, and is used for demodulating the PDSCH / PBCH / PDCCH / EPDCCH to which the DMRS is related.
  • the resources of ⁇ NZP ⁇ CSI-RS are set by the base station device 1A.
  • the terminal device 2A performs signal measurement (channel measurement) or interference measurement using NZP @ CSI-RS.
  • the NZP @ CSI-RS is used for beam scanning for searching for a suitable beam direction, beam recovery for recovering when reception power / reception quality in the beam direction has deteriorated, and the like.
  • the ZP @ CSI-RS resources are set by the base station device 1A.
  • Base station apparatus 1A transmits ZP @ CSI-RS with zero output.
  • the terminal device 2A measures the interference in the resource corresponding to the ZP @ CSI-RS.
  • CSI-IM Interference @ Measurement
  • the base station apparatus 1A transmits (sets) NZP @ CSI-RS resource settings for NZP @ CSI-RS resources.
  • the NZP @ CSI-RS resource configuration includes one or more NZP @ CSI-RS resource mappings, a CSI-RS resource configuration ID of each NZP @ CSI-RS resource, and part or all of the number of antenna ports.
  • the CSI-RS resource mapping is information (eg, resource element) indicating an OFDM symbol and a subcarrier in a slot in which the CSI-RS resource is arranged.
  • the CSI-RS resource setting ID is used to specify an NZP @ CSI-RS resource.
  • the base station apparatus 1A transmits (sets) CSI-IM resource settings.
  • the CSI-IM resource configuration includes one or more CSI-IM resource mappings and a CSI-IM resource configuration ID for each CSI-IM resource.
  • the CSI-IM resource mapping is information (for example, resource element) indicating an OFDM symbol and a subcarrier in a slot in which the CSI-IM resource is arranged.
  • the CSI-IM resource setting ID is used to specify a CSI-IM setting resource.
  • the CSI-RS is used for measuring received power, received quality, or SINR.
  • the reception power measured by the CSI-RS is also called CSI-RSRP
  • the reception quality measured by the CSI-RS is also called CSI-RSRQ
  • the SINR measured by the CSI-RS is also called CSI-SINR.
  • CSI-RSRQ is a ratio between CSI-RSRP and RSSI.
  • CSI-RS is transmitted regularly / irregularly / semi-permanently.
  • the terminal device is set in an upper layer.
  • a report setting that is a CSI report setting
  • a resource setting that is a resource setting for measuring CSI
  • a measurement link setting that links the report setting and the resource setting for CSI measurement.
  • One or more report settings, resource settings, and measurement link settings are set.
  • the report settings include the report setting ID, report setting type, codebook setting, CSI report amount, and part or all of the block error rate target.
  • the report setting ID is used to specify a report setting.
  • the report setting type indicates a regular / irregular / semi-permanent CSI report.
  • the CSI report amount indicates the amount (value, type) to be reported, and is, for example, a part or all of CRI, RI, PMI, CQI, or RSRP.
  • the block error rate target is a target of a block error rate assumed when calculating the CQI.
  • the resource setting includes a resource setting ID, a synchronization signal block resource measurement list, a resource setting type, and a part or all of one or a plurality of resource set settings.
  • the resource setting ID is used to specify a resource setting.
  • the synchronization signal block resource setting list is a list of resources for which measurement using the synchronization signal is performed.
  • the resource configuration type indicates whether the CSI-RS is transmitted periodically, irregularly, or semi-permanently. In the case of a setting for transmitting a CSI-RS semi-permanently, the CSI-RS is transmitted periodically during a period from activation by a signal of an upper layer or downlink control information to deactivation. .
  • the resource set setting includes a part or all of the information indicating the resource set setting ID, the resource repetition, and one or more CSI-RS resources.
  • the resource set setting ID is used to specify a resource set setting.
  • the resource repetition indicates ON / OFF of the resource repetition in the resource set.
  • the resource repetition is ON, it means that the base station apparatus uses a fixed (identical) transmission beam for each of a plurality of CSI-RS resources in the resource set.
  • the terminal device assumes that the base station device uses a fixed (identical) transmission beam for each of a plurality of CSI-RS resources in the resource set.
  • the information indicating the CSI-RS resource includes one or a plurality of CSI-RS resource setting IDs, and one or a plurality of CSI-IM resource setting IDs.
  • the measurement link setting includes part or all of the measurement link setting ID, the report setting ID, and the resource setting ID, and the report setting and the resource setting are linked.
  • the measurement link setting ID is used to specify the measurement link setting.
  • PT-RS is associated with DMRS (DMRS port group).
  • the number of antenna ports of the PT-RS is one or two, and each PT-RS port is associated with a DMRS port group.
  • the terminal device assumes that the PT-RS port and the DMRS port are QCL (quasi co-location) with respect to delay spread, Doppler spread, Doppler shift, average delay, and spatial reception (Rx) parameters.
  • the base station device sets the PT-RS setting using the signal of the upper layer. When the PT-RS setting is set, the PT-RS may be transmitted.
  • the PT-RS is not transmitted when a predetermined MCS is used (for example, when the modulation scheme is QPSK).
  • a time density and a frequency density are set.
  • the time density indicates a time interval in which the PT-RS is arranged.
  • the time density is shown as a function of the scheduled MCS. Further, the time density includes that the PT-RS does not exist (is not transmitted).
  • the frequency density indicates a frequency interval at which the PT-RS is arranged.
  • the frequency density is shown as a function of the scheduled bandwidth.
  • the frequency density also includes that the PT-RS does not exist (is not transmitted). When the time density or the frequency density indicates that the PT-RS does not exist (is not transmitted), the PT-RS does not exist (is not transmitted).
  • MBSFN Multimedia Broadcast multicast service Single Frequency Network
  • the RS is transmitted in the entire band of the subframe used for transmitting the PMCH.
  • MBSFN RS is used for demodulating PMCH.
  • the PMCH is transmitted on an antenna port used for transmitting the MBSFN RS.
  • PRS is transmitted in a subframe set for PRS transmission.
  • PRS is used for position measurement of a terminal device.
  • resources to be allocated are determined based on the cell ID.
  • the PRS sequence is a pseudo-random sequence.
  • the initial value of the pseudo-random sequence for generating the PRS sequence is calculated based on the slot number, the OFDM symbol number in the slot, the cell ID, the PRS ID, and a part or all of the CP (Cyclic @ Prefix) length.
  • the CP length is information indicating whether it is a normal CP or an extended CP longer than the normal CP.
  • downlink physical channels and downlink physical signals are collectively referred to as downlink signals.
  • uplink physical channel and the uplink physical signal are collectively referred to as an uplink signal.
  • the downlink physical channel and the uplink physical channel are collectively referred to as a physical channel.
  • the downlink physical signal and the uplink physical signal are collectively referred to as a physical signal.
  • BCH, UL-SCH and DL-SCH are transport channels.
  • Channels used in the MAC layer are called transport channels.
  • the unit of the transport channel used in the MAC layer is also referred to as a transport block (Transport Block: TB) or a MAC PDU (Protocol Data Unit).
  • the transport block is a unit of data that the MAC layer passes (delivers) to the physical layer. In the physical layer, transport blocks are mapped to codewords, and coding processing and the like are performed for each codeword.
  • a base station device can integrate and communicate with a plurality of component carriers (CC; ⁇ Component ⁇ Carrier) for wider band transmission.
  • CC component carriers
  • SCell Secondary @ Cell
  • serving cells are set as a set of serving cells.
  • a master cell group MCG; Master Cell Group
  • SCG Secondary Cell Group
  • the MCG comprises a PCell and, optionally, one or more SCells.
  • the SCG includes a primary SCell (PSCell) and, optionally, one or more SCells.
  • the terminal device may be set to operate in a part of the bandwidth (bandwidth part; BWP) of the serving cell.
  • BWP bandwidth part
  • a plurality of BWPs may be set, and a BWP-ID is used to identify the BWP.
  • the downlink BWP is also called DL-BWP
  • the uplink BWP is also called UL-BWP.
  • the base station device can communicate using a radio frame.
  • the radio frame is composed of a plurality of subframes (subsections).
  • the radio frame length can be 10 milliseconds (ms) and the subframe length can be 1 ms.
  • the radio frame is composed of ten subframes.
  • a slot is composed of 14 OFDM symbols. Since the OFDM symbol length can change depending on the subcarrier interval, the slot length can also change at the subcarrier interval.
  • a minislot is composed of fewer OFDM symbols than slots.
  • a slot / minislot can be a scheduling unit. Note that the terminal device can know the slot-based scheduling / mini-slot-based scheduling from the position (arrangement) of the first downlink DMRS. In slot-based scheduling, the first downlink DMRS is placed in the third or fourth symbol of a slot. In the minislot-based scheduling, the first downlink DMRS is arranged in the first symbol of the scheduled data (resource, PDSCH). Note that slot-based scheduling is also called PDSCH mapping type A. Minislot-based scheduling is also called PDSCH mapping type B.
  • a resource block is defined by 12 consecutive subcarriers.
  • a resource element is defined by a frequency domain index (for example, a subcarrier index) and a time domain index (for example, an OFDM symbol index).
  • Resource elements are classified as uplink resource elements, downlink elements, flexible resource elements, and reserved resource elements. In the reserved resource element, the terminal device does not transmit an uplink signal and does not receive a downlink signal.
  • subcarrier spacing SCS
  • SCS subcarrier spacing
  • the base station device / terminal device can communicate with a licensed band or an unlicensed band.
  • the base station device / terminal device can communicate with at least one SCell operating in the unlicensed band by carrier aggregation with the license band being PCell.
  • the base station apparatus / terminal apparatus can perform dual connectivity in which the master cell group communicates on the license band and the secondary cell group communicates on the unlicensed band.
  • the base station device / terminal device can communicate only with the PCell in the unlicensed band.
  • the base station device / terminal device can communicate with CA or DC using only the unlicensed band.
  • LAA Licensed-Assisted @ Access
  • ULSA unlicensed-standalone access
  • LA license access
  • FIG. 2 is a diagram illustrating an example of the communication system according to the present embodiment.
  • the communication system according to the present embodiment includes a terminal device 2-1, a base station device 2-2, and a location server 2-3.
  • the terminal device 2-1 transmits an uplink signal necessary for position measurement of the uplink-based terminal device. Further, the terminal device 2-1 receives a downlink signal from the base station device 2-2, and performs position estimation or measurement related to the position. In addition, the terminal device 2-1 receives a signal of GNSS (Global Navigation Satellite System) or TBS (Terrestrial Beacon System) and measures the position. The terminal device 2-1 transmits the position estimation value or the position measurement result to the location server 2-3 or the base station device 2-2.
  • the position estimate includes coordinate information.
  • the coordinate information includes latitude, longitude, altitude (above sea level), and the like.
  • the position measurement result is information used by the location server 2-3 to obtain a position estimation value.
  • the base station device 2-2 communicates the measurement result of the radio signal to the target terminal device with the location server 2-3.
  • the base station device 2-2 can request the terminal device 2-1 to perform SRS transmission in order to measure the position of the uplink.
  • the location server 2-3 estimates the position of the terminal device or transmits assist data for position measurement to the terminal device.
  • the location server 2-3 can operate with the base station device 2-2 to obtain a position estimate of the terminal device 2-2.
  • the communication system determines the position of the terminal device by using one or more position estimation methods such as OTDOA (Observed Time Differential Of Arrival), ECID (Enhanced Cell ID), and UTDOA (Uplink Time Differential Of Arrival).
  • OTDOA Observed Time Differential Of Arrival
  • ECID Enhanced Cell ID
  • UTDOA Uplink Time Differential Of Arrival
  • the terminal device 2-1, the base station device 2-2, or the location server 2-3 estimates the position of the terminal device 2-1.
  • the location server 2-3 manages location information of the terminal device 2-1.
  • the OTDOA is a downlink position estimation method, and estimates the position of the terminal device 2-1 by using reception timings of downlink signals from a plurality of base station devices.
  • the location server 2-3 transmits (transmits) the OTDOA assist information to the terminal device 2-1.
  • the OTDOA assist information includes OTDOA reference cell information, an OTDOA neighbor cell information list, and part or all of the OTDOA error.
  • the OTDOA reference cell information includes a carrier frequency, a cell ID, a CP length, and part or all of PRS information.
  • the CP length indicates a normal CP or an extended CP longer than the normal CP.
  • the PRS information includes a bandwidth, a PRS setting index, the number of consecutive subframes (slots), bitmap information indicating a subframe (slot) in which a PRS is transmitted, and a part or all of PRS muting information.
  • the PRS setting index is information indicating a cycle of the PRS subframe (slot) and an offset value of the PRS subframe (slot).
  • the bandwidth indicates the bandwidth in which the PRS is transmitted, and is indicated by the number of resource blocks. For example, the number of resource blocks indicating the bandwidth is 6, 15, 25, 50, 75, and 100.
  • the number of continuous subframes (slots) indicates the number of PRS subframes (slots) transmitted continuously.
  • the number of continuously transmitted subframes (slots) may vary depending on the frequency range (frequency band).
  • the head subframe (slot) of the continuous subframe (slot) is obtained based on the cycle of the PRS subframe and the offset value of the PRS subframe (slot).
  • the PRS muting information indicates a PRS muting setting of the cell.
  • the PRS muting setting indicates whether a PRS is transmitted or not transmitted in a certain subframe (slot) of a certain cell.
  • the OTDOA neighbor cell information list includes one or a plurality of OTDOA neighbor frequency information.
  • the OTDOA neighboring frequency information includes one or a plurality of OTDOA neighboring cell information.
  • the OTDOA neighbor cell information includes part or all of the cell ID, carrier frequency, CP length, PRS information, slot number offset, PRS subframe offset, expected RSTD, and expected RSTD uncertainty.
  • the slot number offset indicates the offset of the slot number between the cell and the reference cell.
  • the PRS subframe offset indicates an offset between the head of the PRS subframe of the reference cell and the head of the PRS subframe at a carrier frequency different from that of the reference cell.
  • RSTD Reference ⁇ Signal ⁇ Time ⁇ difference
  • the reception timing is the head of the subframe (slot).
  • the expected RSTD takes into account the expected propagation time difference between this cell and the reference cell.
  • the expected RSTD uncertainty indicates a possible value (error) of the expected RSTD.
  • the terminal device 2-1 can measure the RSTD in a range required based on the expected RSTD and the uncertainty of the expected RSTD.
  • the location server 2-3 requests OTDOA information from the base station device 2-2. Conversely, when requested by the location server 2-3, the base station device 2-2 transmits (provides) OTDOA information to the location server 2-3.
  • the OTDOA information includes one or a plurality of OTDOA cell information.
  • the OTDOA cell information includes a physical cell ID, a carrier frequency, a PRS bandwidth, a PRS setting index, a CP length, a number of consecutive subframes (slots) in which PRS is transmitted, and a bitmap indicating a subframe (slot) in which PRS is transmitted. Information, the coordinates of the antenna of the base station device / access point, and part or all of the PRS muting settings.
  • the coordinates of the antenna of the base station device / access point indicate a part or a plurality of pieces of information indicating latitude, longitude, height (above sea level, altitude), information indicating north latitude or south latitude, and information indicating a height direction.
  • the height direction indicates the height or the depth.
  • the terminal device 2-1 transmits (transmits) the OTDOA signal measurement information to the location server 2-3.
  • the OTDOA signal measurement information includes the cell ID of the reference cell, the carrier frequency, and part or all of the adjacent measurement list.
  • the neighbor measurement list is a list including the RSTD for the neighbor cell, and includes one or a plurality of neighbor measurement elements.
  • the neighbor measurement element includes part or all of the cell ID, carrier frequency, and RSTD of the neighbor cell.
  • the location server 2-3 can estimate the position of the terminal device 2-1 by using the OTDOA signal measurement information received (provided) from the terminal device 2-1.
  • UTDOA is an uplink position estimation, and estimates the position of the terminal device 2-1 using, for example, reception timing of an uplink signal from the terminal device 2-1 in a plurality of base station devices.
  • the base station device 2-2 transmits (transmits) part or all of the cell ID, the timing advance, and the SRS information to the location server 2-3.
  • the SRS information includes a cell ID, an uplink cyclic prefix, an uplink bandwidth of the cell, a cell-specific SRS bandwidth, a terminal-specific SRS bandwidth, the number of SRS antenna ports, an SRS frequency hopping bandwidth, and an SRS cyclic.
  • the shift, the transmission comb of the SRS (transmission @ comb), and a part or all of the frequency domain arrangement information are included.
  • the transmission comb of the SRS indicates the arrangement information at the subcarrier level.
  • the base station device 2-2 transmits the SRS information to the terminal device 2-1.
  • the terminal device 2-1 transmits (transmits) the supported capability of the position estimation method to the location server 2-3 according to the request of the location server 2-3. If the terminal device 2-1 supports OTDOA, the terminal device 2-1 transmits (transmits) the supported system bandwidth by including it in its capability.
  • FIG. 3 is a schematic block diagram illustrating a configuration example of the base station device according to the present embodiment.
  • the base station apparatus 1A includes an upper layer processing unit (upper layer processing step) 101, a control unit (control step) 102, a transmitting unit (transmitting step) 103, a receiving unit (receiving step) 104, and a position.
  • the measurement unit (position measurement step) 105 is included.
  • the transmission unit 103 includes a physical signal generation unit (physical signal generation step) 1031 and a position information generation unit (position information generation step) 1032.
  • transmitting section 103 may include a transmitting antenna.
  • the receiving unit 105 may include a receiving antenna. Further, the transmitting antenna and the receiving antenna may be the same antenna.
  • the upper layer processing unit 101 includes a medium access control (Medium Access Control: MAC) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, and a radio resource control (Radio). Resource Control: RRC) layer processing. Further, upper layer processing section 101 generates information necessary for controlling transmission section 103 and reception section 104 and outputs the information to control section 102.
  • Medium Access Control: MAC Medium Access Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • Radio Radio Resource Control
  • the upper layer processing unit 101 receives information about the terminal device, such as the function of the terminal device (UE capability), from the terminal device. In other words, the terminal device transmits its function to the base station device by a higher layer signal.
  • the terminal device such as the function of the terminal device (UE capability)
  • the information on the terminal device includes information indicating whether or not the terminal device supports a predetermined function, or information indicating that the terminal device has completed introduction and testing of the predetermined function.
  • whether or not a predetermined function is supported includes whether or not introduction and testing of the predetermined function have been completed.
  • the terminal device when the terminal device supports a predetermined function, the terminal device transmits information (parameter) indicating whether or not the terminal device supports the predetermined function.
  • the terminal device does not transmit information (parameter) indicating whether the terminal device supports the predetermined function. That is, whether to support the predetermined function is notified by transmitting information (parameter) indicating whether to support the predetermined function.
  • the information (parameter) indicating whether or not a predetermined function is supported may be notified using one bit of 1 or 0.
  • the upper-layer processing unit 101 generates downlink data (transport block), system information, an RRC message, MAC @ CE, and the like, or acquires the data from an upper node.
  • Upper layer processing section 101 outputs downlink data to transmitting section 103 and outputs other information to control section 102. Further, the upper layer processing unit 101 manages various setting information of the terminal device.
  • the upper layer processing unit 101 determines the frequency and subframe (slot) to which the physical channel is allocated, the coding rate and modulation scheme (or MCS) of the physical channel, the transmission power, and the like.
  • the upper layer processing unit 101 outputs the determined information to the control unit 102.
  • the upper layer processing unit 101 generates information used for scheduling a physical channel based on the scheduling result.
  • the upper layer processing unit 101 outputs the generated information to the control unit 102.
  • Control section 102 generates a control signal for controlling transmission section 103 and reception section 104 based on information input from upper layer processing section 101.
  • the control unit 102 generates downlink control information based on the information input from the upper layer processing unit 101, and outputs the generated downlink control information to the transmission unit 103.
  • the transmitting unit 103 generates a downlink reference signal according to the control signal input from the control unit 102, and encodes the HARQ indicator, downlink control information, and downlink data input from the upper layer processing unit 101. And multiplexes the downlink physical channel and the downlink reference signal, and transmits the signal to the terminal device 2 via the transmission / reception antenna 105.
  • the physical signal generation unit 1031 generates an OFDM signal from the HARQ indicator, downlink control information, downlink reference signal, and downlink data input from the upper layer processing unit 101.
  • the OFDM signal is added with a cyclic prefix (cyclic prefix: CP) to generate a baseband digital signal.
  • CP cyclic prefix
  • the baseband digital signal is converted to an analog signal, an unnecessary frequency component is removed by filtering, up-converted to a carrier frequency, power-amplified, and transmitted from a transmitting antenna.
  • the position information generating unit 1032 generates a signal for transmitting (transmitting) the position measured (estimated) by the receiving unit 104 to the location server.
  • the transmitting unit 103 communicates with the location server by wire or wirelessly.
  • Radio receiving section 1041 separates, demodulates, and decodes the received signal received from the terminal device according to the control signal input from control section 102, and outputs the decoded information to upper layer processing section 101 or position measuring section 1042.
  • the position measurement unit 1042 performs position measurement from a reference signal for position measurement received from the terminal device.
  • the radio reception unit 1041 converts an uplink signal received via a reception antenna into a baseband signal by down-conversion, removes unnecessary frequency components, and amplifies the signal so that the signal level is appropriately maintained. And quadrature demodulation based on the in-phase and quadrature components of the received signal, and convert the quadrature-demodulated analog signal into a digital signal.
  • the radio receiving unit 1041 removes a portion corresponding to the CP from the converted digital signal.
  • the wireless receiving unit 1041 performs fast Fourier transform (Fast Fourier Transform: FFT) on the signal from which the CP has been removed, and extracts a signal in the frequency domain.
  • the extracted frequency domain signal is separated into signals such as an uplink physical channel and an uplink reference signal.
  • Radio receiving section 1041 outputs a signal related to position estimation to position measuring section 1042.
  • FIG. 4 is a schematic block diagram illustrating the configuration of the terminal device according to the present embodiment.
  • the terminal device includes an upper layer processing unit (upper layer processing step) 201, a control unit (control step) 202, a transmitting unit (transmitting step) 203, and a receiving unit (receiving step) 204.
  • the transmission unit 203 includes a physical signal generation unit (physical signal generation step) 2031 and a position information generation unit (position information generation step) 2032.
  • the receiving unit 204 includes a wireless receiving unit (wireless receiving step) 2041 and a position measuring unit (position measuring step) 2042.
  • the upper layer processing unit 201 outputs the uplink data (transport block) generated by a user operation or the like to the transmission unit 203.
  • the upper layer processing unit 201 includes a medium access control (Medium Access Control: MAC) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, and a radio resource control. (Radio ⁇ Resource ⁇ Control: ⁇ RRC) layer and other processing.
  • Medium Access Control Medium Access Control: MAC
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • RRC radio resource control
  • the upper layer processing unit 201 outputs information indicating the function of the terminal device supported by the own terminal device to the transmitting unit 203.
  • the upper layer processing unit 201 manages various setting information of its own terminal device. Further, the upper layer processing unit 201 generates information to be allocated to each uplink channel and outputs the information to the transmission unit 203.
  • the upper layer processing unit 201 interprets the downlink control information received via the receiving unit 204 and determines scheduling information. Further, upper layer processing section 201 generates control information for controlling receiving section 204 and transmitting section 203 based on the scheduling information, and outputs the generated control information to control section 202.
  • the upper layer processing unit 201 interprets assist data (information) related to position measurement from the location server 2-3 and outputs the data to the control unit 202.
  • the control unit 202 generates a control signal for controlling the receiving unit 204 and the transmitting unit 203 based on the information input from the upper layer processing unit 201.
  • the control unit 202 outputs the generated control signal to the receiving unit 204 and the transmitting unit 203, and controls the receiving unit 204 and the transmitting unit 203.
  • Receiving section 204 separates, demodulates, and decodes the received signal received from the base station apparatus via the receiving antenna according to the control signal input from control section 202, and outputs the decoded information to upper layer processing section 201. .
  • the wireless reception unit 2041 converts a downlink signal received via the transmission / reception antenna 206 into a baseband signal by down-conversion, removes unnecessary frequency components, and increases an amplification level so that a signal level is appropriately maintained. And quadrature demodulation based on the in-phase and quadrature components of the received signal, and convert the quadrature-demodulated analog signal into a digital signal.
  • the wireless receiving unit 2041 removes a portion corresponding to the CP from the converted digital signal, performs fast Fourier transform on the signal from which the CP has been removed, and extracts a signal in the frequency domain.
  • the extracted signal is separated into a downlink physical channel and a downlink reference signal.
  • the radio reception unit 2041 performs channel compensation for the downlink physical channel based on the channel estimation value of the desired signal obtained from the channel measurement, detects downlink control information, and outputs the downlink control information to the control unit 202.
  • the radio receiving section 2041 detects a signal using the channel estimation value and outputs the signal to the upper layer processing section 201.
  • the position measurement unit 2042 obtains a position estimation value or a position measurement result using one or a plurality of position estimation methods, and outputs the position estimation value or the position measurement result to the control unit 202.
  • the position measurement unit 2042 obtains a position estimation value or a position measurement result using the assist data related to the position estimation, and outputs the position estimation value or the position measurement result to the control unit 202.
  • the transmission unit 203 generates an uplink reference signal according to the control signal input from the control unit 202, encodes and modulates uplink data (transport block) input from the upper layer processing unit 201, and performs control channel control.
  • An uplink physical channel such as a shared channel, and the generated uplink reference signal are multiplexed and transmitted to the base station apparatus via the transmission antenna.
  • the transmitting unit 203 transmits (transmits) the position estimation value or the position measurement result to the location server 2-3.
  • the physical signal generation unit 2031 generates an OFDM symbol from uplink control information, uplink data, and an uplink reference signal.
  • a CP is added to the OFDM symbol to generate a baseband digital signal.
  • the baseband digital signal is converted to an analog signal, an extra frequency component is removed, the signal is converted to a carrier frequency by up-conversion, power-amplified, and transmitted.
  • the terminal device can perform SC-FDMA modulation.
  • FIG. 5 is a schematic block diagram showing a configuration example of the location server 2-3.
  • the location server 2-3 includes a control unit (control step) 301, a reception unit (reception step) 302, a transmission unit (transmission step) 303, a position measurement unit (position measurement step) 304, and a position management unit (position management step) 305. It is comprised including.
  • the control unit 301 controls the receiving unit 302, the transmitting unit 303, the position measuring unit 304, and the position managing unit 305.
  • Receiving section 302 receives a position estimation value or a position measurement result from the base station apparatus and / or the terminal apparatus, and outputs the result to control section 301.
  • the control unit 301 outputs the position measurement result to the position measurement unit 304.
  • the position measurement unit 304 obtains a position estimation value using the position measurement result, and outputs the position estimation value to the control unit 301.
  • the control unit 301 outputs the position estimation value input from the reception unit 302 or the position measurement unit 304 to the position management unit 305.
  • the control unit 301 outputs assist data (information) related to position estimation to the transmission unit 303.
  • the transmitting unit 303 transmits (transmits) assist data (information) related to position estimation to the terminal device.
  • the position estimation accuracy In order to improve the position estimation accuracy, it is effective to improve the detection accuracy of the loss path (LOS (Line of Sight) path) between the base station device and the terminal device. For example, using narrow beamforming with a large number of antennas can improve the position estimation accuracy.
  • LOS Line of Sight
  • the power of a propagation path in that direction can be increased.
  • the direction of the terminal device is not known. Therefore, the reference cell or the neighboring cell transmits a plurality of PRSs beamformed in different beam directions, and the terminal device selects a suitable PRS from the plurality of PRSs and obtains RSTD. Thereby, loss path detection accuracy can be improved, and position estimation accuracy can be improved.
  • PRSs transmitted by different beamforming are multiplexed in the time domain or the frequency domain.
  • the PRS transmitted by beamforming is also called a PRS resource or a PRS block.
  • Resources (resource elements, slots, subframes) in which PRS resources (PRS blocks) are arranged may be included in the above-mentioned OTDOA information / OTDOA assist information or PRS information.
  • an index (index) indicating a PRS resource (PRS block) is also referred to as a PRS resource index (PRS @ Resource @ Indicator; $ PRI) or a PRS index.
  • FIG. 6 is an example of reception timing (reception time) detected by a terminal device when a certain cell transmits PRS by three different beamformings.
  • tr, 1 , tr, 2 , and tr, 3 indicate the reference timings of the first PRS resource, the second PRS resource, and the third PRS resource, respectively.
  • the reference timing of the PRS resource can be represented by, for example, a frame (slot), subframe, or OFDM symbol boundary (head).
  • t 1,0 , t 2,0 , and t 3,0 are the optimum reception timing detected by the first PRS resource, the optimum reception timing detected by the second PRS resource, and the third PRS, respectively. Indicates the optimal reception timing detected by the resource.
  • t 1,0 ⁇ t r, 1 is the propagation delay time estimated by the first PRS resource. For this reason, the terminal device can determine that it is highly possible that the LOS path can be detected with the PRS resource having the minimum propagation delay time estimated from the first to third PRS resources.
  • the terminal device selects the PRS resource determined to be a suitable reception timing in each of the reference cell and the neighboring cell and calculates the RSTD, the position estimation accuracy can be improved. Since there is a possibility that the transmission timing of each PRS resource is different, the PRI of the reference cell and the PRI of the adjacent cell used for calculating the RSTD are reported to the location server.
  • the terminal device can also report the error of the optimal reception timing between the PRS resources to the location server.
  • the error of the optimal reception timing between PRS resources is, for example, the difference between the optimal reception timing t 2,0 of the second PRS resource and the optimal reception timing t 1,0 of the first PRS resource, the error of the second PRS resource. This is the difference between the optimal reception timing t 2,0 and the optimal reception timing t 3,0 of the third PRS resource.
  • the timing other than the optimal reception timing can be reported to the location server in consideration of the error of the optimal reception timing used for the RSTD calculation.
  • FIG. 7 is an example of the second PRS resource.
  • the terminal device determines the time difference d 2,1 between the optimal reception timing t 2,0 and the reception timing t 2,1 of the second PRS resource, the optimal reception timing t 2,0 and the reception timing t 2 of the second PRS resource. , it is possible to report the time difference d 2,2 and 2 to the location server. This can further improve the position estimation accuracy by increasing the number of candidates.
  • ⁇ ⁇ ⁇ Beamforming is also effective in estimating the transmission direction and reception direction, since the beamwidth becomes narrow if a large number of antennas are used. If the direction is known in addition to the distance based on the propagation delay time, the position estimation accuracy can be improved.
  • the base station device or the location server knows the location information of the terminal device by a predetermined method.
  • transmitting the PRS beamformed in the direction of the terminal apparatus can improve the position estimation accuracy of the terminal apparatus.
  • the reception beam direction of the terminal device is not appropriate, the reception power of the PRS becomes small, and the detection accuracy of the reception timing may not be sufficient. Therefore, the base station apparatus transmits a plurality of PRS resources to which the same transmission beamforming is applied, and the terminal apparatus receives the plurality of PRS resources in different reception beam directions, and obtains RSTD with a suitable PRS resource, thereby performing position estimation. The accuracy is improved.
  • the terminal device reports the PRI and the RSTD to the base station device or the location server.
  • the assist information or the PRS information can include information indicating whether the same transmission beamforming is applied or whether different transmission beamforming is set.
  • the information indicating whether the same transmission beamforming is applied or different transmission beamforming is set may be QCL information for a PRS resource. That is, when a QCL is set for a plurality of PRS resources, the terminal device can determine that the same transmission beamforming is applied to a plurality of PRSs.
  • information indicating whether the same transmission beamforming is applied or whether different transmission beamforming is set indicates that when one PRS resource is set, transmission beamforming (spatial domain transmission filter) is included in the PRS. It may indicate whether or not it has been applied.
  • the maximum number of PRSs (or PRS resources) transmitted within a predetermined period may be different depending on the subcarrier interval set in the PRS.
  • the reception power of the PRS may be low due to blocking of a person or an object as a result of the reception beam scanning.
  • FIG. 8 is an example in which beamforming is performed from the base station devices 3A, 5A, and 7A toward the terminal device 4A. There is an obstacle 401 between the base station device 3A and the terminal device 4A, and the received power is significantly reduced. Since the base station devices 5A and 7A have no obstacle, sufficient reception power is obtained. Therefore, in the example of FIG. 8, the location server estimates the position of the terminal device 4A from the base station devices 5A and 7A without using the base station device 3A for calculation.
  • the terminal device reports information indicating that the reception power of the PRS is low to the base station device or the location server. Based on the report from the terminal device, the location server determines that the base station device having the small power of the LOS path has a large error, and removes the error from the calculation of the position estimation, thereby improving the position estimation accuracy. Whether or not the received power of the PRS exceeds the threshold is reported for each reference cell and each neighboring cell. If the received power of the PRS of the reference cell is smaller than the threshold, the terminal device need not report the RSTD.
  • the PRI and the RSTD of the neighboring cell whose received power of the PRS is larger than the threshold among one or more neighboring cells may be reported.
  • the fact that the received power of the PRS is small can also be determined by the difference (ratio) from the maximum received power received by the terminal device.
  • the fact that the received power of the PRS is small can also be determined by the difference (ratio) from the received power of the PRS transmitted from the reference base station apparatus (for example, the reference cell).
  • the threshold of the received power of the PRS can be set for each frequency band in which the PRS is transmitted.
  • the base station apparatus can classify the frequency band for transmitting the PRS into two, a low frequency range (FR1) and a high frequency range (FR2).
  • FR1 is from 450 MHz to 6 GHz
  • FR2 is from 24.25 GHz to 52.6 GHz.
  • the method of reporting that the received power of the PRS is low can be performed only for the PRS transmitted in FR2. This is because the PRS transmitted in FR2 is strongly affected by blocking. On the other hand, this is because the PRS transmitted in FR1 may not be able to correctly recognize the effect of blocking due to the influence of multipath and the like.
  • the PRS used for position estimation also includes a plurality of PRSs transmitted based on different frame formats. For example, a PRS transmitted at a subcarrier interval of 60 kHz and a PRS transmitted at a subcarrier interval of 15 kHz can both be used for signal processing for position estimation at a predetermined time.
  • the PRS with the subcarrier interval of 15 kHz includes the PRS transmitted in the LTE frame format. That is, the terminal device according to the present embodiment can perform position estimation on a plurality of base station devices connected simultaneously by DC.
  • the base station device that transmits the PRS used for the position estimation must not move until at least the terminal device receives a reception time (timing) difference for a plurality of PRSs. That is, the terminal device obtains the RSTD on the assumption that the position (coordinates) of the base station device does not change during the period when the RSTD is measured from the base station device.
  • the base station device or the location server can notify the terminal device of the possibility that the base station device will move.
  • the base station device or the location server can notify the terminal device of a moving route, a moving speed, and the like. In this case, the terminal device can know the position information (coordinates) of the base station device from the reception time.
  • the PRS can not transmit.
  • a terminal device transmits an SRS. It is assumed that the terminal device knows the base station device and its own location information by a predetermined method. The terminal device transmits a plurality of SRS resources in the same transmission beam direction. The base station device reports the reception timing of the SRS resource most likely to be the LOS path to the location server together with the SRI.
  • the frequency band used by the communication device (base station device, terminal device) according to the present embodiment is not limited to the license band and the unlicensed band described above.
  • the frequency band targeted by the present embodiment is not actually used for the purpose of preventing interference between frequencies, even though the use permission for a specific service is given from the country or region.
  • a frequency band called a white band (white space) for example, a frequency band allocated for television broadcasting but not used in some regions), or a frequency band previously allocated exclusively to a specific carrier
  • a shared frequency band (license shared band) that is expected to be shared by a plurality of operators in the future is also included.
  • the program that operates on the device according to the present invention may be a program that controls a Central Processing Unit (CPU) or the like to cause the computer to function so as to realize the functions of the embodiment according to the present invention.
  • the program or information handled by the program is temporarily stored in a volatile memory such as a Random Access Memory (RAM), a non-volatile memory such as a flash memory, a Hard Disk Drive (HDD), or another storage device system.
  • RAM Random Access Memory
  • HDD Hard Disk Drive
  • a program for realizing the functions of the embodiment according to the present invention may be recorded on a computer-readable recording medium.
  • the program may be realized by causing a computer system to read the program recorded on the recording medium and executing the program.
  • the “computer system” is a computer system built in the device, and includes an operating system and hardware such as peripheral devices.
  • the “computer-readable recording medium” refers to a semiconductor recording medium, an optical recording medium, a magnetic recording medium, a medium that dynamically holds a program for a short time, or another computer-readable recording medium. Is also good.
  • Each functional block or various features of the apparatus used in the above-described embodiments may be implemented or executed by an electric circuit, for example, an integrated circuit or a plurality of integrated circuits.
  • An electrical circuit designed to perform the functions described herein may be a general purpose processor, digital signal processor (DSP), application specific integrated circuit (ASIC), field programmable gate array (FPGA), or other Logic devices, discrete gate or transistor logic, discrete hardware components, or a combination thereof.
  • a general purpose processor may be a microprocessor, or may be a conventional processor, controller, microcontroller, or state machine.
  • the above-mentioned electric circuit may be constituted by a digital circuit or an analog circuit.
  • one or more aspects of the present invention can use a new integrated circuit based on the technology.
  • the present invention is not limited to the above embodiment.
  • an example of the device is described, but the present invention is not limited to this, and stationary or non-movable electronic devices installed indoors and outdoors, for example, AV devices, kitchen devices, It can be applied to terminal devices or communication devices such as cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other living equipment.
  • the present invention is suitable for use in a terminal device, a location server, and a method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

ビームフォーミングを用いて、位置推定精度を改善する端末装置、ロケーションサーバー及び通信方法を提供する。端末装置であって、参照セル及び1又は複数の隣接セルの各々から複数のポジショニング参照信号(PRS)リソースでPRSを受信する受信部と、位置情報を測定する位置測定部と、位置情報を送信する送信部と、を備え、前記参照セルから受信した前記複数のPRSのうちの1つで求めた受信タイミングと前記隣接セルから受信した前記複数のPRSのうちの1つで求めた受信タイミングから参照信号時間差(RSTD)を求め、前記RSTD、及び該RSTD算出に用いた前記参照セルのPRSリソースを示す情報(PRI)及び前記隣接セルのPRIを含む前記位置情報を送信する。

Description

端末装置、ロケーションサーバー及び通信方法
 本発明は、端末装置、ロケーションサーバー及び通信方法に関する。本願は、2018年6月28日に日本に出願された特願2018-123022号に基づき優先権を主張し、その内容をここに援用する。
 2020年頃の商業サービス開始を目指し、第5世代移動無線通信システム(5Gシステム)に関する研究・開発活動が盛んに行なわれている。最近、国際標準化機関である国際電気通信連合 無線通信部門(International Telecommunication Union Radio communications Sector:ITU-R)より、5Gシステムの標準方式(International mobile telecommunication - 2020 and beyond:IMT-2020)に関するビジョン勧告が報告された(非特許文献1参照)。
 また、端末装置の位置情報は、様々なサービスへの応用が検討されており、さらなる高精度化が要求されている。
 3GPPの5GシステムであるNRでは、多数アンテナによるビームフォーミングが採用されており、端末装置の位置情報を高精度化することも期待されている(非特許文献2参照)。
"IMT Vision - Framework and overall objectives of the future development of IMT for 2020 and beyond," Recommendation ITU-R M.2083-0, Sept. 2015. Intel、"Study on NR Positioning Support"RP-181399、June, 2018.
 しかしながら、3GPP NRで採用されているビームフォーミングは、データ通信のための技術であり、位置情報の高精度化のためにそのまま用いることは困難である。
 本発明の一態様はこのような事情を鑑みてなされたものであり、その目的は、ビームフォーミングを用いて、位置推定精度を改善する端末装置、ロケーションサーバー及び方法を提供することにある。
 上述した課題を解決するために本発明の一態様に係る基地局装置、端末装置及び通信方法の構成は、次の通りである。
 本発明の一態様に係る端末装置は、参照セル及び1又は複数の隣接セルの各々から複数のポジショニング参照信号(PRS)リソースでPRSを受信する受信部と、位置情報を測定する位置測定部と、位置情報を送信する送信部と、を備え、前記参照セルから受信した前記複数のPRSのうちの1つで求めた受信タイミングと前記隣接セルから受信した前記複数のPRSのうちの1つで求めた受信タイミングから参照信号時間差(RSTD)を求め、前記RSTD、及び該RSTD算出に用いた前記参照セルのPRSリソースを示す情報(PRI)及び前記隣接セルのPRIを含む前記位置情報を送信する。
 また、本発明の一態様に係る端末装置において、前記複数のPRSリソースにおいて、前記PRSが同じ空間領域の送信フィルタで送信されている場合、前記PRSの受信電力がしきい値を超えるか否かを示す情報を含む位置情報を送信する。
 また、本発明の一態様に係る端末装置において、前記隣接セルにおいて、前記複数のPRSリソースで前記PRSが同じ空間領域の送信フィルタで送信されている場合、前記PRSの受信電力がしきい値を超える場合に前記PRI及び前記RSTDを含む前記位置情報を送信する。
 また、本発明の一態様に係るロケーションサーバーは、参照セル及び1又は複数の隣接セルの各々に複数のポジショニング参照信号(PRS)リソースの設定情報を送信する送信部と、位置情報を受信する受信部と、を備え、前記参照セルに設定した前記複数のPRSのうちの1つで求めた受信タイミングと前記隣接セルに設定した前記複数のPRSのうちの1つで求めた受信タイミングとの時間差である参照信号時間差(RSTD)、及び該RSTD算出に用いた前記参照セルのPRSリソースを示す情報(PRI)及び前記隣接セルのPRIを含む前記位置情報を端末装置から受信する。
 また、本発明の一態様に係るロケーションサーバーにおいて、前記複数のPRSリソースにおいて、前記PRSが同じ空間領域の送信フィルタで送信されている場合、前記PRSの受信電力がしきい値を超えるか否かを示す情報を含む位置情報を受信する。
 また、本発明の一態様に係るロケーションサーバーにおいて、前記隣接セルにおいて、前記複数のPRSリソースで前記PRSが同じ空間領域の送信フィルタで送信されている場合、前記PRSの受信電力がしきい値を超える場合に前記PRI及び前記RSTDを含む前記位置情報を受信する。
 また、本発明の一態様に係る方法は、端末装置における方法であって、参照セル及び1又は複数の隣接セルの各々から複数のポジショニング参照信号(PRS)リソースでPRSを受信するステップと、位置情報を測定するステップと、位置情報を送信するステップと、を備え、前記参照セルから受信した前記複数のPRSのうちの1つで求めた受信タイミングと前記隣接セルから受信した前記複数のPRSのうちの1つで求めた受信タイミングから参照信号時間差(RSTD)を求め、前記RSTD、及び該RSTD算出に用いた前記参照セルのPRSリソースを示す情報(PRI)及び前記隣接セルのPRIを含む前記位置情報を送信する。
 本発明の一態様によれば、ビームフォーミングを用いることで、位置推定精度を改善することが可能となる。
本実施形態に係る通信システムの例を示す図である 本実施形態に係る通信システムの例を示す図である 本実施形態に係る基地局装置の構成例を示すブロック図である 本実施形態に係る端末装置の構成例を示すブロック図である 本実施形態に係るロケーションサーバーの構成例を示すブロック図である 本実施形態に係る複数のPRSリソースにおける受信タイミングの例を示した図である。 本実施形態に係るPRSリソースにおける受信タイミングの例を説明した図である。 本実施形態に係る基地局装置と端末装置の間の受信電力の例を説明した図である。
 本実施形態における通信システムは、基地局装置(送信装置、セル、送信点、送信アンテナ群、送信アンテナポート群、コンポーネントキャリア、eNodeB、送信ポイント、送受信ポイント、送信パネル、アクセスポイント、サブアレー)および端末装置(端末、移動端末、受信点、受信端末、受信装置、受信アンテナ群、受信アンテナポート群、UE、受信ポイント、受信パネル、ステーション、サブアレー)及びロケーションサーバーを備える。ロケーションサーバーは、例えばE-SMLC(Enhanced Serving Mobile Location Centre)、SUPL(Secure User Plane Location)、SLP(SUPL Location Platform)を含む。また端末装置と接続している(無線リンクを確立している)基地局装置をサービングセルとも呼ぶ。
 本実施形態における基地局装置及び端末装置は、免許が必要な周波数帯域(ライセンスバンド)及び/又は免許不要の周波数帯域(アンライセンスバンド)で通信することができる。
 本実施形態において、“X/Y”は、“XまたはY”の意味を含む。本実施形態において、“X/Y”は、“XおよびY”の意味を含む。本実施形態において、“X/Y”は、“Xおよび/またはY”の意味を含む。
 図1は、本実施形態に係る通信システムの例を示す図である。図1に示すように、本実施形態における通信システムは、基地局装置1A、端末装置2Aを備える。また、カバレッジ1-1は、基地局装置1Aが端末装置と接続可能な範囲(通信エリア)である。また基地局装置1Aを単に基地局装置とも呼ぶ。また端末装置2Aを単に端末装置とも呼ぶ。
 図1において、端末装置2Aから基地局装置1Aへの上りリンクの無線通信では、以下の上りリンク物理チャネルが用いられる。上りリンク物理チャネルは、上位層から出力された情報を送信するために使用される。
・PUCCH(Physical Uplink Control Channel)
・PUSCH(Physical Uplink Shared Channel)
・PRACH(Physical Random Access Channel)
 PUCCHは、上りリンク制御情報(Uplink Control Information: UCI)を送信するために用いられる。ここで、上りリンク制御情報は、下りリンクデータ(下りリンクトランスポートブロック、Downlink-Shared Channel: DL-SCH)に対するACK(a positive acknowledgement)またはNACK(a negative acknowledgement)(ACK/NACK)を含む。下りリンクデータに対するACK/NACKを、HARQ-ACK、HARQフィードバックとも称する。
 また、上りリンク制御情報は、下りリンクに対するチャネル状態情報(Channel State Information: CSI)を含む。また、上りリンク制御情報は、上りリンク共用チャネル(Uplink-Shared Channel: UL-SCH)のリソースを要求するために用いられるスケジューリング要求(Scheduling Request: SR)を含む。前記チャネル状態情報は、好適な空間多重数を指定するランク指標RI(Rank Indicator)、好適なプレコーダを指定するプレコーディング行列指標PMI(Precoding Matrix Indicator)、好適な伝送レートを指定するチャネル品質指標CQI(Channel Quality Indicator)、好適なCSI-RSリソースを示すCSI-RS(Reference Signal、参照信号)リソース指標CRI(CSI-RS Resource Indicator)、CSI-RS又はSS(Synchronization Signal; 同期信号)により測定されたL1-RSRP(Layer 1 - Reference Signal Received Power)などが該当する。
 前記チャネル品質指標CQIは(以下、CQI値)、所定の帯域(詳細は後述)における好適な変調方式(例えば、QPSK、16QAM、64QAM、256QAMなど)、符号化率(coding rate)とすることができる。CQI値は、前記変調方式や符号化率により定められたインデックス(CQI Index)とすることができる。前記CQI値は、予め当該システムで定めたものをすることができる。
 前記CRIは、複数のCSI-RSリソースから受信電力/受信品質が好適なCSI-RSリソースを示す。
 なお、前記ランク指標、前記プレコーディング品質指標は、予めシステムで定めたものとすることができる。前記ランク指標や前記プレコーディング行列指標は、空間多重数やプレコーディング行列情報により定められたインデックスとすることができる。なお、前記CQI値、PMI値、RI値及びCRI値の一部又は全部をCSI値とも総称する。
 PUSCHは、上りリンクデータ(上りリンクトランスポートブロック、UL-SCH)を送信するために用いられる。また、PUSCHは、上りリンクデータと共に、ACK/NACKおよび/またはチャネル状態情報を送信するために用いられても良い。また、PUSCHは、上りリンク制御情報のみを送信するために用いられても良い。
 また、PUSCHは、RRCメッセージを送信するために用いられる。RRCメッセージは、無線リソース制御(Radio Resource Control: RRC)層において処理される情報/信号である。また、PUSCHは、MAC CE(Control Element)を送信するために用いられる。ここで、MAC CEは、媒体アクセス制御(MAC: Medium Access Control)層において処理(送信)される情報/信号である。
 例えば、パワーヘッドルームは、MAC CEに含まれ、PUSCHを経由して報告されても良い。すなわち、MAC CEのフィールドが、パワーヘッドルームのレベルを示すために用いられても良い。
 PRACHは、ランダムアクセスプリアンブルを送信するために用いられる。
 また、上りリンクの無線通信では、上りリンク物理信号として上りリンク参照信号(Uplink Reference Signal: UL RS)が用いられる。上りリンク物理信号は、上位層から出力された情報を送信するためには使用されないが、物理層によって使用される。ここで、上りリンク参照信号には、DMRS(Demodulation Reference Signal)、SRS(Sounding Reference Signal)、PT-RS(Phase-Tracking reference signal)が含まれる。
 DMRSは、PUSCHまたはPUCCHの送信に関連する。例えば、基地局装置1Aは、PUSCHまたはPUCCHの伝搬路補正を行なうためにDMRSを使用する。例えば、基地局装置1Aは、上りリンクのチャネル状態を測定するためにSRSを使用する。またSRSは上りリンクの観測(サウンディング)に用いられる。またPT-RSは位相雑音を補償するために用いられる。なお、上りリンクのDMRSを上りリンクDMRSとも呼ぶ。
 図1において、基地局装置1Aから端末装置2Aへの下りリンクの無線通信では、以下の下りリンク物理チャネルが用いられる。下りリンク物理チャネルは、上位層から出力された情報を送信するために使用される。
・PBCH(Physical Broadcast Channel;報知チャネル)
・PCFICH(Physical Control Format Indicator Channel;制御フォーマット指示チャネル)
・PHICH(Physical Hybrid automatic repeat request Indicator Channel;HARQ指示チャネル)
・PDCCH(Physical Downlink Control Channel;下りリンク制御チャネル)
・EPDCCH(Enhanced Physical Downlink Control Channel;拡張下りリンク制御チャネル)
・PDSCH(Physical Downlink Shared Channel;下りリンク共有チャネル)
 PBCHは、端末装置で共通に用いられるマスターインフォメーションブロック(Master Information Block: MIB, Broadcast Channel: BCH)を報知するために用いられる。PCFICHは、PDCCHの送信に用いられる領域(例えば、OFDM(Orthogonal Frequency Division Multiplexing;直交周波数分割多重)シンボルの数)を指示する情報を送信するために用いられる。なお、MIBは最小システムインフォメーションとも呼ぶ。
 PHICHは、基地局装置1Aが受信した上りリンクデータ(トランスポートブロック、コードワード)に対するACK/NACKを送信するために用いられる。すなわち、PHICHは、上りリンクデータに対するACK/NACKを示すHARQインディケータ(HARQフィードバック)を送信するために用いられる。また、ACK/NACKは、HARQ-ACKとも呼称する。端末装置2Aは、受信したACK/NACKを上位レイヤに通知する。ACK/NACKは、正しく受信されたことを示すACK、正しく受信しなかったことを示すNACK、対応するデータがなかったことを示すDTXである。また、上りリンクデータに対するPHICHが存在しない場合、端末装置2AはACKを上位レイヤに通知する。
 PDCCHおよびEPDCCHは、下りリンク制御情報(Downlink Control Information: DCI)を送信するために用いられる。ここで、下りリンク制御情報の送信に対して、複数のDCIフォーマットが定義される。すなわち、下りリンク制御情報に対するフィールドがDCIフォーマットに定義され、情報ビットへマップされる。
 例えば、下りリンクに対するDCIフォーマットとして、1つのセルにおける1つのPDSCH(1つの下りリンクトランスポートブロックの送信)のスケジューリングに使用されるDCIフォーマット1Aが定義される。
 例えば、下りリンクに対するDCIフォーマットには、PDSCHのリソース割り当てに関する情報、PDSCHに対するMCS(Modulation and Coding Scheme)に関する情報、PUCCHに対するTPCコマンドなどの下りリンク制御情報が含まれる。ここで、下りリンクに対するDCIフォーマットを、下りリンクグラント(または、下りリンクアサインメント)とも称する。
 また、例えば、上りリンクに対するDCIフォーマットとして、1つのセルにおける1つのPUSCH(1つの上りリンクトランスポートブロックの送信)のスケジューリングに使用されるDCIフォーマット0が定義される。
 例えば、上りリンクに対するDCIフォーマットには、PUSCHのリソース割り当てに関する情報、PUSCHに対するMCSに関する情報、PUSCHに対するTPCコマンドなど上りリンク制御情報が含まれる。上りリンクに対するDCIフォーマットを、上りリンクグラント(または、上りリンクアサインメント)とも称する。
 また、上りリンクに対するDCIフォーマットは、下りリンクのチャネル状態情報(CSI;Channel State Information。受信品質情報とも称する。)を要求(CSI request)するために用いることができる。
 また、上りリンクに対するDCIフォーマットは、端末装置が基地局装置にフィードバックするチャネル状態情報報告(CSI feedback report)をマップする上りリンクリソースを示す設定のために用いることができる。例えば、チャネル状態情報報告は、定期的にチャネル状態情報(Periodic CSI)を報告する上りリンクリソースを示す設定のために用いることができる。チャネル状態情報報告は、定期的にチャネル状態情報を報告するモード設定(CSI report mode)のために用いることができる。
 例えば、チャネル状態情報報告は、不定期なチャネル状態情報(Aperiodic CSI)を報告する上りリンクリソースを示す設定のために用いることができる。チャネル状態情報報告は、不定期的にチャネル状態情報を報告するモード設定(CSI report mode)のために用いることができる。
 例えば、チャネル状態情報報告は、半永続的なチャネル状態情報(semi-persistent CSI)を報告する上りリンクリソースを示す設定のために用いることができる。チャネル状態情報報告は、半永続的にチャネル状態情報を報告するモード設定(CSI report mode)のために用いることができる。なお、半永続的なCSI報告は、上位層の信号又は下りリンク制御情報でアクティベーションされてからデアクティベーションされる期間に、周期的にCSI報告ことである。
 また、上りリンクに対するDCIフォーマットは、端末装置が基地局装置にフィードバックするチャネル状態情報報告の種類を示す設定のために用いることができる。チャネル状態情報報告の種類は、広帯域CSI(例えばWideband CQI)と狭帯域CSI(例えば、Subband CQI)などがある。
 端末装置は、下りリンクアサインメントを用いてPDSCHのリソースがスケジュールされた場合、スケジュールされたPDSCHで下りリンクデータを受信する。また、端末装置は、上りリンクグラントを用いてPUSCHのリソースがスケジュールされた場合、スケジュールされたPUSCHで上りリンクデータおよび/または上りリンク制御情報を送信する。
 PDSCHは、下りリンクデータ(下りリンクトランスポートブロック、DL-SCH)を送信するために用いられる。また、PDSCHは、システムインフォメーションブロックタイプ1メッセージを送信するために用いられる。システムインフォメーションブロックタイプ1メッセージは、セルスペシフィック(セル固有)な情報である。
 また、PDSCHは、システムインフォメーションメッセージを送信するために用いられる。システムインフォメーションメッセージは、システムインフォメーションブロックタイプ1以外のシステムインフォメーションブロックXを含む。システムインフォメーションメッセージは、セルスペシフィック(セル固有)な情報である。
 また、PDSCHは、RRCメッセージを送信するために用いられる。ここで、基地局装置から送信されるRRCメッセージは、セル内における複数の端末装置に対して共通であっても良い。また、基地局装置1Aから送信されるRRCメッセージは、ある端末装置2Aに対して専用のメッセージ(dedicated signalingとも称する)であっても良い。すなわち、ユーザ装置スペシフィック(ユーザ装置固有)な情報は、ある端末装置に対して専用のメッセージを使用して送信される。また、PDSCHは、MAC CEを送信するために用いられる。
 ここで、RRCメッセージおよび/またはMAC CEを、上位層の信号(higher layer signaling)とも称する。
 また、PDSCHは、下りリンクのチャネル状態情報を要求するために用いることができる。また、PDSCHは、端末装置が基地局装置にフィードバックするチャネル状態情報報告(CSI feedback report)をマップする上りリンクリソースを送信するために用いることができる。例えば、チャネル状態情報報告は、定期的にチャネル状態情報(Periodic CSI)を報告する上りリンクリソースを示す設定のために用いることができる。チャネル状態情報報告は、定期的にチャネル状態情報を報告するモード設定(CSI report mode)のために用いることができる。
 下りリンクのチャネル状態情報報告の種類は広帯域CSI(例えばWideband CSI)と狭帯域CSI(例えば、Subband CSI)がある。広帯域CSIは、セルのシステム帯域に対して1つのチャネル状態情報を算出する。狭帯域CSIは、システム帯域を所定の単位に区分し、その区分に対して1つのチャネル状態情報を算出する。
 また、下りリンクの無線通信では、下りリンク物理信号として同期信号(Synchronization signal: SS)、下りリンク参照信号(Downlink Reference Signal: DL RS)が用いられる。下りリンク物理信号は、上位層から出力された情報を送信するためには使用されないが、物理層によって使用される。なお、同期信号には、プライマリ同期信号(Primary Synchronization Signal: PSS)とセカンダリ同期信号(Secondary Synchronization Signal: SSS)がある。
 同期信号は、端末装置が、下りリンクの周波数領域および時間領域の同期を取るために用いられる。また、同期信号は受信電力、受信品質又は信号対干渉雑音電力比(Signal-to-Interference and Noise power Ratio: SINR)を測定するために用いられる。なお、同期信号で測定した受信電力をSS-RSRP(Synchronization Signal - Reference Signal Received Power)、同期信号で測定した受信品質をSS-RSRQ(Reference Signal Received Quality)、同期信号で測定したSINRをSS-SINRとも呼ぶ。なお、SS-RSRQはSS-RSRPとRSSIの比である。RSSI(Received Signal Strength Indicator)はある観測期間におけるトータルの平均受信電力である。また、同期信号/下りリンク参照信号は、端末装置が、下りリンク物理チャネルの伝搬路補正を行なうために用いられる。例えば、同期信号/下りリンク参照信号は、端末装置が、下りリンクのチャネル状態情報を算出するために用いられる。
 ここで、下りリンク参照信号には、DMRS(Demodulation Reference Signal;復調参照信号)、NZP CSI-RS(Non-Zero Power Channel State Information - Reference Signal)、ZP CSI-RS(Zero Power Channel State Information - Reference Signal)、PT-RS、TRS(Tracking Reference Signal)、PRS(Positioning Reference Signal)が含まれる。なお、下りリンクのDMRSを下りリンクDMRSとも呼ぶ。なお、以降の実施形態で、単にCSI-RSといった場合、NZP CSI-RS及び/又はZP CSI-RSを含む。
 DMRSは、DMRSが関連するPDSCH/PBCH/PDCCH/EPDCCHの送信に用いられるサブフレームおよび帯域で送信され、DMRSが関連するPDSCH/PBCH/PDCCH/EPDCCHの復調を行なうために用いられる。
 NZP CSI-RSのリソースは、基地局装置1Aによって設定される。例えば、端末装置2Aは、NZP CSI-RSを用いて信号の測定(チャネルの測定)又は干渉の測定を行なう。またNZP CSI-RSは、好適なビーム方向を探索するビーム走査やビーム方向の受信電力/受信品質が劣化した際にリカバリするビームリカバリ等に用いられる。ZP CSI-RSのリソースは、基地局装置1Aによって設定される。基地局装置1Aは、ZP CSI-RSをゼロ出力で送信する。例えば、端末装置2Aは、ZP CSI-RSが対応するリソースにおいて干渉の測定を行なう。なお、ZP CSI-RSが対応する干渉測定するためのリソースをCSI-IM(Interference Measurement)リソースとも呼ぶ。
 基地局装置1Aは、NZP CSI-RSのリソースのためにNZP CSI-RSリソース設定を送信(設定)する。NZP CSI-RSリソース設定は、1又は複数のNZP CSI-RSリソースマッピング、各々のNZP CSI-RSリソースのCSI-RSリソース設定ID、アンテナポート数の一部又は全部を含む。CSI-RSリソースマッピングは、CSI-RSリソースが配置されるスロット内のOFDMシンボル、サブキャリアを示す情報(例えばリソースエレメント)である。CSI-RSリソース設定IDは、NZP CSI-RSリソースを特定するために用いられる。
 基地局装置1Aは、CSI-IMリソース設定を送信(設定)する。CSI-IMリソース設定は、1又は複数のCSI-IMリソースマッピング、各々のCSI-IMリソースに対するCSI-IMリソース設定IDを含む。CSI-IMリソースマッピングは、CSI-IMリソースが配置されるスロット内のOFDMシンボル、サブキャリアを示す情報(例えばリソースエレメント)である。CSI-IMリソース設定IDは、CSI-IM設定リソースを特定するために用いられる。
 またCSI-RSは、受信電力、受信品質、又はSINRの測定に用いられる。CSI-RSで測定した受信電力をCSI-RSRP、CSI-RSで測定した受信品質をCSI-RSRQ、CSI-RSで測定したSINRをCSI-SINRとも呼ぶ。なお、CSI-RSRQは、CSI-RSRPとRSSIとの比である。
 またCSI-RSは、定期的/非定期的/半永続的に送信される。
 CSIに関して、端末装置は上位層で設定される。例えば、CSIレポートの設定であるレポート設定、CSIを測定するためのリソースの設定であるリソース設定、CSI測定のためにレポート設定とリソース設定をリンクさせる測定リンク設定がある。また、レポート設定、リソース設定及び測定リンク設定は、1又は複数設定される。
 レポート設定は、レポート設定ID、レポート設定タイプ、コードブック設定、CSIレポート量、ブロック誤り率ターゲットの一部又は全部を含む。レポート設定IDはレポート設定を特定するために用いられる。レポート設定タイプは、定期的/非定期的/半永続的なCSIレポートを示す。CSIレポート量は、報告する量(値、タイプ)を示し、例えばCRI、RI、PMI、CQI、又はRSRPの一部又は全部である。ブロック誤り率ターゲットは、CQIを計算するときに想定するブロック誤り率のターゲットである。
 リソース設定は、リソース設定ID、同期信号ブロックリソース測定リスト、リソース設定タイプ、1又は複数のリソースセット設定の一部又は全部を含む。リソース設定IDはリソース設定を特定するために用いられる。同期信号ブロックリソース設定リストは、同期信号を用いた測定が行われるリソースのリストである。リソース設定タイプは、CSI-RSが定期的、非定期的又は半永続的に送信されるかを示す。なお、半永続的にCSI-RSを送信する設定の場合、上位層の信号又は下りリンク制御情報でアクティベーションされてからデアクティベーションされるまでの期間に、周期的にCSI-RSが送信される。
 リソースセット設定は、リソースセット設定ID、リソース繰返し、1又は複数のCSI-RSリソースを示す情報の一部又は全部を含む。リソースセット設定IDは、リソースセット設定を特定するために用いられる。リソース繰返しは、リソースセット内で、リソース繰返しのON/OFFを示す。リソース繰返しがONの場合、基地局装置はリソースセット内の複数のCSI-RSリソースの各々で固定(同一)の送信ビームを用いることを意味する。言い換えると、リソース繰返しがONの場合、端末装置は基地局装置がリソースセット内の複数のCSI-RSリソースの各々で固定(同一)の送信ビームを用いていることを想定する。リソース繰返しがOFFの場合、基地局装置はリソースセット内の複数のCSI-RSリソースの各々で固定(同一)の送信ビームを用いないことを意味する。言い換えると、リソース繰返しがOFFの場合、端末装置は基地局装置がリソースセット内の複数のCSI-RSリソースの各々で固定(同一)の送信ビームを用いていないことを想定する。CSI-RSリソースを示す情報は、1又は複数のCSI-RSリソース設定ID、1又は複数のCSI-IMリソース設定IDを含む。
 測定リンク設定は、測定リンク設定ID、レポート設定ID、リソース設定IDの一部又は全部を含み、レポート設定とリソース設定がリンクされる。測定リンク設定IDは測定リンク設定を特定するために用いられる。
 PT-RSは、DMRS(DMRSポートグループ)と関連付けられる。PT-RSのアンテナポート数は1又は2であり、各々のPT-RSポートはDMRSポートグループと関連付けられる。また、端末装置は、PT-RSポートとDMRSポートは、遅延スプレッド、ドップラースプレッド、ドップラーシフト、平均遅延、空間受信(Rx)パラメータに関してQCL(quasi co-location)であると想定する。基地局装置は上位層の信号で、PT-RS設定を設定する。PT-RS設定が設定された場合、PT-RSが送信される可能性がある。PT-RSは、所定のMCSの場合(例えば変調方式がQPSKの場合)、送信されない。また、PT-RS設定は、時間密度、周波数密度が設定される。時間密度は、PT-RSが配置される時間間隔を示す。時間密度はスケジュールされたMCSの関数で示される。また、時間密度はPT-RSが存在しない(送信されない)ことも含む。また周波数密度は、PT-RSが配置される周波数間隔を示す。周波数密度はスケジュールされた帯域幅の関数で示される。また周波数密度は、PT-RSが存在しない(送信されない)ことも含む。なお、時間密度又は周波数密度がPT-RSが存在しない(送信されない)ことを示す場合、PT-RSは存在しない(送信されない)。
 MBSFN(Multimedia Broadcast multicast service Single Frequency Network)
 RSは、PMCHの送信に用いられるサブフレームの全帯域で送信される。MBSFN RSは、PMCHの復調を行なうために用いられる。PMCHは、MBSFN RSの送信に用いられるアンテナポートで送信される。
 PRSは、PRS送信のために設定されたサブフレームで送信される。PRSは端末装置の位置測定のために用いられる。PRSはセルIDに基づいて配置されるリソースが決まる。PRS系列は擬似ランダム系列である。PRS系列を生成する擬似ランダム系列の初期値は、スロット番号、スロット内のOFDMシンボル番号、セルID、PRSのID、CP(Cyclic Prefix)長の一部又は全部に基づいて計算される。CP長はノーマルCPかノーマルCPよりも長い拡張CPかを示す情報である。
 ここで、下りリンク物理チャネルおよび下りリンク物理信号を総称して、下りリンク信号とも称する。また、上りリンク物理チャネルおよび上りリンク物理信号を総称して、上りリンク信号とも称する。また、下りリンク物理チャネルおよび上りリンク物理チャネルを総称して、物理チャネルとも称する。また、下りリンク物理信号および上りリンク物理信号を総称して、物理信号とも称する。
 また、BCH、UL-SCHおよびDL-SCHは、トランスポートチャネルである。MAC層で用いられるチャネルを、トランスポートチャネルと称する。また、MAC層で用いられるトランスポートチャネルの単位を、トランスポートブロック(Transport Block: TB)、または、MAC PDU(Protocol Data Unit)とも称する。トランスポートブロックは、MAC層が物理層に渡す(deliverする)データの単位である。物理層において、トランスポートブロックはコードワードにマップされ、コードワード毎に符号化処理などが行なわれる。
 また、キャリアアグリゲーション(CA; Carrier Aggregation)をサポートしている端末装置に対して、基地局装置は、より広帯域伝送のため複数のコンポーネントキャリア(CC; Component Carrier)を統合して通信することができる。キャリアアグリゲーションでは、1つのプライマリセル(PCell;Primary Cell)及び1または複数のセカンダリセル(SCell;Secondary Cell)がサービングセルの集合として設定される。
 また、デュアルコネクティビティ(DC; Dual Connectivity)では、サービングセルのグループとして、マスターセルグループ(MCG; Master Cell Group)とセカンダリセルグループ(SCG; Secondary Cell Group)が設定される。MCGはPCellとオプションで1又は複数のSCellから構成される。またSCGはプライマリSCell(PSCell)とオプションで1又は複数のSCellから構成される。
 また、端末装置は、サービングセルの一部の帯域(bandwidth part; BWP)でのオペレーションを設定される可能性がある。BWPは複数設定される可能性があり、BWPを識別するためにBWP-IDが用いられる。なお、下りリンクのBWPをDL-BWP、上りリンクのBWPをUL-BWPとも呼ぶ。
 基地局装置は無線フレームを用いて通信することができる。無線フレームは複数のサブフレーム(サブ区間)から構成される。フレーム長を時間で表現する場合、例えば、無線フレーム長は10ミリ秒(ms)、サブフレーム長は1msとすることができる。この例では無線フレームは10個のサブフレームで構成される。
 またスロットは、14個のOFDMシンボルで構成される。OFDMシンボル長はサブキャリア間隔によって変わり得るため、サブキャリア間隔でスロット長も代わり得る。またミニスロットは、スロットよりも少ないOFDMシンボルで構成される。スロット/ミニスロットは、スケジューリング単位になることができる。なお端末装置は、スロットベーススケジューリング/ミニスロットベーススケジューリングは、最初の下りリンクDMRSの位置(配置)によって知ることができる。スロットベーススケジューリングでは、スロットの3番目又は4番目のシンボルに最初の下りリンクDMRSが配置される。またミニスロットベーススケジューリングでは、スケジューリングされたデータ(リソース、PDSCH)の最初のシンボルに最初の下りリンクDMRSが配置される。なお、スロットベーススケジューリングは、PDSCHマッピングタイプAとも呼ばれる。またミニスロットベーススケジューリングは、PDSCHマッピングタイプBとも呼ばれる。
 またリソースブロックは、12個の連続するサブキャリアで定義される。またリソースエレメントは、周波数領域のインデックス(例えばサブキャリアインデックス)と時間領域のインデックス(例えばOFDMシンボルインデックス)で定義される。リソースエレメントは、上りリンクリソースエレメント、下りリンクエレメント、フレキシブルリソースエレメント、予約されたリソースエレメントとして分類される。予約されたリソースエレメントでは、端末装置は、上りリンク信号を送信しないし、下りリンク信号を受信しない。
 また複数のサブキャリア間隔(Subcarrier spacing: SCS)がサポートされる。例えばSCSは、15/30/60/120/240/480 kHzである。
 基地局装置/端末装置はライセンスバンド又はアンライセンスバンドで通信することができる。基地局装置/端末装置は、ライセンスバンドがPCellとなり、アンライセンスバンドで動作する少なくとも1つのSCellとキャリアアグリゲーションで通信することができる。また、基地局装置/端末装置は、マスターセルグループがライセンスバンドで通信し、セカンダリセルグループがアンライセンスバンドで通信する、デュアルコネクティビティで通信することができる。また、基地局装置/端末装置は、アンライセンスバンドにおいて、PCellのみで通信することができる。また、基地局装置/端末装置は、アンライセンスバンドのみでCA又はDCで通信することができる。なお、ライセンスバンドがPCellとなり、アンライセンスバンドのセル(SCell、PSCell)を、例えばCA、DCなどでアシストして通信することを、LAA(Licensed-Assisted Access)とも呼ぶ。また、基地局装置/端末装置がアンライセンスバンドのみで通信することを、アンライセンススタンドアロンアクセス(ULSA;Unlicensed-standalone access)とも呼ぶ。また、基地局装置/端末装置がライセンスバンドのみで通信することを、ライセンスアクセス(LA;Licensed Access)とも呼ぶ。
 図2は、本実施形態に係る通信システムの例を示す図である。図2に示すように、本実施形態における通信システムは、端末装置2-1、基地局装置2-2、ロケーションサーバー2-3を備える。
 端末装置2-1は、上りリンクベースの端末装置の位置測定に必要な上りリンク信号を送信する。また、端末装置2-1は、基地局装置2-2から下りリンク信号を受信し、位置推定、又は位置に関する測定を行う。また、端末装置2-1は、GNSS(Global Navigation Satellite System)やTBS(Terrestrial Beacon System)の信号を受信し、位置に関する測定を行う。端末装置2-1は位置推定値又は位置測定結果をロケーションサーバー2-3又は基地局装置2-2に送信する。位置推定値は座標情報を含む。座標情報は緯度、経度、標高(海抜)などである。また位置測定結果は、ロケーションサーバー2-3が位置推定値を求めるために用いる情報である。
 基地局装置2-2は、ターゲット端末装置に対する無線信号の測定結果をロケーションサーバー2-3と通信する。基地局装置2-2は、上りリンクの位置測定をするために、端末装置2-1にSRS送信を要求することができる。
 ロケーションサーバー2-3は、端末装置の位置を推定する、又は端末装置に位置測定のためのアシストデータを送信する。ロケーションサーバー2-3は基地局装置2-2と互いに動作して、端末装置2-2の位置推定値を得ることができる。
 本実施形態に係る通信システムは、OTDOA(Observed Time Differential Of Arrival)、ECID(Enhanced Cell ID)、UTDOA(Uplink Time Differential Of Arrival)などの位置推定方法を、1又は複数用いて端末装置の位置を推定する。これらの方法を用いて、端末装置2-1、基地局装置2-2又はロケーションサーバー2-3が端末装置2-1の位置を推定する。ロケーションサーバー2-3は端末装置2-1の位置情報を管理する。
 OTDOAは、下りリンクの位置推定法であり、複数の基地局装置からの下りリンク信号の受信タイミングを利用して端末装置2-1の位置を推定する。ロケーションサーバー2-3は、OTDOAアシスト情報を端末装置2-1に送信(伝達)する。OTDOAアシスト情報は、OTDOAリファレンスセル情報、OTDOA隣接セル情報リスト、OTDOA誤差の一部又は全部を含む。OTDOAリファレンスセル情報は、キャリア周波数、セルID、CP長、PRS情報の一部又は全部を含む。CP長はノーマルCPかノーマルCPよりも長い拡張CPかを示す。PRS情報は、帯域幅、PRS設定インデックス、連続サブフレーム(スロット)数、PRSが送信されるサブフレーム(スロット)を示すビットマップ情報、PRSミューティング(muting)情報の一部又は全部を含む。PRS設定インデックスは、PRSサブフレーム(スロット)の周期、PRSサブフレーム(スロット)のオフセット値を示す情報である。帯域幅はPRSが送信される帯域幅を示し、リソースブロック数で示される。例えば、帯域幅を示すリソースブロック数は6、15、25、50、75、100である。連続サブフレーム(スロット)数は、連続して送信されるPRSサブフレーム(スロット)数を示す。例えば、連続して送信されるサブフレーム(スロット)数は、周波数範囲(周波数帯)によって変わっても良い。PRSサブフレームの周期及びPRSサブフレーム(スロット)のオフセット値に基づいて、連続サブフレーム(スロット)の先頭サブフレーム(スロット)が求められる。PRSミューティング情報は、そのセルのPRSミューティング設定を示す。PRSミューティング設定は、あるセルのあるサブフレーム(スロット)でPRSが送信されるか送信されないかを示す。
 OTDOA隣接セル情報リストは、1又は複数のOTDOA隣接周波数情報を含む。OTDOA隣接周波数情報は、1又は複数のOTDOA隣接セル情報を含む。OTDOA隣接セル情報は、セルID、キャリア周波数、CP長、PRS情報、スロット番号オフセット、PRSサブフレームオフセット、期待されるRSTD、期待されるRSTDの不確かさの一部又は全部を含む。スロット番号オフセットは、そのセルとリファレンスセルとの間のスロット番号のオフセットを示す。PRSサブフレームオフセットは、リファレンスセルのPRSサブフレームの先頭とリファレンスセルとは異なるキャリア周波数におけるPRSサブフレームの先頭とのオフセットを示す。RSTD(Reference Signal Time difference)は、隣接セルとリファレンスセルの受信タイミング差を示す。受信タイミングはサブフレーム(スロット)の先頭である。期待されるRSTDは、このセルとリファレンスセルとの間の期待される伝搬時間差が考慮される。期待されるRSTDの不確かさは、期待されるRSTDの取り得る値(誤差)を示す。端末装置2-1は、期待されるRSTD及び期待されるRSTDの不確かさに基づいて求められる範囲でRSTDを測定することができる。
 ロケーションサーバー2-3は基地局装置2-2に対してOTDOA情報を要求する。逆に言うと、基地局装置2-2はロケーションサーバー2-3から要求された場合、OTDOA情報をロケーションサーバー2-3に送信(提供)する。OTDOA情報は、1又は複数のOTDOAセル情報を含む。OTDOAセル情報は、物理セルID、キャリア周波数、PRS帯域幅、PRS設定インデックス、CP長、PRSが送信される連続サブフレーム(スロット)数、PRSが送信されるサブフレーム(スロット)を示すビットマップ情報、基地局装置/アクセスポイントのアンテナの座標、PRSミューティング設定の一部又は全部を含む。基地局装置/アクセスポイントのアンテナの座標は、緯度、経度、高さ(海抜、標高)、北緯か南緯かを示す情報、高さの方向を示す情報の一部又は複数を示す。高さの方向は、高さ又は深さを示す。
 端末装置2-1はOTDOA信号測定情報をロケーションサーバー2-3に送信(伝達)する。OTDOA信号測定情報は、リファレンスセルのセルID、キャリア周波数、隣接測定リストの一部又は全部を含む。隣接測定リストは、隣接セルに対するRSTDを含むリストであり、1又は複数の隣接測定要素を含む。隣接測定要素は、隣接セルのセルID、キャリア周波数、RSTDの一部又は全部を含む。
 ロケーションサーバー2-3は、端末装置2-1から受信(提供)されたOTDOA信号測定情報を用いて端末装置2-1の位置を推定することができる。
 UTDOAは、上りリンクの位置推定であり、例えば複数の基地局装置における端末装置2-1からの上りリンク信号の受信タイミングを利用して端末装置2-1の位置を推定する。基地局装置2-2はセルID、タイミングアドバンス、SRS情報の一部又は全部をロケーションサーバー2-3に送信(伝達)する。SRS情報は、セルID、上りサイクリックプレフィックス、そのセルの上り帯域幅、セル固有SRSの帯域幅、端末固有SRSの帯域幅、SRSのアンテナポート数、SRSの周波数ホッピング帯域幅、SRSのサイクリックシフト、SRSの送信コーム(transmission comb)、周波数領域の配置情報の一部又は全部が含まれる。SRSの送信コームはサブキャリアレベルでの配置情報を示す。基地局装置2-2は端末装置2-1にSRS情報を送信する。
 端末装置2-1は、ロケーションサーバー2-3の要求に従って、サポートしている上記位置推定方法のケーパビリティをロケーションサーバー2-3に送信(伝達)する。端末装置2-1がOTDOAをサポートしている場合、サポートしているシステム帯域幅をそのケーパビリティに含めて送信(伝達)する。
 図3は、本実施形態における基地局装置の構成例を示す概略ブロック図である。図7に示すように、基地局装置1Aは、上位層処理部(上位層処理ステップ)101、制御部(制御ステップ)102、送信部(送信ステップ)103、受信部(受信ステップ)104と位置測定部(位置測定ステップ)105を含んで構成される。送信部103は、物理信号生成部(物理信号生成ステップ)1031、位置情報生成部(位置情報生成ステップ)1032を含んで構成される。なお図示していないが、送信部103は送信アンテナを含んでも良い。また図示していないが、受信部105は受信アンテナを含んでも良い。また、送信アンテナと受信アンテナは同じアンテナであってもよい。
 上位層処理部101は、媒体アクセス制御(Medium Access Control: MAC)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の処理を行なう。また、上位層処理部101は、送信部103および受信部104の制御を行なうために必要な情報を生成し、制御部102に出力する。
 上位層処理部101は、端末装置の機能(UE capability)等、端末装置に関する情報を端末装置から受信する。言い換えると、端末装置は、自身の機能を基地局装置に上位層の信号で送信する。
 なお、以下の説明において、端末装置に関する情報は、その端末装置が所定の機能をサポートするかどうかを示す情報、または、その端末装置が所定の機能に対する導入およびテストの完了を示す情報を含む。なお、以下の説明において、所定の機能をサポートするかどうかは、所定の機能に対する導入およびテストを完了しているかどうかを含む。
 例えば、端末装置が所定の機能をサポートする場合、その端末装置はその所定の機能をサポートするかどうかを示す情報(パラメータ)を送信する。端末装置が所定の機能をサポートしない場合、その端末装置はその所定の機能をサポートするかどうかを示す情報(パラメータ)を送信しない。すなわち、その所定の機能をサポートするかどうかは、その所定の機能をサポートするかどうかを示す情報(パラメータ)を送信するかどうかによって通知される。なお、所定の機能をサポートするかどうかを示す情報(パラメータ)は、1または0の1ビットを用いて通知してもよい。
 上位層処理部101は、下りリンクデータ(トランスポートブロック)、システムインフォメーション、RRCメッセージ、MAC CEなどを生成、又は上位ノードから取得する。上位層処理部101は、下りリンクデータを送信部103に出力し、他の情報を制御部102に出力する。また、上位層処理部101は、端末装置の各種設定情報の管理をする。
 上位層処理部101は、物理チャネルを割り当てる周波数およびサブフレーム(スロット)、物理チャネルの符号化率および変調方式(あるいはMCS)および送信電力などを決定する。上位層処理部101は、決定した情報を制御部102に出力する。
 上位層処理部101は、スケジューリング結果に基づき、物理チャネルのスケジューリングに用いられる情報を生成する。上位層処理部101は、生成した情報を制御部102に出力する。
 制御部102は、上位層処理部101から入力された情報に基づいて、送信部103および受信部104の制御を行なう制御信号を生成する。制御部102は、上位層処理部101から入力された情報に基づいて、下りリンク制御情報を生成し、送信部103に出力する。
 送信部103は、制御部102から入力された制御信号に従って、下りリンク参照信号を生成し、上位層処理部101から入力されたHARQインディケータ、下りリンク制御情報、および、下りリンクデータを、符号化および変調し、下りリンク物理チャネル、および下りリンク参照信号を多重して、送受信アンテナ105を介して端末装置2に信号を送信する。
 物理信号生成部1031は、上位層処理部101から入力されたHARQインディケータ、下りリンク制御情報、下りリンク参照信号および下りリンクデータからOFDM信号を生成する。OFDM信号は、サイクリックプレフィックス(cyclic prefix: CP)を付加されて、ベースバンドのディジタル信号を生成する。ベースバンドのディジタル信号はアナログ信号に変換され、フィルタリングにより余分な周波数成分が除去され、搬送周波数にアップコンバートされ、電力増幅され、送信アンテナから送信される。
 位置情報生成部1032は、受信部104が測定(推定)した位置をロケーションサーバーに送信(伝達)するための信号を生成する。送信部103は、有線又は無線でロケーションサーバーと通信する。
 無線受信部1041は、制御部102から入力された制御信号に従って、端末装置から受信した受信信号を分離、復調、復号し、復号した情報を上位層処理部101又は位置測定部1042に出力する。また位置測定部1042は、端末装置から受信した位置測定のための参照信号から位置測定する。
 無線受信部1041は、受信アンテナを介して受信された上りリンクの信号を、ダウンコンバートによりベースバンド信号に変換し、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信された信号の同相成分および直交成分に基づいて、直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。
 無線受信部1041は、変換したディジタル信号からCPに相当する部分を除去する。無線受信部1041は、CPを除去した信号に対して高速フーリエ変換(Fast Fourier Transform: FFT)を行い、周波数領域の信号を抽出する。抽出した周波数領域の信号を上りリンク物理チャネル、上りリンク参照信号などの信号に分離する。無線受信部1041は、位置推定に関する信号を位置測定部1042に出力する。
 図4は、本実施形態における端末装置の構成を示す概略ブロック図である。図8に示すように、端末装置は、上位層処理部(上位層処理ステップ)201、制御部(制御ステップ)202、送信部(送信ステップ)203、受信部(受信ステップ)204を含んで構成される。また、送信部203は、物理信号生成部(物理信号生成ステップ)2031、位置情報生成部(位置情報生成ステップ)2032を含んで構成される。また、受信部204は、無線受信部(無線受信ステップ)2041、位置測定部(位置測定ステップ)2042を含んで構成される。
 上位層処理部201は、ユーザの操作等によって生成された上りリンクデータ(トランスポートブロック)を、送信部203に出力する。また、上位層処理部201は、媒体アクセス制御(Medium Access Control: MAC)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層などの処理を行なう。
 上位層処理部201は、自端末装置がサポートしている端末装置の機能を示す情報を、送信部203に出力する。
 上位層処理部201は、自端末装置の各種設定情報の管理をする。また、上位層処理部201は、上りリンクの各チャネルに配置される情報を生成し、送信部203に出力する。
 上位層処理部201は、受信部204を介して受信した下りリンク制御情報を解釈し、スケジューリング情報を判定する。また、上位層処理部201は、スケジューリング情報に基づき、受信部204、および送信部203の制御を行なうために制御情報を生成し、制御部202に出力する。
 上位層処理部201は、ロケーションサーバー2-3から位置測定に関するアシストデータ(情報)を解釈し、制御部202に出力する。
 制御部202は、上位層処理部201から入力された情報に基づいて、受信部204および送信部203の制御を行なう制御信号を生成する。制御部202は、生成した制御信号を受信部204、および送信部203に出力して受信部204、および送信部203の制御を行なう。
 受信部204は、制御部202から入力された制御信号に従って、受信アンテナを介して基地局装置から受信した受信信号を、分離、復調、復号し、復号した情報を上位層処理部201に出力する。
 無線受信部2041は、送受信アンテナ206を介して受信した下りリンクの信号を、ダウンコンバートによりベースバンド信号に変換し、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信した信号の同相成分および直交成分に基づいて、直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。
 また、無線受信部2041は、変換したディジタル信号からCPに相当する部分を除去し、CPを除去した信号に対して高速フーリエ変換を行い、周波数領域の信号を抽出する。抽出した信号は下りリンク物理チャネル、および下りリンク参照信号に、それぞれ分離される。また、無線受信部2041は、チャネル測定から得られた所望信号のチャネルの推定値に基づいて、下りリンク物理チャネルのチャネル補償を行ない、下りリンク制御情報を検出し、制御部202に出力する。
 また、無線受信部2041は、チャネル推定値を用いて、信号検出し、上位層処理部201に出力する。
 位置測定部2042は、1又は複数の位置推定方式を用いて、位置推定値又は位置測定結果を求め、制御部202に出力する。また位置測定部2042は、位置推定に関するアシストデータを用いて、位置推定値又は位置測定結果を求め、制御部202に出力する。
 送信部203は、制御部202から入力された制御信号に従って、上りリンク参照信号を生成し、上位層処理部201から入力された上りリンクデータ(トランスポートブロック)を符号化および変調し、制御チャネル、共有チャネルなどの上りリンク物理チャネル、および生成した上りリンク参照信号を多重し、送信アンテナを介して基地局装置に送信する。
 また送信部203は、位置推定値又は位置測定結果をロケーションサーバー2-3に送信(伝達)する。
 物理信号生成部2031は、上りリンク制御情報、上りリンクデータ、上りリンク参照信号からOFDMシンボルを生成する。OFDMシンボルは、CPが付加され、ベースバンドのディジタル信号が生成される。ベースバンドのディジタル信号はアナログ信号に変換され、余分な周波数成分が除去され、アップコンバートにより搬送周波数に変換され、電力増幅され、送信される。
 なお、端末装置はSC-FDMA方式の変調を行うことができる。
 図5は、ロケーションサーバー2-3の構成例を示す概略ブロック図である。ロケーションサーバー2-3は制御部(制御ステップ)301、受信部(受信ステップ)302、送信部(送信ステップ)303、位置測定部(位置測定ステップ)304、位置管理部(位置管理ステップ)305を含んで構成される。
 制御部301は、受信部302、送信部303、位置測定部304、位置管理部305を制御する。
 受信部302は、基地局装置及び/又は端末装置から位置推定値又は位置測定結果を受信し、制御部301に出力する。制御部301は位置測定結果を位置測定部304に出力する。位置測定部304は、位置測定結果を用いて位置推定値を求め、制御部301に出力する。制御部301は受信部302又は位置測定部304から入力された位置推定値を位置管理部305に出力する。
 制御部301は、位置推定に関するアシストデータ(情報)を送信部303に出力する。送信部303は、位置推定に関するアシストデータ(情報)を端末装置に送信(伝達)する。
 位置推定精度を向上させるために、基地局装置と端末装置のロスパス(LOS (Line of Sight) path)の検出精度の向上が有効である。例えば、多数のアンテナによる狭いビームフォーミングを用いれば、位置推定精度を向上させることができる。
 例えば、(アナログ)ビームフォーミング(空間領域のフィルタ)は、所定の方向にビームを向けることで、その方向の伝搬路の電力を上げることができる。ただし、基地局装置は端末装置の位置(座標)を知らない状態では、端末装置の方向はわからない。従って、リファレンスセル又は隣接セルは、異なるビーム方向にビームフォーミングした複数のPRSを送信し、端末装置は複数のPRSから好適なものを選択し、RSTDを求める。これにより、ロスパスの検出精度を向上させ、位置推定精度を向上させることができる。
 なお、異なるビームフォーミングで送信されるPRSは時間領域又は周波数領域に多重される。ビームフォーミングで送信されるPRSは、PRSリソース又はPRSブロックとも呼ばれる。PRSリソース(PRSブロック)が配置されるリソース(リソースエレメント、スロット、サブフレーム)は上述のOTDOA情報/OTDOAアシスト情報又はPRS情報に含めてもよい。また、PRSリソース(PRSブロック)を示す指標(インデックス)をPRSリソース指標(PRS Resource Indicator; PRI)又はPRSインデックスとも呼ぶ。
 図6は、あるセルが異なる3つのビームフォーミングでPRSを送信した場合の、端末装置で検出した受信タイミング(受信時刻)の例である。図中のtr,1、tr,2、tr,3は、それぞれ、第1のPRSリソース、第2のPRSリソース、第3のPRSリソースの基準タイミングを示す。PRSリソースの基準タイミングは、例えば、フレーム、スロット、サブフレーム、OFDMシンボルの境界(先頭)で表すことができる。また、t1,0、t2,0、t3,0は、それぞれ、第1のPRSリソースで検出した最適な受信タイミング、第2のPRSリソースで検出した最適な受信タイミング、第3のPRSリソースで検出した最適な受信タイミングを示す。このとき、t1,0-tr,1は、第1のPRSリソースで推定した伝搬遅延時間となる。このため端末装置は、第1から第3のPRSリソースで推定した伝搬遅延時間が最小なPRSリソースでは、LOSパスが検出できている可能性が高いと判断できる。このとき、端末装置は、リファレンスセル及び隣接セルの各々で、好適な受信タイミングと判断したPRSリソースを選択して、RSTDを計算すれば、位置推定精度を向上させることができる。なお、各PRSリソースの送信タイミングが異なる可能性があるため、RSTDの算出に用いたリファレンスセルのPRI、隣接セルのPRIをロケーションサーバーに報告する。
 また、端末装置は、PRSリソース間の最適受信タイミングの誤差もロケーションサーバーに報告することができる。PRSリソース間の最適受信タイミングの誤差は、例えば、第2のPRSリソースの最適受信タイミングt2,0と第1のPRSリソースの最適受信タイミングt1,0との差、第2のPRSリソースの最適受信タイミングt2,0と第3のPRSリソースの最適受信タイミングt3,0との差である。
 なお、RSTDに加えて、RSTDの計算に用いた最適受信タイミングの誤差も考慮して、最適受信タイミング以外のタイミングをロケーションサーバーに報告することができる。図7は、第2のPRSリソースにおける例である。端末装置は、第2のPRSリソースの最適受信タイミングt2,0と受信タイミングt2,1との時間差d2,1、第2のPRSリソースの最適受信タイミングt2,0と受信タイミングt2,2との時間差d2,2をロケーションサーバーに報告することができる。これは、候補が増えることにより、より位置推定精度を向上させることができる。
 またビームフォーミングは、多数のアンテナ数を用いれば狭いビーム幅となることから、送信方向や受信方向の推定にも有効である。伝搬遅延時間による距離に加え、方向がわかれば、位置推定精度を向上させることができる。
 例えば、所定の方法により、基地局装置又はロケーションサーバーは端末装置の位置情報を知っていると仮定する。このとき、基地局装置は端末装置の方向がわかるため、端末装置の方向にビームフォーミングしたPRSを送信すれば、端末装置の位置推定精度を向上させることができる。なお、端末装置の受信ビーム方向が適切でない場合、PRSの受信電力が小さくなり、受信タイミングの検出精度が十分でない可能性がある。そこで、基地局装置は、同じ送信ビームフォーミングを適用した複数のPRSリソースを送信し、端末装置は複数のPRSリソースを異なる受信ビーム方向で受信し、好適なPRSリソースでRSTDを求めれば、位置推定精度が向上する。端末装置は、PRI及びRSTDを基地局装置又はロケーションサーバーに報告する。なお、複数のPRSリソースが同じ送信ビームフォーミング(空間領域の送信フィルタ)を適用しているか、異なる送信ビームフォーミング(空間領域の送信フィルタ)を設定しているかが判断できるように、OTDOA情報/OTDOAアシスト情報又はPRS情報は同じ送信ビームフォーミングを適用しているか、異なる送信ビームフォーミングを設定しているかを示す情報を含めることができる。また、同じ送信ビームフォーミングを適用しているか、異なる送信ビームフォーミングを設定しているかを示す情報は、PRSリソースに対するQCL情報であってもよい。つまり、複数のPRSリソースに対してQCLが設定されている場合は、端末装置は複数のPRSに同じ送信ビームフォーミングが適用されていると判断することができる。なお、同じ送信ビームフォーミングを適用しているか、異なる送信ビームフォーミングを設定しているかを示す情報は、1つのPRSリソースが設定されている場合、PRSに送信ビームフォーミング(空間領域の送信フィルタ)が適用されているか否かを示しても良い。
 所定の期間内で送信されるPRS(又はPRSリソース)の最大数は、PRSに設定されるサブキャリア間隔によって異なっていてもよい。
 また、図8に例を示すように、受信ビーム走査の結果、人や物体のブロッキングなどでPRSの受信電力が小さい場合がある。図8は、基地局装置3A、5A、7Aから端末装置4Aの方向にビームフォーミングした例である。基地局装置3Aと端末装置4Aの間には障害物401があり、受信電力が著しく小さくなっている。基地局装置5A、7Aは障害物がないため、十分な受信電力が得られている。従って、図8の例では、ロケーションサーバーは、基地局装置3Aを計算に使わずに、基地局装置5A、7Aから端末装置4Aの位置を推定する。また、受信ビーム走査の結果、PRSの受信電力がしきい値以下となった場合、端末装置は、PRSの受信電力が小さいことを示す情報を基地局装置又はロケーションサーバーに報告する。ロケーションサーバーは、端末装置からの報告に基づき、LOSパスの電力が小さい基地局装置は、誤差が大きいと判断し、位置推定の計算から除くことで、位置推定精度を向上させることができる。なお、PRSの受信電力がしきい値を超えるか否かは、参照セル及び隣接セル毎に報告される。参照セルのPRSの受信電力がしきい値よりも小さい場合、端末装置はRSTDを報告しなくてもよい。参照セルのPRSの受信電力がしきい値よりも大きい場合、1又は複数の隣接セルのうち、PRSの受信電力がしきい値よりも大きい隣接セルのPRI及びRSTDを報告してもよい。なお、PRSの受信電力が小さいことは、端末装置が受信する最大の受信電力との差(比)で判断されることもできる。また、PRSの受信電力が小さいことは、基準となる基地局装置(例えば参照セル)から送信されるPRSの受信電力との差(比)で判断されることもできる。
 PRSの受信電力のしきい値は、PRSが送信されている周波数バンド毎に設定されることができる。基地局装置はPRSを送信する周波数バンドを低周波数レンジ(FR1)と高周波数レンジ(FR2)の2つに分類することができる。例えば、FR1は450MHzから6GHzであり、FR2は24.25GHzから52.6GHzである。また、PRSの受信電力が小さいことを報告する方法は、FR2で送信されたPRSに対してのみ行なうことができる。これは、FR2で送信されるPRSはブロッキングの影響を強く受けるためである。一方で、FR1で送信されるPRSはマルチパス等の影響により、端末装置がブロッキングの影響が正しく認識できない可能性があるためである。
 また、位置推定に用いるPRSは、異なるフレームフォーマットに基づいて送信された複数のPRSも含まれる。例えば、サブキャリア間隔60kHzで送信されたPRSとサブキャリア間隔15kHzで送信されたPRSを、ある所定の時刻の位置推定のための信号処理に両方もちいることができる。この場合、サブキャリア間隔15kHzのPRSにはLTEのフレームフォーマットで送信されたPRSを含む。すなわち、本実施形態に係る端末装置は、DCによって同時に接続されている複数の基地局装置を対象に、位置推定を行なうことができる。
 なお、位置推定に用いるPRSを送信する基地局装置は、少なくとも端末装置が複数のPRSについて、受信時刻(タイミング)差を受信するまで動かない必要がある。つまり端末装置は、基地局装置からRSTDを測定する期間において、基地局装置の位置(座標)は変わらないと想定してRSTDを求める。基地局装置又はロケーションサーバーは、基地局装置が移動する可能性を端末装置に通知することができる。また、基地局装置又はロケーションサーバーは、基地局装置が移動する場合、移動するルートや移動速度などを端末装置に通知することができる。この場合、端末装置は、受信時刻から基地局装置の位置情報(座標)を知ることができる。また、本実施形態に係る基地局装置は、移動する場合、PRSは送信しないことができる。
 また、ビームフォーミングはUTDOAでも位置推定精度を改善させることができる。UTDOAでは端末装置はSRSを送信する。なお、所定の方法により、端末装置は、基地局装置及び自身の位置情報を知っていると仮定する。端末装置は、同じ送信ビーム方向で、複数のSRSリソースを送信する。基地局装置は、最もLOSパスらしいSRSリソースの受信タイミングをSRIと共にロケーションサーバーに報告する。
 なお、本実施形態に係る通信装置(基地局装置、端末装置)が使用する周波数バンドは、これまで説明してきたライセンスバンドやアンライセンスバンドには限らない。本実施形態が対象とする周波数バンドには、国や地域から特定サービスへの使用許可が与えられているにも関わらず、周波数間の混信を防ぐ等の目的により、実際には使われていないホワイトバンド(ホワイトスペース)と呼ばれる周波数バンド(例えば、テレビ放送用として割り当てられたものの、地域によっては使われていない周波数バンド)や、これまで特定の事業者に排他的に割り当てられていたものの、将来的に複数の事業者で共用することが見込まれる共用周波数バンド(ライセンス共有バンド)も含まれる。
 本発明に関わる装置で動作するプログラムは、本発明に関わる実施形態の機能を実現するように、Central Processing Unit(CPU)等を制御してコンピュータを機能させるプログラムであっても良い。プログラムあるいはプログラムによって取り扱われる情報は、一時的にRandom Access Memory(RAM)などの揮発性メモリあるいはフラッシュメモリなどの不揮発性メモリやHard Disk Drive(HDD)、あるいはその他の記憶装置システムに格納される。
 尚、本発明に関わる実施形態の機能を実現するためのプログラムをコンピュータが読み取り可能な記録媒体に記録しても良い。この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。ここでいう「コンピュータシステム」とは、装置に内蔵されたコンピュータシステムであって、オペレーティングシステムや周辺機器等のハードウェアを含むものとする。また、「コンピュータが読み取り可能な記録媒体」とは、半導体記録媒体、光記録媒体、磁気記録媒体、短時間動的にプログラムを保持する媒体、あるいはコンピュータが読み取り可能なその他の記録媒体であっても良い。
 また、上述した実施形態に用いた装置の各機能ブロック、または諸特徴は、電気回路、たとえば、集積回路あるいは複数の集積回路で実装または実行され得る。本明細書で述べられた機能を実行するように設計された電気回路は、汎用用途プロセッサ、デジタルシグナルプロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、またはその他のプログラマブル論理デバイス、ディスクリートゲートまたはトランジスタロジック、ディスクリートハードウェア部品、またはこれらを組み合わせたものを含んでよい。汎用用途プロセッサは、マイクロプロセッサであってもよいし、従来型のプロセッサ、コントローラ、マイクロコントローラ、またはステートマシンであっても良い。前述した電気回路は、デジタル回路で構成されていてもよいし、アナログ回路で構成されていてもよい。また、半導体技術の進歩により現在の集積回路に代替する集積回路化の技術が出現した場合、本発明の一又は複数の態様は当該技術による新たな集積回路を用いることも可能である。
 なお、本願発明は上述の実施形態に限定されるものではない。実施形態では、装置の一例を記載したが、本願発明は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などの端末装置もしくは通信装置に適用出来る。
 以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。
 本発明は、端末装置、ロケーションサーバー及び方法に用いて好適である。

Claims (7)

  1.  参照セル及び1又は複数の隣接セルの各々から複数のポジショニング参照信号(PRS)リソースでPRSを受信する受信部と、
     位置情報を測定する位置測定部と、
     位置情報を送信する送信部と、を備え、
     前記参照セルから受信した前記複数のPRSのうちの1つで求めた受信タイミングと前記隣接セルから受信した前記複数のPRSのうちの1つで求めた受信タイミングから参照信号時間差(RSTD)を求め、
     前記RSTD、及び該RSTD算出に用いた前記参照セルのPRSリソースを示す情報(PRI)及び前記隣接セルのPRIを含む前記位置情報を送信する、
     端末装置。
  2.  前記複数のPRSリソースにおいて、前記PRSが同じ空間領域の送信フィルタで送信されている場合、前記PRSの受信電力がしきい値を超えるか否かを示す情報を含む位置情報を送信する、
     請求項1に記載の端末装置。
  3.  前記隣接セルにおいて、前記複数のPRSリソースで前記PRSが同じ空間領域の送信フィルタで送信されている場合、前記PRSの受信電力がしきい値を超える場合に前記PRI及び前記RSTDを含む前記位置情報を送信する、
     請求項1に記載の端末装置。
  4.  参照セル及び1又は複数の隣接セルの各々に複数のポジショニング参照信号(PRS)リソースの設定情報を送信する送信部と、
     位置情報を受信する受信部と、を備え、
     前記参照セルに設定した前記複数のPRSのうちの1つで求めた受信タイミングと前記隣接セルに設定した前記複数のPRSのうちの1つで求めた受信タイミングとの時間差である参照信号時間差(RSTD)、及び該RSTD算出に用いた前記参照セルのPRSリソースを示す情報(PRI)及び前記隣接セルのPRIを含む前記位置情報を端末装置から受信する、
     ロケーションサーバー。
  5.  前記複数のPRSリソースにおいて、前記PRSが同じ空間領域の送信フィルタで送信されている場合、前記PRSの受信電力がしきい値を超えるか否かを示す情報を含む位置情報を受信する、
     請求項4に記載のロケーションサーバー。
  6.  前記隣接セルにおいて、前記複数のPRSリソースで前記PRSが同じ空間領域の送信フィルタで送信されている場合、前記PRSの受信電力がしきい値を超える場合に前記PRI及び前記RSTDを含む前記位置情報を受信する、
     請求項4に記載のロケーションサーバー。
  7.  端末装置における通信方法であって、
     参照セル及び1又は複数の隣接セルの各々から複数のポジショニング参照信号(PRS)リソースでPRSを受信するステップと、
     位置情報を測定するステップと、
     位置情報を送信するステップと、を備え、
     前記参照セルから受信した前記複数のPRSのうちの1つで求めた受信タイミングと前記隣接セルから受信した前記複数のPRSのうちの1つで求めた受信タイミングから参照信号時間差(RSTD)を求め、
     前記RSTD、及び該RSTD算出に用いた前記参照セルのPRSリソースを示す情報(PRI)及び前記隣接セルのPRIを含む前記位置情報を送信する、
     通信方法。
PCT/JP2019/021866 2018-06-28 2019-05-31 端末装置、ロケーションサーバー及び通信方法 WO2020003896A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217001592A KR20210024025A (ko) 2018-06-28 2019-05-31 단말기 장치, 위치 서버 및 통신 방법
CN201980043119.8A CN112314020B (zh) 2018-06-28 2019-05-31 终端装置、定位服务器以及通信方法
US17/255,735 US11310760B2 (en) 2018-06-28 2019-05-31 Terminal apparatus, location server, and communication method
EP19827000.1A EP3817468A4 (en) 2018-06-28 2019-05-31 TERMINAL DEVICE, LOCATION SERVER AND COMMUNICATION METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-123022 2018-06-28
JP2018123022A JP7289189B2 (ja) 2018-06-28 2018-06-28 端末装置、ロケーションサーバー及び方法

Publications (1)

Publication Number Publication Date
WO2020003896A1 true WO2020003896A1 (ja) 2020-01-02

Family

ID=68987071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021866 WO2020003896A1 (ja) 2018-06-28 2019-05-31 端末装置、ロケーションサーバー及び通信方法

Country Status (6)

Country Link
US (1) US11310760B2 (ja)
EP (1) EP3817468A4 (ja)
JP (1) JP7289189B2 (ja)
KR (1) KR20210024025A (ja)
CN (1) CN112314020B (ja)
WO (1) WO2020003896A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021135123A (ja) * 2020-02-26 2021-09-13 Kddi株式会社 位置測位装置及び位置測位方法
JPWO2021192199A1 (ja) * 2020-03-27 2021-09-30
WO2021242699A1 (en) * 2020-05-29 2021-12-02 Qualcomm Incorporated Differential positioning reference signal reporting within co-located cells
WO2022027670A1 (en) 2020-08-07 2022-02-10 Zte Corporation Method for positioning state information report
WO2022055772A3 (en) * 2020-09-11 2022-05-05 Qualcomm Incorporated Methods and apparatus for enhanced time difference of arrival based positioning for user equipment
US20220167303A1 (en) * 2020-11-24 2022-05-26 Telefonaktiebolaget Lm Ericsson (Publ) User equipment (ue) positioning
CN115211049A (zh) * 2020-02-14 2022-10-18 高通股份有限公司 定位信令中的波束管理
WO2022235336A1 (en) * 2021-05-05 2022-11-10 Qualcomm Incorporated Time reversal for on-demand positioning
US11740320B2 (en) 2018-10-05 2023-08-29 Qualcomm Incorporated Simplified cell location information sharing for positioning purposes

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12113724B2 (en) * 2018-08-02 2024-10-08 Samsung Electronics Co., Ltd. Method and apparatus for providing a positional reference signal in a mobile communication system
US11743007B2 (en) * 2018-09-05 2023-08-29 Lg Electronics Inc. Method for transmitting and receiving positioning reference signal and apparatus therefor
GB2583063A (en) * 2019-02-15 2020-10-21 Samsung Electronics Co Ltd Methods and apparatus for enhancing the configurability of 5G new radio positioning reference signals
EP3911051B1 (en) * 2019-02-15 2024-08-28 LG Electronics Inc. Positioning method in wireless communication system and device supporting same
CN111601273B (zh) * 2019-02-20 2022-12-13 华为技术有限公司 用于侧行链路通信的调度方法、终端装置以及网络装置
CN113661748A (zh) * 2019-03-27 2021-11-16 三菱电机株式会社 通信系统、基站和上位装置
CN110557235B (zh) * 2019-03-27 2023-04-07 中兴通讯股份有限公司 定位参考信号的发送、接收方法、装置、收发节点
CN112399567A (zh) * 2019-08-14 2021-02-23 华为技术有限公司 传输信号的方法和装置
US11979883B2 (en) * 2019-08-15 2024-05-07 Intel Corporation Downlink (DL) positioning reference signal (PRS) resource configuration and measurement in new radio (NR) systems
CN113423061B (zh) * 2021-06-23 2022-06-17 厦门大学 对处于5g网络下的终端设备的定位方法和装置
US12096392B2 (en) * 2022-01-20 2024-09-17 Qualcomm Incorporated Methods and apparatus for positioning based on motion of mobile anchor nodes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016099546A1 (en) * 2014-12-19 2016-06-23 Nokia Solutions And Networks Oy Virtual cell based prs transmission for indoor vertical positioning
US20170289953A1 (en) * 2014-08-29 2017-10-05 Lg Electronics Inc. Method for performing otdoa-related operation in wireless communication system
US20170366244A1 (en) * 2014-12-16 2017-12-21 Lg Electronics Inc. Method for receiving reference signal in wireless communication system, and apparatus therefor
JP2018123022A (ja) 2017-01-31 2018-08-09 株式会社フジクラ 多重管バーナ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008816A2 (ko) * 2010-07-16 2012-01-19 엘지전자 주식회사 무선 통신 시스템에서 위치 추정을 위한 메시지 전송 방법 및 장치
KR101191215B1 (ko) * 2010-07-16 2012-10-15 엘지전자 주식회사 무선 통신 시스템에서 위치 결정 방법 및 장치
CN103209475B (zh) * 2012-01-16 2016-05-25 华为技术有限公司 定位方法、定位服务器、终端和基站
JP2017228814A (ja) * 2014-11-06 2017-12-28 シャープ株式会社 基地局装置、端末装置および方法
EP3251235B1 (en) * 2015-01-26 2021-03-24 Apple Inc. Device and method to improve horizontal and vertical positioning accuracy
JP6639650B2 (ja) 2015-08-25 2020-02-05 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて位置決定のための参照信号の受信又は送信方法、及びそのための装置
US10880896B2 (en) * 2018-05-31 2020-12-29 Qualcomm Incorporated Identifying beams of interest for position estimation
US11399356B2 (en) * 2018-06-26 2022-07-26 Qualcomm Incorporated Synchronization signal block (SSB)-based positioning measurement signals

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170289953A1 (en) * 2014-08-29 2017-10-05 Lg Electronics Inc. Method for performing otdoa-related operation in wireless communication system
US20170366244A1 (en) * 2014-12-16 2017-12-21 Lg Electronics Inc. Method for receiving reference signal in wireless communication system, and apparatus therefor
WO2016099546A1 (en) * 2014-12-19 2016-06-23 Nokia Solutions And Networks Oy Virtual cell based prs transmission for indoor vertical positioning
JP2018123022A (ja) 2017-01-31 2018-08-09 株式会社フジクラ 多重管バーナ

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"IMT Vision - Framework and overall objectives of the future development of IMT for 2020 and beyond", RECOMMENDATION ITU-R M. 2083-0, September 2015 (2015-09-01)
ANONYMOUS: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) ; LTE Positioning Protocol (LPP) (Release 14", 3GPP TS 36.355 V14.5.1, 3 April 2018 (2018-04-03), pages 1 - 62-68, XP055666826 *
INTEL: "Study on NR Positioning Support", RP - 181399, June 2018 (2018-06-01)
See also references of EP3817468A4

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11740320B2 (en) 2018-10-05 2023-08-29 Qualcomm Incorporated Simplified cell location information sharing for positioning purposes
CN115211049B (zh) * 2020-02-14 2023-10-31 高通股份有限公司 定位信令中的波束管理
CN115211049A (zh) * 2020-02-14 2022-10-18 高通股份有限公司 定位信令中的波束管理
JP2021135123A (ja) * 2020-02-26 2021-09-13 Kddi株式会社 位置測位装置及び位置測位方法
JP7265500B2 (ja) 2020-02-26 2023-04-26 Kddi株式会社 位置測位装置及び位置測位方法
JPWO2021192199A1 (ja) * 2020-03-27 2021-09-30
WO2021192199A1 (ja) * 2020-03-27 2021-09-30 ソフトバンク株式会社 無線装置、サーバ及び無線通信方法
JP7429708B2 (ja) 2020-03-27 2024-02-08 ソフトバンク株式会社 無線装置、サーバ及び無線通信方法
US11570742B2 (en) 2020-05-29 2023-01-31 Qualcomm Incorporated Differential positioning reference signal reporting within co-located cells
WO2021242699A1 (en) * 2020-05-29 2021-12-02 Qualcomm Incorporated Differential positioning reference signal reporting within co-located cells
WO2022027670A1 (en) 2020-08-07 2022-02-10 Zte Corporation Method for positioning state information report
WO2022055772A3 (en) * 2020-09-11 2022-05-05 Qualcomm Incorporated Methods and apparatus for enhanced time difference of arrival based positioning for user equipment
US20220167303A1 (en) * 2020-11-24 2022-05-26 Telefonaktiebolaget Lm Ericsson (Publ) User equipment (ue) positioning
US11800484B2 (en) * 2020-11-24 2023-10-24 Telefonaktiebolaget Lm Ericsson (Publ) User equipment (UE) positioning
WO2022235336A1 (en) * 2021-05-05 2022-11-10 Qualcomm Incorporated Time reversal for on-demand positioning

Also Published As

Publication number Publication date
EP3817468A1 (en) 2021-05-05
CN112314020B (zh) 2024-03-22
JP2020005128A (ja) 2020-01-09
EP3817468A4 (en) 2022-08-03
KR20210024025A (ko) 2021-03-04
US20210282111A1 (en) 2021-09-09
CN112314020A (zh) 2021-02-02
US11310760B2 (en) 2022-04-19
JP7289189B2 (ja) 2023-06-09

Similar Documents

Publication Publication Date Title
JP7289189B2 (ja) 端末装置、ロケーションサーバー及び方法
US11601246B2 (en) Base station apparatus, terminal apparatus, and communication method
US11290990B2 (en) Terminal apparatus, base station apparatus, and communication method
US11483784B2 (en) Transmission and reception of synchronization signal blocks in a wireless network
US11323156B2 (en) Base station apparatus, terminal apparatus, and communication method
JP6773945B2 (ja) 基地局装置、ロケーションサーバ装置、および通信方法
US11283565B2 (en) Base station apparatus, terminal apparatus, and communication method
US11290997B2 (en) Base station apparatus, terminal apparatus, and communication method
US11228476B2 (en) Base station apparatus, terminal apparatus, and communication method
US10681697B2 (en) Base station apparatus, terminal apparatus, and communication method
CN113169779B (zh) 终端装置以及通信方法
US20200220680A1 (en) Base station apparatus, terminal apparatus, and communication method
JP2020005129A (ja) 通信装置および通信方法
US20190288794A1 (en) Base station apparatus, terminal apparatus, and communication method
US20190379570A1 (en) Base station apparatus, terminal apparatus, and communication method
US20210135810A1 (en) Base station apparatus, terminal apparatus, and communication method
US20210135724A1 (en) Base station apparatus, terminal apparatus, and communication method
JP2022061551A (ja) 端末装置、基地局装置および通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19827000

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217001592

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019827000

Country of ref document: EP

Effective date: 20210128