WO2020003528A1 - Air conditioning management system, air conditioning management method, and program - Google Patents

Air conditioning management system, air conditioning management method, and program Download PDF

Info

Publication number
WO2020003528A1
WO2020003528A1 PCT/JP2018/024919 JP2018024919W WO2020003528A1 WO 2020003528 A1 WO2020003528 A1 WO 2020003528A1 JP 2018024919 W JP2018024919 W JP 2018024919W WO 2020003528 A1 WO2020003528 A1 WO 2020003528A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
heat exchange
exchange amount
heat exchanger
side heat
Prior art date
Application number
PCT/JP2018/024919
Other languages
French (fr)
Japanese (ja)
Inventor
隼人 森
内藤 宏治
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to JP2018564438A priority Critical patent/JP6514422B1/en
Priority to PCT/JP2018/024919 priority patent/WO2020003528A1/en
Priority to CN201880092971.XA priority patent/CN112074691B/en
Priority to KR1020207036552A priority patent/KR102436213B1/en
Publication of WO2020003528A1 publication Critical patent/WO2020003528A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/38Failure diagnosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present invention relates to an air conditioning management system and the like.
  • Patent Document 1 based on the operating state, mode state, room temperature, and the like of the air conditioner, "change the diagnostic time and change the equipment maintenance condition of the air conditioner in conjunction with the entrance / exit management system and the building management system.” Is described.
  • Patent Document 1 describes a method for maintaining the air conditioning equipment, but does not describe a technique for identifying a location of a sign of deterioration in the air conditioning equipment. Further, in the technology described in Patent Literature 1, maintenance of the air-conditioning equipment is performed every predetermined period, and therefore, depending on the case, the maintenance time may be too early or too late. It is desirable to perform maintenance of the air conditioning equipment at an appropriate time, but such a technique is not described in Patent Document 1.
  • an object of the present invention is to provide an air conditioning management system or the like that can perform maintenance of a location where there is a sign of deterioration of an air conditioner at an appropriate time.
  • the present invention provides a location of a sign of deterioration of an air conditioner based on a magnitude relationship between a refrigerant-side heat exchange amount and an air-side heat exchange amount in a heat exchanger; It is characterized by reporting to a terminal.
  • an air-conditioning management system or the like that can perform maintenance of a place where there is a sign of deterioration in an air conditioner at an appropriate time.
  • FIG. 2 is a configuration diagram including an air conditioner to be managed by the air conditioning management system according to the first embodiment of the present invention. It is a functional block diagram of an air conditioning management device with which an air conditioning management system concerning a 1st embodiment of the present invention is provided.
  • FIG. 4 is an explanatory diagram relating to rotation speed-design air volume information of the air conditioning management system according to the first embodiment of the present invention. It is an explanatory view showing a learning result of a normal range about refrigerant side heat exchange quantity Qref and air side heat exchange quantity Qair in the air conditioning management system according to the first embodiment of the present invention.
  • FIG. 3 is an explanatory diagram showing a state where points (Q ref , Q air ) deviate from a normal range due to adhesion of dust to an indoor heat exchanger or the like in the air conditioning management system according to the first embodiment of the present invention.
  • FIG. 4 is an explanatory diagram showing an example of a temporal transition of a ratio (Q air / Q ref ) in the air conditioning management system according to the first embodiment of the present invention.
  • FIG. 9 is an air line diagram relating to temperature and humidity of air on the suction side and the air outlet side of the indoor heat exchanger in the air conditioning management system according to the modified example of the present invention.
  • FIG. 1 is a schematic configuration diagram including the air conditioning management system W according to the first embodiment.
  • the illustration of the pipe J is simplified, and the pipe that guides the refrigerant from the outdoor unit Uo to the four indoor units Ui and the pipe that guides the refrigerant from the four indoor units Ui to the outdoor unit Uo are common. This is shown by a solid line (pipe J).
  • the air conditioning management system W is a system that manages the operation of the air conditioner 100, and includes an air conditioning management device 200.
  • the air-conditioning management device 200 may have a configuration including a plurality of servers.
  • the configuration and functions of the air conditioning management device 200 will be described in detail.
  • the air conditioner 100 is a device that performs air conditioning such as a cooling operation and a heating operation.
  • FIG. 1 illustrates, as an example, a multi-type air conditioner 100 in which an outdoor unit Uo of a top blowing type and four indoor units Ui of a ceiling embedded type are connected via a pipe J. .
  • the outdoor unit Uo is connected to the indoor unit Ui via the communication line M, and is also connected to the air conditioning management device 200 via the communication line M.
  • FIG. 2 is a configuration diagram including the refrigerant circuit F of the air conditioner 100.
  • FIG. 2 two of the four indoor units Ui (see FIG. 1) are illustrated, and illustration of the remaining two units is omitted.
  • FIG. 2 the flow of air in the outdoor heat exchanger 12 and the indoor heat exchanger 16 is indicated by outline arrows.
  • the air conditioner 100 includes a compressor 11, an outdoor heat exchanger 12, an outdoor fan 13, an outdoor expansion valve 14, and a four-way valve 15 as devices provided in the outdoor unit Uo.
  • the compressor 11 is a device that compresses a low-temperature and low-pressure gas refrigerant and discharges it as a high-temperature and high-pressure gas refrigerant.
  • a compressor 11 for example, a scroll compressor or a rotary compressor is used.
  • the outdoor heat exchanger 12 is a heat exchanger in which heat exchange is performed between the refrigerant flowing through the heat transfer tube (not shown) and the outside air sent from the outdoor fan 13.
  • One end g1 of the outdoor heat exchanger 12 is connected to the suction side or the discharge side of the compressor 11 by switching the four-way valve 15, and the other end g2 is connected to the liquid side pipe J1.
  • the outdoor fan 13 is a fan that sends outside air to the outdoor heat exchanger 12.
  • the outdoor fan 13 includes an outdoor fan motor 13a as a driving source, and is arranged near the outdoor heat exchanger 12.
  • the outdoor expansion valve 14 is an electronic expansion valve that adjusts the flow rate of the refrigerant flowing through the outdoor heat exchanger 12 and reduces the pressure of the refrigerant when the outdoor heat exchanger 12 functions as an evaporator. It is provided in.
  • the four-way valve 15 is a valve that switches the flow path of the refrigerant according to the operation mode during air conditioning.
  • the air conditioner 100 includes an indoor heat exchanger 16 (heat exchanger), an indoor fan 17 (fan), an air filter 18, and an indoor expansion valve 19 as devices provided in the indoor unit Ui. ing.
  • the indoor heat exchanger 16 is a heat exchanger in which heat is exchanged between a refrigerant flowing through a heat transfer tube (not shown) and indoor air (air in a space to be air-conditioned) sent from an indoor fan 17. It is.
  • One end h1 of the indoor heat exchanger 16 is connected to the gas side pipe J2, and the other end h2 is connected to the liquid side pipe J3.
  • the indoor fan 17 is a fan that sends indoor air to the indoor heat exchanger 16.
  • the indoor fan 17 has an indoor fan motor 17a as a driving source, and is arranged near the indoor heat exchanger 16.
  • the air filter 18 is a filter that collects dust from air flowing toward the indoor heat exchanger 16 as the indoor fan 17 is driven, and is arranged near the indoor heat exchanger 16 (air suction side).
  • the indoor expansion valve 19 is an electronic expansion valve that adjusts the flow rate of the refrigerant flowing through the indoor heat exchanger 16 and reduces the pressure of the refrigerant when the indoor heat exchanger 16 functions as an evaporator. It is provided in.
  • the other indoor units Ui have the same configuration.
  • the liquid-side connection part K1 connects the plurality of liquid-side pipes J3 connected one-to-one to each indoor unit Ui, and the liquid-side pipes J1 connected to the other end g2 of the outdoor heat exchanger 12. It is.
  • the gas side connection part K2 connects a plurality of gas side pipes J2 connected one-to-one to each indoor unit Ui, and a gas side pipe J4 connected to the four-way valve 15 of the outdoor unit Uo. .
  • the refrigerant circulates in a known heat pump cycle according to the operation mode during air conditioning. For example, during the cooling operation, the refrigerant circulates sequentially through the compressor 11, the outdoor heat exchanger 12 (condenser), the outdoor expansion valve 14, the indoor expansion valve 19, and the indoor heat exchanger 16 (evaporator). On the other hand, during the heating operation, the refrigerant circulates sequentially through the compressor 11, the indoor heat exchanger 16 (condenser), the indoor expansion valve 19, the outdoor expansion valve 14, and the outdoor heat exchanger 12 (evaporator).
  • the outdoor unit Uo is provided with a suction pressure sensor 21, a suction temperature sensor 22, a discharge pressure sensor 23, and a discharge temperature sensor 24.
  • the suction pressure sensor 21 is a sensor that detects the pressure (suction pressure) of the refrigerant on the suction side of the compressor 11.
  • the suction temperature sensor 22 is a sensor that detects the temperature of the refrigerant (suction temperature) on the suction side of the compressor 11.
  • the discharge pressure sensor 23 is a sensor that detects the pressure (discharge pressure) of the refrigerant on the discharge side of the compressor 11.
  • the discharge temperature sensor 24 is a sensor that detects the temperature (discharge temperature) of the refrigerant on the discharge side of the compressor 11. The detection values of the suction pressure sensor 21, the suction temperature sensor 22, the discharge pressure sensor 23, and the discharge temperature sensor 24 are output to the air conditioning management device 200 via the outdoor control circuit 31.
  • the indoor unit Ui is provided with refrigerant temperature sensors 25 and 26, an intake air temperature sensor 27, and an outlet air temperature sensor 28.
  • the refrigerant temperature sensor 25 is a sensor that detects the temperature of the refrigerant flowing near one end h1 of the indoor heat exchanger 16.
  • the other refrigerant temperature sensor 26 is a sensor that detects the temperature of the refrigerant flowing near the other end h2 of the indoor heat exchanger 16.
  • the suction air temperature sensor 27 is a sensor that detects the temperature of air on the air suction side (inlet side) of the indoor heat exchanger 16.
  • the blowout air temperature sensor 28 is a sensor that detects the temperature of air on the air blowout side (outlet side) of the indoor heat exchanger 16. Respective detection values of the refrigerant temperature sensors 25 and 26, the suction air temperature sensor 27, and the blow-off air temperature sensor 28 are output to the outdoor control circuit 31 and the air conditioning management device 200 via the indoor control circuit 32.
  • the outdoor unit Uo is provided with an outdoor control circuit 31, and the indoor unit Ui is provided with an indoor control circuit 32.
  • the outdoor control circuit 31 and the indoor control circuit 32 include electronic circuits such as a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and various interfaces. . Then, the program stored in the ROM is read out and expanded in the RAM, and the CPU executes various processes.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the outdoor control circuit 31 controls the compressor 11, the outdoor fan 13, the outdoor expansion valve 14, and the like based on the detection value of each sensor and a command from the air conditioning management device 200, and outputs a predetermined signal to the indoor control circuit 32.
  • the indoor control circuit 32 controls the indoor fan 17 and the indoor expansion valve 19 based on a signal received from the outdoor control circuit 31 and a command from the air conditioning management device 200.
  • the remote controller Re exchanges predetermined information with the indoor control circuit 32 by infrared communication or the like. For example, signals related to the operation / stop of the air conditioning, the setting of the operation mode, the timer, and the change of the set temperature are transmitted from the remote controller Re to the indoor control circuit 32.
  • a signal transmitted from the indoor control circuit 32 to the remote controller Re includes, for example, predetermined information (information of a deterioration sign diagnosis described later) generated by the air conditioning management device 200.
  • the air-conditioning management device 200 shown in FIG. 2 includes electronic circuits such as a CPU, a ROM, a RAM, and various interfaces, and is connected to the outdoor control circuit 31 and the indoor control circuit 32 via a communication line. ing.
  • the air-conditioning management device 200 has a function of identifying a location where there is a sign of deterioration in the air conditioner 100 based on a detection value of each sensor.
  • the above-mentioned “sign of deterioration” is a warning that a predetermined portion of the air conditioner 100 is deteriorated.
  • the “deterioration sign” includes the adhesion of dust to the indoor heat exchanger 16 and the air filter 18.
  • the process of the air-conditioning management device 200 diagnosing the presence or absence of the deterioration sign of the air conditioner 100 and specifying the location of the deterioration sign is referred to as “deterioration sign diagnosis”.
  • FIG. 3 is a functional block diagram of the air conditioning management device 200 (see FIG. 2 as appropriate).
  • the air conditioning management device 200 includes a storage unit 210, a control unit 220, and a notification unit 230.
  • the storage unit 210 stores, in addition to a predetermined program, rotation speed-design airflow information 211, design volumetric efficiency information 212, and normal range information 213.
  • the rotation speed-design airflow information 211 is information indicating a predetermined design airflow corresponding to the rotation speed of the indoor fan 17.
  • the “design airflow” described above is an airflow of the indoor unit Ui obtained in a preliminary experiment based on the specifications of the indoor fan 17 and the indoor heat exchanger 16.
  • FIG. 4 is an explanatory diagram relating to rotation speed-design airflow information.
  • the horizontal axis in FIG. 4 is the rotation speed of the indoor fan 17 (see FIG. 2), and the vertical axis is the design airflow of the indoor unit Ui (see FIG. 2).
  • the rotation speed-design airflow information 211 (see FIG. 3) is represented by a straight line L1 rising to the right. That is, as the rotation speed of the indoor fan 17 increases, the design airflow also increases.
  • a mathematical expression or the like representing such a straight line L1 is stored in advance in the storage unit 210 as the rotation speed-design airflow information 211.
  • the design volumetric efficiency information 212 shown in FIG. 3 is information indicating the design volumetric efficiency of the compressor 11.
  • the “design volumetric efficiency” is a volumetric efficiency based on the specifications of the compressor 11, and is calculated based on a rotation speed of a motor (not shown) of the compressor 11 and the like.
  • the normal range information 213 stored in the storage unit 210 will be described later.
  • the control unit 220 performs a predetermined process based on the detection value of each sensor and the data of the storage unit 210. As illustrated in FIG. 3, the control unit 220 includes a refrigerant-side heat exchange amount estimating unit 221, an air-side heat exchange amount estimating unit 222, a learning unit 223, a comparing unit 224, and a diagnostic unit 225. I have.
  • Refrigerant heat exchange amount estimating unit 221, based on the detected value of temperature, pressure, etc. of the refrigerant estimates the refrigerant side heat exchange quantity Q ref in the indoor heat exchanger 16.
  • the “refrigerant side” of the refrigerant side heat exchange amount Qref means a heat exchange amount estimated based on a detected value such as a temperature and a pressure of the refrigerant.
  • the air-side heat exchange amount estimating unit 222 determines the indoor temperature based on the rotation speed-design airflow information 211 in addition to the temperature of the air on the suction side and the air outlet side of the indoor heat exchanger 16 and the rotation speed of the indoor fan 17.
  • the air-side heat exchange amount Q air in the heat exchanger 16 is estimated.
  • the “air side” of the air side heat exchange amount Q air means a heat exchange amount estimated based on the air temperature or the like.
  • the air-side heat exchange amount Q air is calculated based on the rotation speed-design air flow information 211 and the like, using a predetermined design air flow corresponding to the rotation speed of the indoor fan 17. Therefore, as the amount of dust adhering to the indoor heat exchanger 16 and the air filter 18 increases, the actual airflow of the indoor unit Ui decreases and deviates from a predetermined design airflow. As a result, the air-side heat exchange amount Q air based on the design air amount is larger than the refrigerant-side heat exchange amount Q ref reflecting the actual air amount. In the present embodiment, on the basis of the magnitude relation between such a refrigerant heat exchange quantity Q ref, such as air-side heat exchange rate Q air, and so as to detect a decrease air volume of the indoor unit Ui.
  • the learning unit 223 shown in FIG. 3 learns a normal range of a ratio (Q air / Q ref ) of the air side heat exchange amount Q air to the refrigerant side heat exchange amount Q ref . That is, the normal range of the ratio (Q air / Q ref ) is learned as a range that does not significantly affect the decrease in the operating efficiency of the air conditioner 100.
  • FIG. 5 is an explanatory diagram showing learning results in a normal range regarding the refrigerant-side heat exchange amount Qref and the air-side heat exchange amount Qair .
  • the horizontal axis of FIG. 5 is a refrigerant-side heat exchange quantity Q ref estimated by the refrigerant side heat exchange amount estimating unit 221 (see FIG. 3).
  • the vertical axis in FIG. 5 is the air-side heat exchange amount Q air estimated by the air-side heat exchange amount estimation unit 222 (see FIG. 3).
  • a plurality of points shown in FIG. 5 are obtained during a predetermined learning period in which it is known that each device of the air conditioner 100 is normal and that little dust adheres to the indoor heat exchanger 16 and the air filter 18. Data.
  • a learning period may be at the time of test operation of the air conditioner 100, or may be at the time of normal operation for a predetermined period (for example, several months) from the time of installation of the air conditioner 100.
  • the learning unit 223 uses the least-square method, for example, in FIG. 5 based on the plurality of refrigerant-side heat exchange amounts Q ref and the air-side heat exchange amount Q air obtained in a predetermined learning period.
  • the mathematical formula of the straight line L2 shown is derived. Note that the learning unit 223 may calculate the moving average of the ratio (Q air / Q ref ) obtained in time series instead of the mathematical expression of the straight line L2.
  • the actual air volume of the indoor unit Ui is equal to the predetermined design air volume corresponding to the rotation speed of the indoor fan 17. Becomes approximately equal to As a result, the air-side heat exchange amount Q air hardly departs from the refrigerant-side heat exchange amount Qref, and the slope of the straight line L2 often becomes a value close to “1”.
  • the learning unit 223 determines that the predetermined range is, for example, a range below the straight line L21 having the slope (a + b1) and above the straight line L22 having the slope (a ⁇ b1) Is set as a normal range of the point (Q ref , Q air ).
  • the learning unit 223 sets (ab1) ⁇ ( Qair / Qref ) ⁇ (a + b1) as a normal range of the ratio ( Qair / Qref ). Then, the learning unit 223 stores the information of the normal range as the learning result in the storage unit 210 as normal range information 213 (see FIG. 3).
  • the comparison unit 224 shown in FIG. 3 After learning the normal range of the ratio (Q air / Q ref ), the comparison unit 224 shown in FIG. 3 performs the refrigerant-side heat exchange amount Q ref and the air-side heat exchange in the diagnosis of deterioration of the air conditioner 100. Compare the magnitude with the quantity Q air .
  • the diagnosis unit 225 shown in FIG. 3 diagnoses the presence or absence of a sign of deterioration of the air conditioner 100 based on the comparison result of the comparison unit 224, and further specifies the deteriorated portion.
  • a sign of deterioration of the air conditioner 100 whether the actual air volume of the indoor unit Ui is lower than the design air volume (a large amount of dust is present in the indoor heat exchanger 16 and the air filter 18).
  • the diagnosis unit 225 diagnoses whether or not it is attached.
  • the notification unit 230 shown in FIG. 3 notifies the diagnosis result of the diagnosis unit 225.
  • a notification unit 230 a display lamp, a buzzer, and the like are provided in addition to the display.
  • the notification unit 230 may have a predetermined communication function, and notify the diagnosis result of the diagnosis unit 225 to the remote controller Re or the user's portable terminal (not shown).
  • FIG. 6 is a flowchart illustrating a process of the control unit 220 included in the air-conditioning management device 200 (see FIGS. 2 and 3 as appropriate).
  • the normal range of the ratio (Q air / Q ref ) has already been learned, and a predetermined air-conditioning operation (cooling operation or heating operation) is being performed.
  • a predetermined air-conditioning operation cooling operation or heating operation
  • the refrigerant-side heat exchange amount estimating unit 221 estimates the refrigerant side heat exchange amount Q ref of the indoor heat exchanger 16 (the refrigerant heat exchanger estimation step). More specifically, the control unit 220 firstly controls the compressor 11 based on the detection value of the suction pressure sensor 21, the detection value of the suction temperature sensor 22, and the degree of superheat of the refrigerant on the suction side of the compressor 11. Calculate the refrigerant density on the suction side. It is assumed that a predetermined value of the refrigerant superheat degree on the suction side of the compressor 11 is stored in advance based on a previous experiment.
  • control unit 220 determines the refrigerant density on the suction side of the compressor 11, the stroke volume of the compressor 11, the rotation speed of the compressor motor (not shown), and the designed volumetric efficiency of the compressor 11.
  • the refrigerant circulation amount per unit time in the refrigerant circuit F is calculated. It is assumed that the stroke volume of the compressor 11 is known.
  • the design volumetric efficiency of the compressor 11 is estimated based on the design volumetric efficiency information 213 (see FIG. 3).
  • control unit 220 determines one end and the other end of the indoor heat exchanger 16 (that is, the inlet side and the outlet side) based on the detection value of the discharge pressure sensor 23 and the detection values of the refrigerant temperature sensors 25 and 26. Side), the difference in specific enthalpy of the refrigerant is calculated. Then, the control unit 220 determines the refrigerant-side heat exchange amount Q of the indoor heat exchanger 16 based on the specific enthalpy difference of the refrigerant at one end and the other end of the indoor heat exchanger 16 and the above-described refrigerant circulation amount. Estimate ref .
  • control unit 220 is configured based on information including the temperature of the refrigerant at one end and the other end of the indoor heat exchanger 16 disposed near the indoor fan 17 and the design volume efficiency of the compressor 11.
  • the refrigerant-side heat exchange amount Qref in the indoor heat exchanger 16 is estimated.
  • the detection value of the suction pressure sensor 21 is used instead of the detection value of the discharge pressure sensor 23.
  • step S102 the control unit 220 estimates the air-side heat exchange amount Q air of the indoor heat exchanger 16 by the air-side heat exchange amount estimation unit 222 (air-side heat exchange amount estimation step). More specifically, the control unit 220 first calculates the design airflow corresponding to the rotation speed of the indoor fan 17 with reference to the rotation speed-design airflow information 211. Then, the control unit 220 determines the air-side heat exchange amount Q air of the indoor heat exchanger 16 based on the design air volume, the detection value of the intake air temperature sensor 27, and the detection value of the blow-out air temperature sensor 28. Is estimated.
  • control unit 220 determines the temperature of the air flowing toward the indoor heat exchanger 16, the temperature of the air that has exchanged heat in the indoor heat exchanger 16, and the design airflow corresponding to the rotation speed of the indoor fan 17.
  • the air-side heat exchange amount Q air in the indoor heat exchanger 16 is estimated.
  • step S103 the control unit 220 causes the comparing unit 224 to determine whether the air-side heat exchange amount Q air is larger than the refrigerant-side heat exchange amount Q ref . For example, if a large amount of dust adheres to the indoor heat exchanger 16 and the air filter 18, the ventilation resistance increases, and the actual airflow becomes smaller than the design airflow corresponding to the rotation speed of the indoor fan 17. In other words, the design airflow is larger than the actual airflow (actual airflow).
  • the air-side heat exchange amount Q air based on the design air volume of the indoor unit Ui is largely estimated, and the ratio of the heat exchange amount (Q air / Q ref ) becomes larger than “1”.
  • the ratio (Q air / Q ref ) increases as the amount of dust adhering to the indoor heat exchanger 16 and the air filter 18 increases.
  • FIG. 7 is an explanatory diagram showing a state where the points (Q ref , Q air ) deviate from the normal range due to the adhesion of dust to the indoor heat exchanger and the like.
  • the horizontal axis in FIG. 7 is the refrigerant-side heat exchange amount Qref
  • the vertical axis is the air-side heat exchange amount Qair .
  • the hatched portion shown in FIG. 7 indicates the normal range of the point (Q ref , Q air ).
  • the air-side heat exchange amount Q1 air is larger than the refrigerant-side heat exchange amount Q1 ref
  • the point (Q1 ref , Q1 air ) deviates from the normal range. This is because a large amount of dust adhered to the indoor heat exchanger 16 and the air filter 18, and the design airflow became much larger than the actual airflow.
  • FIG. 7 is an explanatory diagram showing a state where the points (Q ref , Q air ) deviate from the normal range due to the adhesion of dust to the
  • step S104 in FIG. 6 the control unit 220 determines whether or not the ratio (Q air / Q ref ) is outside the normal range.
  • FIG. 8 is an explanatory diagram showing an example of a temporal transition of the ratio (Q air / Q ref ). Note that the horizontal axis in FIG. 8 is time, and the vertical axis is the ratio (Q air / Q ref ). Incidentally, each of the points (data) plotted in FIG. 8 does not correspond one-to-one with each point shown in FIG.
  • a range of ⁇ ⁇ (Q air / Q ref ) ⁇ ⁇ is set as a learning result of the normal range of the ratio (Q air / Q ref ). This is the normal range information 213 (see FIG. 3).
  • the ratio (Q air / Q ref ) gradually increases as time elapses, and deviates from the normal range after time t1.
  • the control unit 220 calculates a moving average of a plurality of ratios (Q air / Q ref ) calculated in time series in order to prevent erroneous diagnosis of the deterioration sign, and determines whether the moving average is out of a normal range. May be determined. In addition, when the control unit 220 calculates the ratio (Q air / Q ref ), the approximate straight line L3 of the plurality of points (Q ref , Q air ) shown in FIG. It may be determined whether the inclination is out of the normal range.
  • step S104 the process of the control unit 220 proceeds to step S105.
  • the control unit 220 determines by the diagnosis unit 225 that the actual air volume of the indoor unit Ui has decreased with respect to the design air volume. In other words, the control unit 220 diagnoses that the indoor heat exchanger 16 and the air filter 18 have a sign of deterioration (a large amount of dust is attached).
  • step S106 the control unit 220 transmits a command signal for cleaning the air filter 18 of the indoor unit Ui to the air conditioner 100. Further, in step S107, control unit 220 transmits to air conditioner 100 a command signal for performing freezing and cleaning of indoor heat exchanger 16. The details of cleaning of the air filter 18 and freeze cleaning of the indoor heat exchanger 16 will be described later. After performing the process of step S107, the control unit 220 ends a series of processes (END).
  • step S108 If Q ref ⁇ Q air in step S103 (S103: No), or if the ratio (Q air / Q ref ) is within the normal range in step S104 (S104: No), the processing of the control unit 220 is Proceed to step S108.
  • step S108 the control unit 220 determines that the actual air volume of the indoor unit Ui is within the normal range by the diagnostic unit 225. In this case, since the amount of dust adhering to the air filter 18 or the like does not adversely affect the operation efficiency of the air conditioner 100, it is not particularly necessary to clean the air filter 18 or the like.
  • control unit 220 After performing the process of step S108, the control unit 220 ends a series of processes (END). Note that the control unit 220 executes a series of processes shown in FIG. 6 every predetermined period (for example, every several days or every several weeks).
  • FIG. 9 is a bottom view of the embedded indoor unit Ui with the suction panel removed, as viewed from below.
  • a rectangular air intake port i is provided in a housing 51 of the indoor unit Ui, and four wind direction plates 52 are provided so as to surround the air intake port i.
  • An air filter 18 is installed at the air inlet i, and a filter cleaning unit 53 is installed outside the air filter 18.
  • the filter cleaning section 53 has a brush (not shown) that comes into contact with the air filter 18. The dust on the air filter 18 is removed by moving the filter cleaning unit 53 in the left-right direction.
  • the air conditioner 100 cleans the air filter 18 by the filter cleaning unit 53.
  • dust on the air filter 18 is removed, so that the actual air volume of the indoor unit Ui can be made closer to the design air volume, and the operating efficiency of the air conditioner 100 can be improved.
  • the outdoor control circuit 31 and the indoor control circuit 32 drive the compressor 11 and further reduce the opening of the indoor expansion valve 19 as compared with the cooling operation.
  • the refrigerant having a low pressure and a low evaporation temperature flows into the indoor heat exchanger 16, so that moisture in the air is frosted on the indoor heat exchanger 16, and the frost and ice easily grow.
  • the outdoor control circuit 31 and the indoor control circuit 32 defrost the indoor heat exchanger 16.
  • frost and ice of the indoor heat exchanger 16 are naturally thawed at room temperature, and a large amount of the frost and ice travel along the fins (not shown) of the indoor heat exchanger 16. Water runs down. As a result, dust in the indoor heat exchanger 16 is washed away, so that the actual air volume of the indoor unit Ui can be made closer to the design air volume.
  • the inside of the indoor unit Ui may be dried by the outdoor control circuit 31 or the indoor control circuit 32 performing a heating operation or a blowing operation. Thereby, propagation of mold and the like in the indoor unit Ui can be suppressed.
  • the air-conditioning management device 200 performs indoor air conditioning based on the refrigerant-side heat exchange amount Qref based on the temperature and pressure of the refrigerant and the air-side heat exchange amount Qair based on the design airflow and the like. It is determined whether or not the actual air volume of the heat exchanger 16 is lower than the designed air volume. Based on the diagnosis result, the air conditioning management device 200 can cause the air filter 18 of the air conditioner 100 to perform cleaning of the air filter 18 and freeze cleaning of the indoor heat exchanger 16 at an appropriate time.
  • the notification unit 230 can notify the user or the like that maintenance of the air conditioner 100 is required at an appropriate time. For example, the notification unit 230 notifies the remote controller Re and the user's portable terminal (not shown) that maintenance of the air conditioner 100 is required. This makes it possible to perform maintenance on the air conditioner 100 before the increase in the condensation pressure of the refrigerant and the decrease in the evaporation pressure deviate from the allowable ranges. In addition, it is possible to prevent the maintenance of the air conditioner 100 from being performed wastefully and frequently, and to reduce the cost required for the maintenance as compared with the related art.
  • the second embodiment differs from the first embodiment in the processing content of the control unit 220 (see FIG. 3). That is, in the second embodiment, based on the magnitude relationship between the refrigerant-side heat exchange amount Qref and the air-side heat exchange amount Qair , the control unit 220 reduces the volume efficiency of the compressor 11 (see FIG. 2). This is different from the first embodiment in that it is diagnosed whether or not the operation is performed.
  • the other components (the configuration of the air conditioner 100 and the air conditioning management device 200, etc .: see FIGS. 1 to 3) are the same as those of the first embodiment. Therefore, only the portions different from the first embodiment will be described, and the description of the overlapping portions will be omitted.
  • FIG. 10 is a flowchart illustrating a process of the control unit 220 included in the air-conditioning management device 200 (see FIGS. 2 and 3 as appropriate).
  • the normal range of the ratio (Q air / Q ref ) has already been learned and a predetermined air conditioning operation (cooling operation or heating operation) is being performed. Also, it is assumed that not so much dust adheres to the indoor heat exchanger 16 and the air filter 18.
  • Steps S201 and S202 in FIG. 10 are the same as steps S101 and S102 (see FIG. 6) described in the first embodiment, and a description thereof will be omitted.
  • the control unit 220 in step S203 After estimating the refrigerant side heat exchange quantity Q ref and the air-side heat exchange amount Q air (S201, S202), the control unit 220 in step S203, the better the air-side heat exchange rate Q air than the refrigerant side heat exchange quantity Q ref It is determined whether it is small. For example, when the sealing performance of a compression chamber (not shown) is deteriorated due to the deterioration of the compressor 11 over time, the refrigerant is likely to leak, and the volume efficiency of the compressor 11 is reduced. That is, the actual volumetric efficiency is lower than the predetermined designed volumetric efficiency based on the specifications of the compressor 11.
  • step S204 the control unit 220 determines whether or not the ratio (Q air / Q ref ) is outside the normal range.
  • FIG. 11 is an explanatory diagram showing a state where the points (Q ref , Q air ) deviate from the normal range due to a decrease in the volumetric efficiency of the compressor. Note that a hatched portion shown in FIG. 11 indicates a normal range of the point (Q ref , Q air ). For example, focusing on the point P2, the air side heat exchange amount Q2 air is smaller than the refrigerant side heat exchange amount Q2 ref , and the point (Q2 ref , Q2 air ) is out of the normal range. This is because the volume efficiency of the compressor 11 has been reduced, and the refrigerant has easily leaked from a compression chamber (not shown). The same applies to other points shown in FIG.
  • FIG. 12 is an explanatory diagram showing an example of a temporal transition of the ratio (Q air / Q ref ).
  • the ratio (Q air / Q ref ) gradually decreases, and is out of the normal range after time t2.
  • step S205 the control unit 220 determines by the diagnosis unit 225 that the actual volumetric efficiency of the compressor 11 is lower than the designed volumetric efficiency. In other words, the control unit 220 diagnoses that the compressor 11 has a sign of deterioration.
  • step S206 the control unit 220 causes the notification unit 230 to notify the remote controller Re or the like that maintenance of the compressor 11 is required (notification step). Thus, it is possible to inform the user that it is time to perform maintenance on the compressor 11.
  • the control unit 220 ends a series of processes (END).
  • step S203 if Q ref ⁇ Q air in step S203 (S203: No), or if the ratio (Q air / Q ref ) is within the normal range in step S204 (S204: No), the processing of the control unit 220 is Proceed to step S207.
  • step S207 the control unit 220 determines by the diagnosis unit 225 that the actual volumetric efficiency of the compressor 11 is within the normal range. In this case, since the actual volumetric efficiency of the compressor 11 does not adversely affect the operation efficiency of the air conditioner 100, there is no particular need to perform maintenance on the compressor 11. After performing the process of step S207, the control unit 220 ends a series of processes (END).
  • the air-conditioning management device 200 performs compression based on the refrigerant-side heat exchange amount Qref based on the temperature and pressure of the refrigerant and the air-side heat exchange amount Qair based on the design airflow and the like. It is diagnosed whether the volumetric efficiency of the machine 11 has decreased from the designed volumetric efficiency. When maintenance of the compressor 11 is required, the fact is notified to the remote controller Re or the like.
  • the air-conditioning management system W according to the present invention has been described in each embodiment, but the present invention is not limited to these descriptions, and various changes can be made.
  • the result of the deterioration sign diagnosis may be reported to the user's portable terminal 60 (see FIG. 13) or may be reported to the remote monitoring center 70 (see FIG. 13).
  • FIG. 13 is a schematic configuration diagram including an air conditioning management system WA according to a modification.
  • the mobile terminal 60 illustrated in FIG. 13 is a terminal such as a smartphone, a tablet, and a mobile phone owned by the user of the air conditioner 100, and can communicate with the air conditioning management device 200 via the network N.
  • the remote monitoring center 70 is a facility that analyzes the result of the diagnosis of a sign of deterioration of the air conditioner 100 and notifies a user or the like as necessary.
  • the remote monitoring center 70 can communicate with the air conditioning management device 200 via the network N. I have.
  • the computer (not shown) of the remote monitoring center 70 is also included in the “terminal”.
  • the result of the deterioration sign diagnosis by the air-conditioning management device 200 is reported to the portable terminal 60 and the remote monitoring center 70 in addition to the remote controller Re (see FIG. 2) by the reporting unit 230 (see FIG. 3). (Notification step). Thereby, the user and the staff of the remote monitoring center 70 can grasp the location where the deterioration sign is present in the air conditioner 100.
  • control unit 220 calculates the rate of change of the ratio (Q air / Q ref ) in a predetermined period up to that time based on the least squares method, and based on the change speed, calculates the ratio (Q air / Q ref ) deviates from a predetermined normal range. Then, the notifying unit 230 notifies the above-mentioned time to the remote monitoring center 70 and the like in addition to the remote controller Re and the portable terminal 60. Thus, it is possible to notify the user or the like in advance of the time at which maintenance should be performed.
  • the ratio of the air-side heat exchange rate Q air for refrigerant side heat exchange quantity Q ref and (Q air / Q ref) is calculated control unit 220, a history information notification unit of the ratio (Q air / Q ref) 230
  • the notification may be made to the remote monitoring center 70 or a predetermined service diagnostic device (not shown).
  • the notification unit 230 may also display thresholds indicating the upper and lower limits of the normal range of the ratio (Q air / Q ref ), and may also display the location of the deterioration sign. Good.
  • the user viewed temporal change in the ratio (Q air / Q ref) is, for example, to grasp the degree of decrease of the air volume of the indoor unit Ui, the ratio (Q air / Q ref) is out of the normal range It is possible to predict the time.
  • the control unit 220 may predict when a sign of deterioration will occur at a predetermined location of the air conditioner 100. For example, the control unit 220, the most recent of the ratio of the air conditioner 100 to be diagnosed and (Q air / Q ref), the temporal ratio of other air conditioner (not shown) (Q air / Q ref) Based on the change speed, a time when the ratio (Q air / Q ref ) of the air conditioner 100 deviates from a predetermined normal range is predicted.
  • the notifying unit 230 notifies the above-mentioned time to the remote monitoring center 70 and the like in addition to the remote controller Re and the portable terminal 60. Thus, it is possible to notify the user or the like in advance of the time at which maintenance should be performed.
  • the air-conditioning management device 200 uploads maintenance information of the air conditioner 100 to a service center (not shown) or maintenance information of another air conditioner (not shown) of the same model as the air conditioner 100. May be provided from the service center. Then, based on the ratio (Q air / Q ref ) of other air conditioners and the maintenance information, the control unit 220 determines when the ratio (Q air / Q ref ) of the air conditioner 100 deviates from a predetermined normal range. It may be predicted.
  • the control unit 220 in response to a command from the remote controller Re, the mobile terminal 60, or the remote monitoring center 70, the control unit 220 starts processing for estimating the refrigerant-side heat exchange amount Qref and the air-side heat exchange amount Qair. May be.
  • the control unit 220 can perform the deterioration sign diagnosis in real time in response to a command from the remote controller Re or the like.
  • the control unit 220 determines that the actual air volume of the indoor unit Ui is lower than the design air volume (although S105) has been described, the invention is not limited to this.
  • the control unit 220 may determine that the air volume has decreased (S105).
  • the notifying unit 230 may notify the above-described determination result to the remote monitoring center 70 in addition to the remote controller Re and the portable terminal 60. As a result, the user or the like can grasp the diagnosis result regarding the decrease in the air volume.
  • the control unit 220 cleans the air filter 18 or freeze-cleans the indoor heat exchanger 16.
  • the air conditioner 100 may perform the operation.
  • the air filter 18 and the like can be cleaned at an appropriate time based on the diagnosis result of the deterioration sign.
  • the control unit 220 may determine that the volumetric efficiency has decreased (S205). Then, the notifying unit 230 indicates the location of a sign of deterioration of the air conditioner 100 based on the magnitude relationship between the refrigerant-side heat exchange amount Qref and the air-side heat exchange amount Qair (that is, the magnitude of the ratio Qair / Qref ). May be notified to the remote controller Re, the portable terminal 60, or the remote monitoring center 70.
  • the control unit 220 may perform a predetermined deterioration sign diagnosis.
  • control unit 220 may be configured to estimate a refrigerant-side heat exchange quantity Q ref and the air-side heat exchange amount Q air.
  • the notification unit 230 notifies the remote controller Re that the actual volume efficiency of the compressor 11 has decreased with respect to the design volume efficiency.
  • the mobile terminal 60, or the remote monitoring center 70 As a result, the accuracy of the diagnosis of the deterioration sign can be improved.
  • the notification unit 230 may not perform the notification regarding the diagnosis of the deterioration sign. If the temperature of the air flowing toward the indoor heat exchanger 16 is equal to or lower than the dew point, latent heat is generated when water vapor contained in the air is condensed. Since this latent heat is not reflected in the temperature change of the air, the air-side heat exchange amount Q air becomes smaller than the actual value, and the accuracy of diagnosis regarding the decrease in the air volume of the indoor unit Ui may be reduced.
  • the notification unit 230 performs notification regarding the deterioration sign diagnosis. As a result, an accurate diagnosis result can be reported to a user or the like. Incidentally, in the heating operation, almost all of the heat exchange in the indoor heat exchanger 16 is sensible heat, and latent heat hardly occurs. Further, the control unit 220 may estimate the dew point of the air flowing toward the indoor heat exchanger 16 using the detection value of the intake air temperature sensor 27 and the approximate value of the absolute humidity based on the detection value.
  • a suction air humidity sensor (not shown) is used to calculate the dew point of air flowing toward the indoor heat exchanger 16. It may be provided on the side.
  • the control unit 220 determines the dew point of this air based on the temperature of the air going to the indoor heat exchanger 16 and the humidity (relative humidity or absolute humidity) of the air going to the indoor heat exchanger 16. calculate.
  • the control unit 220 may perform a diagnosis of a sign of deterioration of the air conditioner 100. As a result, it is possible to improve the accuracy of the deterioration sign diagnosis.
  • FIG. 14 is an air line diagram relating to the temperature and humidity of the air on the suction side and the air outlet side of the indoor heat exchanger.
  • the horizontal axis in FIG. 14 is the dry bulb temperature of the air, and the vertical axis is the absolute humidity of the air.
  • Curve R indicates a state where the relative humidity is 100%.
  • the temperature of the intake air (see point P3) of the indoor heat exchanger 16 is about 27 [° C.] and the absolute humidity is about 0.016 [kg / kgD. A. ].
  • the temperature of the blown air (see point P4) is 10 ° C., which is lower than the dew point (about 21 ° C.). Therefore, the heat exchange of the air in the indoor heat exchanger 16 includes latent heat.
  • the control unit 220 performs the indoor heat exchange based on the temperature of the air going to the indoor heat exchanger 16, the humidity of the air going to the indoor heat exchanger 16, and the temperature of the air heat exchanged by the indoor heat exchanger 16.
  • the specific enthalpy difference between the air on the suction side and the air on the discharge side of the vessel 16 is calculated. It is assumed that data corresponding to the psychrometric chart in FIG. 14 is stored in advance in the storage unit 210 (see FIG. 3) as a data table, for example.
  • the control unit 220 estimates the air-side heat exchange amount Q air based on the design airflow corresponding to the rotation speed of the indoor fan 17 and the above-described specific enthalpy difference. Thus, even when latent heat is included in the heat exchange of the air, the control unit 220 can estimate the air-side heat exchange amount Q air .
  • an oil return circuit (not shown) of the air conditioner 100 may be included.
  • the oil return circuit is a refrigerant flow path for returning lubricating oil contained in the refrigerant discharged from the compressor 11 to the suction side of the compressor 11.
  • the control unit 220 sets the compressor 11
  • at least one of the oil return circuits may be diagnosed as having a sign of deterioration.
  • control unit 220 combines the first embodiment and the second embodiment, and based on the magnitude relationship between the refrigerant-side heat exchange amount Qref and the air-side heat exchange amount Qair , In addition to performing the deterioration sign diagnosis of 18, the deterioration sign diagnosis of the compressor 11 may be performed.
  • control unit 220 includes the learning unit 223 (see FIG. 3) has been described, but the present invention is not limited to this. That is, when the normal range of the ratio (Q air / Q ref ) is stored in advance based on a previous experiment or simulation, the learning unit 223 may be omitted.
  • control unit 220 calculates the refrigerant-side heat exchange amount Qref and the air-side heat exchange amount Qair in the indoor heat exchanger 16 , but the present invention is not limited to this. That is, the control unit 220 calculates the refrigerant side heat exchange quantity Q ref and the air-side heat exchange rate Q air in the outdoor heat exchanger 12 (heat exchanger), based on the calculation result, in the outdoor unit Uo The presence or absence of a decrease in the air volume may be diagnosed.
  • a temperature sensor for detecting the temperature of the refrigerant at one end and the other end of the outdoor heat exchanger 12 or a suction sensor at the suction side of the outdoor heat exchanger 12 is provided. It is assumed that a temperature sensor (not shown) for detecting the temperature of the air on the blowing side is provided.
  • the configuration in which the air-conditioning management system W (see FIG. 1) includes the air-conditioning management device 200 has been described, but is not limited thereto.
  • the air-conditioning management device 200 may be omitted, and the outdoor control circuit 31 (control unit) or the indoor control circuit 32 (control unit) may perform a series of processes related to the deterioration sign diagnosis.
  • the deterioration sign diagnosis of the multi-type air conditioner 100 provided with a plurality of indoor units Ui is described, but the present invention is not limited to this.
  • the embodiments can be applied to various types of air conditioners, in addition to a wall-mounted air conditioner (not shown) provided with one indoor unit and one outdoor unit.
  • a program for causing the computer to execute the process of performing the sign-of-deterioration diagnosis can be provided via a communication line, or can be distributed to a recording medium such as a CD-ROM. It is also possible.
  • Compressor 12 Outdoor heat exchanger (heat exchanger) 13. Outdoor fan (fan) 14 outdoor expansion valve 15 four-way valve 16 indoor heat exchanger (heat exchanger) 17 Indoor fan (fan) 18 Air filter 19 Indoor expansion valve 53 Filter cleaning unit 60 Mobile terminal (terminal) 70 Remote monitoring center (terminal) REFERENCE SIGNS LIST 100 air conditioner 200 air conditioning management device 210 storage unit 220 control unit 230 notification unit F refrigerant circuit Re remote controller W, WA air conditioning management system

Abstract

An air conditioning management system is provided which enables performing maintenance at appropriate timing in locations of an air conditioner where there are signs of deterioration. This air conditioning system (W) is provided with a storage unit (210), a control unit (220) and a notification unit (230). The control unit (220) estimates the refrigerant-side heat exchange amount in an indoor heat exchanger of the air conditioner, and estimates the air-side heat exchange amount in the indoor heat exchanger. Further, the reporting unit (230) reports to a remote control or a terminal device the location of signs of deterioration in the air conditioner, which are based on the magnitude relation between the refrigerant-side heat exchange amount and the air-side heat exchange amount.

Description

空調管理システム、空調管理方法、及びプログラムAir conditioning management system, air conditioning management method, and program
 本発明は、空調管理システム等に関する。 The present invention relates to an air conditioning management system and the like.
 空気調和機は、その使用期間が長くなるにつれて、部品が経年劣化したり、室内熱交換器等に塵埃が付着したりして、運転効率が低下することが多い。このような空気調和機の保全に関して、例えば、特許文献1に記載の技術が知られている。 (4) As an air conditioner is used for a long period of time, its operating efficiency is often lowered due to deterioration of parts over time and adhesion of dust to indoor heat exchangers and the like. With respect to such maintenance of an air conditioner, for example, a technique described in Patent Document 1 is known.
 すなわち、特許文献1には、空調設備の運転状態・モード状態・室温等に基づき、「診断時間を変えて、入退室管理システムとビル管理システムに連係して空調設備の設備保全条件を変更」することが記載されている。 That is, in Patent Document 1, based on the operating state, mode state, room temperature, and the like of the air conditioner, "change the diagnostic time and change the equipment maintenance condition of the air conditioner in conjunction with the entrance / exit management system and the building management system." Is described.
特許第6097210号公報Japanese Patent No. 6097210
 特許文献1には、空調設備の保全方法については記載されているが、空調設備において劣化予兆の箇所を特定する技術については記載されていない。また、特許文献1に記載の技術では、空調設備のメンテナンスが所定期間ごとに行われるため、場合によっては、メンテナンスの時期が早すぎたり、また、遅すぎたりする可能性がある。空調設備のメンテナンスを適切な時期に行うことが望ましいが、そのような技術について特許文献1には記載されていない。 Patent Document 1 describes a method for maintaining the air conditioning equipment, but does not describe a technique for identifying a location of a sign of deterioration in the air conditioning equipment. Further, in the technology described in Patent Literature 1, maintenance of the air-conditioning equipment is performed every predetermined period, and therefore, depending on the case, the maintenance time may be too early or too late. It is desirable to perform maintenance of the air conditioning equipment at an appropriate time, but such a technique is not described in Patent Document 1.
 そこで、本発明は、空気調和機の劣化予兆がある箇所のメンテナンスを適切な時期に実施可能な空調管理システム等を提供することを課題とする。 Therefore, an object of the present invention is to provide an air conditioning management system or the like that can perform maintenance of a location where there is a sign of deterioration of an air conditioner at an appropriate time.
 前記課題を解決するために、本発明は、熱交換器での冷媒側熱交換量と空気側熱交換量との大小関係に基づく空気調和機の劣化予兆の箇所を、報知部が、リモコン又は端末機に報知することを特徴とする。 In order to solve the above-described problems, the present invention provides a location of a sign of deterioration of an air conditioner based on a magnitude relationship between a refrigerant-side heat exchange amount and an air-side heat exchange amount in a heat exchanger; It is characterized by reporting to a terminal.
 本発明によれば、空気調和機において劣化予兆がある箇所のメンテナンスを適切な時期に実施可能な空調管理システム等を提供できる。 According to the present invention, it is possible to provide an air-conditioning management system or the like that can perform maintenance of a place where there is a sign of deterioration in an air conditioner at an appropriate time.
本発明の第1実施形態に係る空調管理システムを含む概略的な構成図である。It is a schematic structure figure containing the air-conditioning management system concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る空調管理システムの管理対象である空気調和機を含む構成図である。FIG. 2 is a configuration diagram including an air conditioner to be managed by the air conditioning management system according to the first embodiment of the present invention. 本発明の第1実施形態に係る空調管理システムが備える空調管理装置の機能ブロック図である。It is a functional block diagram of an air conditioning management device with which an air conditioning management system concerning a 1st embodiment of the present invention is provided. 本発明の第1実施形態に係る空調管理システムの回転速度-設計風量情報に関する説明図である。FIG. 4 is an explanatory diagram relating to rotation speed-design air volume information of the air conditioning management system according to the first embodiment of the present invention. 本発明の第1実施形態に係る空調管理システムにおいて、冷媒側熱交換量Qref及び空気側熱交換量Qairに関する正常範囲の学習結果を示す説明図である。It is an explanatory view showing a learning result of a normal range about refrigerant side heat exchange quantity Qref and air side heat exchange quantity Qair in the air conditioning management system according to the first embodiment of the present invention. 本発明の第1実施形態に係る空調管理システムの空調管理装置が備える制御部の処理を示すフローチャートである。It is a flowchart which shows the process of the control part with which the air-conditioning management apparatus of the air-conditioning management system concerning 1st Embodiment of this invention is provided. 本発明の第1実施形態に係る空調管理システムにおいて、室内熱交換器等への塵埃の付着に起因して、点(Qref,Qair)が正常範囲から逸脱した状態を示す説明図である。FIG. 3 is an explanatory diagram showing a state where points (Q ref , Q air ) deviate from a normal range due to adhesion of dust to an indoor heat exchanger or the like in the air conditioning management system according to the first embodiment of the present invention. . 本発明の第1実施形態に係る空調管理システムにおいて、比率(Qair/Qref)の時間的推移の例を示す説明図である。FIG. 4 is an explanatory diagram showing an example of a temporal transition of a ratio (Q air / Q ref ) in the air conditioning management system according to the first embodiment of the present invention. 本発明の第1実施形態に係る空調管理システムにおいて、吸込パネルを取り外した状態の埋込式の室内機を下から見上げた下面図である。It is the bottom view which looked up at the embedded type indoor unit in the state where the suction panel was removed in the air conditioning management system concerning a 1st embodiment of the present invention from the bottom. 本発明の第2実施形態に係る空調管理システムにおいて、空調管理装置の制御部の処理を示すフローチャートである。It is a flow chart which shows processing of a control part of an air-conditioning management device in an air-conditioning management system concerning a 2nd embodiment of the present invention. 本発明の第2実施形態に係る空調管理システムにおいて、圧縮機の体積効率の低下に起因して、点(Qref,Qair)が正常範囲から逸脱した状態を示す説明図である。It is an explanatory view showing a state where a point (Q ref , Q air ) deviates from a normal range due to a decrease in the volumetric efficiency of the compressor in the air conditioning management system according to the second embodiment of the present invention. 本発明の第2実施形態に係る空調管理システムにおいて、比率(Qair/Qref)の時間的推移の例を示す説明図である。It is an explanatory view showing an example of a temporal transition of a ratio (Q air / Q ref ) in an air conditioning management system according to a second embodiment of the present invention. 本発明の変形例に係る空調管理システムを含む概略的な構成図である。It is a schematic structure figure containing an air-conditioning management system concerning a modification of the present invention. 本発明の変形例に係る空調管理システムにおいて、室内熱交換器の吸込側・吹出側の空気の温湿度に関する空気線図である。FIG. 9 is an air line diagram relating to temperature and humidity of air on the suction side and the air outlet side of the indoor heat exchanger in the air conditioning management system according to the modified example of the present invention.
≪第1実施形態≫
 図1は、第1実施形態に係る空調管理システムWを含む概略的な構成図である。
 なお、図1では配管Jの図示を簡略化し、室外機Uoから4台の室内機Uiに冷媒を導く配管と、4台の室内機Uiから室外機Uoに冷媒を導く配管と、を共通の実線(配管J)で図示している。
<< 1st Embodiment >>
FIG. 1 is a schematic configuration diagram including the air conditioning management system W according to the first embodiment.
In FIG. 1, the illustration of the pipe J is simplified, and the pipe that guides the refrigerant from the outdoor unit Uo to the four indoor units Ui and the pipe that guides the refrigerant from the four indoor units Ui to the outdoor unit Uo are common. This is shown by a solid line (pipe J).
 空調管理システムWは、空気調和機100の運転を管理するシステムであり、空調管理装置200を備えている。なお、空調管理装置200が、複数のサーバを含む構成であってもよい。以下では、空調管理装置200の管理対象である空気調和機100について説明した後、空調管理装置200の構成や機能について詳細に説明する。 The air conditioning management system W is a system that manages the operation of the air conditioner 100, and includes an air conditioning management device 200. Note that the air-conditioning management device 200 may have a configuration including a plurality of servers. Hereinafter, after describing the air conditioner 100 to be managed by the air conditioning management device 200, the configuration and functions of the air conditioning management device 200 will be described in detail.
<空気調和機の構成>
 空気調和機100は、冷房運転や暖房運転等の空調を行う機器である。図1では、一例として、上吹きタイプの室外機Uoと、天井埋込タイプの4台の室内機Uiと、が配管Jを介して接続されたマルチ型の空気調和機100を図示している。図1に示すように、室外機Uoは、通信線Mを介して室内機Uiに接続されるとともに、通信線Mを介して空調管理装置200にも接続されている。
<Configuration of air conditioner>
The air conditioner 100 is a device that performs air conditioning such as a cooling operation and a heating operation. FIG. 1 illustrates, as an example, a multi-type air conditioner 100 in which an outdoor unit Uo of a top blowing type and four indoor units Ui of a ceiling embedded type are connected via a pipe J. . As shown in FIG. 1, the outdoor unit Uo is connected to the indoor unit Ui via the communication line M, and is also connected to the air conditioning management device 200 via the communication line M.
 図2は、空気調和機100の冷媒回路Fを含む構成図である。
 なお、図2では、4台の室内機Ui(図1参照)のうち2台を図示し、残りの2台については図示を省略している。また、図2では、室外熱交換器12や室内熱交換器16における空気の流れを白抜き矢印で示している。
FIG. 2 is a configuration diagram including the refrigerant circuit F of the air conditioner 100.
In FIG. 2, two of the four indoor units Ui (see FIG. 1) are illustrated, and illustration of the remaining two units is omitted. In FIG. 2, the flow of air in the outdoor heat exchanger 12 and the indoor heat exchanger 16 is indicated by outline arrows.
 空気調和機100は、室外機Uoに設けられる機器として、圧縮機11と、室外熱交換器12と、室外ファン13と、室外膨張弁14と、四方弁15と、を備えている。
 圧縮機11は、低温低圧のガス冷媒を圧縮し、高温高圧のガス冷媒として吐出する機器である。このような圧縮機11として、例えば、スクロール式圧縮機やロータリ式圧縮機が用いられる。
The air conditioner 100 includes a compressor 11, an outdoor heat exchanger 12, an outdoor fan 13, an outdoor expansion valve 14, and a four-way valve 15 as devices provided in the outdoor unit Uo.
The compressor 11 is a device that compresses a low-temperature and low-pressure gas refrigerant and discharges it as a high-temperature and high-pressure gas refrigerant. As such a compressor 11, for example, a scroll compressor or a rotary compressor is used.
 室外熱交換器12は、その伝熱管(図示せず)を通流する冷媒と、室外ファン13から送り込まれる外気と、の間で熱交換が行われる熱交換器である。室外熱交換器12の一端g1は、四方弁15の切替えによって、圧縮機11の吸入側又は吐出側に接続され、他端g2は液側配管J1に接続されている。 The outdoor heat exchanger 12 is a heat exchanger in which heat exchange is performed between the refrigerant flowing through the heat transfer tube (not shown) and the outside air sent from the outdoor fan 13. One end g1 of the outdoor heat exchanger 12 is connected to the suction side or the discharge side of the compressor 11 by switching the four-way valve 15, and the other end g2 is connected to the liquid side pipe J1.
 室外ファン13は、室外熱交換器12に外気を送り込むファンである。室外ファン13は、駆動源である室外ファンモータ13aを備え、室外熱交換器12の付近に配置されている。
 室外膨張弁14は、室外熱交換器12に流れる冷媒の流量を調整したり、室外熱交換器12を蒸発器として機能させる際に冷媒を減圧したりする電子膨張弁であり、液側配管J1に設けられている。
 四方弁15は、空調時の運転モードに応じて、冷媒の流路を切り替える弁である。
The outdoor fan 13 is a fan that sends outside air to the outdoor heat exchanger 12. The outdoor fan 13 includes an outdoor fan motor 13a as a driving source, and is arranged near the outdoor heat exchanger 12.
The outdoor expansion valve 14 is an electronic expansion valve that adjusts the flow rate of the refrigerant flowing through the outdoor heat exchanger 12 and reduces the pressure of the refrigerant when the outdoor heat exchanger 12 functions as an evaporator. It is provided in.
The four-way valve 15 is a valve that switches the flow path of the refrigerant according to the operation mode during air conditioning.
 また、空気調和機100は、室内機Uiに設けられる機器として、室内熱交換器16(熱交換器)と、室内ファン17(ファン)と、エアフィルタ18と、室内膨張弁19と、を備えている。
 室内熱交換器16は、その伝熱管(図示せず)を通流する冷媒と、室内ファン17から送り込まれる室内空気(空調対象空間の空気)と、の間で熱交換が行われる熱交換器である。室内熱交換器16の一端h1はガス側配管J2に接続され、他端h2は液側配管J3に接続されている。
Further, the air conditioner 100 includes an indoor heat exchanger 16 (heat exchanger), an indoor fan 17 (fan), an air filter 18, and an indoor expansion valve 19 as devices provided in the indoor unit Ui. ing.
The indoor heat exchanger 16 is a heat exchanger in which heat is exchanged between a refrigerant flowing through a heat transfer tube (not shown) and indoor air (air in a space to be air-conditioned) sent from an indoor fan 17. It is. One end h1 of the indoor heat exchanger 16 is connected to the gas side pipe J2, and the other end h2 is connected to the liquid side pipe J3.
 室内ファン17は、室内熱交換器16に室内空気を送り込むファンである。室内ファン17は、駆動源である室内ファンモータ17aを有し、室内熱交換器16の付近に配置されている。
 エアフィルタ18は、室内ファン17の駆動に伴って室内熱交換器16に向かう空気から塵埃を捕集するフィルタであり、室内熱交換器16の付近(空気吸込側)に配置されている。
The indoor fan 17 is a fan that sends indoor air to the indoor heat exchanger 16. The indoor fan 17 has an indoor fan motor 17a as a driving source, and is arranged near the indoor heat exchanger 16.
The air filter 18 is a filter that collects dust from air flowing toward the indoor heat exchanger 16 as the indoor fan 17 is driven, and is arranged near the indoor heat exchanger 16 (air suction side).
 室内膨張弁19は、室内熱交換器16に流れる冷媒の流量を調整したり、室内熱交換器16を蒸発器として機能させる際に冷媒を減圧したりする電子膨張弁であり、液側配管J3に設けられている。なお、他の室内機Uiも同様の構成を備えている。 The indoor expansion valve 19 is an electronic expansion valve that adjusts the flow rate of the refrigerant flowing through the indoor heat exchanger 16 and reduces the pressure of the refrigerant when the indoor heat exchanger 16 functions as an evaporator. It is provided in. The other indoor units Ui have the same configuration.
 液側接続部K1は、それぞれの室内機Uiに一対一で接続された複数の液側配管J3と、室外熱交換器12の他端g2に接続された液側配管J1と、を接続するものである。
 ガス側接続部K2は、それぞれの室内機Uiに一対一で接続された複数のガス側配管J2と、室外機Uoの四方弁15に接続されたガス側配管J4と、を接続するものである。
The liquid-side connection part K1 connects the plurality of liquid-side pipes J3 connected one-to-one to each indoor unit Ui, and the liquid-side pipes J1 connected to the other end g2 of the outdoor heat exchanger 12. It is.
The gas side connection part K2 connects a plurality of gas side pipes J2 connected one-to-one to each indoor unit Ui, and a gas side pipe J4 connected to the four-way valve 15 of the outdoor unit Uo. .
 そして、空調時の運転モードに応じて、冷媒回路Fにおいて周知のヒートポンプサイクルで冷媒が循環するようになっている。例えば、冷房運転時には、圧縮機11、室外熱交換器12(凝縮器)、室外膨張弁14、室内膨張弁19、及び室内熱交換器16(蒸発器)を順次に介して冷媒が循環する。一方、暖房運転時には、圧縮機11、室内熱交換器16(凝縮器)、室内膨張弁19、室外膨張弁14、及び室外熱交換器12(蒸発器)を順次に介して冷媒が循環する。 {Circle around (5)} In the refrigerant circuit F, the refrigerant circulates in a known heat pump cycle according to the operation mode during air conditioning. For example, during the cooling operation, the refrigerant circulates sequentially through the compressor 11, the outdoor heat exchanger 12 (condenser), the outdoor expansion valve 14, the indoor expansion valve 19, and the indoor heat exchanger 16 (evaporator). On the other hand, during the heating operation, the refrigerant circulates sequentially through the compressor 11, the indoor heat exchanger 16 (condenser), the indoor expansion valve 19, the outdoor expansion valve 14, and the outdoor heat exchanger 12 (evaporator).
 その他、室外機Uoには、吸入圧力センサ21と、吸入温度センサ22と、吐出圧力センサ23と、吐出温度センサ24と、が設けられている。
 吸入圧力センサ21は、圧縮機11の吸入側における冷媒の圧力(吸入圧力)を検出するセンサである。吸入温度センサ22は、圧縮機11の吸入側における冷媒の温度(吸入温度)を検出するセンサである。
In addition, the outdoor unit Uo is provided with a suction pressure sensor 21, a suction temperature sensor 22, a discharge pressure sensor 23, and a discharge temperature sensor 24.
The suction pressure sensor 21 is a sensor that detects the pressure (suction pressure) of the refrigerant on the suction side of the compressor 11. The suction temperature sensor 22 is a sensor that detects the temperature of the refrigerant (suction temperature) on the suction side of the compressor 11.
 吐出圧力センサ23は、圧縮機11の吐出側における冷媒の圧力(吐出圧力)を検出するセンサである。吐出温度センサ24は、圧縮機11の吐出側における冷媒の温度(吐出温度)を検出するセンサである。
 吸入圧力センサ21、吸入温度センサ22、吐出圧力センサ23、及び吐出温度センサ24の各検出値は、室外制御回路31を介して空調管理装置200に出力される。
The discharge pressure sensor 23 is a sensor that detects the pressure (discharge pressure) of the refrigerant on the discharge side of the compressor 11. The discharge temperature sensor 24 is a sensor that detects the temperature (discharge temperature) of the refrigerant on the discharge side of the compressor 11.
The detection values of the suction pressure sensor 21, the suction temperature sensor 22, the discharge pressure sensor 23, and the discharge temperature sensor 24 are output to the air conditioning management device 200 via the outdoor control circuit 31.
 一方、室内機Uiには、冷媒温度センサ25,26と、吸込空気温度センサ27と、吹出空気温度センサ28と、が設けられている。
 冷媒温度センサ25は、室内熱交換器16の一端h1の付近を通流する冷媒の温度を検出するセンサである。他方の冷媒温度センサ26は、室内熱交換器16の他端h2の付近を通流する冷媒の温度を検出するセンサである。
On the other hand, the indoor unit Ui is provided with refrigerant temperature sensors 25 and 26, an intake air temperature sensor 27, and an outlet air temperature sensor 28.
The refrigerant temperature sensor 25 is a sensor that detects the temperature of the refrigerant flowing near one end h1 of the indoor heat exchanger 16. The other refrigerant temperature sensor 26 is a sensor that detects the temperature of the refrigerant flowing near the other end h2 of the indoor heat exchanger 16.
 吸込空気温度センサ27は、室内熱交換器16の空気吸込側(入口側)における空気の温度を検出するセンサである。吹出空気温度センサ28は、室内熱交換器16の空気吹出側(出口側)における空気の温度を検出するセンサである。
 冷媒温度センサ25,26、吸込空気温度センサ27、及び吹出空気温度センサ28の各検出値は、室内制御回路32を介して室外制御回路31や空調管理装置200に出力される。
The suction air temperature sensor 27 is a sensor that detects the temperature of air on the air suction side (inlet side) of the indoor heat exchanger 16. The blowout air temperature sensor 28 is a sensor that detects the temperature of air on the air blowout side (outlet side) of the indoor heat exchanger 16.
Respective detection values of the refrigerant temperature sensors 25 and 26, the suction air temperature sensor 27, and the blow-off air temperature sensor 28 are output to the outdoor control circuit 31 and the air conditioning management device 200 via the indoor control circuit 32.
 また、室外機Uoには室外制御回路31が設けられ、室内機Uiには室内制御回路32が設けられている。室外制御回路31や室内制御回路32は、図示はしないが、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、各種インタフェース等の電子回路を含んで構成されている。そして、ROMに記憶されたプログラムを読み出してRAMに展開し、CPUが各種処理を実行するようになっている。 The outdoor unit Uo is provided with an outdoor control circuit 31, and the indoor unit Ui is provided with an indoor control circuit 32. Although not shown, the outdoor control circuit 31 and the indoor control circuit 32 include electronic circuits such as a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and various interfaces. . Then, the program stored in the ROM is read out and expanded in the RAM, and the CPU executes various processes.
 室外制御回路31は、各センサの検出値や空調管理装置200からの指令に基づき、圧縮機11、室外ファン13、室外膨張弁14等を制御し、また、所定の信号を室内制御回路32に送信する。一方、室内制御回路32は、室外制御回路31から受信する信号や空調管理装置200からの指令に基づき、室内ファン17や室内膨張弁19を制御する。 The outdoor control circuit 31 controls the compressor 11, the outdoor fan 13, the outdoor expansion valve 14, and the like based on the detection value of each sensor and a command from the air conditioning management device 200, and outputs a predetermined signal to the indoor control circuit 32. Send. On the other hand, the indoor control circuit 32 controls the indoor fan 17 and the indoor expansion valve 19 based on a signal received from the outdoor control circuit 31 and a command from the air conditioning management device 200.
 リモコンReは、赤外線通信等によって、室内制御回路32との間で所定の情報をやり取りする。例えば、空調の運転/停止、運転モードの設定、タイマ、設定温度の変更等に関する信号が、リモコンReから室内制御回路32に送信される。一方、室内制御回路32からリモコンReに送信される信号として、例えば、空調管理装置200で生成された所定の情報(後記する劣化予兆診断の情報)が挙げられる。 (4) The remote controller Re exchanges predetermined information with the indoor control circuit 32 by infrared communication or the like. For example, signals related to the operation / stop of the air conditioning, the setting of the operation mode, the timer, and the change of the set temperature are transmitted from the remote controller Re to the indoor control circuit 32. On the other hand, a signal transmitted from the indoor control circuit 32 to the remote controller Re includes, for example, predetermined information (information of a deterioration sign diagnosis described later) generated by the air conditioning management device 200.
<空調管理装置の構成>
 図2に示す空調管理装置200は、図示はしないが、CPU、ROM、RAM、各種インタフェース等の電子回路を含んで構成され、通信線を介して室外制御回路31や室内制御回路32に接続されている。空調管理装置200は、各センサの検出値に基づき、空気調和機100において劣化予兆がある箇所を特定する機能等を有している。
<Configuration of air conditioning management device>
Although not shown, the air-conditioning management device 200 shown in FIG. 2 includes electronic circuits such as a CPU, a ROM, a RAM, and various interfaces, and is connected to the outdoor control circuit 31 and the indoor control circuit 32 via a communication line. ing. The air-conditioning management device 200 has a function of identifying a location where there is a sign of deterioration in the air conditioner 100 based on a detection value of each sensor.
 前記した「劣化予兆」とは、空気調和機100における所定箇所の劣化が生ずる前触れである。なお、「劣化予兆」には、室内熱交換器16やエアフィルタ18への塵埃の付着も含まれるものとする。そして、空気調和機100の劣化予兆の有無を空調管理装置200が診断したり、劣化予兆の箇所を特定したりする処理を「劣化予兆診断」という。 The above-mentioned “sign of deterioration” is a warning that a predetermined portion of the air conditioner 100 is deteriorated. Note that the “deterioration sign” includes the adhesion of dust to the indoor heat exchanger 16 and the air filter 18. The process of the air-conditioning management device 200 diagnosing the presence or absence of the deterioration sign of the air conditioner 100 and specifying the location of the deterioration sign is referred to as “deterioration sign diagnosis”.
 図3は、空調管理装置200の機能ブロック図である(適宜、図2を参照)。
 図3に示すように、空調管理装置200は、記憶部210と、制御部220と、報知部230と、を備えている。
 記憶部210には、所定のプログラムの他、回転速度-設計風量情報211と、設計体積効率情報212と、正常範囲情報213と、が格納されている。回転速度-設計風量情報211とは、室内ファン17の回転速度に対応する所定の設計風量を示す情報である。前記した「設計風量」とは、室内ファン17や室内熱交換器16の仕様に基づき、事前の実験で得られる室内機Uiの風量である。
FIG. 3 is a functional block diagram of the air conditioning management device 200 (see FIG. 2 as appropriate).
As shown in FIG. 3, the air conditioning management device 200 includes a storage unit 210, a control unit 220, and a notification unit 230.
The storage unit 210 stores, in addition to a predetermined program, rotation speed-design airflow information 211, design volumetric efficiency information 212, and normal range information 213. The rotation speed-design airflow information 211 is information indicating a predetermined design airflow corresponding to the rotation speed of the indoor fan 17. The “design airflow” described above is an airflow of the indoor unit Ui obtained in a preliminary experiment based on the specifications of the indoor fan 17 and the indoor heat exchanger 16.
 図4は、回転速度-設計風量情報に関する説明図である。
 図4の横軸は室内ファン17(図2参照)の回転速度であり、縦軸は室内機Ui(図2参照)の設計風量である。図4に示す例では、回転速度-設計風量情報211(図3参照)が右上がりの直線L1で表されている。すなわち、室内ファン17の回転速度が大きいほど、設計風量も大きくなる。このような直線L1を表す数式等が、回転速度-設計風量情報211として、予め記憶部210に格納されている。
FIG. 4 is an explanatory diagram relating to rotation speed-design airflow information.
The horizontal axis in FIG. 4 is the rotation speed of the indoor fan 17 (see FIG. 2), and the vertical axis is the design airflow of the indoor unit Ui (see FIG. 2). In the example shown in FIG. 4, the rotation speed-design airflow information 211 (see FIG. 3) is represented by a straight line L1 rising to the right. That is, as the rotation speed of the indoor fan 17 increases, the design airflow also increases. A mathematical expression or the like representing such a straight line L1 is stored in advance in the storage unit 210 as the rotation speed-design airflow information 211.
 図3に示す設計体積効率情報212とは、圧縮機11の設計体積効率を示す情報である。前記した「設計体積効率」とは、圧縮機11の仕様に基づく体積効率であり、圧縮機11のモータ(図示せず)の回転速度等に基づいて算出される。なお、記憶部210に格納されている正常範囲情報213については後記する。 設計 The design volumetric efficiency information 212 shown in FIG. 3 is information indicating the design volumetric efficiency of the compressor 11. The “design volumetric efficiency” is a volumetric efficiency based on the specifications of the compressor 11, and is calculated based on a rotation speed of a motor (not shown) of the compressor 11 and the like. The normal range information 213 stored in the storage unit 210 will be described later.
 制御部220は、各センサの検出値や記憶部210のデータに基づいて、所定の処理を実行する。図3に示すように、制御部220は、冷媒側熱交換量推定部221と、空気側熱交換量推定部222と、学習部223と、比較部224と、診断部225と、を備えている。
 冷媒側熱交換量推定部221は、冷媒の温度や圧力等の検出値に基づいて、室内熱交換器16における冷媒側熱交換量Qrefを推定する。この冷媒側熱交換量Qrefの「冷媒側」とは、冷媒の温度や圧力等の検出値に基づいて推定された熱交換量であることを意味している。
The control unit 220 performs a predetermined process based on the detection value of each sensor and the data of the storage unit 210. As illustrated in FIG. 3, the control unit 220 includes a refrigerant-side heat exchange amount estimating unit 221, an air-side heat exchange amount estimating unit 222, a learning unit 223, a comparing unit 224, and a diagnostic unit 225. I have.
Refrigerant heat exchange amount estimating unit 221, based on the detected value of temperature, pressure, etc. of the refrigerant, estimates the refrigerant side heat exchange quantity Q ref in the indoor heat exchanger 16. The “refrigerant side” of the refrigerant side heat exchange amount Qref means a heat exchange amount estimated based on a detected value such as a temperature and a pressure of the refrigerant.
 空気側熱交換量推定部222は、室内熱交換器16の吸込側・吹出側の空気の温度や、室内ファン17の回転速度の他、前記した回転速度-設計風量情報211に基づいて、室内熱交換器16における空気側熱交換量Qairを推定する。この空気側熱交換量Qairの「空気側」とは、空気の温度等に基づいて推定された熱交換量であることを意味している。 The air-side heat exchange amount estimating unit 222 determines the indoor temperature based on the rotation speed-design airflow information 211 in addition to the temperature of the air on the suction side and the air outlet side of the indoor heat exchanger 16 and the rotation speed of the indoor fan 17. The air-side heat exchange amount Q air in the heat exchanger 16 is estimated. The “air side” of the air side heat exchange amount Q air means a heat exchange amount estimated based on the air temperature or the like.
 空気側熱交換量Qairは、回転速度-設計風量情報211等に基づき、室内ファン17の回転速度に対応する所定の設計風量を用いて算出される。したがって、室内熱交換器16やエアフィルタ18に付着している塵埃の量が多いほど、室内機Uiの実際の風量が低下して、所定の設計風量から乖離する。その結果、実際の風量が反映されている冷媒側熱交換量Qrefよりも、設計風量に基づく空気側熱交換量Qairのほうが大きくなる。本実施形態では、このような冷媒側熱交換量Qrefと空気側熱交換量Qairと間の大小関係に基づいて、室内機Uiの風量低下を検知するようにしている。 The air-side heat exchange amount Q air is calculated based on the rotation speed-design air flow information 211 and the like, using a predetermined design air flow corresponding to the rotation speed of the indoor fan 17. Therefore, as the amount of dust adhering to the indoor heat exchanger 16 and the air filter 18 increases, the actual airflow of the indoor unit Ui decreases and deviates from a predetermined design airflow. As a result, the air-side heat exchange amount Q air based on the design air amount is larger than the refrigerant-side heat exchange amount Q ref reflecting the actual air amount. In the present embodiment, on the basis of the magnitude relation between such a refrigerant heat exchange quantity Q ref, such as air-side heat exchange rate Q air, and so as to detect a decrease air volume of the indoor unit Ui.
 図3に示す学習部223は、冷媒側熱交換量Qrefに対する空気側熱交換量Qairの比率(Qair/Qref)の正常範囲を学習する。すなわち、空気調和機100の運転効率の低下にそれほど影響を及ぼさない範囲として、比率(Qair/Qref)の正常範囲が学習される。 The learning unit 223 shown in FIG. 3 learns a normal range of a ratio (Q air / Q ref ) of the air side heat exchange amount Q air to the refrigerant side heat exchange amount Q ref . That is, the normal range of the ratio (Q air / Q ref ) is learned as a range that does not significantly affect the decrease in the operating efficiency of the air conditioner 100.
 図5は、冷媒側熱交換量Qref及び空気側熱交換量Qairに関する正常範囲の学習結果を示す説明図である。
 なお、図5の横軸は、冷媒側熱交換量推定部221(図3参照)によって推定された冷媒側熱交換量Qrefである。図5の縦軸は、空気側熱交換量推定部222(図3参照)によって推定された空気側熱交換量Qairである。
FIG. 5 is an explanatory diagram showing learning results in a normal range regarding the refrigerant-side heat exchange amount Qref and the air-side heat exchange amount Qair .
The horizontal axis of FIG. 5 is a refrigerant-side heat exchange quantity Q ref estimated by the refrigerant side heat exchange amount estimating unit 221 (see FIG. 3). The vertical axis in FIG. 5 is the air-side heat exchange amount Q air estimated by the air-side heat exchange amount estimation unit 222 (see FIG. 3).
 図5に示す複数の点は、空気調和機100の各機器が正常であって、室内熱交換器16やエアフィルタ18に塵埃がほとんど付着していないことが既知である所定の学習期間に得られたデータである。このような学習期間は、空気調和機100の試運転時であってもよいし、また、空気調和機100の据付時から所定期間(例えば、数か月間)の通常運転時であってもよい。 A plurality of points shown in FIG. 5 are obtained during a predetermined learning period in which it is known that each device of the air conditioner 100 is normal and that little dust adheres to the indoor heat exchanger 16 and the air filter 18. Data. Such a learning period may be at the time of test operation of the air conditioner 100, or may be at the time of normal operation for a predetermined period (for example, several months) from the time of installation of the air conditioner 100.
 学習部223(図3参照)は、所定の学習期間に得られた複数の冷媒側熱交換量Qrefや空気側熱交換量Qairに基づき、例えば、最小二乗法を用いて、図5に示す直線L2の数式を導く。なお、直線L2の数式に代えて、時系列的に得られる比率(Qair/Qref)の移動平均を学習部223が算出するようにしてもよい。 The learning unit 223 (see FIG. 3) uses the least-square method, for example, in FIG. 5 based on the plurality of refrigerant-side heat exchange amounts Q ref and the air-side heat exchange amount Q air obtained in a predetermined learning period. The mathematical formula of the straight line L2 shown is derived. Note that the learning unit 223 may calculate the moving average of the ratio (Q air / Q ref ) obtained in time series instead of the mathematical expression of the straight line L2.
 学習期間においては、前記したように、室内熱交換器16やエアフィルタ18には塵埃がほとんどついていないため、室内機Uiの実際の風量が、室内ファン17の回転速度に対応する所定の設計風量に略等しくなる。その結果、冷媒側熱交換量Qrefから空気側熱交換量Qairがほとんど乖離せず、直線L2の傾きが“1”に近い値になることが多い。 During the learning period, as described above, since the indoor heat exchanger 16 and the air filter 18 have little dust, the actual air volume of the indoor unit Ui is equal to the predetermined design air volume corresponding to the rotation speed of the indoor fan 17. Becomes approximately equal to As a result, the air-side heat exchange amount Q air hardly departs from the refrigerant-side heat exchange amount Qref, and the slope of the straight line L2 often becomes a value close to “1”.
 この直線L2の傾きをaとすると、学習部223は、例えば、傾きが(a+b1)の直線L21よりも下側であり、かつ、傾きが(a-b1)の直線L22よりも上側の所定範囲を、点(Qref,Qair)の正常範囲として設定する。別の観点から説明すると、学習部223は、比率(Qair/Qref)の正常範囲として、(a-b1)≦(Qair/Qref)≦(a+b1)を設定する。そして、学習部223は、その学習結果である正常範囲の情報を、正常範囲情報213(図3参照)として、記憶部210に格納する。 Assuming that the slope of the straight line L2 is a, the learning unit 223 determines that the predetermined range is, for example, a range below the straight line L21 having the slope (a + b1) and above the straight line L22 having the slope (a−b1) Is set as a normal range of the point (Q ref , Q air ). Explaining from another viewpoint, the learning unit 223 sets (ab1) ≦ ( Qair / Qref ) ≦ (a + b1) as a normal range of the ratio ( Qair / Qref ). Then, the learning unit 223 stores the information of the normal range as the learning result in the storage unit 210 as normal range information 213 (see FIG. 3).
 図3に示す比較部224は、比率(Qair/Qref)の正常範囲の学習が行われた後、空気調和機100の劣化予兆診断において、冷媒側熱交換量Qrefと空気側熱交換量Qairとの大小を比較する。 After learning the normal range of the ratio (Q air / Q ref ), the comparison unit 224 shown in FIG. 3 performs the refrigerant-side heat exchange amount Q ref and the air-side heat exchange in the diagnosis of deterioration of the air conditioner 100. Compare the magnitude with the quantity Q air .
 図3に示す診断部225は、比較部224の比較結果に基づいて、空気調和機100の劣化予兆の有無を診断し、さらに、その劣化箇所を特定する。第1実施形態では、空気調和機100の劣化予兆の例として、室内機Uiの実際の風量が設計風量よりも低下しているか否か(室内熱交換器16やエアフィルタ18に多量の塵埃が付着しているか否か)を、診断部225が診断するようにしている。 (3) The diagnosis unit 225 shown in FIG. 3 diagnoses the presence or absence of a sign of deterioration of the air conditioner 100 based on the comparison result of the comparison unit 224, and further specifies the deteriorated portion. In the first embodiment, as an example of a sign of deterioration of the air conditioner 100, whether the actual air volume of the indoor unit Ui is lower than the design air volume (a large amount of dust is present in the indoor heat exchanger 16 and the air filter 18). The diagnosis unit 225 diagnoses whether or not it is attached.
 図3に示す報知部230は、診断部225の診断結果を報知する。このような報知部230として、ディスプレイの他、表示ランプやブザー等が挙げられる。その他、報知部230が所定の通信機能を有し、診断部225の診断結果をリモコンReやユーザの携帯端末(図示せず)に報知するようにしてもよい。 報 The notification unit 230 shown in FIG. 3 notifies the diagnosis result of the diagnosis unit 225. As such a notification unit 230, a display lamp, a buzzer, and the like are provided in addition to the display. In addition, the notification unit 230 may have a predetermined communication function, and notify the diagnosis result of the diagnosis unit 225 to the remote controller Re or the user's portable terminal (not shown).
<空調管理装置の処理>
 図6は、空調管理装置200が備える制御部220の処理を示すフローチャートである(適宜、図2、図3を参照)。
 なお、図6の「START」時には、比率(Qair/Qref)の正常範囲が既に学習されており、所定の空調運転(冷房運転や暖房運転)が行われているものとする。以下の例では、空気調和機100が暖房運転を行っているものとして説明する。
<Processing of air conditioning management device>
FIG. 6 is a flowchart illustrating a process of the control unit 220 included in the air-conditioning management device 200 (see FIGS. 2 and 3 as appropriate).
At the time of “START” in FIG. 6, it is assumed that the normal range of the ratio (Q air / Q ref ) has already been learned, and a predetermined air-conditioning operation (cooling operation or heating operation) is being performed. In the following example, description will be made assuming that the air conditioner 100 is performing a heating operation.
 ステップS101において制御部220は、冷媒側熱交換量推定部221によって、室内熱交換器16の冷媒側熱交換量Qrefを推定する(冷媒側熱交換量推定ステップ)。具体的に説明すると、制御部220は、まず、吸入圧力センサ21の検出値と、吸入温度センサ22の検出値と、圧縮機11の吸入側の冷媒過熱度と、に基づいて、圧縮機11の吸入側の冷媒密度を算出する。なお、圧縮機11の吸入側の冷媒過熱度は、事前の実験に基づき、所定の値が予め記憶されているものとする。 Control unit 220 in step S101, the refrigerant-side heat exchange amount estimating unit 221 estimates the refrigerant side heat exchange amount Q ref of the indoor heat exchanger 16 (the refrigerant heat exchanger estimation step). More specifically, the control unit 220 firstly controls the compressor 11 based on the detection value of the suction pressure sensor 21, the detection value of the suction temperature sensor 22, and the degree of superheat of the refrigerant on the suction side of the compressor 11. Calculate the refrigerant density on the suction side. It is assumed that a predetermined value of the refrigerant superheat degree on the suction side of the compressor 11 is stored in advance based on a previous experiment.
 そして、制御部220は、圧縮機11の吸入側の冷媒密度と、圧縮機11の行程容積と、圧縮機モータ(図示せず)の回転速度と、圧縮機11の設計体積効率と、に基づいて、冷媒回路Fにおける単位時間当たりの冷媒循環量を算出する。なお、圧縮機11の行程容積は、既知であるものとする。また、圧縮機11の設計体積効率は、前記した設計体積効率情報213(図3参照)に基づいて推定される。 Then, the control unit 220 determines the refrigerant density on the suction side of the compressor 11, the stroke volume of the compressor 11, the rotation speed of the compressor motor (not shown), and the designed volumetric efficiency of the compressor 11. Thus, the refrigerant circulation amount per unit time in the refrigerant circuit F is calculated. It is assumed that the stroke volume of the compressor 11 is known. The design volumetric efficiency of the compressor 11 is estimated based on the design volumetric efficiency information 213 (see FIG. 3).
 さらに、制御部220は、吐出圧力センサ23の検出値と、冷媒温度センサ25,26の検出値と、に基づいて、室内熱交換器16の一端側・他端側(つまり、入口側・出口側)における冷媒の比エンタルピ差を算出する。そして、制御部220は、室内熱交換器16の一端側・他端側における冷媒の比エンタルピ差と、前記した冷媒循環量と、に基づいて、室内熱交換器16の冷媒側熱交換量Qrefを推定する。 Further, the control unit 220 determines one end and the other end of the indoor heat exchanger 16 (that is, the inlet side and the outlet side) based on the detection value of the discharge pressure sensor 23 and the detection values of the refrigerant temperature sensors 25 and 26. Side), the difference in specific enthalpy of the refrigerant is calculated. Then, the control unit 220 determines the refrigerant-side heat exchange amount Q of the indoor heat exchanger 16 based on the specific enthalpy difference of the refrigerant at one end and the other end of the indoor heat exchanger 16 and the above-described refrigerant circulation amount. Estimate ref .
 このように、制御部220は、室内ファン17の付近に配置される室内熱交換器16の一端側・他端側での冷媒の温度、及び、圧縮機11の設計体積効率を含む情報に基づいて、室内熱交換器16での冷媒側熱交換量Qrefを推定する。
 ちなみに、前記した比エンタルピ差が冷房運転時に算出される場合には、吐出圧力センサ23の検出値に代えて、吸入圧力センサ21の検出値が用いられる。
As described above, the control unit 220 is configured based on information including the temperature of the refrigerant at one end and the other end of the indoor heat exchanger 16 disposed near the indoor fan 17 and the design volume efficiency of the compressor 11. Thus, the refrigerant-side heat exchange amount Qref in the indoor heat exchanger 16 is estimated.
Incidentally, when the specific enthalpy difference is calculated during the cooling operation, the detection value of the suction pressure sensor 21 is used instead of the detection value of the discharge pressure sensor 23.
 次に、ステップS102において制御部220は、空気側熱交換量推定部222によって、室内熱交換器16の空気側熱交換量Qairを推定する(空気側熱交換量推定ステップ)。具体的に説明すると、制御部220は、まず、回転速度-設計風量情報211を参照し、室内ファン17の回転速度に対応する設計風量を算出する。そして、制御部220は、前記した設計風量と、吸込空気温度センサ27の検出値と、吹出空気温度センサ28の検出値と、に基づいて、室内熱交換器16の空気側熱交換量Qairを推定する。 Next, in step S102, the control unit 220 estimates the air-side heat exchange amount Q air of the indoor heat exchanger 16 by the air-side heat exchange amount estimation unit 222 (air-side heat exchange amount estimation step). More specifically, the control unit 220 first calculates the design airflow corresponding to the rotation speed of the indoor fan 17 with reference to the rotation speed-design airflow information 211. Then, the control unit 220 determines the air-side heat exchange amount Q air of the indoor heat exchanger 16 based on the design air volume, the detection value of the intake air temperature sensor 27, and the detection value of the blow-out air temperature sensor 28. Is estimated.
 このように、制御部220は、室内熱交換器16に向かう空気の温度、室内熱交換器16で熱交換した空気の温度、及び、室内ファン17の回転速度に対応する設計風量に基づいて、室内熱交換器16での空気側熱交換量Qairを推定する。 As described above, the control unit 220 determines the temperature of the air flowing toward the indoor heat exchanger 16, the temperature of the air that has exchanged heat in the indoor heat exchanger 16, and the design airflow corresponding to the rotation speed of the indoor fan 17. The air-side heat exchange amount Q air in the indoor heat exchanger 16 is estimated.
 次に、ステップS103において制御部220は、比較部224によって、冷媒側熱交換量Qrefよりも空気側熱交換量Qairのほうが大きいか否かを判定する。例えば、室内熱交換器16やエアフィルタ18に多量の塵埃が付着していると、通風抵抗が大きくなるため、室内ファン17の回転速度に対応する設計風量よりも実際の風量が小さくなる。言い換えると、設計風量のほうが実際の風量(実風量)よりも大きくなる。 Next, in step S103, the control unit 220 causes the comparing unit 224 to determine whether the air-side heat exchange amount Q air is larger than the refrigerant-side heat exchange amount Q ref . For example, if a large amount of dust adheres to the indoor heat exchanger 16 and the air filter 18, the ventilation resistance increases, and the actual airflow becomes smaller than the design airflow corresponding to the rotation speed of the indoor fan 17. In other words, the design airflow is larger than the actual airflow (actual airflow).
 その結果、実風量が小さくなり、吹き出し温度Toと吸い込み温度Tiの(見かけ上の)差ΔTが大きくなる。したがって、室内機Uiの設計風量に基づく空気側熱交換量Qairが大きく見積もられ、熱交換量の比率(Qair/Qref)が“1”よりも大きくなる。なお、室内熱交換器16やエアフィルタ18に付着する塵埃の量が多いほど、前記した比率(Qair/Qref)が大きくなる。 As a result, the actual air volume decreases, and the (apparent) difference ΔT between the blowing temperature To and the suction temperature Ti increases. Therefore, the air-side heat exchange amount Q air based on the design air volume of the indoor unit Ui is largely estimated, and the ratio of the heat exchange amount (Q air / Q ref ) becomes larger than “1”. The ratio (Q air / Q ref ) increases as the amount of dust adhering to the indoor heat exchanger 16 and the air filter 18 increases.
 図7は、室内熱交換器等への塵埃の付着に起因して、点(Qref,Qair)が正常範囲から逸脱した状態を示す説明図である。
 なお、図7の横軸は冷媒側熱交換量Qrefであり、縦軸は空気側熱交換量Qairである。また、図7に示す斜線部分は、点(Qref,Qair)の正常範囲を示している。例えば、点P1に着目すると、冷媒側熱交換量Q1refよりも空気側熱交換量Q1airのほうが大きく、さらに、点(Q1ref,Q1air)が正常範囲から逸脱している。これは、室内熱交換器16やエアフィルタ18に多量の塵埃が付着して、実際の風量よりも設計風量のほうが大幅に大きくなったためである。なお、図7に示す他の点についても同様である。
FIG. 7 is an explanatory diagram showing a state where the points (Q ref , Q air ) deviate from the normal range due to the adhesion of dust to the indoor heat exchanger and the like.
Note that the horizontal axis in FIG. 7 is the refrigerant-side heat exchange amount Qref , and the vertical axis is the air-side heat exchange amount Qair . The hatched portion shown in FIG. 7 indicates the normal range of the point (Q ref , Q air ). For example, focusing on the point P1, the air-side heat exchange amount Q1 air is larger than the refrigerant-side heat exchange amount Q1 ref , and the point (Q1 ref , Q1 air ) deviates from the normal range. This is because a large amount of dust adhered to the indoor heat exchanger 16 and the air filter 18, and the design airflow became much larger than the actual airflow. The same applies to other points shown in FIG.
 そして、図6のステップS104において制御部220は、比率(Qair/Qref)が正常範囲外であるか否かを判定する。 Then, in step S104 in FIG. 6, the control unit 220 determines whether or not the ratio (Q air / Q ref ) is outside the normal range.
 図8は、比率(Qair/Qref)の時間的推移の例を示す説明図である。
 なお、図8の横軸は時刻であり、縦軸は比率(Qair/Qref)である。ちなみに、図8にプロットされている各点(データ)のひとつひとつが、図7に記載した各点と一対一で対応しているわけではない。
FIG. 8 is an explanatory diagram showing an example of a temporal transition of the ratio (Q air / Q ref ).
Note that the horizontal axis in FIG. 8 is time, and the vertical axis is the ratio (Q air / Q ref ). Incidentally, each of the points (data) plotted in FIG. 8 does not correspond one-to-one with each point shown in FIG.
 図8の例では、比率(Qair/Qref)の正常範囲の学習結果として、α≦(Qair/Qref)≦βの範囲が設定されている。これが、前記した正常範囲情報213(図3参照)である。また、図8の例では、時間が経過するにつれて、比率(Qair/Qref)が徐々に大きくなり、時刻t1以後は正常範囲から外れている。 In the example of FIG. 8, a range of α ≦ (Q air / Q ref ) ≦ β is set as a learning result of the normal range of the ratio (Q air / Q ref ). This is the normal range information 213 (see FIG. 3). In the example of FIG. 8, the ratio (Q air / Q ref ) gradually increases as time elapses, and deviates from the normal range after time t1.
 なお、劣化予兆の誤診断を防ぐために、時系列的に算出された複数の比率(Qair/Qref)の移動平均を制御部220が算出し、この移動平均が正常範囲から外れたか否かを判定するようにしてもよい。
 その他、比率(Qair/Qref)を制御部220が算出する際、図7に示す複数の点(Qref,Qair)の近似直線L3を最小二乗法で算出し、この近似直線L3の傾きが正常範囲から外れているか否かを判定するようにしてもよい。
The control unit 220 calculates a moving average of a plurality of ratios (Q air / Q ref ) calculated in time series in order to prevent erroneous diagnosis of the deterioration sign, and determines whether the moving average is out of a normal range. May be determined.
In addition, when the control unit 220 calculates the ratio (Q air / Q ref ), the approximate straight line L3 of the plurality of points (Q ref , Q air ) shown in FIG. It may be determined whether the inclination is out of the normal range.
 図6のステップS104において比率(Qair/Qref)が正常範囲外である場合(S104:Yes)、制御部220の処理はステップS105に進む。
 ステップS105において制御部220は、診断部225によって、室内機Uiの実際の風量が設計風量に対して低下したと判定する。言い換えると、制御部220は、室内熱交換器16やエアフィルタ18に劣化予兆あり(多量の塵埃が付着している)と診断する。
If the ratio (Q air / Q ref ) is outside the normal range in step S104 of FIG. 6 (S104: Yes), the process of the control unit 220 proceeds to step S105.
In step S105, the control unit 220 determines by the diagnosis unit 225 that the actual air volume of the indoor unit Ui has decreased with respect to the design air volume. In other words, the control unit 220 diagnoses that the indoor heat exchanger 16 and the air filter 18 have a sign of deterioration (a large amount of dust is attached).
 次に、ステップS106において制御部220は、室内機Uiのエアフィルタ18の清掃を行わせるための指令信号を空気調和機100に送信する。
 さらに、ステップS107において制御部220は、室内熱交換器16の凍結洗浄を行わせるための指令信号を空気調和機100に送信する。なお、エアフィルタ18の清掃や室内熱交換器16の凍結洗浄の詳細については後記する。
 ステップS107の処理を行った後、制御部220は、一連の処理を終了する(END)。
Next, in step S106, the control unit 220 transmits a command signal for cleaning the air filter 18 of the indoor unit Ui to the air conditioner 100.
Further, in step S107, control unit 220 transmits to air conditioner 100 a command signal for performing freezing and cleaning of indoor heat exchanger 16. The details of cleaning of the air filter 18 and freeze cleaning of the indoor heat exchanger 16 will be described later.
After performing the process of step S107, the control unit 220 ends a series of processes (END).
 また、ステップS103においてQref≧Qairである場合や(S103:No)、ステップS104において比率(Qair/Qref)が正常範囲内である場合(S104:No)、制御部220の処理はステップS108に進む。 If Q ref ≧ Q air in step S103 (S103: No), or if the ratio (Q air / Q ref ) is within the normal range in step S104 (S104: No), the processing of the control unit 220 is Proceed to step S108.
 ステップS108において制御部220は、診断部225によって、室内機Uiの実際の風量は正常範囲内であると判定する。この場合には、エアフィルタ18等に付着している塵埃の量は、空気調和機100の運転効率に悪影響を及ぼさない程度であるから、エアフィルタ18等の清掃を行う必要は特にない。 In step S108, the control unit 220 determines that the actual air volume of the indoor unit Ui is within the normal range by the diagnostic unit 225. In this case, since the amount of dust adhering to the air filter 18 or the like does not adversely affect the operation efficiency of the air conditioner 100, it is not particularly necessary to clean the air filter 18 or the like.
 ステップS108の処理を行った後、制御部220は、一連の処理を終了する(END)。なお、制御部220は、図6に示す一連の処理を所定期間毎(例えば、数日毎、数週間毎)に実行する。 After performing the process of step S108, the control unit 220 ends a series of processes (END). Note that the control unit 220 executes a series of processes shown in FIG. 6 every predetermined period (for example, every several days or every several weeks).
<エアフィルタの清掃>
 図9は、吸込パネルを取り外した状態の埋込式の室内機Uiを下から見上げた下面図である。
 図9に示す例では、室内機Uiの筐体51に矩形状の空気吸込口iが設けられ、この空気吸込口iを取り囲むように4つの風向板52が設置されている。また、空気吸込口iにはエアフィルタ18が設置され、このエアフィルタ18の外側にフィルタ清掃部53が設置されている。フィルタ清掃部53は、図示はしないが、エアフィルタ18に接触するブラシを有している。そして、フィルタ清掃部53が左右方向に移動することで、エアフィルタ18の塵埃が除去されるようになっている。
<Cleaning the air filter>
FIG. 9 is a bottom view of the embedded indoor unit Ui with the suction panel removed, as viewed from below.
In the example shown in FIG. 9, a rectangular air intake port i is provided in a housing 51 of the indoor unit Ui, and four wind direction plates 52 are provided so as to surround the air intake port i. An air filter 18 is installed at the air inlet i, and a filter cleaning unit 53 is installed outside the air filter 18. The filter cleaning section 53 has a brush (not shown) that comes into contact with the air filter 18. The dust on the air filter 18 is removed by moving the filter cleaning unit 53 in the left-right direction.
 例えば、エアフィルタ18の清掃を行うための指令信号(S106:図6参照)を空調管理装置200から受信した場合、空気調和機100は、フィルタ清掃部53によってエアフィルタ18を清掃する。これによって、エアフィルタ18の塵埃が除去されるため、室内機Uiの実際の風量を設計風量に近づけることができ、ひいては、空気調和機100の運転効率を高めることができる。 For example, when a command signal for cleaning the air filter 18 (S106: see FIG. 6) is received from the air conditioning management device 200, the air conditioner 100 cleans the air filter 18 by the filter cleaning unit 53. Thus, dust on the air filter 18 is removed, so that the actual air volume of the indoor unit Ui can be made closer to the design air volume, and the operating efficiency of the air conditioner 100 can be improved.
<室内熱交換器の凍結洗浄>
 室内熱交換器16の凍結洗浄(S107:図6参照)を行う際、空気調和機100の室外制御回路31や室内制御回路32は、室内熱交換器16を蒸発器として機能させ、室内熱交換器16を凍結させる。
<Freezing and cleaning of indoor heat exchangers>
When performing the freezing and washing of the indoor heat exchanger 16 (S107: see FIG. 6), the outdoor control circuit 31 and the indoor control circuit 32 of the air conditioner 100 cause the indoor heat exchanger 16 to function as an evaporator and perform indoor heat exchange. The vessel 16 is frozen.
 より詳しく説明すると、室外制御回路31や室内制御回路32は、圧縮機11を駆動し、さらに、室内膨張弁19の開度を冷房運転時よりも小さくする。これによって、低圧で蒸発温度の低い冷媒が室内熱交換器16に流入するため、空気中の水分が室内熱交換器16に着霜し、その霜や氷が成長しやすくなる。 More specifically, the outdoor control circuit 31 and the indoor control circuit 32 drive the compressor 11 and further reduce the opening of the indoor expansion valve 19 as compared with the cooling operation. As a result, the refrigerant having a low pressure and a low evaporation temperature flows into the indoor heat exchanger 16, so that moisture in the air is frosted on the indoor heat exchanger 16, and the frost and ice easily grow.
 このように室内熱交換器16を凍結させた後、室外制御回路31や室内制御回路32は、室内熱交換器16を解凍する。例えば、圧縮機11や室内ファン17が停止状態にされることで、室内熱交換器16の霜や氷が室温で自然解凍され、室内熱交換器16のフィン(図示せず)を伝って多量の水が流れ落ちる。その結果、室内熱交換器16の塵埃が洗い流されるため、室内機Uiの実際の風量を設計風量に近づけることができる。 After the indoor heat exchanger 16 is frozen in this way, the outdoor control circuit 31 and the indoor control circuit 32 defrost the indoor heat exchanger 16. For example, when the compressor 11 and the indoor fan 17 are stopped, frost and ice of the indoor heat exchanger 16 are naturally thawed at room temperature, and a large amount of the frost and ice travel along the fins (not shown) of the indoor heat exchanger 16. Water runs down. As a result, dust in the indoor heat exchanger 16 is washed away, so that the actual air volume of the indoor unit Ui can be made closer to the design air volume.
 なお、室内熱交換器16の凍結・解凍後、室外制御回路31や室内制御回路32が暖房運転又は送風運転を行うことで、室内機Uiの内部を乾燥させてもよい。これによって、室内機Uiにおけるカビ等の繁殖を抑制できる。 After the freezing and thawing of the indoor heat exchanger 16, the inside of the indoor unit Ui may be dried by the outdoor control circuit 31 or the indoor control circuit 32 performing a heating operation or a blowing operation. Thereby, propagation of mold and the like in the indoor unit Ui can be suppressed.
<効果>
 第1実施形態によれば、空調管理装置200は、冷媒の温度や圧力等に基づく冷媒側熱交換量Qrefと、設計風量等に基づく空気側熱交換量Qairと、に基づいて、室内熱交換器16の実際の風量が設計風量から低下しているか否かを診断する。この診断結果に基づき、空調管理装置200は、空気調和機100のエアフィルタ18の清掃や室内熱交換器16の凍結洗浄を適切な時期に行わせることができる。
<Effect>
According to the first embodiment, the air-conditioning management device 200 performs indoor air conditioning based on the refrigerant-side heat exchange amount Qref based on the temperature and pressure of the refrigerant and the air-side heat exchange amount Qair based on the design airflow and the like. It is determined whether or not the actual air volume of the heat exchanger 16 is lower than the designed air volume. Based on the diagnosis result, the air conditioning management device 200 can cause the air filter 18 of the air conditioner 100 to perform cleaning of the air filter 18 and freeze cleaning of the indoor heat exchanger 16 at an appropriate time.
 また、仮に、エアフィルタ18等の清掃機能がない場合には、報知部230によって、空気調和機100のメンテナンスを要する旨をユーザ等に対して適切な時期に報知できる。例えば、報知部230は、空気調和機100のメンテナンスを要する旨をリモコンReやユーザの携帯端末(図示せず)に報知する。これによって、冷媒の凝縮圧力の上昇や蒸発圧力の低下が許容範囲から逸脱する前に、空気調和機100のメンテナンスを行うことが可能になる。また、空気調和機100のメンテナンスを無駄に高頻度に行われることを防止し、ひいては、メンテナンスに要するコストを従来よりも削減できる。 If the cleaning function of the air filter 18 or the like is not provided, the notification unit 230 can notify the user or the like that maintenance of the air conditioner 100 is required at an appropriate time. For example, the notification unit 230 notifies the remote controller Re and the user's portable terminal (not shown) that maintenance of the air conditioner 100 is required. This makes it possible to perform maintenance on the air conditioner 100 before the increase in the condensation pressure of the refrigerant and the decrease in the evaporation pressure deviate from the allowable ranges. In addition, it is possible to prevent the maintenance of the air conditioner 100 from being performed wastefully and frequently, and to reduce the cost required for the maintenance as compared with the related art.
≪第2実施形態≫
 第2実施形態は、制御部220(図3参照)の処理内容が、第1実施形態とは異なっている。すなわち、第2実施形態では、冷媒側熱交換量Qrefと空気側熱交換量Qairとの大小関係に基づいて、制御部220が、圧縮機11(図2参照)の体積効率が低下しているか否かを診断する点が第1実施形態とは異なっている。なお、その他(空気調和機100や空調管理装置200の構成等:図1~図3参照)については、第1実施形態と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
<< 2nd Embodiment >>
The second embodiment differs from the first embodiment in the processing content of the control unit 220 (see FIG. 3). That is, in the second embodiment, based on the magnitude relationship between the refrigerant-side heat exchange amount Qref and the air-side heat exchange amount Qair , the control unit 220 reduces the volume efficiency of the compressor 11 (see FIG. 2). This is different from the first embodiment in that it is diagnosed whether or not the operation is performed. The other components (the configuration of the air conditioner 100 and the air conditioning management device 200, etc .: see FIGS. 1 to 3) are the same as those of the first embodiment. Therefore, only the portions different from the first embodiment will be described, and the description of the overlapping portions will be omitted.
 図10は、空調管理装置200が備える制御部220の処理を示すフローチャートである(適宜、図2、図3を参照)。
 なお、図10の「START」時には、比率(Qair/Qref)の正常範囲が既に学習されており、所定の空調運転(冷房運転や暖房運転)が行われているものとする。また、室内熱交換器16やエアフィルタ18には、それほど多くの塵埃が付着していないものとする。
FIG. 10 is a flowchart illustrating a process of the control unit 220 included in the air-conditioning management device 200 (see FIGS. 2 and 3 as appropriate).
At the time of “START” in FIG. 10, it is assumed that the normal range of the ratio (Q air / Q ref ) has already been learned and a predetermined air conditioning operation (cooling operation or heating operation) is being performed. Also, it is assumed that not so much dust adheres to the indoor heat exchanger 16 and the air filter 18.
 また、図10のステップS201,S202については、第1実施形態で説明したステップS101,S102(図6参照)と同様であるから、その説明を省略する。
 冷媒側熱交換量Qrefや空気側熱交換量Qairの推定後(S201,S202)、ステップS203において制御部220は、冷媒側熱交換量Qrefよりも空気側熱交換量Qairのほうが小さいか否かを判定する。例えば、圧縮機11の経年劣化に伴って圧縮室(図示せず)のシール性が低下すると、冷媒が漏れやすくなるため、圧縮機11の体積効率が低下する。つまり、圧縮機11の仕様に基づく所定の設計体積効率よりも、実際の体積効率のほうが低くなる。
Steps S201 and S202 in FIG. 10 are the same as steps S101 and S102 (see FIG. 6) described in the first embodiment, and a description thereof will be omitted.
After estimating the refrigerant side heat exchange quantity Q ref and the air-side heat exchange amount Q air (S201, S202), the control unit 220 in step S203, the better the air-side heat exchange rate Q air than the refrigerant side heat exchange quantity Q ref It is determined whether it is small. For example, when the sealing performance of a compression chamber (not shown) is deteriorated due to the deterioration of the compressor 11 over time, the refrigerant is likely to leak, and the volume efficiency of the compressor 11 is reduced. That is, the actual volumetric efficiency is lower than the predetermined designed volumetric efficiency based on the specifications of the compressor 11.
 その結果、圧縮機11の設計体積効率に基づく冷媒側熱交換量Qrefが大きく見積もられるため、熱交換量の比率(Qair/Qref)が“1”よりも小さくなる。なお、圧縮機11の実際の体積効率が低いほど、前記した比率(Qair/Qref)が小さくなる。
 ステップS204において制御部220は、比率(Qair/Qref)が正常範囲外であるか否かを判定する。
As a result, the refrigerant-side heat exchange amount Q ref based on the design volumetric efficiency of the compressor 11 is largely estimated, so that the heat exchange ratio (Q air / Q ref ) becomes smaller than “1”. Note that the lower the actual volumetric efficiency of the compressor 11 is, the smaller the ratio (Q air / Q ref ) is.
In step S204, the control unit 220 determines whether or not the ratio (Q air / Q ref ) is outside the normal range.
 図11は、圧縮機の体積効率の低下に起因して、点(Qref,Qair)が正常範囲から逸脱した状態を示す説明図である。
 なお、図11に示す斜線部分は、点(Qref,Qair)の正常範囲を示している。例えば、点P2に着目すると、冷媒側熱交換量Q2refよりも空気側熱交換量Q2airのほうが小さく、さらに、点(Q2ref,Q2air)が正常範囲から外れている。これは、圧縮機11の体積効率が低下して、圧縮室(図示せず)から冷媒が漏れやすくなったためである。なお、図11に示す他の点についても同様である。
FIG. 11 is an explanatory diagram showing a state where the points (Q ref , Q air ) deviate from the normal range due to a decrease in the volumetric efficiency of the compressor.
Note that a hatched portion shown in FIG. 11 indicates a normal range of the point (Q ref , Q air ). For example, focusing on the point P2, the air side heat exchange amount Q2 air is smaller than the refrigerant side heat exchange amount Q2 ref , and the point (Q2 ref , Q2 air ) is out of the normal range. This is because the volume efficiency of the compressor 11 has been reduced, and the refrigerant has easily leaked from a compression chamber (not shown). The same applies to other points shown in FIG.
 図12は、比率(Qair/Qref)の時間的推移の例を示す説明図である。
 図12に示す例では、時間が経過するにつれて、比率(Qair/Qref)が徐々に小さくなり、時刻t2以後は正常範囲から外れている。
FIG. 12 is an explanatory diagram showing an example of a temporal transition of the ratio (Q air / Q ref ).
In the example shown in FIG. 12, as the time elapses, the ratio (Q air / Q ref ) gradually decreases, and is out of the normal range after time t2.
 そして、図10のステップS204において比率(Qair/Qref)が正常範囲外である場合(S204:Yes)、制御部220の処理はステップS205に進む。
 ステップS205において制御部220は、診断部225によって、圧縮機11の実際の体積効率が設計体積効率に対して低下したと判定する。言い換えると、制御部220は、圧縮機11に劣化予兆ありと診断する。
If the ratio (Q air / Q ref ) is out of the normal range in step S204 of FIG. 10 (S204: Yes), the process of the control unit 220 proceeds to step S205.
In step S205, the control unit 220 determines by the diagnosis unit 225 that the actual volumetric efficiency of the compressor 11 is lower than the designed volumetric efficiency. In other words, the control unit 220 diagnoses that the compressor 11 has a sign of deterioration.
 ステップS206において制御部220は、報知部230によって、圧縮機11のメンテナンスを要する旨をリモコンRe等に報知する(報知ステップ)。これによって、圧縮機11のメンテナンスを行うべき時期であることをユーザに知らせることができる。
 ステップS206の処理を行った後、制御部220は、一連の処理を終了する(END)。
In step S206, the control unit 220 causes the notification unit 230 to notify the remote controller Re or the like that maintenance of the compressor 11 is required (notification step). Thus, it is possible to inform the user that it is time to perform maintenance on the compressor 11.
After performing the process of step S206, the control unit 220 ends a series of processes (END).
 また、ステップS203においてQref≦Qairである場合や(S203:No)、ステップS204において比率(Qair/Qref)が正常範囲内である場合(S204:No)、制御部220の処理はステップS207に進む。 Also, if Q ref ≦ Q air in step S203 (S203: No), or if the ratio (Q air / Q ref ) is within the normal range in step S204 (S204: No), the processing of the control unit 220 is Proceed to step S207.
 ステップS207において制御部220は、診断部225によって、圧縮機11の実際の体積効率は正常範囲内であると判定する。この場合には、圧縮機11の実際の体積効率は、空気調和機100の運転効率に悪影響を及ぼさない程度であるから、圧縮機11のメンテナンスを行う必要は特にない。
 ステップS207の処理を行った後、制御部220は、一連の処理を終了する(END)。
In step S207, the control unit 220 determines by the diagnosis unit 225 that the actual volumetric efficiency of the compressor 11 is within the normal range. In this case, since the actual volumetric efficiency of the compressor 11 does not adversely affect the operation efficiency of the air conditioner 100, there is no particular need to perform maintenance on the compressor 11.
After performing the process of step S207, the control unit 220 ends a series of processes (END).
<効果>
 第2実施形態によれば、空調管理装置200は、冷媒の温度や圧力等に基づく冷媒側熱交換量Qrefと、設計風量等に基づく空気側熱交換量Qairと、に基づいて、圧縮機11の体積効率が設計体積効率から低下しているか否かを診断する。そして、圧縮機11のメンテナンスを要する場合には、その旨がリモコンRe等に報知される。
<Effect>
According to the second embodiment, the air-conditioning management device 200 performs compression based on the refrigerant-side heat exchange amount Qref based on the temperature and pressure of the refrigerant and the air-side heat exchange amount Qair based on the design airflow and the like. It is diagnosed whether the volumetric efficiency of the machine 11 has decreased from the designed volumetric efficiency. When maintenance of the compressor 11 is required, the fact is notified to the remote controller Re or the like.
 これによって、圧縮機11のメンテナンスを要する旨を適切な時期に報知できる。したがって、空気調和機100の運転を停止せざるを得ない事態になる前に、サービスマン等によって、圧縮機11のメンテナンスを行うことができる。また、圧縮機11のメンテナンスを無駄に高頻度に行う必要がないため、そのメンテナンスに要するコストを削減できる。 に よ っ て Thus, it is possible to notify that maintenance of the compressor 11 is required at an appropriate time. Therefore, the maintenance of the compressor 11 can be performed by a service person or the like before the operation of the air conditioner 100 has to be stopped. Further, since it is not necessary to wastefully and frequently perform maintenance of the compressor 11, the cost required for the maintenance can be reduced.
≪変形例≫
 以上、本発明に係る空調管理システムWについて各実施形態で説明したが、本発明はこれらの記載に限定されるものではなく、種々の変更を行うことができる。
 例えば、次に説明するように、劣化予兆診断の結果をユーザの携帯端末60(図13参照)に報知したり、また、遠隔監視センタ70(図13参照)に報知したりしてもよい。
≪Modified example≫
As described above, the air-conditioning management system W according to the present invention has been described in each embodiment, but the present invention is not limited to these descriptions, and various changes can be made.
For example, as described below, the result of the deterioration sign diagnosis may be reported to the user's portable terminal 60 (see FIG. 13) or may be reported to the remote monitoring center 70 (see FIG. 13).
 図13は、変形例に係る空調管理システムWAを含む概略的な構成図である。
 図13に示す携帯端末60は、空気調和機100のユーザが所持しているスマートフォン、タブレット、携帯電話等の端末機であり、空調管理装置200との間でネットワークNを介して通信可能になっている。
 また、遠隔監視センタ70は、空気調和機100の劣化予兆診断の結果を分析し、必要に応じてユーザ等に通知する施設であり、ネットワークNを介して空調管理装置200と通信可能になっている。なお、遠隔監視センタ70のコンピュータ(図示せず)も「端末機」に含まれるものとする。
 そして、空調管理装置200による劣化予兆診断の結果が、報知部230(図3参照)によって、リモコンRe(図2参照)の他、携帯端末60や遠隔監視センタ70にも報知されるようになっている(報知ステップ)。これによって、空気調和機100において劣化予兆がある箇所をユーザや遠隔監視センタ70のスタッフが把握できる。
FIG. 13 is a schematic configuration diagram including an air conditioning management system WA according to a modification.
The mobile terminal 60 illustrated in FIG. 13 is a terminal such as a smartphone, a tablet, and a mobile phone owned by the user of the air conditioner 100, and can communicate with the air conditioning management device 200 via the network N. ing.
The remote monitoring center 70 is a facility that analyzes the result of the diagnosis of a sign of deterioration of the air conditioner 100 and notifies a user or the like as necessary. The remote monitoring center 70 can communicate with the air conditioning management device 200 via the network N. I have. The computer (not shown) of the remote monitoring center 70 is also included in the “terminal”.
Then, the result of the deterioration sign diagnosis by the air-conditioning management device 200 is reported to the portable terminal 60 and the remote monitoring center 70 in addition to the remote controller Re (see FIG. 2) by the reporting unit 230 (see FIG. 3). (Notification step). Thereby, the user and the staff of the remote monitoring center 70 can grasp the location where the deterioration sign is present in the air conditioner 100.
 また、各実施形態では、冷媒側熱交換量Qrefに対する空気側熱交換量Qairの比率(Qair/Qref)が正常範囲から外れた場合、その旨が報知される例について説明したが、これに限らない。例えば、冷媒側熱交換量Qrefに対する空気側熱交換量Qairの比率(Qair/Qref)が時間的に変化する速度に基づいて、比率(Qair/Qref)が所定の正常範囲から逸脱する時期を制御部220が予測するようにしてもよい。その一例を挙げると、制御部220は、最小二乗法に基づいて、それまでの所定期間における比率(Qair/Qref)の変化速度を算出し、この変化速度に基づいて、比率(Qair/Qref)が所定の正常範囲から外れる時期を予測する。そして、報知部230は、前記した時期をリモコンReや携帯端末60の他、遠隔監視センタ70等に報知する。これによって、メンテナンスを行うべき時期をユーザ等に事前に報知できる。 Further, in each embodiment, an example has been described in which when the ratio of the air-side heat exchange amount Q air to the refrigerant-side heat exchange amount Q ref (Q air / Q ref ) is out of the normal range, the fact is reported. However, it is not limited to this. For example, based on the rate at which the ratio of the air-side heat exchange rate Q air for refrigerant side heat exchange amount Q ref (Q air / Q ref ) changes with time, the ratio (Q air / Q ref) is predetermined normal range The control unit 220 may predict the time of departure from. For example, the control unit 220 calculates the rate of change of the ratio (Q air / Q ref ) in a predetermined period up to that time based on the least squares method, and based on the change speed, calculates the ratio (Q air / Q ref ) deviates from a predetermined normal range. Then, the notifying unit 230 notifies the above-mentioned time to the remote monitoring center 70 and the like in addition to the remote controller Re and the portable terminal 60. Thus, it is possible to notify the user or the like in advance of the time at which maintenance should be performed.
 また、冷媒側熱交換量Qrefに対する空気側熱交換量Qairの比率(Qair/Qref)を制御部220が算出し、この比率(Qair/Qref)の履歴情報を報知部230が、リモコンReや携帯端末60の他、遠隔監視センタ70や所定のサービス用診断機器(図示せず)に報知するようにしてもよい。この場合において、報知部230は、比率(Qair/Qref)の正常範囲の上限・下限を示す閾値も併せて表示させてもよいし、また、劣化予兆の箇所も併せて表示してもよい。これによって、比率(Qair/Qref)の時間的な変化を見たユーザが、例えば、室内機Uiの風量の低下度合いを把握したり、比率(Qair/Qref)が正常範囲から外れる時期を予測したりすることが可能になる。 The ratio of the air-side heat exchange rate Q air for refrigerant side heat exchange quantity Q ref and (Q air / Q ref) is calculated control unit 220, a history information notification unit of the ratio (Q air / Q ref) 230 However, in addition to the remote controller Re and the portable terminal 60, the notification may be made to the remote monitoring center 70 or a predetermined service diagnostic device (not shown). In this case, the notification unit 230 may also display thresholds indicating the upper and lower limits of the normal range of the ratio (Q air / Q ref ), and may also display the location of the deterioration sign. Good. Thus, the user viewed temporal change in the ratio (Q air / Q ref) is, for example, to grasp the degree of decrease of the air volume of the indoor unit Ui, the ratio (Q air / Q ref) is out of the normal range It is possible to predict the time.
 また、空気調和機100の比率(Qair/Qref)と、この空気調和機100と同機種である他の空気調和機(図示せず)の比率(Qair/Qref)の履歴情報と、に基づいて、空気調和機100の所定箇所で劣化予兆が生じる時期を制御部220が予測するようにしてもよい。例えば、制御部220は、診断対象である空気調和機100の直近の比率(Qair/Qref)と、他の空気調和機(図示せず)の比率(Qair/Qref)の時間的な変化速度と、に基づいて、空気調和機100の比率(Qair/Qref)が所定の正常範囲から逸脱する時期を予測する。そして、報知部230は、前記した時期をリモコンReや携帯端末60の他、遠隔監視センタ70等に報知する。これによって、メンテナンスを行うべき時期をユーザ等に事前に報知できる。 Also, history information of the ratio (Q air / Q ref ) of the air conditioner 100 and the ratio (Q air / Q ref ) of another air conditioner (not shown) of the same model as the air conditioner 100 , The control unit 220 may predict when a sign of deterioration will occur at a predetermined location of the air conditioner 100. For example, the control unit 220, the most recent of the ratio of the air conditioner 100 to be diagnosed and (Q air / Q ref), the temporal ratio of other air conditioner (not shown) (Q air / Q ref) Based on the change speed, a time when the ratio (Q air / Q ref ) of the air conditioner 100 deviates from a predetermined normal range is predicted. Then, the notifying unit 230 notifies the above-mentioned time to the remote monitoring center 70 and the like in addition to the remote controller Re and the portable terminal 60. Thus, it is possible to notify the user or the like in advance of the time at which maintenance should be performed.
 その他、空調管理装置200が、空気調和機100のメンテナンス情報をサービスセンタ(図示せず)にアップロードしたり、空気調和機100と同機種である他の空気調和機(図示せず)のメンテナンス情報をサービスセンタからダウンロードしたりする通信手段(図示せず)を備えていてもよい。そして、他の空気調和機の比率(Qair/Qref)やメンテナンス情報に基づいて、空気調和機100の比率(Qair/Qref)が所定の正常範囲から逸脱する時期を制御部220が予測するようにしてもよい。 In addition, the air-conditioning management device 200 uploads maintenance information of the air conditioner 100 to a service center (not shown) or maintenance information of another air conditioner (not shown) of the same model as the air conditioner 100. May be provided from the service center. Then, based on the ratio (Q air / Q ref ) of other air conditioners and the maintenance information, the control unit 220 determines when the ratio (Q air / Q ref ) of the air conditioner 100 deviates from a predetermined normal range. It may be predicted.
 また、リモコンRe、携帯端末60、又は遠隔監視センタ70からの指令に応じて、制御部220が、冷媒側熱交換量Qref及び空気側熱交換量Qairを推定する処理を開始するようにしてもよい。これによって、空気調和機100の劣化予兆の診断結果をユーザ等が確かめたいとき、リモコンRe等からの指令に応じて、制御部220がリアルタイムで劣化予兆診断を行うことができる。 In addition, in response to a command from the remote controller Re, the mobile terminal 60, or the remote monitoring center 70, the control unit 220 starts processing for estimating the refrigerant-side heat exchange amount Qref and the air-side heat exchange amount Qair. May be. Thus, when the user or the like wants to check the diagnosis result of the deterioration sign of the air conditioner 100, the control unit 220 can perform the deterioration sign diagnosis in real time in response to a command from the remote controller Re or the like.
 また、第1実施形態では、図6のステップS103,S104の両方の条件が満たされた場合、制御部220が、室内機Uiの実際の風量が設計風量に対して低下したと判定する処理(S105)について説明したが、これに限らない。例えば、ステップS104の処理を省略し、冷媒側熱交換量Qrefよりも空気側熱交換量Qairのほうが大きい場合(S103:Yes)、設計風量に対して室内ファン17の駆動に伴う実際の風量が低下したと制御部220が判定するようにしてもよい(S105)。そして、報知部230が、前記した判定結果をリモコンReや携帯端末60の他、遠隔監視センタ70に報知するようにしてもよい。これによって、風量の低下に関する診断結果をユーザ等が把握できる。 Further, in the first embodiment, when both the conditions of steps S103 and S104 in FIG. 6 are satisfied, the control unit 220 determines that the actual air volume of the indoor unit Ui is lower than the design air volume ( Although S105) has been described, the invention is not limited to this. For example, when the processing in step S104 is omitted and the air-side heat exchange amount Q air is larger than the refrigerant-side heat exchange amount Q ref (S103: Yes), the actual amount of air that accompanies the driving of the indoor fan 17 with respect to the design air amount is increased. The control unit 220 may determine that the air volume has decreased (S105). Then, the notifying unit 230 may notify the above-described determination result to the remote monitoring center 70 in addition to the remote controller Re and the portable terminal 60. As a result, the user or the like can grasp the diagnosis result regarding the decrease in the air volume.
 さらに、冷媒側熱交換量Qrefよりも空気側熱交換量Qairのほうが大きい場合(S103:Yes)、制御部220が、エアフィルタ18の清掃、又は、室内熱交換器16の凍結洗浄を空気調和機100に行わせるようにしてもよい。これによって、劣化予兆の診断結果に基づき、エアフィルタ18等の清掃を適切な時期に行うことができる。 Further, when the air-side heat exchange amount Q air is larger than the refrigerant-side heat exchange amount Q ref (S103: Yes), the control unit 220 cleans the air filter 18 or freeze-cleans the indoor heat exchanger 16. The air conditioner 100 may perform the operation. Thus, the air filter 18 and the like can be cleaned at an appropriate time based on the diagnosis result of the deterioration sign.
 なお、第2実施形態についても同様のことがいえる。すなわち、図10のステップS204の処理を省略し、冷媒側熱交換量Qrefよりも空気側熱交換量Qairのほうが小さい場合(S203:Yes)、設計体積効率に対して圧縮機11の実際の体積効率が低下したと制御部220が判定するようにしてもよい(S205)。そして、冷媒側熱交換量Qrefと空気側熱交換量Qairとの大小関係(つまり、比率Qair/Qrefの大きさ)に基づく空気調和機100の劣化予兆の箇所を、報知部230が、リモコンRe、携帯端末60、又は遠隔監視センタ70に報知するようにしてもよい。 Note that the same can be said for the second embodiment. That is, if the processing in step S204 in FIG. 10 is omitted and the air-side heat exchange amount Q air is smaller than the refrigerant-side heat exchange amount Q ref (S203: Yes), the actual volume of the compressor 11 is reduced with respect to the design volume efficiency. The control unit 220 may determine that the volumetric efficiency has decreased (S205). Then, the notifying unit 230 indicates the location of a sign of deterioration of the air conditioner 100 based on the magnitude relationship between the refrigerant-side heat exchange amount Qref and the air-side heat exchange amount Qair (that is, the magnitude of the ratio Qair / Qref ). May be notified to the remote controller Re, the portable terminal 60, or the remote monitoring center 70.
 また、例えば、室内機Uiの実際の風量が低下するとともに、圧縮機11の体積効率も低下しているときに劣化予兆診断が行われたとする。そうすると、風量低下の影響と、体積効率の低下の影響と、が相殺され、比率(Qair/Qref)が“1”に近い値になる可能性がある。そこで、エアフィルタ18等の清掃によって、室内機Uiの実際の風量を設計風量に近づけた後、制御部220が、所定の劣化予兆診断を行うようにしてもよい。例えば、エアフィルタ18の清掃後、又は、室内熱交換器16の凍結洗浄後、制御部220が、冷媒側熱交換量Qref及び空気側熱交換量Qairを推定するようにしてもよい。そして、冷媒側熱交換量Qrefよりも空気側熱交換量Qairのほうが小さい場合、設計体積効率に対して圧縮機11の実際の体積効率が低下した旨を、報知部230が、リモコンRe、携帯端末60、又は遠隔監視センタ70に報知する。これによって、劣化予兆の診断精度を高めることができる。 Further, for example, it is assumed that the deterioration sign diagnosis is performed when the actual air volume of the indoor unit Ui decreases and the volumetric efficiency of the compressor 11 decreases. Then, the effect of the decrease in the air volume and the effect of the decrease in the volumetric efficiency are offset, and the ratio (Q air / Q ref ) may become a value close to “1”. Therefore, after cleaning the air filter 18 or the like to bring the actual air volume of the indoor unit Ui closer to the design air volume, the control unit 220 may perform a predetermined deterioration sign diagnosis. For example, after cleaning the air filter 18, or, after freezing cleaning of the indoor heat exchanger 16, the control unit 220 may be configured to estimate a refrigerant-side heat exchange quantity Q ref and the air-side heat exchange amount Q air. When the air-side heat exchange amount Q air is smaller than the refrigerant-side heat exchange amount Q ref , the notification unit 230 notifies the remote controller Re that the actual volume efficiency of the compressor 11 has decreased with respect to the design volume efficiency. , The mobile terminal 60, or the remote monitoring center 70. As a result, the accuracy of the diagnosis of the deterioration sign can be improved.
 また、室内熱交換器16に向かう空気の温度が露点以下である場合、報知部230が、劣化予兆診断に関する報知を行わないようにしてもよい。室内熱交換器16に向かう空気の温度が露点以下である場合には、空気に含まれる水蒸気が結露する際の潜熱が生じるからである。この潜熱は空気の温度変化には反映されないため、空気側熱交換量Qairが実際の値よりも小さくなり、室内機Uiの風量低下に関する診断精度が低くなる可能性がある。 When the temperature of the air flowing toward the indoor heat exchanger 16 is equal to or lower than the dew point, the notification unit 230 may not perform the notification regarding the diagnosis of the deterioration sign. If the temperature of the air flowing toward the indoor heat exchanger 16 is equal to or lower than the dew point, latent heat is generated when water vapor contained in the air is condensed. Since this latent heat is not reflected in the temperature change of the air, the air-side heat exchange amount Q air becomes smaller than the actual value, and the accuracy of diagnosis regarding the decrease in the air volume of the indoor unit Ui may be reduced.
 一方、室内熱交換器16に向かう空気の温度が露点よりも高い場合には、報知部230が、劣化予兆診断に関する報知を行うことが好ましい。これによって、正確な診断結果をユーザ等に報知できる。ちなみに、暖房運転では、室内熱交換器16における熱交換のほぼ全てが顕熱であり、潜熱が生じることはほとんどない。
 また、吸込空気温度センサ27の検出値と、それに基づく絶対湿度の概算値と、を用いて、制御部220が、室内熱交換器16に向かう空気の露点を推定するようにしてもよい。
On the other hand, when the temperature of the air flowing toward the indoor heat exchanger 16 is higher than the dew point, it is preferable that the notification unit 230 performs notification regarding the deterioration sign diagnosis. As a result, an accurate diagnosis result can be reported to a user or the like. Incidentally, in the heating operation, almost all of the heat exchange in the indoor heat exchanger 16 is sensible heat, and latent heat hardly occurs.
Further, the control unit 220 may estimate the dew point of the air flowing toward the indoor heat exchanger 16 using the detection value of the intake air temperature sensor 27 and the approximate value of the absolute humidity based on the detection value.
 また、室内熱交換器16に向かう空気の露点の算出を目的として、吸込空気温度センサ27(図2参照)の他に、吸込空気湿度センサ(図示せず)を室内熱交換器16の空気吸込側に設けてもよい。このような構成において、制御部220は、室内熱交換器16に向かう空気の温度、及び、室内熱交換器16に向かう空気の湿度(相対湿度又は絶対湿度)に基づいて、この空気の露点を算出する。そして、室内熱交換器16に向かう空気の温度が露点よりも高い場合には、空気調和機100の劣化予兆診断を制御部220が行うようにしてもよい。これによって、劣化予兆診断の高精度化を図ることができる。 In addition to the suction air temperature sensor 27 (see FIG. 2), a suction air humidity sensor (not shown) is used to calculate the dew point of air flowing toward the indoor heat exchanger 16. It may be provided on the side. In such a configuration, the control unit 220 determines the dew point of this air based on the temperature of the air going to the indoor heat exchanger 16 and the humidity (relative humidity or absolute humidity) of the air going to the indoor heat exchanger 16. calculate. When the temperature of the air flowing toward the indoor heat exchanger 16 is higher than the dew point, the control unit 220 may perform a diagnosis of a sign of deterioration of the air conditioner 100. As a result, it is possible to improve the accuracy of the deterioration sign diagnosis.
 また、前記したように、吸込空気湿度センサ(図示せず)が設けられる構成であれば、室内熱交換器16における空気の熱交換に潜熱が含まれていても、空気側熱交換量Qairを推定することが可能になる。その具体的な処理について、図14を用いて説明する。 Further, as described above, if the suction air humidity sensor (not shown) is provided, even if latent heat is included in the heat exchange of air in the indoor heat exchanger 16, the air-side heat exchange amount Q air Can be estimated. The specific processing will be described with reference to FIG.
 図14は、室内熱交換器の吸込側・吹出側の空気の温湿度に関する空気線図である。
 なお、図14の横軸は、空気の乾球温度であり、縦軸は、空気の絶対湿度である。また、曲線Rは、相対湿度が100[%]の状態を示している。
 図14に示す例では、室内熱交換器16の吸込空気(点P3を参照)は、その温度が約27[℃]であり、絶対湿度が約0.016[kg/kgD.A.]である。一方、吹出空気(点P4を参照)の温度は10[℃]であり、露点(約21[℃])を下回っている。したがって、室内熱交換器16における空気の熱交換には、潜熱が含まれている。
FIG. 14 is an air line diagram relating to the temperature and humidity of the air on the suction side and the air outlet side of the indoor heat exchanger.
The horizontal axis in FIG. 14 is the dry bulb temperature of the air, and the vertical axis is the absolute humidity of the air. Curve R indicates a state where the relative humidity is 100%.
In the example shown in FIG. 14, the temperature of the intake air (see point P3) of the indoor heat exchanger 16 is about 27 [° C.] and the absolute humidity is about 0.016 [kg / kgD. A. ]. On the other hand, the temperature of the blown air (see point P4) is 10 ° C., which is lower than the dew point (about 21 ° C.). Therefore, the heat exchange of the air in the indoor heat exchanger 16 includes latent heat.
 そこで、制御部220は、室内熱交換器16に向かう空気の温度、室内熱交換器16に向かう空気の湿度、及び、室内熱交換器16で熱交換した空気の温度に基づいて、室内熱交換器16の吸込側・吹出側の空気の比エンタルピ差を算出する。なお、図14の空気線図に相当するデータが、例えば、データテーブルとして記憶部210(図3参照)に予め格納されているものとする。そして、制御部220は、室内ファン17の回転速度に対応する設計風量、及び、前記した比エンタルピ差に基づいて、空気側熱交換量Qairを推定する。これによって、空気の熱交換に潜熱が含まれている場合であっても、制御部220が空気側熱交換量Qairを推定できる。 Therefore, the control unit 220 performs the indoor heat exchange based on the temperature of the air going to the indoor heat exchanger 16, the humidity of the air going to the indoor heat exchanger 16, and the temperature of the air heat exchanged by the indoor heat exchanger 16. The specific enthalpy difference between the air on the suction side and the air on the discharge side of the vessel 16 is calculated. It is assumed that data corresponding to the psychrometric chart in FIG. 14 is stored in advance in the storage unit 210 (see FIG. 3) as a data table, for example. Then, the control unit 220 estimates the air-side heat exchange amount Q air based on the design airflow corresponding to the rotation speed of the indoor fan 17 and the above-described specific enthalpy difference. Thus, even when latent heat is included in the heat exchange of the air, the control unit 220 can estimate the air-side heat exchange amount Q air .
 また、劣化予兆診断の対象として、室内熱交換器16やエアフィルタ18、圧縮機11の他、空気調和機100の油戻し回路(図示せず)が含まれていてもよい。この油戻し回路とは、圧縮機11から吐出された冷媒に含まれる潤滑油を圧縮機11の吸入側に戻すための冷媒流路である。例えば、空気側熱交換量Qairよりも冷媒側熱交換量Qrefのほうが大きく、比率(Qair/Qref)が所定の正常範囲から逸脱している場合、制御部220が、圧縮機11又は油戻し回路の少なくとも一方に劣化予兆ありと診断するようにしてもよい。 In addition, as an object of the deterioration sign diagnosis, in addition to the indoor heat exchanger 16, the air filter 18, and the compressor 11, an oil return circuit (not shown) of the air conditioner 100 may be included. The oil return circuit is a refrigerant flow path for returning lubricating oil contained in the refrigerant discharged from the compressor 11 to the suction side of the compressor 11. For example, when the refrigerant-side heat exchange amount Q ref is larger than the air-side heat exchange amount Q air and the ratio (Q air / Q ref ) deviates from a predetermined normal range, the control unit 220 sets the compressor 11 Alternatively, at least one of the oil return circuits may be diagnosed as having a sign of deterioration.
 また、第1実施形態で説明したエアフィルタ18の清掃(図6のS106)、及び、室内熱交換器16の凍結洗浄(S107)のうち、一方のみが行われるようにしてもよい。
 また、第1実施形態と第2実施形態とを組み合わせ、冷媒側熱交換量Qrefと空気側熱交換量Qairとの大小関係に基づき、制御部220が、室内熱交換器16やエアフィルタ18の劣化予兆診断を行うとともに、圧縮機11の劣化予兆診断を行うようにしてもよい。
Further, only one of the cleaning of the air filter 18 described in the first embodiment (S106 in FIG. 6) and the freeze cleaning of the indoor heat exchanger 16 (S107) may be performed.
In addition, the control unit 220 combines the first embodiment and the second embodiment, and based on the magnitude relationship between the refrigerant-side heat exchange amount Qref and the air-side heat exchange amount Qair , In addition to performing the deterioration sign diagnosis of 18, the deterioration sign diagnosis of the compressor 11 may be performed.
 また、各実施形態では、制御部220(図3参照)が学習部223(図3参照)を備える構成について説明したが、これに限らない。すなわち、比率(Qair/Qref)の正常範囲が、事前の実験やシミュレーションに基づいて予め記憶されている場合には、学習部223が省略されていてもよい。 In each embodiment, the configuration in which the control unit 220 (see FIG. 3) includes the learning unit 223 (see FIG. 3) has been described, but the present invention is not limited to this. That is, when the normal range of the ratio (Q air / Q ref ) is stored in advance based on a previous experiment or simulation, the learning unit 223 may be omitted.
 また、第1実施形態では、制御部220が、室内熱交換器16での冷媒側熱交換量Qrefや空気側熱交換量Qairを算出する処理について説明したが、これに限らない。すなわち、制御部220が、室外熱交換器12(熱交換器)での冷媒側熱交換量Qrefや空気側熱交換量Qairを算出し、その算出結果に基づいて、室外機Uoでの風量低下の有無を診断するようにしてもよい。なお、このような処理が行われる場合には、室外熱交換器12の一端側・他端側の冷媒の温度を検出する温度センサ(図示せず)や、室外熱交換器12の吸込側・吹出側の空気の温度を検出する温度センサ(図示せず)が設けられるものとする。 In the first embodiment, the process in which the control unit 220 calculates the refrigerant-side heat exchange amount Qref and the air-side heat exchange amount Qair in the indoor heat exchanger 16 has been described, but the present invention is not limited to this. That is, the control unit 220 calculates the refrigerant side heat exchange quantity Q ref and the air-side heat exchange rate Q air in the outdoor heat exchanger 12 (heat exchanger), based on the calculation result, in the outdoor unit Uo The presence or absence of a decrease in the air volume may be diagnosed. When such a process is performed, a temperature sensor (not shown) for detecting the temperature of the refrigerant at one end and the other end of the outdoor heat exchanger 12 or a suction sensor at the suction side of the outdoor heat exchanger 12 is provided. It is assumed that a temperature sensor (not shown) for detecting the temperature of the air on the blowing side is provided.
 また、各実施形態では、空調管理システムW(図1参照)が空調管理装置200を備える構成について説明したが、これに限らない。例えば、空調管理装置200を省略し、劣化予兆診断に関する一連の処理を室外制御回路31(制御部)や室内制御回路32(制御部)が行うようにしてもよい。 In each embodiment, the configuration in which the air-conditioning management system W (see FIG. 1) includes the air-conditioning management device 200 has been described, but is not limited thereto. For example, the air-conditioning management device 200 may be omitted, and the outdoor control circuit 31 (control unit) or the indoor control circuit 32 (control unit) may perform a series of processes related to the deterioration sign diagnosis.
 また、各実施形態では、複数の室内機Ui(図1参照)が設けられるマルチ型の空気調和機100の劣化予兆診断について説明したが、これに限らない。例えば、室内機と室外機とが一台ずつ設けられた壁掛型の空気調和機(図示せず)の他、さまざまな種類の空気調和機に各実施形態を適用可能である。 Also, in each embodiment, the deterioration sign diagnosis of the multi-type air conditioner 100 provided with a plurality of indoor units Ui (see FIG. 1) is described, but the present invention is not limited to this. For example, the embodiments can be applied to various types of air conditioners, in addition to a wall-mounted air conditioner (not shown) provided with one indoor unit and one outdoor unit.
 なお、コンピュータに劣化予兆診断の処理(図6、図10参照)を実行させるためのプログラムを通信回線を介して提供することが可能であり、また、CD-ROM等の記録媒体に書き込んで配布することも可能である。 A program for causing the computer to execute the process of performing the sign-of-deterioration diagnosis (see FIGS. 6 and 10) can be provided via a communication line, or can be distributed to a recording medium such as a CD-ROM. It is also possible.
 また、各実施形態は本発明を分かりやすく説明するために詳細に記載したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、前記した機構や構成は説明上必要と考えられるものを示しており、製品上必ずしも全ての機構や構成を示しているとは限らない。
Each embodiment has been described in detail in order to explain the present invention in an easily understandable manner, and is not necessarily limited to one having all the described configurations. Also, for a part of the configuration of each embodiment, it is possible to add, delete, or replace another configuration.
In addition, the above-described mechanisms and configurations are shown to be necessary for the description, and do not necessarily indicate all the mechanisms and configurations on the product.
 11  圧縮機
 12  室外熱交換器(熱交換器)
 13  室外ファン(ファン)
 14  室外膨張弁
 15  四方弁
 16  室内熱交換器(熱交換器)
 17  室内ファン(ファン)
 18  エアフィルタ
 19  室内膨張弁
 53  フィルタ清掃部
 60  携帯端末(端末機)
 70  遠隔監視センタ(端末機)
 100 空気調和機
 200 空調管理装置
 210 記憶部
 220 制御部
 230 報知部
 F   冷媒回路
 Re  リモコン
 W,WA 空調管理システム
11 Compressor 12 Outdoor heat exchanger (heat exchanger)
13. Outdoor fan (fan)
14 outdoor expansion valve 15 four-way valve 16 indoor heat exchanger (heat exchanger)
17 Indoor fan (fan)
18 Air filter 19 Indoor expansion valve 53 Filter cleaning unit 60 Mobile terminal (terminal)
70 Remote monitoring center (terminal)
REFERENCE SIGNS LIST 100 air conditioner 200 air conditioning management device 210 storage unit 220 control unit 230 notification unit F refrigerant circuit Re remote controller W, WA air conditioning management system

Claims (14)

  1.  空気調和機のファンの回転速度に対応する所定の設計風量が記憶されるとともに、前記空気調和機の圧縮機に関する所定の設計体積効率が記憶されている記憶部と、
     制御部と、
     報知部と、を備え、
     前記制御部は、
     前記ファンの付近に配置される熱交換器の一端側・他端側での冷媒の温度、及び、前記設計体積効率を含む情報に基づいて、前記熱交換器での冷媒側熱交換量を推定するとともに、
     前記熱交換器に向かう空気の温度、前記熱交換器で熱交換した空気の温度、及び、前記ファンの回転速度に対応する前記設計風量に基づいて、前記熱交換器での空気側熱交換量を推定し、
     前記冷媒側熱交換量と前記空気側熱交換量との大小関係に基づく前記空気調和機の劣化予兆の箇所を、前記報知部が、リモコン又は端末機に報知する空調管理システム。
    A storage unit in which a predetermined design airflow corresponding to the rotation speed of the fan of the air conditioner is stored, and a predetermined design volume efficiency related to the compressor of the air conditioner is stored,
    A control unit;
    And a notification unit.
    The control unit includes:
    Estimating the refrigerant-side heat exchange amount in the heat exchanger based on information including the temperature of the refrigerant at one end and the other end of the heat exchanger disposed near the fan, and the design volumetric efficiency Along with
    The air-side heat exchange amount in the heat exchanger based on the temperature of the air flowing toward the heat exchanger, the temperature of the air that has exchanged heat in the heat exchanger, and the design airflow corresponding to the rotation speed of the fan. And estimate
    An air conditioning management system in which the notification unit notifies a remote controller or a terminal of a location of a sign of deterioration of the air conditioner based on a magnitude relationship between the refrigerant-side heat exchange amount and the air-side heat exchange amount.
  2.  前記冷媒側熱交換量よりも前記空気側熱交換量のほうが大きい場合、前記設計風量に対して、前記ファンの駆動に伴う実際の風量が低下した旨を、前記報知部が、前記リモコン又は前記端末機に報知すること
     を特徴とする請求項1に記載の空調管理システム。
    When the air-side heat exchange amount is greater than the refrigerant-side heat exchange amount, the notification unit notifies the remote controller or the remote unit that the actual air volume accompanying the drive of the fan has decreased with respect to the design air volume. The air conditioning management system according to claim 1, wherein the notification is made to a terminal device.
  3.  前記冷媒側熱交換量よりも前記空気側熱交換量のほうが小さい場合、前記設計体積効率に対して、前記圧縮機の実際の体積効率が低下した旨を、前記報知部が、前記リモコン又は前記端末機に報知すること
     を特徴とする請求項1に記載の空調管理システム。
    When the air-side heat exchange amount is smaller than the refrigerant-side heat exchange amount, the notification unit indicates that the actual volumetric efficiency of the compressor has decreased with respect to the design volumetric efficiency. The air conditioning management system according to claim 1, wherein the notification is made to a terminal device.
  4.  前記制御部は、前記冷媒側熱交換量に対する前記空気側熱交換量の比率が時間的に変化する速度に基づいて、前記比率が所定の正常範囲から逸脱する時期を予測し、
     前記報知部は、前記時期を前記リモコン又は前記端末機に報知すること
     を特徴とする請求項1に記載の空調管理システム。
    The control unit, based on a speed at which the ratio of the air-side heat exchange amount to the refrigerant-side heat exchange amount changes with time, predicts when the ratio deviates from a predetermined normal range,
    The air conditioning management system according to claim 1, wherein the notification unit notifies the remote controller or the terminal of the time.
  5.  前記制御部は、前記冷媒側熱交換量に対する前記空気側熱交換量の比率を算出し、
     前記報知部は、前記比率の履歴情報を前記リモコン又は前記端末機に報知すること
     を特徴とする請求項1に記載の空調管理システム。
    The control unit calculates a ratio of the air-side heat exchange amount to the refrigerant-side heat exchange amount,
    The air-conditioning management system according to claim 1, wherein the notification unit notifies the ratio history information to the remote control or the terminal.
  6.  前記制御部は、前記冷媒側熱交換量に対する前記空気側熱交換量の比率を算出し、前記空気調和機の前記比率と、当該空気調和機と同機種である他の空気調和機の前記比率の履歴情報と、に基づいて、前記箇所で劣化予兆が生じる時期を予測し、
     前記報知部は、前記時期を前記リモコン又は前記端末機に報知すること
     を特徴とする請求項1に記載の空調管理システム。
    The control unit calculates a ratio of the air-side heat exchange amount to the refrigerant-side heat exchange amount, the ratio of the air conditioner, and the ratio of another air conditioner of the same model as the air conditioner. Based on the history information of, based on the prediction of the time when the sign of deterioration occurs in the location,
    The air conditioning management system according to claim 1, wherein the notification unit notifies the remote controller or the terminal of the time.
  7.  前記制御部は、前記リモコン又は前記端末機からの指令に応じて、前記冷媒側熱交換量及び前記空気側熱交換量を推定する処理を開始すること
     を特徴とする請求項1に記載の空調管理システム。
    The air conditioner according to claim 1, wherein the control unit starts a process of estimating the refrigerant-side heat exchange amount and the air-side heat exchange amount in response to a command from the remote controller or the terminal. Management system.
  8.  前記冷媒側熱交換量よりも前記空気側熱交換量のほうが大きい場合、前記制御部は、前記熱交換器の付近のエアフィルタの清掃、又は、前記熱交換器の凍結洗浄を前記空気調和機に行わせ、
     前記エアフィルタの清掃は、所定のフィルタ清掃部によって行われ、
     前記凍結洗浄は、前記熱交換器を蒸発器として機能させ、当該熱交換器を凍結させることで行われること
     を特徴とする請求項1に記載の空調管理システム。
    When the air-side heat exchange amount is larger than the refrigerant-side heat exchange amount, the control unit cleans an air filter near the heat exchanger or freeze-cleans the heat exchanger. Let
    Cleaning of the air filter is performed by a predetermined filter cleaning unit,
    The air conditioning management system according to claim 1, wherein the freeze washing is performed by causing the heat exchanger to function as an evaporator and freezing the heat exchanger.
  9.  前記エアフィルタの清掃後、又は、前記熱交換器の前記凍結洗浄後、前記制御部は、前記冷媒側熱交換量及び前記空気側熱交換量を推定し、
     前記冷媒側熱交換量よりも前記空気側熱交換量のほうが小さい場合、前記設計体積効率に対して前記圧縮機の実際の体積効率が低下した旨を、前記報知部が、前記リモコン又は前記端末機に報知すること
     を特徴とする請求項8に記載の空調管理システム。
    After cleaning the air filter, or after the freeze washing of the heat exchanger, the control unit estimates the refrigerant-side heat exchange amount and the air-side heat exchange amount,
    When the air-side heat exchange amount is smaller than the refrigerant-side heat exchange amount, the notification unit notifies the remote controller or the terminal that the actual volumetric efficiency of the compressor has decreased with respect to the design volumetric efficiency. The air-conditioning management system according to claim 8, wherein the notification is made to a device.
  10.  前記熱交換器に向かう空気の温度が露点以下である場合、前記報知部は、前記報知を行わないこと
     を特徴とする請求項1に記載の空調管理システム。
    The air-conditioning management system according to claim 1, wherein the notification unit does not perform the notification when the temperature of the air flowing to the heat exchanger is equal to or lower than the dew point.
  11.  前記制御部は、前記熱交換器に向かう空気の温度、及び、前記熱交換器に向かう空気の湿度に基づいて、前記露点を算出すること
     を特徴とする請求項10に記載の空調管理システム。
    The air conditioning management system according to claim 10, wherein the control unit calculates the dew point based on a temperature of air flowing to the heat exchanger and a humidity of air flowing to the heat exchanger.
  12.  前記制御部は、前記熱交換器に向かう空気の温度、前記熱交換器に向かう空気の湿度、及び、前記熱交換器で熱交換した空気の温度に基づいて、前記熱交換器の吸込側・吹出側の空気の比エンタルピ差を算出し、前記ファンの回転速度に対応する前記設計風量、及び、前記比エンタルピ差に基づいて、前記空気側熱交換量を推定すること
     を特徴とする請求項1に記載の空調管理システム。
    The control unit, based on the temperature of the air going to the heat exchanger, the humidity of the air going to the heat exchanger, and the temperature of the air heat exchanged by the heat exchanger, the suction side of the heat exchanger Calculating a specific enthalpy difference of air on the blow-out side, and estimating the air-side heat exchange amount based on the design air volume corresponding to the rotation speed of the fan and the specific enthalpy difference. 2. The air conditioning management system according to 1.
  13.  空気調和機の熱交換器の一端側・他端側での冷媒の温度、及び、前記空気調和機の圧縮機に関する所定の設計体積効率を含む情報に基づいて、前記熱交換器での冷媒側熱交換量を制御部が推定する冷媒側熱交換量推定ステップと、
     前記熱交換器に向かう空気の温度、前記熱交換器で熱交換した空気の温度、及び、前記熱交換器の付近に配置されるファンの回転速度に対応する所定の設計風量に基づいて、前記熱交換器での空気側熱交換量を前記制御部が推定する空気側熱交換量推定ステップと、
     前記冷媒側熱交換量と前記空気側熱交換量との大小関係に基づく前記空気調和機の劣化予兆の箇所を報知部がリモコン又は端末機に報知する報知ステップと、を含む空調管理方法。
    The temperature of the refrigerant at one end and the other end of the heat exchanger of the air conditioner, and the refrigerant side of the heat exchanger based on information including a predetermined design volumetric efficiency related to the compressor of the air conditioner. A refrigerant-side heat exchange amount estimation step in which the control unit estimates the heat exchange amount,
    Based on the temperature of the air heading to the heat exchanger, the temperature of the air that has exchanged heat in the heat exchanger, and a predetermined design airflow corresponding to the rotation speed of a fan arranged near the heat exchanger, Air-side heat exchange amount estimation step in which the control unit estimates the air-side heat exchange amount in the heat exchanger,
    A notifying step of notifying a remote controller or a terminal of a location of a sign of deterioration of the air conditioner based on a magnitude relationship between the refrigerant-side heat exchange amount and the air-side heat exchange amount.
  14.  請求項13に記載の空調管理方法をコンピュータに実行させるためのプログラム。 A program for causing a computer to execute the air conditioning management method according to claim 13.
PCT/JP2018/024919 2018-06-29 2018-06-29 Air conditioning management system, air conditioning management method, and program WO2020003528A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018564438A JP6514422B1 (en) 2018-06-29 2018-06-29 Air conditioning management system, air conditioning management method, and program
PCT/JP2018/024919 WO2020003528A1 (en) 2018-06-29 2018-06-29 Air conditioning management system, air conditioning management method, and program
CN201880092971.XA CN112074691B (en) 2018-06-29 2018-06-29 Air-conditioning management system, air-conditioning management method, and program
KR1020207036552A KR102436213B1 (en) 2018-06-29 2018-06-29 HVAC management system, HVAC management method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/024919 WO2020003528A1 (en) 2018-06-29 2018-06-29 Air conditioning management system, air conditioning management method, and program

Publications (1)

Publication Number Publication Date
WO2020003528A1 true WO2020003528A1 (en) 2020-01-02

Family

ID=66530796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024919 WO2020003528A1 (en) 2018-06-29 2018-06-29 Air conditioning management system, air conditioning management method, and program

Country Status (4)

Country Link
JP (1) JP6514422B1 (en)
KR (1) KR102436213B1 (en)
CN (1) CN112074691B (en)
WO (1) WO2020003528A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022049747A1 (en) * 2020-09-05 2022-03-10
JPWO2022049748A1 (en) * 2020-09-05 2022-03-10
WO2023037701A1 (en) * 2021-09-08 2023-03-16 ダイキン工業株式会社 Abnormality diagnosis system, air conditioner, and air-conditioning system
WO2023145016A1 (en) * 2022-01-28 2023-08-03 三菱電機株式会社 Diagnostic device and refrigeration cycle device having same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112747424A (en) * 2019-10-31 2021-05-04 广东美的制冷设备有限公司 Control method of air conditioner, air conditioner and storage medium
JP7105372B2 (en) * 2020-03-05 2022-07-22 日立ジョンソンコントロールズ空調株式会社 air conditioner
WO2021192074A1 (en) * 2020-03-25 2021-09-30 日立ジョンソンコントロールズ空調株式会社 Air conditioner
CN112944582B (en) * 2021-03-01 2022-09-06 青岛海尔(胶州)空调器有限公司 Method and device for prompting self-cleaning of air conditioner and air conditioner
JP7082306B1 (en) * 2021-05-31 2022-06-08 ダイキン工業株式会社 Air conditioner
KR20230105434A (en) * 2022-01-04 2023-07-11 삼성전자주식회사 Ventilation SYSTEM and control method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001021195A (en) * 1999-07-05 2001-01-26 Mitsubishi Electric Building Techno Service Co Ltd Contamination detecting system for heat exchanger of air conditioner
JP2001355904A (en) * 2000-06-13 2001-12-26 Daikin Ind Ltd Heat exchanger cleaning device and air conditioner
JP2007536490A (en) * 2004-05-06 2007-12-13 キャリア コーポレイション Diagnosis and prediction of sensor failure using component models and time-scale orthogonal expansion
JP2010107189A (en) * 2008-09-30 2010-05-13 Daikin Ind Ltd Method and device for diagnosing refrigerating device, and refrigerating device
JP2010127568A (en) * 2008-11-28 2010-06-10 Mitsubishi Electric Corp Abnormality detection device and refrigerating cycle device including the same
JP2012232656A (en) * 2011-04-28 2012-11-29 Mitsubishi Electric Corp Failure diagnosis system and apparatus for vehicle air conditioner
JP2014156970A (en) * 2013-02-15 2014-08-28 Fuji Electric Co Ltd Indirect outdoor air cooling machine and combination type air conditioning system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4272224B2 (en) * 2006-09-07 2009-06-03 日立アプライアンス株式会社 Air conditioner
JP6097210B2 (en) 2013-12-11 2017-03-15 株式会社 日立産業制御ソリューションズ Equipment maintenance support apparatus and support method
KR102317340B1 (en) * 2014-01-14 2021-10-26 삼성전자주식회사 Air conditioner and fault diagnosis method thereof
CN106091246B (en) * 2016-06-14 2018-09-25 顺德职业技术学院 Air conditioner remote control operation troubles judgment method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001021195A (en) * 1999-07-05 2001-01-26 Mitsubishi Electric Building Techno Service Co Ltd Contamination detecting system for heat exchanger of air conditioner
JP2001355904A (en) * 2000-06-13 2001-12-26 Daikin Ind Ltd Heat exchanger cleaning device and air conditioner
JP2007536490A (en) * 2004-05-06 2007-12-13 キャリア コーポレイション Diagnosis and prediction of sensor failure using component models and time-scale orthogonal expansion
JP2010107189A (en) * 2008-09-30 2010-05-13 Daikin Ind Ltd Method and device for diagnosing refrigerating device, and refrigerating device
JP2010127568A (en) * 2008-11-28 2010-06-10 Mitsubishi Electric Corp Abnormality detection device and refrigerating cycle device including the same
JP2012232656A (en) * 2011-04-28 2012-11-29 Mitsubishi Electric Corp Failure diagnosis system and apparatus for vehicle air conditioner
JP2014156970A (en) * 2013-02-15 2014-08-28 Fuji Electric Co Ltd Indirect outdoor air cooling machine and combination type air conditioning system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022049747A1 (en) * 2020-09-05 2022-03-10
JPWO2022049748A1 (en) * 2020-09-05 2022-03-10
WO2022049747A1 (en) * 2020-09-05 2022-03-10 三菱電機株式会社 Maintenance management system, maintenance support device, maintenance management method, and maintenance management program
WO2022049748A1 (en) * 2020-09-05 2022-03-10 三菱電機株式会社 Maintenance management system, maintenance management method, and maintenance management program
JP7442657B2 (en) 2020-09-05 2024-03-04 三菱電機株式会社 Maintenance management system, maintenance support device, maintenance management method, and maintenance management program
JP7442658B2 (en) 2020-09-05 2024-03-04 三菱電機株式会社 Maintenance management system, maintenance management method, and maintenance management program
WO2023037701A1 (en) * 2021-09-08 2023-03-16 ダイキン工業株式会社 Abnormality diagnosis system, air conditioner, and air-conditioning system
JP2023039078A (en) * 2021-09-08 2023-03-20 ダイキン工業株式会社 Abnormality diagnostic system, air conditioner and air conditioning system
WO2023145016A1 (en) * 2022-01-28 2023-08-03 三菱電機株式会社 Diagnostic device and refrigeration cycle device having same

Also Published As

Publication number Publication date
CN112074691B (en) 2021-12-14
CN112074691A (en) 2020-12-11
JP6514422B1 (en) 2019-05-15
KR20210011976A (en) 2021-02-02
KR102436213B1 (en) 2022-08-26
JPWO2020003528A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
WO2020003528A1 (en) Air conditioning management system, air conditioning management method, and program
JP5289109B2 (en) Air conditioner
JP4503646B2 (en) Air conditioner
JP6091506B2 (en) Refrigeration air conditioner, refrigerant leak detection device, and refrigerant leak detection method
US20090314017A1 (en) Air conditioner
US9739513B2 (en) Air conditioning apparatus
CN109556232A (en) Four-way valve method for detecting abnormality, device and air-conditioner set
JP4290705B2 (en) Diagnostic method and diagnostic system for air conditioner
CN110895023A (en) Air conditioner refrigerant leakage detection method and air conditioner
CN113654182A (en) Method for detecting refrigerant leakage, computer readable storage medium and air conditioner
JP2020008204A (en) Sensor state determination device, sensor state determination method and program
JP2012159251A (en) Refrigeration cycle apparatus, flow rate calculation method, and program
JP6297151B2 (en) Refrigeration cycle apparatus, refrigerant leak detection apparatus and refrigerant leak detection method
CN114992776A (en) Refrigerant leakage detection method and device for air conditioning system, air conditioner and storage medium
JP2004092976A (en) Failure diagnostic device and air conditioner
JP6595139B1 (en) Air conditioning management system, air conditioning management method, and program
US20240053077A1 (en) Systems and methods for humidity control in an air conditioning system
JP2002147905A (en) Refrigerating plant
WO2020003529A1 (en) Air conditioning system, air conditioning method, and program
JP2010048471A (en) Indoor embedded type heat source machine
WO2021250789A1 (en) Refrigeration cycle device
US20240085042A1 (en) Refrigeration cycle device and refrigerant leakage determination system
KR20060089523A (en) Detecting method for poor vacuum of multi air-conditioner and detecting apparatus thereof
CN117889525A (en) Multi-connected air conditioning system, anti-condensation control method thereof and storage medium
JP2023148485A (en) Refrigeration cycle equipment and notification method for refrigerant leak

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018564438

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924663

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207036552

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924663

Country of ref document: EP

Kind code of ref document: A1