JP2001021195A - Contamination detecting system for heat exchanger of air conditioner - Google Patents

Contamination detecting system for heat exchanger of air conditioner

Info

Publication number
JP2001021195A
JP2001021195A JP11190250A JP19025099A JP2001021195A JP 2001021195 A JP2001021195 A JP 2001021195A JP 11190250 A JP11190250 A JP 11190250A JP 19025099 A JP19025099 A JP 19025099A JP 2001021195 A JP2001021195 A JP 2001021195A
Authority
JP
Japan
Prior art keywords
heat exchanger
contamination
heat
dirt
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11190250A
Other languages
Japanese (ja)
Inventor
Hiroshi Watanabe
広 渡辺
Noritada Matsumoto
記忠 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Building Solutions Corp
Original Assignee
Mitsubishi Electric Building Techno Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Building Techno Service Co Ltd filed Critical Mitsubishi Electric Building Techno Service Co Ltd
Priority to JP11190250A priority Critical patent/JP2001021195A/en
Publication of JP2001021195A publication Critical patent/JP2001021195A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a contamination detecting system for heat exchanger of air conditioner in which abnormal stop due to pressure rise incident to lowering of heat exchanging efficiency based on accumulated contaminant in the heat exchanger is prevented. SOLUTION: The contamination detecting system comprises refrigerant inlet and outlet temperature sensors 8, 9 of an outdoor heat exchanger 2, suction and delivery air temperature sensors 10, 11 of an outdoor unit, a high pressure sensor 6 for refrigerant circuit, means for detecting contamination of a heat exchanger based on the detection values of these sensors, and means for informing contamination based on the output from the contamination detecting means. The contamination detecting means receives detection value from each sensor every predetermined time and calculates a heat passing rate as the degree of contamination of the heat exchanger, accumulates the detection value from each sensor and the calculated heat passing rate, calculates a criterion for determining the degree of contamination of the heat exchanger based on the accumulated data, compares the heat passing rate with the criterion, and actuates the informing means if the heat passing rate is lower than the criterion.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、空気調和機の熱
交換器汚れ検出システムに関し、例えば空冷パッケージ
エアコンの室外熱交換器の汚れ具合を事前に検知するシ
ステムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dirt detection system for a heat exchanger of an air conditioner, and more particularly to a system for detecting in advance the dirt condition of an outdoor heat exchanger of an air-cooled packaged air conditioner.

【0002】[0002]

【従来の技術】図5は、従来から用いられている空気調
和機の冷房冷媒回路を示す図である。図5において、1
は圧縮機、2は室外熱交換器(凝縮器)、3は膨張弁、
4は室内熱交換器(蒸発器)であり、これら構成により
1つの冷媒回路が形成されている。また、5は高圧上昇
時に作動する高圧圧力開閉器、6は高圧圧力センサ、7
は高圧上昇時に高圧回路側から低圧回路側にバイパスさ
せるためのバイパス用電磁弁である。
2. Description of the Related Art FIG. 5 is a diagram showing a cooling refrigerant circuit of a conventionally used air conditioner. In FIG. 5, 1
Is a compressor, 2 is an outdoor heat exchanger (condenser), 3 is an expansion valve,
Reference numeral 4 denotes an indoor heat exchanger (evaporator), and a single refrigerant circuit is formed by these configurations. Reference numeral 5 denotes a high pressure switch which operates when the high pressure is increased, 6 denotes a high pressure sensor, 7
Is a bypass solenoid valve for bypassing from the high voltage circuit side to the low voltage circuit side when the high voltage rises.

【0003】次に、上記構成に係る動作について説明す
る。上記の様に構成された冷媒回路において、冷房運転
時に、外気温度が高い場合は、運転に伴って高圧が上昇
する傾向にあり、さらに、室外熱交換器2に経年的汚れ
が蓄積された場合には、高圧圧力開閉器5が作動して圧
縮機1を異常停止させることが多い。機種によっては、
高圧圧力センサ6で検出した圧力に応じてバイパス電磁
弁7が開き、高圧上昇を抑制するようになっている。
Next, the operation of the above configuration will be described. In the refrigerant circuit configured as described above, when the outside air temperature is high during the cooling operation, the high pressure tends to increase with the operation, and further, when the aging dirt is accumulated in the outdoor heat exchanger 2. In many cases, the high-pressure switch 5 is operated to stop the compressor 1 abnormally. Depending on the model,
The bypass solenoid valve 7 opens according to the pressure detected by the high-pressure sensor 6 to suppress a high-pressure rise.

【0004】[0004]

【発明が解決しようとする課題】上記のように外気温度
の上昇、室外熱交換器2の汚れにより、高圧が上昇して
異常停止し、空気調和機(以下、単に空調機と称す)が
使用不可能になる。また、バイパス用電磁弁7が開く
と、冷房能力が減少し、冷えないという問題点がある。
その恒久処置として、熱交換器の洗浄作業をユーザーに
説明するが、ユーザーにとっては、空調機使用不可にな
るだけでなく、この作業に伴う突然の経資支出が発生す
るようになる。
As described above, due to the rise in the outside air temperature and the dirt on the outdoor heat exchanger 2, the high pressure rises and stops abnormally, and an air conditioner (hereinafter simply referred to as an air conditioner) is used. Becomes impossible. Further, when the bypass solenoid valve 7 is opened, there is a problem that the cooling capacity is reduced and the cooling is not performed.
As a permanent measure, the task of cleaning the heat exchanger will be explained to the user, but not only will the user not be able to use the air conditioner but also will have a sudden expense in this operation.

【0005】この発明は上述した従来例に係る問題点を
解消するためになされたもので、熱交換器の経年的に蓄
積された汚れを事前に検出することで、熱交換率の低下
に伴う高圧上昇による異常停止を防止することができる
空気調和機の熱交換器汚れ検出システムを得ることを目
的とするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems of the prior art, and detects a dirt accumulated in a heat exchanger over time, thereby reducing the heat exchange rate. It is an object of the present invention to obtain a heat exchanger dirt detection system for an air conditioner that can prevent abnormal stop due to high pressure rise.

【0006】[0006]

【課題を解決するための手段】この発明に係る空気調和
機の熱交換器汚れ検出システムは、空気調和機の室外熱
交換器の冷媒入口温度及び冷媒出口温度をそれぞれ検出
する入口温度センサ及び出口温度センサと、室外熱交換
器の吸込空気温度及び吹出空気温度をそれぞれ検出する
室外機吸込空気温度センサ及び室外機吹出空気温度セン
サと、空気調和機の冷媒回路の高圧圧力を検出する高圧
圧力センサと、これらセンサの検出値に基づいて熱交換
器の汚れを検出する汚れ検出手段と、この汚れ検出手段
からの出力に基づいて汚れを報知する報知手段とを備
え、上記汚れ検出手段は、上記各センサの検出値を一定
時間毎に入力して、熱交換器の汚れの度合いとして熱通
過率を算出すると共に、各センサの検出値と算出された
熱通過率とを蓄積し、蓄積されたデータに基づいて熱交
換器の汚れ度合いの判定基準値を算出し、上記熱通過率
と上記判定基準値とを比較し、熱通過率が判定基準値を
下回った場合に上記報知手段を動作させることを特徴と
するものである。
A heat exchanger dirt detection system for an air conditioner according to the present invention comprises an inlet temperature sensor and an outlet for detecting a refrigerant inlet temperature and a refrigerant outlet temperature of an outdoor heat exchanger of an air conditioner, respectively. A temperature sensor, an outdoor unit intake air temperature sensor and an outdoor unit outlet air temperature sensor that respectively detect an intake air temperature and an outlet air temperature of the outdoor heat exchanger, and a high pressure sensor that detects a high pressure of a refrigerant circuit of the air conditioner. And a dirt detecting means for detecting dirt on the heat exchanger based on the detection values of these sensors; and a notifying means for notifying dirt based on an output from the dirt detecting means. Input the detection value of each sensor at regular intervals, calculate the heat transmission rate as the degree of contamination of the heat exchanger, and accumulate the detection value of each sensor and the calculated heat transmission rate. A reference value for determining the degree of contamination of the heat exchanger is calculated based on the accumulated data, and the heat transmission rate is compared with the determination reference value. Is operated.

【0007】[0007]

【発明の実施の形態】実施の形態1.図1は、この発明
の実施の形態1に係る空気調和機の熱交換器汚れ検出シ
ステムの冷媒回路図である。図1において、図5に示す
従来例と同一部分は同一符号を付してその説明は省略す
る。新たな符号として、8及び9は室外熱交換器2の冷
媒入口温度及び冷媒出口温度をそれぞれ検出する入口温
度センサ及び出口温度センサ、10及び11は室外熱交
換器2の吸込空気温度及び吹出空気温度をそれぞれ検出
する室外機吸込空気温度センサ及び室外機吹出空気温度
センサであり、これらセンサ8ないし11及び高圧圧力
センサ6の検出信号は後述する熱交換器汚れ検出装置に
よる汚れ検出に用いられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 is a refrigerant circuit diagram of a heat exchanger dirt detection system for an air conditioner according to Embodiment 1 of the present invention. 1, the same parts as those of the conventional example shown in FIG. 5 are denoted by the same reference numerals, and the description thereof will be omitted. As a new code, 8 and 9 are an inlet temperature sensor and an outlet temperature sensor for detecting a refrigerant inlet temperature and a refrigerant outlet temperature of the outdoor heat exchanger 2, respectively, and 10 and 11 are an inlet air temperature and an outlet air of the outdoor heat exchanger 2, respectively. An outdoor unit intake air temperature sensor and an outdoor unit outlet air temperature sensor for detecting temperatures, respectively, and the detection signals of these sensors 8 to 11 and the high pressure sensor 6 are used for dirt detection by a heat exchanger dirt detection device described later.

【0008】また、図2は熱交換器汚れ検出装置の内部
構成を示す図である。図2に示すように、熱交換器汚れ
検出装置20は、図1に示す各部センサの検出信号及び
設定値を入力する入力装置12、熱交換器の汚れ度合い
の判定に用いられる熱通過率及びその判定基準値等を演
算する演算装置13、入力装置12により入力されたデ
ータ及び演算装置13による演算データ等を記憶蓄積す
る記憶装置14、熱交換器汚れ度合いを判定するための
比較装置15、及び各構成を制御する制御部16を備え
ており、熱通過率が判定基準値を下回った場合に比較装
置15からの出力に基づいて報知装置17を動作させて
汚れ検知を報知するようになっている。
FIG. 2 is a diagram showing the internal configuration of the heat exchanger dirt detection device. As shown in FIG. 2, the heat exchanger dirt detection device 20 includes an input device 12 for inputting a detection signal and a set value of each sensor shown in FIG. 1, a heat transfer coefficient used for determining the degree of dirt of the heat exchanger, and A computing device 13 for computing the determination reference value and the like; a storage device 14 for storing and accumulating data input by the input device 12 and computation data by the computing device 13; a comparing device 15 for determining the degree of contamination of the heat exchanger; And a control unit 16 for controlling each component, and when the heat transmission rate falls below the determination reference value, operates the notifying device 17 based on the output from the comparing device 15 to notify the detection of dirt. ing.

【0009】次に、上記構成に係る動作について、図3
に示す熱交換器における熱通過率の特性図及び図4に示
す熱交換器汚れ検出装置20(主に制御部16)の動作
フローチャートを参照して説明する。室外熱交換器2
は、複数年使用すると経年的汚れが蓄積するが、図3に
示すように、使用年数を重ねる毎に汚れ具合がひどくな
り、熱通過率Kの値は、初期値K0からKnのように徐々
に低下していく。
Next, the operation according to the above configuration will be described with reference to FIG.
This will be described with reference to the characteristic diagram of the heat transfer coefficient in the heat exchanger shown in FIG. 4 and the operation flowchart of the heat exchanger contamination detecting device 20 (mainly the control unit 16) shown in FIG. Outdoor heat exchanger 2
Is secular dirt accumulates when multiple years use, as shown in FIG. 3, cleanliness is severely each overlapping age, the value of heat transfer coefficient K is, as the initial value K 0 of K n It gradually decreases.

【0010】そこで、高圧圧力と、室外熱交換器2の冷
媒入口温度・冷媒出口温度・室外機吸込空気温度・吹出
空気温度を各センサでそれぞれ検出して入力装置12に
て一定時間毎に入力し、下記の計算式により周期的に演
算装置13にて熱通過率Kを算出する。
Therefore, the high-pressure pressure, the refrigerant inlet temperature, the refrigerant outlet temperature, the outdoor unit intake air temperature, and the blow-out air temperature of the outdoor heat exchanger 2 are detected by the respective sensors and input by the input device 12 at regular intervals. Then, the heat transmission coefficient K is periodically calculated by the arithmetic unit 13 according to the following formula.

【0011】 凝縮能力Q=K・A・△T △T=Tc−(T1+T2)/2 凝縮能力Q=G・△h ここで、凝縮能力Q、伝熱面積A、冷媒循環量Gは設定
値、凝縮温度Tcは高圧圧力センサ6の検出値から求ま
る値、室外熱交換器2の冷媒入出口部のエンタルピ差△
hは温度センサ8による検出値に対応するエンタルピと
温度センサ9による検出値に対応するエンタルピとの差
から求まる値、T1とT2は温度センサ10と11による
検出値であり、算術平均温度差△Tは演算で求めること
が可能である。
Condensing capacity Q = K · A · ΔT ΔT = T c − (T 1 + T 2 ) / 2 Condensing capacity Q = G · Δh where, condensing capacity Q, heat transfer area A, refrigerant circulation amount G is a set value, condensing temperature Tc is a value obtained from the detection value of the high pressure sensor 6, and the enthalpy difference of the refrigerant inlet / outlet portion of the outdoor heat exchanger 2 △
h is the detected value of the enthalpy value obtained from the difference between the enthalpy corresponding to the detected value by the temperature sensor 9, T 1 and T 2 are the temperature sensor 10 11 that corresponds to the detected value by the temperature sensor 8, the arithmetic average temperature The difference ΔT can be calculated.

【0012】演算装置13の演算により求められる熱通
過率Kは、凝縮温度Tc、室外機吸込空気温度T1、室外
機吹出空気温度T2と共に熱交換器汚れデータとして周
期的に記憶装置14に蓄積される。また、それらデータ
が蓄積される都度、空調機の高圧カット値に対する熱通
過率の限界値K’が演算装置13により次式に基づいて
演算される。
The heat transmission coefficient K obtained by the calculation of the arithmetic unit 13 is periodically stored as heat exchanger stain data together with the condensing temperature T c , the outdoor unit intake air temperature T 1 , and the outdoor unit outlet air temperature T 2. Is accumulated in Further, each time such data is accumulated, the limit value K ′ of the heat transmission rate with respect to the high-pressure cut value of the air conditioner is calculated by the calculation device 13 based on the following equation.

【0013】K’=Q/(A・ΔT)=(Q/A)・
[Tc’−(T1MAX+T2MAX)/2] ここで、Tc’は空調機の高圧カット値に対する凝縮温
度(設定値)であり、T1 MAX、T2MAXは夏場の高温時を
考慮して記憶装置14に蓄積されている室外機吸込空気
温度T1、室外機吹出空気温度T2のデータのうち、それ
ぞれ最高温度を使用する。
K ′ = Q / (A · ΔT) = (Q / A) ·
[T c ′ − (T 1MAX + T 2MAX ) / 2] Here, T c ′ is a condensation temperature (set value) with respect to the high-pressure cut value of the air conditioner, and T 1 MAX and T 2MAX take into account the high temperature in summer. outdoor unit inlet air temperatures T 1 is stored in the storage device 14 and, among the data of the outdoor unit outlet air temperature T 2, respectively using the maximum temperature.

【0014】上述したようにして求められる空調機の高
圧カット値に対する熱通過率の限界値K’を熱交換器汚
れの判定基準値とし、比較装置15により熱通過率Kと
判定基準値K’を比較させて、熱通過率Kの値が判定基
準値K’を下回った場合には熱交換器が汚れ、高圧圧力
異常に至る可能性が大きいと判断し、報知装置17より
予兆としてユーザーに報知する。また、報知装置17に
通報装置を内蔵させて所定の通報先へ通報するようにす
ることも可能である。
The limit value K 'of the heat transfer rate with respect to the high-pressure cutoff value of the air conditioner obtained as described above is used as a criterion value for contamination of the heat exchanger, and the heat transfer rate K and the criterion value K' are determined by the comparator 15. When the value of the heat transfer rate K is lower than the determination reference value K ′, it is determined that the heat exchanger is likely to be contaminated and a high pressure abnormality is likely to occur. Notify. Further, it is also possible to incorporate a notifying device in the notifying device 17 so as to notify a predetermined notifying destination.

【0015】また、制御部16では、伝熱面積A、高圧
カット値(凝縮温度Tc’)の設定、初期値のリセット
設定変更ができる。設定モードにすると、その時の熱通
過率の値を初期値K0とし、現在の熱通過率Knを初期値
0と比較することで、つまり効率ηn=Kn/K0×10
0を求めることで熱交換器汚れ状況が把握できる。
The control unit 16 can set the heat transfer area A, the high pressure cut value (condensation temperature Tc '), and change the reset setting of the initial value. If the setting mode, the value of heat transfer coefficient at that time as an initial value K 0, the current overall heat transfer coefficient K n is compared with the initial value K 0, i.e. efficiency η n = K n / K 0 × 10
By obtaining 0, the status of the heat exchanger contamination can be grasped.

【0016】図4は上述した制御部16の制御動作を表
すフローチャートである。すなわち、図4に示すよう
に、まず、設定値として、凝縮能力Q、伝熱面積A、冷
媒循環量Gを入力装置12にて入力すると共に、内蔵タ
イマを初期化してt=0とする(ステップS1,S
2)。また、入力される設定モードが初期設定モードか
否かを判定する(ステップS3)。なお、初期設定モー
ド判定ステップの通過後は、内蔵タイマが所定時間tre
毎に周期的に繰り返しカウントするようになされてい
る。
FIG. 4 is a flowchart showing the control operation of the control unit 16 described above. That is, as shown in FIG. 4, first, as the set values, the condensing capacity Q, the heat transfer area A, and the refrigerant circulation amount G are input through the input device 12, and the built-in timer is initialized to t = 0 ( Step S1, S
2). Further, it is determined whether or not the input setting mode is the initial setting mode (step S3). After passing through the initial setting mode determination step, the built-in timer sets the predetermined time t re.
The count is repeated periodically every time.

【0017】初期設定モード時は、n=0に設定し(ス
テップS4a)、繰り返し時間treに達したら、検出デ
ータとして、高圧圧力センサ6、室外機吸込空気温度セ
ンサ10、吹出空気温度センサ11の各センサの検出値
を入力して(ステップS5,S6)、演算装置13にて
熱通過率Kn及び効率ηn(Kn/K0×100)を演算
し、記憶装置14に記憶させる(ステップS7)。な
お、この場合の熱通過率及び効率はK0及びη0と表記さ
れるが、η0は100%となり意味がないので記憶され
ない。
In the initial setting mode, n = 0 is set (step S4a), and when the repetition time t re has been reached, the high-pressure pressure sensor 6, the outdoor unit intake air temperature sensor 10, and the outlet air temperature sensor 11 are detected as detection data. Are input (steps S5 and S6), and the arithmetic unit 13 calculates the heat transmittance K n and the efficiency η n (K n / K 0 × 100) and stores them in the storage unit 14. (Step S7). In this case, the heat transmittance and the efficiency are denoted as K 0 and η 0 , but are not stored because η 0 is 100% and has no meaning.

【0018】次に、n=0の場合には、ステップS8か
らステップS2に移行し、内蔵タイマをt=0とし、次
に、初期設定モードではないので、ステップS4bに移
行し、nを1カウントアップし、繰り返し時間treに達
したら、検出データとして、高圧圧力センサ6、冷媒入
口温度センサ8、冷媒出口温度センサ9、室外機吸込空
気温度センサ10、吹出空気温度センサ11の各センサ
の検出値を入力して(ステップS5,S6)、演算装置
13にて熱通過率Kn及び効率ηnを演算し、記憶装置1
4に記憶させる(ステップS7)。
Next, when n = 0, the process shifts from step S8 to step S2, sets the built-in timer to t = 0, and then shifts to step S4b because the mode is not the initial setting mode. After counting up and reaching the repetition time t re , detection data of the high pressure sensor 6, the refrigerant inlet temperature sensor 8, the refrigerant outlet temperature sensor 9, the outdoor unit intake air temperature sensor 10, and the blowout air temperature sensor 11 are detected data. enter the detection value (step S5, S6), the overall heat transfer coefficient K n and efficiency eta n computed by the computing unit 13, the storage device 1
4 (step S7).

【0019】また、この場合、n=0でないので、ステ
ップS8を通過し、ステップS9に移行し、空調機の高
圧カット値に対する熱通過率の限界値K’を演算し記憶
装置14に記憶する(ステップS9)。
In this case, since n = 0 is not satisfied, the process goes through step S8 and shifts to step S9, where the limit value K 'of the heat transfer rate with respect to the high pressure cut value of the air conditioner is calculated and stored in the storage device 14. (Step S9).

【0020】このようなステップを経て、記憶装置14
には順次検出データの他に熱通過率Kn、効率ηnの演算
データ及び限界値K’の演算更新データが記憶され、そ
の都度、比較装置15により熱通過率Knと判定基準値
K’を比較させて(ステップS10)、熱通過率Kの値
が判定基準値K’を下回った場合には熱交換器が汚れ、
高圧圧力異常に至る可能性が大きいと判断し、報知装置
17より予兆としてユーザーに報知する(ステップS1
1)。また、報知装置17に通報装置を内蔵させて所定
の通報先へ通報する。
Through these steps, the storage device 14
Heat transfer coefficient K n to other sequential detection data, the efficiency η operation update data of the operation data and the limit value K 'of n is stored in each case, the comparator 15 and the overall heat transfer coefficient K n criterion value K Are compared (step S10), and if the value of the heat transfer rate K is lower than the determination reference value K ', the heat exchanger becomes dirty,
It is determined that the possibility of high pressure abnormality is high, and the user is notified from the notification device 17 as a sign (step S1).
1). In addition, a notification device is built in the notification device 17 to notify a predetermined notification destination.

【0021】従って、上記実施の形態によれば、上記の
如く構成の熱交換器汚れ検出装置20をパッケージエア
コン内に設けることにより、熱交換器の経年的な汚れ具
合を判断することが可能である。さらに、汚れの許容範
囲を越えた場合には、異常停止することなく、事前に予
兆としてユーザーに通報が可能となる。これにより、熱
交換器洗浄作業に伴う突然の経費支出を防ぐことができ
る。また、熱交換器の汚れ具合(効率η)が随時把握で
きる為、これも報知させることによりユーザーへの説明
が容易となる。
Therefore, according to the above-described embodiment, by providing the heat exchanger dirt detection device 20 having the above-described configuration in the packaged air conditioner, it is possible to determine the degree of dirt of the heat exchanger over time. is there. Further, when the contamination exceeds the allowable range, the user can be notified in advance as a sign without abnormal stop. As a result, it is possible to prevent sudden expenditures for the heat exchanger cleaning operation. Further, since the degree of contamination (efficiency η) of the heat exchanger can be grasped at any time, the notification to the user also facilitates the explanation to the user.

【0022】[0022]

【発明の効果】以上のように、この発明によれば、運転
データより汚れ具合を検出してデータとして蓄積し、限
界値と比較することにより、熱交換器の汚れ具合を随時
把握することができ、異常停止する前に熱交換器汚れに
よる高圧異常停止に至る可能性が大きいと判定した場合
には、予兆としてユーザーに報知することができる。
As described above, according to the present invention, the degree of contamination of the heat exchanger can be grasped at any time by detecting the degree of contamination from the operation data, storing it as data, and comparing it with the limit value. If it is determined that the possibility of a high-pressure abnormal stop due to heat exchanger contamination is high before the abnormal stop, the user can be notified as a sign.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1に係る空気調和機の
熱交換器汚れ検出システムの冷媒回路図である。
FIG. 1 is a refrigerant circuit diagram of a heat exchanger dirt detection system for an air conditioner according to Embodiment 1 of the present invention.

【図2】 この発明の実施の形態1に係る熱交換器汚れ
検出装置の内部構成を示す図である。
FIG. 2 is a diagram showing an internal configuration of a heat exchanger dirt detection device according to Embodiment 1 of the present invention.

【図3】 熱交換器における熱通過率の特性図である。FIG. 3 is a characteristic diagram of a heat transmittance in a heat exchanger.

【図4】 この発明の実施の形態1に係る熱交換器汚れ
検出装置20(主に制御部16)の動作フローチャート
である。
FIG. 4 is an operation flowchart of the heat exchanger dirt detection device 20 (mainly the control unit 16) according to Embodiment 1 of the present invention.

【図5】 従来例による空気調和機の冷房冷媒回路を示
す回路図である。
FIG. 5 is a circuit diagram showing a cooling refrigerant circuit of an air conditioner according to a conventional example.

【符号の説明】[Explanation of symbols]

1 圧縮機、2 室外熱交換器(凝縮器)、3 膨張
弁、4 室内熱交換器(蒸発器)、5 高圧圧力開閉
器、6 高圧圧力センサ、7 バイパス電磁弁、8 室
外熱交換器の冷媒入口温度センサ、9 室外熱交換器の
冷媒出口温度センサ、10 室外機吸込温度センサ、1
1 室外吹出温度センサ、12 入力装置13 演算装
置、14 記憶装置、15 比較装置、16 制御部、
17 報知装置。
1 Compressor, 2 outdoor heat exchanger (condenser), 3 expansion valve, 4 indoor heat exchanger (evaporator), 5 high pressure switch, 6 high pressure sensor, 7 bypass solenoid valve, 8 outdoor heat exchanger Refrigerant inlet temperature sensor, 9 Refrigerant outlet temperature sensor of outdoor heat exchanger, 10 Outdoor unit suction temperature sensor, 1
1 outdoor air temperature sensor, 12 input device 13 arithmetic device, 14 storage device, 15 comparison device, 16 control unit,
17 Notification device.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 空気調和機の室外熱交換器の冷媒入口温
度及び冷媒出口温度をそれぞれ検出する入口温度センサ
及び出口温度センサと、室外熱交換器の吸込空気温度及
び吹出空気温度をそれぞれ検出する室外機吸込空気温度
センサ及び室外機吹出空気温度センサと、空気調和機の
冷媒回路の高圧圧力を検出する高圧圧力センサと、これ
らセンサの検出値に基づいて熱交換器の汚れを検出する
汚れ検出手段と、この汚れ検出手段からの出力に基づい
て汚れを報知する報知手段とを備え、上記汚れ検出手段
は、上記各センサの検出値を一定時間毎に入力して、熱
交換器の汚れの度合いとして熱通過率を算出すると共
に、各センサの検出値と算出された熱通過率とを蓄積
し、蓄積されたデータに基づいて熱交換器の汚れ度合い
の判定基準値を算出し、上記熱通過率と上記判定基準値
とを比較し、熱通過率が判定基準値を下回った場合に上
記報知手段を動作させることを特徴とする空気調和機の
熱交換器汚れ検出システム。
An inlet temperature sensor and an outlet temperature sensor for detecting a refrigerant inlet temperature and a refrigerant outlet temperature of an outdoor heat exchanger of an air conditioner, respectively, and an inlet air temperature and an outlet air temperature of the outdoor heat exchanger, respectively. An outdoor unit intake air temperature sensor and an outdoor unit outlet air temperature sensor; a high pressure sensor for detecting a high pressure of a refrigerant circuit of an air conditioner; and a dirt detection for detecting dirt on a heat exchanger based on a detection value of these sensors. Means, and a notifying means for notifying dirt based on an output from the dirt detecting means. The dirt detecting means inputs a detection value of each of the sensors at regular time intervals, and detects dirt on the heat exchanger. Calculate the heat transmittance as a degree, accumulate the detected value of each sensor and the calculated heat transmittance, calculate a reference value of the degree of contamination of the heat exchanger based on the accumulated data, A heat exchanger contamination detection system for an air conditioner, comprising: comparing the heat transmittance with the determination reference value; and operating the notification means when the heat transmittance is lower than the determination reference value.
JP11190250A 1999-07-05 1999-07-05 Contamination detecting system for heat exchanger of air conditioner Pending JP2001021195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11190250A JP2001021195A (en) 1999-07-05 1999-07-05 Contamination detecting system for heat exchanger of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11190250A JP2001021195A (en) 1999-07-05 1999-07-05 Contamination detecting system for heat exchanger of air conditioner

Publications (1)

Publication Number Publication Date
JP2001021195A true JP2001021195A (en) 2001-01-26

Family

ID=16255018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11190250A Pending JP2001021195A (en) 1999-07-05 1999-07-05 Contamination detecting system for heat exchanger of air conditioner

Country Status (1)

Country Link
JP (1) JP2001021195A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6514422B1 (en) * 2018-06-29 2019-05-15 日立ジョンソンコントロールズ空調株式会社 Air conditioning management system, air conditioning management method, and program
WO2019141286A1 (en) * 2018-01-22 2019-07-25 青岛海尔空调器有限总公司 Self-cleaning control method for air conditioner, and air conditioner
CN110307617A (en) * 2019-07-03 2019-10-08 珠海格力电器股份有限公司 Heat exchanger, filth blockage detection method, device and system thereof, and electrical equipment
JP2020003202A (en) * 2019-04-05 2020-01-09 日立ジョンソンコントロールズ空調株式会社 Air-conditioning management system, air-conditioning management method and program
CN112052564A (en) * 2020-08-10 2020-12-08 浙江大学 Heat exchanger predictive maintenance method and system based on machine learning
CN112378041A (en) * 2020-11-12 2021-02-19 海信(山东)空调有限公司 Air conditioner control method and air conditioner

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019141286A1 (en) * 2018-01-22 2019-07-25 青岛海尔空调器有限总公司 Self-cleaning control method for air conditioner, and air conditioner
JP6514422B1 (en) * 2018-06-29 2019-05-15 日立ジョンソンコントロールズ空調株式会社 Air conditioning management system, air conditioning management method, and program
WO2020003528A1 (en) * 2018-06-29 2020-01-02 日立ジョンソンコントロールズ空調株式会社 Air conditioning management system, air conditioning management method, and program
CN112074691A (en) * 2018-06-29 2020-12-11 日立江森自控空调有限公司 Air-conditioning management system, air-conditioning management method, and program
CN112074691B (en) * 2018-06-29 2021-12-14 日立江森自控空调有限公司 Air-conditioning management system, air-conditioning management method, and program
JP2020003202A (en) * 2019-04-05 2020-01-09 日立ジョンソンコントロールズ空調株式会社 Air-conditioning management system, air-conditioning management method and program
CN110307617A (en) * 2019-07-03 2019-10-08 珠海格力电器股份有限公司 Heat exchanger, filth blockage detection method, device and system thereof, and electrical equipment
CN110307617B (en) * 2019-07-03 2020-05-26 珠海格力电器股份有限公司 Heat exchanger, filth blockage detection method, device and system thereof, and electrical equipment
CN112052564A (en) * 2020-08-10 2020-12-08 浙江大学 Heat exchanger predictive maintenance method and system based on machine learning
CN112052564B (en) * 2020-08-10 2022-10-11 浙江大学 Heat exchanger predictive maintenance method and system based on machine learning
CN112378041A (en) * 2020-11-12 2021-02-19 海信(山东)空调有限公司 Air conditioner control method and air conditioner

Similar Documents

Publication Publication Date Title
JP3477013B2 (en) Air conditioner
JP6387276B2 (en) Refrigeration cycle equipment
US10139815B2 (en) Chiller control device, chiller, and chiller diagnostic method
JP2001021195A (en) Contamination detecting system for heat exchanger of air conditioner
KR101160425B1 (en) Method for Filter Clogging Detection in Air Conditioner
JPH0682130A (en) Abnormality detector for condenser of cooler
JPH08247561A (en) Air conditioner
JP2564328B2 (en) Refrigerant shortage detection device for air conditioner
US20100080712A1 (en) System and Method of Disabling an HVAC Compressor Based on a High Pressure Cut Out
US10921046B2 (en) Method for defrosting an evaporator of a sealed system
JP4049610B2 (en) Abnormality detection device for heat pump heat exchanger
JP2605614B2 (en) Operation control device for air conditioner
JP2944881B2 (en) refrigerator
JP3791444B2 (en) Air conditioner
JP2504337B2 (en) Operation control device for air conditioner
JPH09159293A (en) Compressor protection controller for air conditioner
JP2546069B2 (en) Refrigeration system operation controller
KR100361907B1 (en) Air conditioner
JP2909941B2 (en) Defrosting operation control device for refrigeration equipment
JP2008249240A (en) Condensing unit and refrigerating device comprising the same
JP6444536B2 (en) Compressor deterioration diagnosis device and compressor deterioration diagnosis method
JP4026583B2 (en) Air conditioner
JP7237182B2 (en) air conditioner
JP2005037022A (en) Equipment management device
JPS62210336A (en) Control device for defrosting of air-conditioning machine

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060203