WO2020002718A1 - Nuevos derivados de adenina 9n sustituidos, composiciones farmacéuticas que los contienen y utilización de las mismas - Google Patents

Nuevos derivados de adenina 9n sustituidos, composiciones farmacéuticas que los contienen y utilización de las mismas Download PDF

Info

Publication number
WO2020002718A1
WO2020002718A1 PCT/ES2018/070457 ES2018070457W WO2020002718A1 WO 2020002718 A1 WO2020002718 A1 WO 2020002718A1 ES 2018070457 W ES2018070457 W ES 2018070457W WO 2020002718 A1 WO2020002718 A1 WO 2020002718A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
adenine
substituted
ampk
pharmaceutical compositions
Prior art date
Application number
PCT/ES2018/070457
Other languages
English (en)
French (fr)
Inventor
Iván SILIÓ OLIVER
Original Assignee
Silio Oliver Ivan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Silio Oliver Ivan filed Critical Silio Oliver Ivan
Priority to EP18923938.7A priority Critical patent/EP3816165B1/en
Priority to US17/254,135 priority patent/US11992498B2/en
Priority to CN201880094067.2A priority patent/CN112272668B/zh
Priority to PCT/ES2018/070457 priority patent/WO2020002718A1/es
Priority to JP2020569123A priority patent/JP7196202B2/ja
Priority to ES18923938T priority patent/ES2933904T3/es
Priority to ARP190101214A priority patent/AR114879A1/es
Publication of WO2020002718A1 publication Critical patent/WO2020002718A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6561Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing systems of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring or ring system, with or without other non-condensed hetero rings
    • C07F9/65616Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing systems of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring or ring system, with or without other non-condensed hetero rings containing the ring system having three or more than three double bonds between ring members or between ring members and non-ring members, e.g. purine or analogs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/675Phosphorus compounds having nitrogen as a ring hetero atom, e.g. pyridoxal phosphate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2054Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose

Definitions

  • the present invention relates to new substituted N9 adenine derivatives, pharmaceutical compositions that include these derivatives and the use of the new derivatives and pharmaceutical compositions containing them as AMPK activators (AMP Activated Protein Kinase - Adenosine Activated Protein Kinase) Monophosphate).
  • AMPK activators AMP Activated Protein Kinase - Adenosine Activated Protein Kinase
  • Monophosphate AMP Activated Protein Kinase - Adenosine Activated Protein Kinase
  • the derivatives of the invention and the compositions containing them are suitable for the production of medicaments for the treatment of disorders and diseases where the activation of AMPK plays an important role.
  • AMPK phosphorylates a large number of proteins causing the shutdown of certain anabolic pathways that consume energy, such as macromolecule biosynthesis, cell growth and proliferation, while turning on the pathways that produce ATP such as glycolysis and acid oxidation.
  • AMPK The activation of AMPK can regulate different processes in the cell. Specifically at the metabolic level it acts on the metabolism of fatty acids, glucose, and protein synthesis, among others. At the level of the metabolism of fatty acids AMPK intervenes increasing lipid oxidation and inhibiting de novo synthesis of these. The increase in lipid oxidation takes place partly because AMPK increases PPAR-C ⁇ levels, involved in the transcription of genes encoding proteins involved in b-oxidation (Barish GD, et al., 2006. PPAR delta : a dagger in the heart of the metabolic syndrome. J Clin Invest.
  • AMPK can phosphorylate directly to PPAR-a although the physiological relevance of this phosphorylation is unknown.
  • AMPK also acts by inhibiting de novo synthesis of fatty acids and lipids both at the transcriptional and post-translational levels, thus reducing the synthesis of enzymes involved in lipogenesis, by regulating the transcription factors SREBP and ChREBP (Kawaguchi T, et al., 2002 , Mechanism for fatty acid "sparing" effect on glucose- induced transcription: regulation of carbohydrateresponsive element-binding protein by AMPactivated protein kinase. J Biol Chem. 277: 3829-35). It can act directly on enzymes of fatty acid synthesis.
  • Phosphorylates ACC1 on Ser77 and Ser79, ACC2 on Ser219 and Ser221, and possibly FASN inhibiting them (An Z, et al., 2007, Nicotine-induced activation of AMP-activated protein kinase inhibits fatty acid synthase in 3T3L1 adipocytes: a role for oxidant stress. J Biol Chem. 282: 26793-801). In this way a decrease in lipogenesis takes place, as well as an increase in b-oxidation.
  • AMPK acts by increasing glycolysis, and inhibiting gluconeogenesis. It has been described that regulates glycolysis by acting, for example, on GEF, which is involved in the transcription of Glut-4.
  • AMPK phosphorylates GEF so that it increases its affinity for the Glut-4 promoter and increases its level of transcription (Holmes BF, et al., 2005, Regulation of muscle GLUT4 enhancer factor and myocyte enhancer factor 2 by AMP-activated protein Kinase Am J Physiol Endocrinol
  • AMPK also regulates mitochondrial metabolism, with PGCl transcription factor being its greatest effector. AMPK directly phosphorylates and activates this transcription factor which is involved in the transcription of genes involved in oxidative phosphorylation and mitochondrial biogenesis.
  • the identification of AMPK as an indirect target of well-known anti-diabetic drugs has led in recent years to the increasing development of more effective and specific AMPK activators.
  • thienopyridone derivatives are described as direct activators of AMPK, in particular activating AMPK via an allosteric mechanism and by inhibition of threonine dephosphorylation.
  • the effects on glucose and lipid metabolism observed in mice treated with these derivatives were mainly caused by the stimulation of AMPK in the liver.
  • AICAR 5- aminoimidazol-4-carboxamide riboside
  • W02010103040 Al the compound 5- aminoimidazol-4-carboxamide riboside (AICAR) is described as activator of AMPK, which is metabolized to ZMP, analogue of AMP, by adenosine kinase (AQ or AK in English).
  • the ZMP binds to the gamma subunit of AMPK and emulates the effect of AMP on the allosteric activation of AMPK kinase, with antidiabetic effects in animal models.
  • AICAR has a low bioavailability and its effective administration requires high doses of intravenous administration mainly due to its poor gastrointestinal absorption and its rapid conversion into a multitude of non-active metabolites against AMPK.
  • AMPK activators useful in the treatment or prevention of disorders related to the activation of AMPK, such as age-related metabolic, neurodegenerative or neoplastic pathologies, in particular as agonists of the bateman domains (structure formed by two CBS motifs - cystathione-beta-synthase) in tandem of the AMPK gamma subunit.
  • the compounds of the present invention are designed as AMP mimetics that bind to the nucleotide binding sites of the gamma subunit.
  • AMPK has many downstream targets that affect glucose and glycogen metabolism and lipid and cholesterol biosynthesis that make these compounds good candidates for the treatment and / or prevention of metabolic diseases such as hypercholesterolemia, obesity, diabetes type 2 or metabolic syndrome (also called syndrome X).
  • metabolic diseases such as hypercholesterolemia, obesity, diabetes type 2 or metabolic syndrome (also called syndrome X).
  • the compounds of the present invention are especially suitable for the treatment and / or prevention of these types of disorders at low effective doses, their EC 50 being (average concentration maximum effective) well below EC50 of AICAR derivatives or biguanide derivatives already known in the state of the art. DESCRIPTION OF THE INVENTION
  • the invention relates to adenine N9- [aryl, heteroaryl) phosphonate derivatives as AMPK activators of the following general formula (I)
  • R is an aryl group of 5 or 6 ring members or a heteroaryl group of 5 or 6 ring members, the aryl or heteroaryl being able to be substituted in their free positions with one or more substituents, the same or different, selected from among deuterium , a halogen atom, -OH, -CH 3 , -CN, -OCH 3 , OCH2CH3, -CH2COOH, -CH2COOCH3, -COOH -COCH3, -COH.
  • Ri and R2 are selected, independently from each other, from H, a linear or branched (Cl-22) alkyl group, a (C2-22) alkenyl group, a (C2-22) alkynyl group, a (C3) cycloalkyl group -7), a (C3-22) alkyl group -COOH, an aryl (C5-6) -COOH group, an amino acid, preferably alanine, serine or arginine, a glycerol, choline or sphingomyelin group; or are selected, independently from each other, from alkali or alkaline earth metal cations, in particular sodium or magnesium, which may also be a transition metal cation or any acceptable cation; and where
  • aryl group refers to an aromatic hydrocarbon group of 5 or 6 ring members, the aryl may not be substituted or be mono or polysubstituted, with the same or different substituents, independently selected from the group consisting of a halogen atom , methyl, ethyl, propyl, isopropyl and cyclopropyl, deuterium and hydroxyl.
  • heteroaryl group refers to an aromatic hydrocarbon group of 5 or 6 ring members where at least one of the ring carbons has been replaced by N, O, S, P or Se.
  • alkyl Cl-22
  • alkenyl C2-22
  • alkynyl C2-22
  • Preferred compounds of formula (I) are those where R is an aryl group selected from phenyl or cyclopentadienyl, of the following formulas (Ia-d), where Ri and R2 are as defined above:
  • R is a heteroaryl group selected from pyridine, pyrimidine, pyrrolyl, pyrazolyl, pyranyl, furanyl, thiophenyl, phospholoyl or selenophenyl, of the following formulas (Ie-p), Ri and R2 as defined above:
  • N9-phenyl-3-phosphonyl-adenine is particularly preferred, a particular case of the compound (la) where Ri and R2 are both hydrogen, N9- (2-furanyl) -5-phosphonyl-adenine, particular case of compounds (II) and (Im) where Ri and R2 are both hydrogen and N9- (3-diethylphosphonyl) phenyl-adenine, particular case of compound (la) where Ri and R2 are both an ethyl group.
  • the invention also relates to pharmaceutical compositions containing the compounds described above in a therapeutically effective amount in combination with one or more pharmaceutically acceptable excipients, as well as to the use of said pharmaceutical compositions for the production of medicaments useful for the treatment and / or the prevention of disorders and diseases where the activation of AMPK plays a relevant role, for example of metabolic diseases such as hypercholesterolemia, obesity, type 2 diabetes or metabolic syndrome (also called syndrome X), but also for musculoskeletal function , endocrine function, cell homeostasis, adaptation to environmental stress, as well as for the treatment or prevention of dermatological pathologies that can be controlled and / or reversed by the activation of the holoenzyme AMPK.
  • metabolic diseases such as hypercholesterolemia, obesity, type 2 diabetes or metabolic syndrome (also called syndrome X)
  • musculoskeletal function e.g., endocrine function
  • cell homeostasis e.g., adaptation to environmental stress
  • compositions according to the invention those suitable for oral, parenteral, intramuscular and intravenous, per or transcutaneous, nasal, rectal, perlingual, ocular, respiratory, and more specifically those in the form of simple tablets, sublingual tablets are indicated , hard capsules, perlingual tablets, capsules, pills, injectable preparations, aerosols, suppositories, creams, ointments or dermal gels.
  • compositions of the invention are administered orally.
  • the pharmaceutical compositions according to the invention contain one or more excipients or vehicles selected from diluents, lubricants, binders, disintegrants, stabilizers, preservatives, absorbents, colorants, sweeteners, flavorings, etc., these excipients being selected in function of the final dosage form of the pharmaceutical composition.
  • lactose lactose, dextrose, sucrose, mannitol, sorbitol, microcrystalline cellulose, glycerin;
  • lubricants silica, talc, stearic acid and its magnesium and calcium salts, polyethylene glycol;
  • disintegrants agar, alginic acid and its sodium salt, effervescent mixtures;
  • the useful dosage varies according to the sex, age and weight of the patient, the route of administration, the nature of the disorder and any associated treatments, ranging from 1 pg to 1,000 mg of a compound according to the invention per kg of body weight of the subject to be treated, preferably between 1 mg and 300 mg per kg of body weight, in one or several doses per day.
  • the subject to be treated is a human or animal mammalian subject.
  • the pharmaceutical in a concentration range by weight of 0.1 mg / g of ointment to 2.0 mg / g of ointment, including the pharmaceutical composition as suitable excipients cetyl alcohol, distilled water, glycerol stearate, liquid paraffin, polysorbate 60, polysorbate 80, propylene glycol and sodium ascorbate.
  • the compound of the invention will be dissolved in a mixture of polyethylene glycol 300, 1500 and 4000 and sodium ascorbate.
  • Dermatological pathologies that can be controlled and / or reversed by the activation of the AMPK holoenzyme in the present invention include, for example, Xeroderma pigmentosum and skin cancer, including but not limited to melanoma and basal cell carcinoma, (Wu, CL et al., Role of AMPK in UVB-induced DNA damage repair and growth control Oncogene 32, 2682-9 (2013)).
  • the general mechanism of synthesis is governed by a Chan-Lam coupling mediated by a copper (II) salt in stoichiometric amounts between neutral adenine and a halo-aryl boronic acid, for example 3- bromophenylboronic acid or 4-bromophenylboronic acid, as described in Yue, Y., et al., Copper-catalyzed cross-coupling reactions of nucleobases with arylboronic acids: An efficient access to N-arylnucleobases, European J. Org. Chem. 5154-5157 (2005).
  • the two phosphonate ester bonds can be hydrolyzed in acidic medium with aqueous hydrochloric acid to obtain the corresponding phosphonic acid derivative and in turn subsequently converted into a salt, for example disodium, by reacting it with sodium hydroxide in aqueous medium.
  • a salt for example disodium
  • N9- (3-diethylphosphonyl) phenyl-adenine is obtained from adenine following a two-step process:
  • adenine was added to 500 ml of a 4: 1 methanol-water mixture containing 5 mmol of copper (II) acetate monohydrate, 10 mmol of N, N, N ', N'-tetramethylethylenediamine and 10 mmol of 3-bromophenyl boric acid.
  • the mixture was stirred under an atmosphere of air for one hour at room temperature in a flask of 11.
  • SE was added to the solution contained in the methanol flask, the mixture was filtered through celite and the solvents were evaporated.
  • C2C12 cells of the muscle myoblastoma cell line mouse (from Sigma-Aldrich) were seeded at a cell density of 10,000 cells per well in a 96-well plate in 200 m ⁇ growth medium (high glucose DMEM, 10% fetal bovine serum (PBS), penicillin and streptavidin). The cells were allowed to grow until confluence and on the day of the assay they were incubated with the compound of interest in 100 m ⁇ of growth medium at 37 ° C and 5% CO2 in an incubator for between 1 and 24 hours. All conditions were tested in quadruplicate. The compounds were administered dissolved in sterile anhydrous dimethyl sulfoxide at different concentrations.
  • AMP adenosine monophosphate
  • the compound N9- (3-diethylphosphonyl) phenyl-adenine demonstrated an AMPK activity greater than 500% of that obtained with the positive control of AMP at concentrations as low as 30 nanomolar after 4 hours of incubation.
  • Those compounds with EC50 less than 1 micromolar and activation with respect to the AMP control greater than 80% are considered desired active compounds.
  • the compounds selected as activators of AMPK according to the criteria described above are used in the glucose consumption tests and the MTT cell viability test.
  • C2C12 cells of the mouse muscle myoblastoma cell line (from Sigma-Aldrich) were seeded at a cell density of 10,000 cells per well in a 96-well white plate compatible with the use of a luminometer.
  • the cells were allowed to grow for 5 days in 200 m ⁇ / well of growth medium (high glucose DMEM, 10% fetal bovine serum (PBS), penicillin and streptavidin) in a 37 ° C incubator and 5% CO2
  • the medium was changed every two days.
  • the medium was then replaced by a differentiation medium (low glucose DMEM, 2% N-hydroxysuccinimide, penicillin and streptavidin), allowing the cells to differentiate into myotubes for three days.
  • the medium was changed every day.
  • the cells were deprived of serum (low glucose DMEM, penicillin and streptavidin).
  • the medium was replaced by a DMEM medium without glucose and the N9- (3- diethylphosphonyl) phenyl-adenine compound was incubated for one hour at different concentrations, replicating the conditions in quadruplicate.
  • the positive control consisted of a 100-nanomolar (Sigma) human insulin solution.
  • a Promega glucose consumption kit was used following the manufacturer's instructions. The kit is based on the intracellular uptake of 2-deoxyglucose as a chemical analogue of glucose, coupled to a luciferin luminometric enzyme test, in relation to the results obtained are proportional to the concentration intracellular of said glucose analog.
  • N9- (3- diethylphosphonyl) phenyl-adenine compound showed glucose consumption activity analogous or higher than that of insulin controls at concentrations as low as 30 nanomolar.
  • the redox MTT assay is based on the metabolic reduction of bromide from 3- (4, 5-dimethylthiazol-2-yl) -2, 5- diphenyltetrazole (MTT) that is produced by the mitochondrial enzyme succinate dehydrogenase, which colors in blue the formazan dye, allowing to determine the mitochondrial functionality of the treated cells.
  • C2C12 cells were seeded at a density of 10,000 cells per well in a 96-well white plate compatible with the use of a luminometer.
  • the cells were allowed to grow for 5 days in 200 m ⁇ / well of a growth medium (high glucose DMEM, 10% FBS, penicillin and streptavidin), replacing the medium every two days. Subsequently, the medium was replaced by a differentiation medium (low glucose DMEM, 2% NHS, penicillin and streptavidin) and the cells were allowed to differentiate into myotubes for three days, changing the medium every day. In all processes, the cells were incubated at 37 ° C and 5% CO2 in a cell incubator.
  • Compound N9- (3-diethylphosphonyl) phenyl-adenine was incubated for 24 and 48 hours in low glucose DMEM without serum. The concentrations of the incubated compound ranged from 10 nanomolar to 1 millimolar. As a positive control for AMP activation, an AMP solution with a final concentration of 100 m ⁇ was used. After incubation, 10 m ⁇ of the MTT reagent (Abcam) was added to each well and, after 30 min, 45 min and 60 min incubation, the absorbance at 490 nm was measured in a photometer with a Biotek TX plate reader. Reading is an indirect measure of the NAD (P) H enzyme dependent on cellular oxido-reductases.
  • NAD NAD
  • N9- (3-diethylphosphonyl) phenyl-adenine showed a significantly higher signal compared to controls at nanomolar concentrations.
  • An example of a pharmaceutical composition for the formulation of a medicament in a daily oral dose for a human adult includes 20 mg of a compound according to the invention in particulate form compressed together with the following excipients: microcrystalline cellulose, sodium carboxymethyl starch type A (potato derivative ), anhydrous colloidal silica and magnesium stearate.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Dermatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

La invención proporciona nuevos derivados de adenina N9 sustituidos, composiciones farmacéuticas que incluyen estos derivados y el uso de los nuevos derivados y de las composiciones farmacéuticas que los contienen como activadores de AMPK, siendo adecuados para la producción de medicamentos destinados al tratamiento de trastornos y enfermedades donde la activación de la AMPK juega un papel relevante.

Description

NUEVOS DERIVADOS DE ADENINA 9N SUSTITUIDOS, COMPOSICIONES FARMACÉUTICAS QUE LOS CONTIENEN Y UTILIZACIÓN DE LAS
MISMAS CAMPO TECNICO DE LA INVENCION
La presente invención se refiere a nuevos derivados de adenina N9 sustituidos, a composiciones farmacéuticas que incluyen estos derivados y al uso de los nuevos derivados y de las composiciones farmacéuticas que los contienen como activadores de AMPK (AMP Activated Protein Kinase - Proteina Quinasa activada por Adenosina Monofosfato) . Asi, los derivados de la invención y las composiciones que los contienen son adecuadas para la producción de medicamentos destinados al tratamiento de trastornos y enfermedades donde la activación de la AMPK juega un papel relevante.
ANTECEDENTES DE LA INVENCIÓN La mayoría de los procesos celulares que consumen energía lo hacen impulsados por el paso de ATP a ADP . Cuando algún estrés hace que esta relación disminuya, aumenta el contenido intracelular de AMP lo que activa a la AMPK, por ejemplo durante el ejercicio, la isquemia y también en la diabetes, donde, a pesar de haber glucosa en la sangre, ésta no puede entrar a la célula y, por tanto, la célula resiente la falta de energía. Una vez activada, la AMPK fosforila un gran número de proteínas provocando el apagamiento de ciertas vías anabólicas que consumen energía, como la biosíntesis de macromoléculas , crecimiento y proliferación celular, mientras que enciende las vías que producen ATP como la glucólisis y la oxidación de ácidos grasos. Esto puede ser a través de la fosforilación de enzimas involucradas directamente en la regulación de las vías correspondientes, o a través de regular la expresión génica de la célula (S. Fragoso et al., "LA AMPK Y LA HOMEOSTASIS ENERGÉTICA", REB 27(1) : 3- 8, 2008) .
La activación de AMPK puede regular distintos procesos en la célula. Concretamente a nivel metabólico actúa sobre el metabolismo de ácidos grasos, de la glucosa, y de la síntesis de proteínas, entre otros. A nivel del metabolismo de ácidos grasos AMPK interviene incrementando la oxidación de lípidos e inhibiendo la síntesis de novo de estos. El incremento en la oxidación de lípidos tiene lugar en parte debido a que AMPK incrementa los niveles de PPAR- CÍ, implicado en la transcripción de genes que codifican proteínas involucradas en la b-oxidación (Barish GD, et al., 2006. PPAR delta: a dagger in the heart of the metabolic syndrome. J Clin Invest. 116: 590-7]. Asimismo, se ha descrito que AMPK puede fosforilar directamente a PPAR-a aunque se desconoce la relevancia fisiológica de esta fosforilación. AMPK también actúa inhibiendo la síntesis de novo de ácidos grasos y lípidos tanto a nivel transcripcional como postraduccional . Así actúa disminuyendo la síntesis de enzimas implicadas en la lipogénesis, por medio de la regulación de los factores de transcripción SREBP y ChREBP (Kawaguchi T, et al., 2002, Mechanism for fatty acid "sparing" effect on glucose- induced transcription : regulation of carbohydrateresponsive element-binding protein by AMPactivated protein kinase. J Biol Chem. 277: 3829-35) . También puede actuar directamente sobre enzimas de la síntesis de ácidos grasos. Fosforila a ACC1 en las Ser77 y Ser79, a ACC2 en las Ser219 y Ser221, y posiblemente a FASN inhibiéndolos (An Z, et al . , 2007, Nicotine-induced activation of AMP-activated protein kinase inhibits fatty acid synthase in 3T3L1 adipocytes: a role for oxidant stress. J Biol Chem. 282: 26793-801) . De esta forma tiene lugar una disminución en la lipogénesis, asi como un incremento de la b-oxidación. A nivel del metabolismo de la glucosa, AMPK actúa incrementando la glucólisis, e inhibiendo la gluconeogénesis . Se ha descrito que regula la glucólisis actuando, por ejemplo, sobre GEF, el cual está implicado en la transcripción de Glut-4. AMPK fosforila a GEF de forma que este incrementa su afinidad por el promotor de Glut-4 y aumenta su nivel de transcripción (Holmes BF, et al., 2005, Regulation of muscle GLUT4 enhancer factor and myocyte enhancer factor 2 by AMP-activated protein kinase. Am J Physiol Endocrinol
Metab. 289:E1071-6; Screaton RA, et al., 2004, The CREB coactivator TORC2 functions as a calcium- and cAMPsensitive coincidence detector. Cell. 119: 61-74;
Jorgensen SB, et al., 2007, Role of AMPKalpha2 in basal, training-, and AICAR-induced GLUT4 hexokinase II, and mitochondrial protein expression in mouse muscle. Am J Physiol Endocrinol Metab. 292: E331-9) . Asimismo, AMPK también regula el metabolismo mitocondrial siendo su mayor efector el factor de transcripción PGCl . AMPK directamente fosforila y activa este factor de transcripción el cual está implicado en la transcripción de genes implicados en la fosforilación oxidativa y la biogénesis mitocondrial. La identificación de AMPK como una diana indirecta de medicamentos anti-diabéticos bien conocidos ha provocado en los últimos años el creciente desarrollo de activadores de AMPK más efectivos y específicos. Asi, la búsqueda de nuevos activadores de AMPK se ha reflejado en numerosas investigaciones, describiendo medicamentos considerados activadores indirectos de AMPK, inhibiendo la producción de ATP mitocondrial y alterando la proporción AMPrATP en la célula, influyendo por tanto en el tratamiento de trastornos metabólicos (Hawley SA, et al., Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab 2010; 11 (6) : 554-65) . Entre ellos se incluyen derivados de biguanida (por ejemplo metformina) , tiazolidindionas y agentes fitoquimicos . También se han investigado activadores directos que se unen directamente a las tres subunidades (alfa, beta o gamma) de la holoenzima AMPK.
Asi, por ejemplo en la US20060287356 Al se describen derivados de tienopiridona como activadores directos de AMPK, en particular activando AMPK vía un mecanismo alostérico y por inhibición de la desfosforilación en treonina. En este caso, los efectos sobre la glucosa y el metabolismo lipidico observado en ratones tratados con estos derivados se producían principalmente por la estimulación de AMPK en el hígado. En la W02010103040 Al se describe el compuesto 5- aminoimidazol-4-carboxamida ribósido (AICAR) como activador de AMPK, que es metabolizado a ZMP, análogo de AMP, por la adenosina quinasa (AQ o AK en inglés) . El ZMP se une a la subunidad gamma de AMPK y emula el efecto del AMP sobre la activación alostérica de la quinasa AMPK, con efectos antidiabéticos en modelos animales. Sin embargo, AICAR presenta una baja biodisponibilidad y su administración efectiva requiere de altas dosis de administración intravenosa debido principalmente a su escasa absorción gastrointestinal y a su rápida conversión en multitud de metabolitos no activos frente a AMPK.
En el caso del principio activo conocido Metformina, un derivado de biguanida, un activador indirecto de AMPK tal como se ha mencionado anteriormente, su administración conlleva el uso de altas dosis de principio activo y efectos secundarios no deseados, tales como acidosis láctica .
A la vista de lo anterior, sigue existiendo una necesidad de nuevos activadores de AMPK útiles en el tratamiento o la prevención de trastornos relacionados con la activación de AMPK, tales como patologías metabólicas, neurodegenerativas o neoplásicas relacionadas con la edad, en particular como agonistas de los dominios bateman (estructura formada por dos motivos CBS - cistationa-beta- sintasa) en tándem de la subunidad gamma de AMPK.
Los compuestos de la presente invención se diseñan como miméticos de AMP que se unen a los sitios de enlace de nucleótidos de la subunidad gamma. El AMPK tiene muchas dianas aguas abajo que afectan al metabolismo de la glucosa y del glucógeno y a la biosíntesis de lípidos y del colesterol que hacen de estos compuestos buenos candidatos para el tratamiento y/o la prevención de enfermedades metabólicas tales como hipercolesterolemia, obesidad, diabetes tipo 2 o el síndrome metabólico (también denominado síndrome X) . Así, los compuestos de la presente invención son especialmente adecuado para el tratamiento y/o la prevención de este tipo de trastornos a dosis efectivas bajas, siendo su EC50 (concentración media efectiva máxima) muy inferior a la EC50 de los derivados AICAR o de los derivados de biguanida ya conocidos del estado de la técnica. DESCRIPCION DE LA INVENCION
Según un primer aspecto, la invención se refiere a derivados N9- [aril, heteroaril) fosfonatos de adenina como activadores de AMPK de la siguiente fórmula general (I)
Figure imgf000007_0001
donde
• R es un grupo arilo de 5 o 6 miembros de anillo o un grupo heteroarilo de 5 o 6 miembros de anillo, pudiendo el arilo o heteroarilo estar sustituido en sus posiciones libres con uno o más sustituyentes , iguales o diferentes, seleccionados de entre deuterio, un átomo de halógeno, -OH, -CH3, -CN, -OCH3, OCH2CH3, -CH2COOH, -CH2COOCH3, -COOH -COCH3, -COH.
• Ri y R2 se seleccionan, independientemente entre si, de entre H, un grupo alquilo (Cl-22 ) lineal o ramificado, un grupo alquenilo (C2-22), un grupo alquinilo (C2-22 ) , un grupo cicloalquilo (C3-7 ) , un grupo alquil (C3-22 ) -COOH, un grupo aril (C5-6) -COOH, un aminoácido, preferentemente alanina, serina o arginina, un grupo glicerol, colina o esfingomielina; o se seleccionan, independientemente entre si, de entre cationes de metales alcalinos o alcalinotérreos , en particular de sodio o magnesio, pudiendo ser también un catión de metal de transición o cualquier catión aceptable; y donde
- "grupo arilo" se refiere a un grupo hidrocarburo aromático de 5 o 6 miembros de anillo, pudiendo el arilo no estar sustituido o estar mono o polisustituido, con sustituyentes iguales o diferentes, seleccionados independientemente entre si del grupo consistente en un átomo de halógeno, metilo, etilo, propilo, isopropilo y ciclopropilo, deuterio e hidroxilo.
- "grupo heteroarilo" se refiere a un grupo hidrocarburo aromático de 5 o 6 miembros de anillo donde al menos uno de los carbonos del anillo se ha reemplazado por N, O, S, P o Se.
- el grupo fosfonilo
Figure imgf000008_0001
puede estar unido a cualquier átomo de carbono del anillo arilo o heteroarilo no sustituido con otro sustituyente, por ejemplo en las posiciones orto, meta o para respecto de la adenina en el caso de un heteroarilo de 6 miembros. En el contexto de la presente invención, por grupo alquilo (Cl-22 ) , alquenilo (C2-22 ) o alquinilo (C2-22 ) se entienden grupos hidrocarburo alifáticos de 1 a 22 o en su caso de 2 a 22 átomos de carbono, en el caso de los alquenilos o alquinilos incluyendo al menos un enlace C=C o CºC respectivamente.
Compuestos preferentes de fórmula (I) son aquellos donde R es un grupo arilo seleccionado de entre fenilo o ciclopentadienilo, de las siguientes fórmulas (Ia-d), siendo Ri y R2 tal como se han definido anteriormente:
Figure imgf000009_0001
(Ic) (Id)
Son igualmente preferentes los compuestos de fórmula (I) donde R es un grupo heteroarilo seleccionado de entre piridina, pirimidina, pirrolilo, pirazolilo, piranilo, furanilo, tiofenilo, fosfoloilo o selenofenilo, de las siguientes fórmulas (Ie-p), siendo Ri y R2 tal como se han definido anteriormente:
Figure imgf000010_0001
( Ira) ( In)
Figure imgf000011_0001
(lo) ( Ip)
De entre los compuestos de la invención, son particularmente preferentes N9-fenil-3-fosfonil-adenina, caso particular del compuesto (la) donde Ri y R2 son ambos hidrógeno, N9- (2-furanil) -5-fosfonil-adenina, caso particular de los compuestos (II) y (Im) donde Ri y R2 son ambos hidrógeno y N9- ( 3-dietilfosfonil ) fenil-adenina, caso particular del compuesto (la) donde Ri y R2 son ambos un grupo etilo.
La invención también se refiere a las composiciones farmacéuticas que contienen los compuestos antes descritos en una cantidad terapéuticamente eficaz en combinación con uno o varios excipientes farmacéuticamente aceptables, asi como a la utilización de dichas composiciones farmacéuticas para la producción de medicamento útiles para el tratamiento y/o la prevención de trastornos y enfermedades donde la activación de la AMPK juega un papel relevante, por ejemplo de enfermedades metabólicas tales como hipercolesterolemia, obesidad, diabetes tipo 2 o síndrome metabólico (también denominado síndrome X) , pero también para la función musculo-esquelética, la función endocrina, la homeostasis celular, la adaptación al estrés ambiental, así como para el tratamiento o la prevención de patologías dermatológicas que puedan ser controladas y/o revertidas por la activación de la holoenzima AMPK.
Entre las composiciones farmacéuticas según la invención se señalan particularmente aquellas adecuadas para la administración vía oral, parenteral, intramuscular e intravenosa, per o transcutánea, nasal, rectal, perlingual, ocular, respiratoria, y más específicamente aquellas en forma de comprimidos simples, comprimidos sublinguales, cápsulas duras, comprimidos perlinguales , cápsulas, pastillas, preparaciones inyectables, aerosoles, supositorios, cremas, pomadas o geles dérmicos.
En una forma de realización preferente, las composiciones de la invención se administran vía oral.
Además de los compuestos de la invención, las composiciones farmacéuticas según la invención contienen uno o más excipientes o vehículos seleccionados entre diluyentes, lubricantes, aglutinantes, disgregantes, estabilizantes, conservantes, absorbentes, colorantes, edulcorantes, aromatizantes, etc., seleccionándose estos excipientes en función de la forma de dosificación final de la composición farmacéutica .
A título de ejemplo no limitativo se pueden citar:
- como diluyentes: lactosa, dextrosa, sacarosa, manitol, sorbitol, celulosa microcristalina, glicerina;
- como lubricantes: sílice, talco, ácido esteárico y sus sales de magnesio y de calcio, polietilenglicol ;
- como aglutinantes: silicato de aluminio y magnesio, almidón, gelatina, goma tragacanto, metilcelulosa, carboximetilcelulosa de sodio y polivinilpirrolidona;
- como disgregantes: agar, ácido alginico y su sal de sodio, mezclas efervescentes;
- como solubilizantes : ciclodextrinas , polivinilcaprolactama, acetato de polivinilo y polietilenglicol .
La posologia útil varia según el sexo, la edad y el peso del paciente, la vía de administración, la naturaleza del trastorno y de eventuales tratamientos asociados, oscilando entre 1 pg y 1.000 mg de un compuesto según la invención por kg de peso corporal del sujeto a tratar, preferentemente entre 1 mg y 300 mg por kg de peso corporal, en una o varias tomas al día.
En el contexto de la invención, el sujeto a tratar es un sujeto mamífero humano o animal.
Por ejemplo, en el caso de una composición farmacéutica según la invención que incluye el derivado de adenina N9- ( 3-dietilfosfonil ) fenil-adenina, caso particular de los compuestos de fórmula (I) donde R es un grupo fenilo y Ri y R2 son ambos un grupo etilo, en forma particulada junto con los excipientes adecuados, comprimida en un comprimido o cargada en una cápsula, para la administración vía oral, dicho compuesto de la invención se administra a la dosis citada anteriormente, liberándose en compuesto de la invención vía hidrólisis ácida en el pH ácido del estómago, además de ser absorbido el profármaco y ser activado intracelularmente vía enzimas esterasas y extracelularmente en el intestino delgado, así como por hidrólisis en medio acuoso fisiológico, aunque en menor medida . En otro ejemplo de composición farmacéutica para la administración vía tópica en forma de pomada, por ejemplo para el tratamiento de patologías dermatológicas que puedan ser controladas y/o revertidas por la activación de la holoenzima AMPK, los compuestos de la invención se incluyen en dicha composición farmacéutica en un rango de concentración en peso de 0,1 mg/g de pomada a 2,0 mg/g de pomada, incluyendo la composición farmacéutica como excipientes adecuados cetil alcohol, agua destilada, estearato de glicerol, parafina liquida, polisorbato 60, polisorbato 80, propilenglicol y ascorbato sódico. En otro ejemplo de composición farmacéutica de administración vía tópica, el compuesto de la invención se disolverla en una mezcla de polietilenglicol 300, 1500 y 4000 y ascorbato sódico .
Como patologías dermatológicas que puedan ser controladas y/o revertidas por la activación de la holoenzima AMPK en la presente invención se contemplan, por ejemplo, Xeroderma pigmentosum y cáncer de piel, incluyendo pero no limitándose a melanoma y carcinoma basocelular, (Wu, C.L. et al., Role of AMPK in UVB-induced DNA damage repair and growth control. Oncogene 32, 2682-9 (2013)).
Ejemplos
En los siguientes ejemplos, que ilustran adicionalmente la invención y no deben considerarse como limitativos de la misma, se describe un procedimiento de síntesis de un ejemplo de realización preferente del compuesto de fórmula (I), en particular de N9- ( 3-dietilfosfonil ) fenil-adenina, caso particular de los compuestos de fórmula (I) donde R es un grupo fenilo y Ri y R2 son ambos un grupo etilo.
Síntesis general de los compuestos de fórmula (I)
El mecanismo general de síntesis se rige según un acoplamiento Chan-Lam mediado por una sal de cobre (II) en cantidades estequiométricas entre la adenina neutra y un ácido borónico de halo-arilo, por ejemplo ácido 3- bromofenilborónico o ácido 4-bromofenilborónico, tal como se describe en Yue, Y., et al., Copper-catalyzed cross- coupling reactions of nucleobases with arylboronic acids : An efficient access to N-arylnucleobases , European J. Org. Chem. 5154-5157 (2005) . Al producto de acoplamiento purificado por cromatografía de columna, por ejemplo 9— ( 3— bromofenil ) adenina y 9- ( 4-bromofenil ) adenina, se le acopla una dialquil-fosfina en condiciones similares al acoplamiento Negishi con tetraquis ( trifefilfosfina) - paladio(O) como catalizador, trietilamina como base y dimetilformamida anhidra como disolvente. Posteriormente los dos enlaces éster del fosfonato pueden hidrolizarse en medio ácido con ácido clorhídrico acuoso para obtener el correspondiente derivado de ácido fosfónico y a su vez posteriormente ser convertido en una sal, por ejemplo disódica, haciéndolo reaccionar con hidróxido sódico en medio acuoso.
Alternativamente, para generar derivados heteroarilo no bencílicos, se parte de 6-cloropurina y el ácido borónico de halo-heteroarilo correspondiente, tal como se describe en Morellato, L., et al., Synthesis of novel 9-aryl and heteroarylpurine derivatives via copper mediated coupling reaction, Tetrahedron Lett (2014) y se procede a acoplar la dialquil-fosfina deseada en condiciones similares al acoplamiento Negishi con tetraquis ( trifefilfosfina) - paladio(O) como catalizador, trietilamina como base y dimetilformamida anhidra como disolvente.
Síntesis de N9- (3-dietilfosfonil) fenil-adenina
Figure imgf000016_0001
El compuesto N9- ( 3-dietilfosfonil ) fenil-adenina se obtiene a partir de adenina siguiendo un proceso en dos etapas:
Etapa 1: 3-bromofenil-N9-adenine
Esta etapa se adapta de Yue, Y., et al . , Copper-catalyzed cross-coupling reactions of nucleobases with arylboronic acids : An efficient access to N-arylnucleobases , European J. Org. Chem. 5154-5157 (2005) .
Brevemente, 5 mmol de adenina se añadieron a 500 mi de una mezcla metanol-agua 4:1 que contenía 5 mmol de acetato de cobre (II) monohidrato, 10 mmol de N,N,N',N'- tetrametiletilendiamina y 10 mmol de ácido 3-bromofenil- bórico. La mezcla se agitó bajo atmósfera de aire durante una hora a temperatura ambiente en un matraz de 11. SE añadió a la solución contenida en el matraz metanol, la mezcla se filtró a través de celita y se evaporaron los disolventes. El sólido resultante se purificó por cromatografía flash empleando gel de sílice y una carga de CHCl :MeOH 20:1 y CHCl :MeOH 10:1 como eluyente. Se obtuvo el producto del titulo con una r = 0,25 en forma de sólido cristalino blanco. Rendimiento 50%. Pureza >98%.
Etapa 2: N9-(3-dietilfosfonil)fenil-adenina
En un matraz redondo de 50 mi se cargaron 2 mmol de 3- bromofenil-N9-adenine, 3 mmol de trietilamina, 0,1 mmol de tetraquis ( trifefilfosfina) paladio ( 0 ) y 3 mmol de fosfito de dietilo. A continuación se añadieron 10 mi de dimetilformamida anhidra y la mezcla se agitó durante una hora a 100°C. La dimetilformamida se evaporó y el sólido obtenido se purificó por cromatografía empleando gel de sílice y CH2Cl2:MeOH 10:1 como eluyente. El producto deseado N9- ( 3-dietilfosfonil ) fenil-adenina con una r = 0,20 se obtuvo en forma de un sólido cristalino de color blanco/beige . Rendimiento 90%. Pureza >98%. Punto de fusión 104 ° C .
Análisis espectroscópico :
IR (KBr) , cnr1: 3297 ms, 3102 ms, 1676 s, 1599 s, 1487 ms, 1307 s, 1050 ms, 1022 s, 656 m, 562 m. (ms = medio-fuerte, s = fuerte, m = medio)
1H-NMR (300 MHz, dmso-d6) : d (ppm)=8,67 s (1H, H8adenina) , 8,30 dd (1H, Hl, JP-H=16,6 Hz, Jm=l,2 Hz), 8,23 s (lH2ade CH) , 8,17-8,14 m (1H, H2 ) , 7,79-7,75 m (2H, H3+H4), 7,43 bs ( 2H, NH2 ) , 4,08 dq (4H, CH2 , JP-H = 15,3 Hz, JH-H = 7,2 Hz), 1,29-1,25 t ( 6H CH3 , JH-H = 7,2 Hz) ppm.
HRMS (ESI) [M+H]+ [C15H18N5PO3+H] + : calculada m/z = 348,1218; encontrada m/z = 348,1220.
Ensayo de activación de AMPK
Células C2C12 de la linea celular de mioblastoma muscular de ratón (de Sigma-Aldrich) se sembraron a una densidad celular de 10.000 células por pocilio en una placa de 96 pocilios en 200 mΐ de medio de crecimiento (DMEM con alto contenido en glucosa, 10% de suero fetal bovino (PBS), penicilina y estreptavidina) . Las células se dejaron crecer hasta confluencia y el día del ensayo se incubaron con el compuesto de interés en 100 mΐ de medio de crecimiento a 37 °C y 5% CO2 en un incubador durante entre 1 y 24 horas. Todas las condiciones se ensayaron por cuadruplicado. Los compuestos se administraron disueltos en sulfóxido de dimetilo anhidro estéril a diferentes concentraciones. Como control positivo para la activación de AMPK se empleó una solución de adenosin-monofosfato (AMP) con una concentración final de 100 mΐ . Tras finalizar los tiempo correspondientes, se eliminó el medio y las células se lavaron cuidadosamente tres veces con PBS a temperatura ambiente y se empleó el kit Elisa de Abcam para cuantificar la proporción de a-AMPK fosforilado: CH¬ AMPE total. Se siguieron las instrucciones del fabricante y se cuantificó la señal mediante un escáner Licor Odissey®. El compuesto N9- ( 3-dietilfosfonil ) fenil-adenina mostraba una actividad de AMPK más alta que el control positivo de AMP a concentraciones tan bajas como de 30 nanomolar después de 4 horas de incubación.
En concreto, el compuesto N9- ( 3-dietilfosfonil ) fenil- adenina demostró una actividad de AMPK superior al 500% de la obtenida con el control positivo de AMP a concentraciones tan bajas como de 30 nanomolar después de 4 horas de incubación. Aquellos compuestos con EC50 inferior a 1 micromolar y activación respecto al control AMP superior al 80% son considerados compuestos activos deseados. Los compuestos seleccionados como activadores de AMPK según los criterios anteriormente descritos son empleados en los ensayos de consumo de glucosa y ensayo de viabilidad celular MTT.
Ensayo de consumo de glucosa
Células C2C12 de la linea celular de mioblastoma muscular de ratón (de Sigma-Aldrich) se sembraron a una densidad celular de 10.000 células por pocilio en una placa de 96 pocilios blancos compatibles con el uso de un luminómetro. Las células se dejaron crecer durante 5 dias en 200 mΐ/pocillo de medio de crecimiento (DMEM con alto contenido en glucosa, 10% de suero fetal bovino (PBS), penicilina y estreptavidina) en un incubador a 37°C y 5% de CO2. El medio se cambió cada dos dias. Entonces el medio se reemplazó por un medio de diferenciación (DMEM de bajo contenido en glucosa, 2% N-hidroxisuccinimida, penicilina y estreptavidina), dejando que las células se diferenciaran en miotubos durante tres dias. El medio se cambió cada día. Un día antes del ensayo, la células se privaron de suero (DMEM de baja glucosa, penicilina y estreptavidina) . A continuación, el medio se reemplazó por un medio DMEM sin glucosa y el compuesto N9-(3- dietilfosfonil ) fenil-adenina se incubó durante una hora a diferentes concentraciones, replicando las condiciones por cuadriplicado. El control positivo consistía en una solución de insulina humana 100 nanomolar (de Sigma) . Se empleó un kit de consumo de glucosa de Promega siguiendo las instrucciones del fabricante. El kit está basado en la captación intracelular de 2-desoxiglucosa como análogo químico de glucosa, acoplado a un ensayo enzimático luminométrico de luciferina, en relación a que los resultados obtenidos son proporcionales a la concentración intracelular de dicho análogo de glucosa.
La luminiscencia total se midió en un lector de placas luminométrico Biotek MX . El compuesto N9-(3- dietilfosfonil ) fenil-adenina mostraba una actividad de consumo de glucosa análoga o superior a la de los controles de insulina a concentraciones tan bajas como de 30 nanomolar. Luminosidad como % del control para la N9-(3- dietilfosfonil ) fenil-adenina (30 nanomolar) : 125 ± 9%.
Ensayo MTT de viabilidad/proliferación celular
El ensayo redox MTT se basa en la reducción metabólica del bromuro a partir de 3- ( 4 , 5-dimetiltiazol-2-il ) -2 , 5- difeniltetrazol (MTT) que se produce por la enzima mitocondrial succinato-deshidrogenasa, que colorea en azul el colorante formazano, permitiendo determinar la funcionalidad mitocondrial de las células tratadas.
Se sembraron células C2C12 a una densidad de 10.000 células por pocilio en una placa de 96 pocilios blancos compatible con el uso de un luminómetro. Se dejaron crecer las células durante 5 dias en 200 mΐ/pocillo de un medio de crecimiento (DMEM de alta glucosa, 10% FBS, penicilina y estreptavidina) , reemplazándose el medio cada dos dias. Posteriormente, el medio se reemplazó por un medio de diferenciación (DMEM de baja glucosa, 2% NHS, penicilina y estreptavidina) y se dejó que las células se diferenciaran en miotubos durante tres dias, cambiándose el medio cada día. En todos los procesos, las células se incubaron a 37 °C y 5% CO2 en un incubador celular. El compuesto N9- ( 3-dietilfosfonil ) fenil-adenina se incubó durante 24 y 48 horas en DMEM de baja glucosa sin suero. Las concentraciones del compuesto incubado oscilaban entre 10 nanomolar y 1 milimolar. Como control positivo para la activación de AMP se empleó una solución de AMP con una concentración final de 100 mΐ . Tras la incubación se añadieron 10 mΐ del reactivo MTT (Abcam) a cada pocilio y, pasados 30 min, 45 min y 60 min de incubación, se midió la absorbancia a 490 nm en fotómetro con lector de placas Biotek TX . La lectura es una medida indirecta de la enzima NAD(P)H dependiente de las oxido-reductasas celulares.
El compuesto N9- ( 3-dietilfosfonil ) fenil-adenina mostró una señal significativamente mayor en comparación con los controles a concentraciones nanomolares. Luminosidad como % del control para la N9- ( 3-dietilfosfonil ) fenil-adenina (30 nanomolar y 48 horas de incubación) : 157 ± 5%.
Ejemplo de composición farmacéutica según la invención
Un ejemplo de composición farmacéutica para la formulación de un medicamento en una dosis diaria oral para un adulto humano incluye 20 mg de un compuesto según la invención en forma particulada comprimido junto con los siguientes excipientes: celulosa microcristalina, carboximetilalmidón sódico tipo A (derivado de patata) , sílice coloidal anhidra y estearato de magnesio.

Claims

RE IVINDICACIONES
1.- Derivados de adenina N9 sustituidos activadores de
AMPK de la siguiente fórmula general (I)
Figure imgf000022_0001
donde
• R es un grupo arilo de 5 o 6 miembros de anillo o un grupo heteroarilo de 5 o 6 miembros de anillo, pudiendo el arilo o heteroarilo estar sustituido en sus posiciones libres con uno o más sustituyentes , iguales o diferentes, seleccionados de entre deuterio, un átomo de halógeno, -OH, -CH3, -CN, -OCH3, OCH2CH3, -CH2COOH, -CH2COOCH3, -COOH, -COCH3, -COH. · Ri y R2 se seleccionan, independientemente entre si, de entre H, un grupo alquilo (Cl-22 ) lineal o ramificado, un grupo alquenilo (C2-22), un grupo alquinilo (C2-22 ) , un grupo cicloalquilo (C3-7 ) , un grupo alquil (C3-22 ) -COOH, un grupo aril (C5-6) -COOH, un aminoácido en su forma catiónica, preferentemente alanina, serina o arginina, un grupo glicerol, colina o esfingomielina; o se seleccionan, independientemente entre si, de entre cationes de metales alcalinos o alcalinotérreos , en particular de sodio o magnesio pudiendo ser también un catión de metal de transición o cualquier catión aceptable; entendiéndose :
- por "grupo arilo" un grupo hidrocarburo aromático de 5 o 6 miembros de anillo, pudiendo el arilo no estar sustituido o estar mono o polisustituido, con sustituyentes iguales o diferentes, seleccionados independientemente entre si del grupo consistente en un átomo de halógeno, metilo, etilo, propilo, isopropilo y ciclopropilo, deuterio e hidroxilo;
- por "grupo heteroarilo" un grupo hidrocarburo aromático de 5 o 6 miembros de anillo donde al menos uno de los carbonos del anillo se ha reemplazado por N, O, S, P o Se,
- Que el grupo fosfonilo
Figure imgf000023_0001
puede estar unido a cualquier átomo de carbono del anillo arilo o heteroarilo no sustituido con otro sustituyente .
2.- Derivados de adenina N9 sustituidos según la reivindicación 1, donde R es un grupo arilo seleccionado de entre fenilo o ciclopentadienilo, de las siguientes fórmulas (Ia-d), siendo Ri y R2 tal como se han definido en la reivindicación 1:
Figure imgf000024_0001
( Ic) (Id)
3.- Derivados de adenina N9 sustituidos según la reivindicación 1, donde R es un grupo heteroarilo seleccionado de entre piridina, pirimidina, pirrolilo, pirazolilo, piranilo, furanilo, tiofenilo, fosfoloilo o selenofenilo, de las siguientes fórmulas (Ie-p), siendo Ri y R2 tal como se han definido en la reivindicación 1:
Figure imgf000024_0002
(ig) (ih)
Figure imgf000025_0001
(lo) ( Ip)
4.- Derivado de adenina N9 sustituido según las reivindicaciones 1 o 2, que es N9-fenil-3-fosfonil- adenina .
5.- Derivado de adenina N9 sustituido según las reivindicaciones 1 o 2, que es N9- ( 3-dietilfosfonil) fenil- adenina .
6.- Derivado de adenina N9 sustituido según las reivindicaciones 1 o 3, que es N9- (2-furanil) -5-fosfonil- adenina .
7.- Composiciones farmacéuticas que contienen al menos un compuesto según cualquiera de las reivindicaciones 1 a 6 en combinación con uno o varios excipientes farmacéuticamente aceptables.
8.- Composiciones farmacéuticas según la reivindicación
7, donde el compuesto según cualquiera de las reivindicaciones 1 a 6 está presente en una dosis efectiva de entre 1 pg y 1.000 mg del compuesto por kg de peso corporal del sujeto a tratar.
9.- Composiciones farmacéuticas según la reivindicación
8, donde el compuesto según cualquiera de las reivindicaciones 1 a 6 está presente en una dosis efectiva de entre 1 mg y 300 mg por kg de peso corporal.
10.- Composiciones farmacéuticas según las reivindicaciones 7 a 9, para su uso en la fabricación de un medicamento activador de AMPK.
11.- Composiciones farmacéuticas según la reivindicación 10 para su uso en la fabricación de un medicamento para el tratamiento y/o la prevención de trastornos y enfermedades seleccionados de entre enfermedades metabólicas como hipercolesterolemia, obesidad, diabetes tipo 2 o síndrome metabólico, para la función musculo-esquelética, la función endocrina, la homeostasis celular, la adaptación al estrés ambiental, así como para el tratamiento o la prevención de patologías dermatológicas que puedan ser controladas y/o revertidas por la activación de la holoenzima AMPK.
PCT/ES2018/070457 2018-06-27 2018-06-27 Nuevos derivados de adenina 9n sustituidos, composiciones farmacéuticas que los contienen y utilización de las mismas WO2020002718A1 (es)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP18923938.7A EP3816165B1 (en) 2018-06-27 2018-06-27 New substituted n9-adenine derivatives, pharmaceutical compositions containing same and use thereof
US17/254,135 US11992498B2 (en) 2018-06-27 2018-06-27 Substituted N9-adenine derivatives, pharmaceutical compositions containing same and use thereof
CN201880094067.2A CN112272668B (zh) 2018-06-27 2018-06-27 新的被取代的n9-腺嘌呤衍生物,包含其的药物组合物及其用途
PCT/ES2018/070457 WO2020002718A1 (es) 2018-06-27 2018-06-27 Nuevos derivados de adenina 9n sustituidos, composiciones farmacéuticas que los contienen y utilización de las mismas
JP2020569123A JP7196202B2 (ja) 2018-06-27 2018-06-27 新規置換n9-アデニン誘導体、これを含有する医薬組成物、およびその使用
ES18923938T ES2933904T3 (es) 2018-06-27 2018-06-27 Nuevos derivados de adenina N9 sustituidos, composiciones farmacéuticas que los contienen y utilización de las mismas
ARP190101214A AR114879A1 (es) 2018-06-27 2019-05-08 Derivados de adenina 9n sustituidos, composiciones farmacéuticas que los contienen y utilización de las mismas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2018/070457 WO2020002718A1 (es) 2018-06-27 2018-06-27 Nuevos derivados de adenina 9n sustituidos, composiciones farmacéuticas que los contienen y utilización de las mismas

Publications (1)

Publication Number Publication Date
WO2020002718A1 true WO2020002718A1 (es) 2020-01-02

Family

ID=68984675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2018/070457 WO2020002718A1 (es) 2018-06-27 2018-06-27 Nuevos derivados de adenina 9n sustituidos, composiciones farmacéuticas que los contienen y utilización de las mismas

Country Status (7)

Country Link
US (1) US11992498B2 (es)
EP (1) EP3816165B1 (es)
JP (1) JP7196202B2 (es)
CN (1) CN112272668B (es)
AR (1) AR114879A1 (es)
ES (1) ES2933904T3 (es)
WO (1) WO2020002718A1 (es)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060287356A1 (en) 2003-05-16 2006-12-21 Iyengar Rajesh R Thienopyridones as AMPK activators for the treatment of diabetes and obesity
WO2010103040A1 (en) 2009-03-10 2010-09-16 INSERM (Institut National de la Santé et de la Recherche Médicale) 5'-adenosine monophosphate-activated protein kinase (ampk) activators for treating pulmonary hypertension
US20140303112A1 (en) * 2013-04-09 2014-10-09 Han-min Chen Method for treating disease or condition susceptible to amelioration by AMPK activators and compounds of formula which are useful to activate AMP-activated protein kinase (AMPK)
WO2016087665A2 (en) * 2014-12-05 2016-06-09 Centre National De La Recherche Scientifique (Cnrs) Compounds for treating cystic fibrosis

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5659023A (en) * 1995-02-01 1997-08-19 Gilead Sciences, Inc. Nucleotide analogues
CN101381379A (zh) * 2003-04-25 2009-03-11 吉里德科学公司 激酶抑制性膦酸酯类似物
DK3366686T3 (da) * 2009-03-20 2020-11-23 Metabasis Therapeutics Inc Inhibitorer af diacylglycerol-o-acyltransferase 1 (dgat-1) og anvendelser deraf

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060287356A1 (en) 2003-05-16 2006-12-21 Iyengar Rajesh R Thienopyridones as AMPK activators for the treatment of diabetes and obesity
WO2010103040A1 (en) 2009-03-10 2010-09-16 INSERM (Institut National de la Santé et de la Recherche Médicale) 5'-adenosine monophosphate-activated protein kinase (ampk) activators for treating pulmonary hypertension
US20140303112A1 (en) * 2013-04-09 2014-10-09 Han-min Chen Method for treating disease or condition susceptible to amelioration by AMPK activators and compounds of formula which are useful to activate AMP-activated protein kinase (AMPK)
WO2016087665A2 (en) * 2014-12-05 2016-06-09 Centre National De La Recherche Scientifique (Cnrs) Compounds for treating cystic fibrosis

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
AN Z ET AL.: "Nicotine-induced activation of AMP-activated protein kinase inhibits fatty acid synthase in 3T3L1 adipocytes: a role for oxidant stress", J BIOL CHEM, vol. 282, 2007, pages 26793 - 801
BARISH GD ET AL.: "PPAR delta: a dagger in the heart of the metabolic syndrome", J CLIN INVEST, vol. 116, 2006, pages 590 - 7
HAWLEY SA ET AL.: "Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation", CELL METAB, vol. 11, no. 6, 2010, pages 554 - 65
HOLMES BF ET AL.: "Regulation of muscle GLUT4 enhancer factor and myocyte enhancer factor 2 by AMP-activated protein kinase", AM J PHYSIOL ENDOCRINOL METAB, vol. 289, 2005, pages E1071 - 6
JORGENSEN SB ET AL.: "Role of AMPKalpha2 in basal, training-, and AICAR-induced GLUT4 hexokinase II, and mitochondrial protein expression in mouse muscle", AM J PHYSIOL ENDOCRINOL METAB, vol. 292, 2007, pages E331 - 9
KAWAGUCHI T ET AL.: "Mechanism for fatty acid ''sparing'' effect on glucose-induced transcription: regulation of carbohydrateresponsive element-binding protein by AMPactivated protein kinase", J BIOL CHEM., vol. 277, 2002, pages 3829 - 35
M F JACOBSEN ET AL.: "Efficient N-arylation and N-alkenylation of the five DNA/RNA nucleobases", JOURNAL ORGANIC CHEMISTRY, vol. 71, 2006, pages 9183 - 9190, XP002504753, DOI: 10.1021/JO061694I *
MORELLATO, L. ET AL.: "Synthesis of novel 9-aryl and heteroarylpurine derivatives via copper mediated coupling reaction", TETRAHEDRON LETT, 2014
S. FRAGOSO ET AL.: "AMPK AND ENERGY HOMEOSTASIS", REB, vol. 27, no. 1, 2008, pages 3 - 8
SCREATON RA ET AL.: "The CREB coactivator TORC2 functions as a calcium- and cAMPsensitive coincidence detector", CELL, vol. 119, 2004, pages 61 - 74, XP002430863, DOI: 10.1016/j.cell.2004.09.015
See also references of EP3816165A4
WU, CL ET AL.: "Role of AMPK in UVB-induced DNA damage repair and growth control", ONCOGENE, vol. 32, 2013, pages 2682 - 9
YUE, Y. ET AL.: "Copper- catalyzed cross-coupling reactions of nucleobases with arylboronic acids: An efficient access to N-arylnucleobases", EUROPEAN J. ORG. CHEM., 2005, pages 5154 - 5157
YUE, Y. ET AL.: "Copper-catalyzed cross-coupling reactions of nucleobases with arylboronic acids: An efficient access to N-arylnucleobases", EUROPEAN J. ORG. CHEM., 2005, pages 5154 - 5157

Also Published As

Publication number Publication date
ES2933904T3 (es) 2023-02-14
EP3816165A1 (en) 2021-05-05
EP3816165B1 (en) 2022-09-28
US11992498B2 (en) 2024-05-28
EP3816165A4 (en) 2022-03-02
JP7196202B2 (ja) 2022-12-26
US20210260081A1 (en) 2021-08-26
JP2021533083A (ja) 2021-12-02
CN112272668A (zh) 2021-01-26
CN112272668B (zh) 2023-05-09
AR114879A1 (es) 2020-10-28

Similar Documents

Publication Publication Date Title
ES2663789T3 (es) Compuesto de pirazol-amida y usos medicinales del mismo
ES2284817T3 (es) Procedimientos para el tratamiento de enfermedades con inhibidores de la malonil coa descarboxilasa.
JP6538656B2 (ja) 5’−ヌクレオチダーゼ阻害剤およびその治療的使用
JP6918957B2 (ja) Gpr84受容体拮抗剤およびその使用
Hu et al. Discovery of 2-phenyl-3-sulfonylphenyl-indole derivatives as a new class of selective COX-2 inhibitors
US20200331931A1 (en) Pharmaceutical compounds
Han et al. Biological evaluation and SAR analysis of novel covalent inhibitors against fructose-1, 6-bisphosphatase
EP3828184A1 (en) Pyrazolopyrimidine derivative and use thereof as pi3k inhibitor
ES2933904T3 (es) Nuevos derivados de adenina N9 sustituidos, composiciones farmacéuticas que los contienen y utilización de las mismas
AU2014398232B2 (en) Pharmaceutical compounds
JP2876129B2 (ja) 7―カルボキシメトキシ―4―フェニルクマリン誘導体とその製法及び用途
CN110903224A (zh) 一种芳基磺酰胺类化合物、其制备方法、药物组合物及用途
ES2378418T3 (es) Compuestos de azol basados en cianoguanidina útiles como inhibidores de malonil-coadescarboxilasa
WO2022167700A1 (en) Flavone deaza spermidine analogues and their use treating cancer
CA2965898C (en) Fatty acid analogs
EP3640250A1 (en) Compound as gls1 inhibitor
CN108703970A (zh) 一种活化ampk的化合物及其用途
KR20020015039A (ko) 퓨린 유도체 이수화물, 이를 유효성분으로 함유하는 의약및 이의 제조 중간체
US20020183393A1 (en) Inhibitors of Rho C
WO2022162025A1 (en) Heteroaromatic phosphonium salts and their use treating cancer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923938

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020569123

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018923938

Country of ref document: EP

Effective date: 20210127