WO2020001653A1 - 光波导装置 - Google Patents

光波导装置 Download PDF

Info

Publication number
WO2020001653A1
WO2020001653A1 PCT/CN2019/093961 CN2019093961W WO2020001653A1 WO 2020001653 A1 WO2020001653 A1 WO 2020001653A1 CN 2019093961 W CN2019093961 W CN 2019093961W WO 2020001653 A1 WO2020001653 A1 WO 2020001653A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical signal
unit
optical
configuration information
output
Prior art date
Application number
PCT/CN2019/093961
Other languages
English (en)
French (fr)
Inventor
操时宜
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19826372.5A priority Critical patent/EP3800490A4/en
Publication of WO2020001653A1 publication Critical patent/WO2020001653A1/zh
Priority to US17/135,018 priority patent/US11353653B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12033Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by means for configuring the device, e.g. moveable element for wavelength tuning
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/295Analog deflection from or in an optical waveguide structure]
    • G02F1/2955Analog deflection from or in an optical waveguide structure] by controlled diffraction or phased-array beam steering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12014Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the wavefront splitting or combining section, e.g. grooves or optical elements in a slab waveguide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12016Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the input or output waveguides, e.g. tapered waveguide ends, coupled together pairs of output waveguides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12019Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the optical interconnection to or from the AWG devices, e.g. integration or coupling with lasers or photodiodes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29316Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide
    • G02B6/29325Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide of the slab or planar or plate like form, i.e. confinement in a single transverse dimension only
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1326Liquid crystal optical waveguides or liquid crystal cells specially adapted for gating or modulating between optical waveguides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29392Controlling dispersion
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29395Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device configurable, e.g. tunable or reconfigurable
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/356Switching arrangements, i.e. number of input/output ports and interconnection types in an optical cross-connect device, e.g. routing and switching aspects of interconnecting different paths propagating different wavelengths to (re)configure the various input and output links
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • G02F1/2252Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure in optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/13Function characteristic involving THZ radiation

Definitions

  • the present application relates to the field of optical communication, and more particularly, to an optical waveguide device.
  • Arrayed waveguide grating is an important part of a wavelength division network. It is mainly used in optical terminal multiplexer (OTM) sites for multiplexing optical signals or multiplexing optical signals. De-multiplex.
  • the channel spacing of the existing AWG is fixed. Generally, one AWG can only support one channel spacing. In the current WDM network, there are various requirements for channel spacing. Therefore, the existing AWG cannot meet the usage requirements, and how to effectively make the same AWG can meet different channel intervals has become an urgent problem to be solved.
  • the present application provides an optical waveguide device.
  • the optical waveguide device can satisfy the transmission of optical signals at different channel intervals or the mixed transmission of optical signals at different channel intervals, which reduces the cost, meets the needs of the market and users, and improves the optical waveguide device. Performance.
  • an optical waveguide device including: a first dispersion unit and a separation unit, the first dispersion unit is connected to the separation unit, and the first dispersion unit is configured to disperse the frequency components of at least one first optical signal On; the separation unit is configured to separate the frequency components of the at least one first optical signal dispersed by the first dispersion unit into at least one second optical signal according to the configuration information, wherein the separation unit is implemented by a variable optical waveguide,
  • the variable optical waveguide is an optical waveguide that realizes at least one of the functions of forming a transmission path of an optical signal, eliminating the transmission path of the optical signal, and changing the shape of the transmission path of the optical signal based on the configuration information.
  • the separation unit can disperse the frequency component of at least one of the first optical signals of the first dispersion unit according to the configuration information according to preset requirements or needs. Flexibly cut into frequency components of at least one second optical signal that needs to be output.
  • the optical waveguide device can support different channel intervals (the width of the effective frequency component), avoiding the need for an optical waveguide device for a channel interval, and improving the use efficiency and performance of the optical waveguide device.
  • the type of the optical waveguide device can be reduced, the stocking cost can be reduced, and the maintenance and management costs of the optical waveguide device can be reduced.
  • the separation unit is further configured to change a composition of a frequency component of the at least one second optical signal according to the configuration information.
  • the optical waveguide device may be made to support output of a second optical signal having a composition of different frequency components.
  • the use efficiency and performance of the optical waveguide device are further improved.
  • the use range of the optical waveguide device is increased. Further reduce costs.
  • the composition of the frequency component includes at least one of a path interval of the optical signal, a center frequency of the optical signal, and a frequency grid of the optical signal.
  • the device further includes a control unit, the control unit is connected to the separation unit, and the control unit is configured to control the separation unit to control the at least one first optical signal according to the configuration information.
  • the frequency components are separated into the at least one second optical signal.
  • the separation unit includes a liquid crystal material
  • the control unit includes at least one electrode
  • the at least one electrode determines whether to apply a voltage to the at least one electrode according to the configuration information, so that At least one of the functions of forming an optical waveguide, eliminating an existing optical waveguide, and changing the shape of an existing optical waveguide is realized in the liquid crystal material, and controlling the liquid crystal material to separate the frequency component of the at least one first optical signal into the at least one ⁇ ⁇ ⁇ The second light signal.
  • the control unit and the separation unit are respectively implemented by an electrode and a liquid crystal material, which has a low cost and is easy to implement.
  • a frequency width allowed to be blocked between adjacent second optical signals in the at least one second optical signal is greater than or equal to a frequency corresponding to any one of the at least one electrode. width.
  • the device further includes: an input unit and an output unit, the input unit is connected to the first dispersion unit, and the input unit is configured to transmit the at least one first optical signal to the A first dispersion unit; the output unit is connected to the separation unit, and the output unit is configured to output the at least one second optical signal.
  • the first dispersion unit includes an arrayed waveguide or a concave grating.
  • At least one first optical signal in the at least one first optical signal includes multiple optical paths.
  • the device further includes a second dispersion unit; the second dispersion unit is connected to the separation unit; and the separation unit is further configured to, according to the configuration information, convert the at least one second light path At least a part of the second optical signal in the signal is transmitted to the second dispersion unit; the second dispersion unit is configured to synthesize the part of the second optical signal into at least one third optical signal.
  • mixing transmission and exchange of second optical signals having different frequency components are achieved, that is, mixing transmission and exchange of optical signals having different path intervals are achieved.
  • the performance and efficiency of the optical waveguide device are improved.
  • the device includes an output unit connected to the second dispersion unit, and the output unit is configured to output the at least one third optical signal.
  • the configuration information includes: a component of a frequency component of each of the at least one second optical signal.
  • an optical waveguide device including: a combining unit and a third dispersing unit; the combining unit is connected to the third dispersing unit, and the combining unit is configured to convert at least one fourth optical path according to the configuration information.
  • the signal is transmitted to a position corresponding to the composition of the frequency components of the at least one fourth optical signal; the third dispersion unit is configured to position the at least one channel from the position corresponding to the composition of the frequency components of the at least one fourth optical signal.
  • the optical signal synthesizes at least one fifth optical signal.
  • the combining unit is implemented by a variable optical waveguide.
  • the variable optical waveguide is based on the configuration information to form a transmission path of the optical signal, eliminate the transmission path of the optical signal, and change the light.
  • An optical waveguide having at least one function in a shape of a transmission path of a signal.
  • the optical waveguide device provided in the second aspect because the combining unit is implemented by a variable optical waveguide, can form functions such as optical signal transmission paths, eliminating optical signal transmission paths, or changing the shape of optical signal transmission paths.
  • the combining unit may flexibly form a transmission path for transmitting the at least one fourth optical signal according to the configuration information, and transmit the at least one fourth optical signal to a position corresponding to the composition of the frequency components of the at least one fourth optical signal.
  • the third dispersion unit may synthesize the at least one fourth optical signal from the position corresponding to the composition of the frequency components of the at least one fourth optical signal to at least one fifth optical signal.
  • the optical waveguide device can support unused path intervals, that is, a transmission path capable of transmitting the different fourth optical signals can be formed according to the composition of frequency components of different fourth optical signals. It avoids the need for an optical waveguide device for a path interval, and improves the use efficiency and performance of the optical waveguide device.
  • the type of the optical waveguide device can be reduced, the stocking cost can be reduced, and the maintenance and management costs of the optical waveguide device can be reduced.
  • the combining unit is further configured to change a composition of frequency components of the at least one fourth optical signal according to the configuration information.
  • the optical waveguide device can be made to support transmission of a fourth optical signal having a different frequency component.
  • the use efficiency and performance of the optical waveguide device are further improved.
  • the use range of the optical waveguide device is increased.
  • the composition of the frequency component includes at least one of a path interval of the optical signal, a center frequency of the optical signal, and a frequency grid of the optical signal.
  • the device further includes a control unit, the control unit is connected to the combining unit, and the control unit is configured to control the combining unit to convert the at least one channel to the fourth according to the configuration information.
  • the optical signal is transmitted to a position corresponding to the composition of the frequency components of the at least one fourth optical signal.
  • the combining unit includes a liquid crystal material
  • the control unit includes at least one electrode
  • the at least one electrode determines whether to apply a voltage to the at least one electrode according to the configuration information, so that The transmission path of the at least one fourth optical signal is formed in the liquid crystal material, and the liquid crystal material is controlled to transmit the at least one fourth optical signal to a position corresponding to a composition of a frequency component of the at least one fourth optical signal.
  • a frequency width allowed to be blocked between two adjacent fourth optical signals in the at least one fourth optical signal is greater than or equal to any one of the at least one electrode corresponding to Frequency width.
  • the device further includes: an input unit and an output unit, the input unit is connected to the combining unit, and the input unit is configured to transmit the at least one fourth optical signal to the combining
  • the output unit is connected to the third dispersion unit, and the output unit is configured to output the at least one fifth optical signal.
  • the third dispersion unit includes an arrayed waveguide or a concave grating.
  • At least one fifth optical signal in the at least one fifth optical signal includes multiple optical paths.
  • the configuration information includes: a component of a frequency component of each of the at least one fourth optical signal.
  • FIG. 1 is a schematic diagram of a conventional AWG structure.
  • FIG. 2 is a schematic principle diagram of optical signal demultiplexing performed by an AWG.
  • FIG. 3 is a schematic diagram in which frequency components of an input optical signal are dispersed on a circular arc of a Roland Park in an output coupling region.
  • FIG. 4 is a schematic structural block diagram of an optical waveguide device according to an embodiment of the present application.
  • FIG. 5 is a schematic structural block diagram of an optical waveguide device according to another embodiment of the present application.
  • FIG. 6 is a schematic diagram of a control unit controlling a separation unit to separate a frequency component of a first optical signal into at least one second optical signal according to an embodiment of the present application.
  • FIG. 7 is a schematic structural block diagram of an optical waveguide device according to another embodiment of the present application.
  • FIG. 8 is a schematic structural block diagram of an optical waveguide device according to another embodiment of the present application.
  • FIG. 9 is a schematic structural block diagram of an optical waveguide device according to another embodiment of the present application.
  • FIG. 10 is a schematic structural block diagram of an optical waveguide device according to another embodiment of the present application.
  • FIG. 11 is a schematic structural block diagram of an optical waveguide device according to another embodiment of the present application.
  • FIG. 12 is a schematic structural block diagram of an optical waveguide device according to an embodiment of the present application.
  • FIG. 13 is a schematic structural block diagram of an optical waveguide device according to another embodiment of the present application.
  • An optical waveguide is a medium structure that guides the propagation of optical signals or light waves, or a light guide path that restricts the transmission of optical signals (or light waves) to a specific medium or near its surface.
  • the medium may be an optical material mentioned later, for example, may include silicon, silicon oxide, liquid crystal, and the like.
  • Variable optical waveguides which control optical materials based on configuration information, form optical signal transmission paths or eliminate optical signal transmission paths, or change the shape of optical signal transmission paths, or parts or media structures that implement corresponding light processing functions; or,
  • a variable optical waveguide is an optical waveguide that is controlled based on configuration information. It can form an optical waveguide, or eliminate an existing optical waveguide, or change the shape of an existing optical waveguide. Forming an optical waveguide can be understood as forming a new optical waveguide.
  • the variable optical waveguide can adjust the optical waveguide unit based on the configuration information, and can realize the light processing function or the performance corresponding to the light processing function.
  • control the optical material based on the configuration information, control the optical material to form a transmission path that can be used to transmit optical signals, or eliminate the existing transmission path for transmitting optical signals, or change the shape and direction of the existing transmission path for transmitting optical signals And transmission performance.
  • the optical material is a liquid crystal, and a dot matrix electrode is used.
  • the configuration information includes a voltage application method corresponding to the dot matrix electrode and / or which electrodes need to be changed in voltage.
  • the dot matrix electrode corresponding to a preset area of the optical material is applied.
  • the fixed optical waveguide corresponding to the variable optical waveguide, is a preset optical waveguide whose transmission path of the optical signal cannot be changed. That is, after the production of the fixed optical waveguide is completed, the preset transmission path of the optical signal is also completed. It cannot generally be changed later.
  • the preset optical signal transmission path refers to a pre-set path that has the prerequisites for becoming a transmission path of the optical signal (or can be a transmission path of the optical signal). Once the optical signal is input to this path, it becomes the transmission path of the optical signal. If no optical signal is input to this path, this path cannot be called an optical signal transmission path in an accurate sense. Under normal circumstances, the light processing function realized by the fixed optical waveguide cannot be changed. Generally, after the fabrication is completed, the performance corresponding to the light processing function of the fixed optical waveguide cannot be changed.
  • Optical channel is an optical signal (also called single-wave optical signal, single-wavelength, etc.) carried at a single wavelength in an optical fiber transmission system; or in other words, an optical channel contains information with a certain bandwidth Information structure of the payload (for details, please refer to ITU-TG.870).
  • Channel spacing of optical signals refers to the frequency difference between adjacent optical channels (see ITU-T G.692), or the difference between the central frequencies of adjacent optical channels Or the difference between the center wavelengths (for details, please refer to ITU-T G.671).
  • Frequency grid is a set of reference frequencies that can be used to define the allowed nominal central frequency of the application (for details, please refer to ITU-T G.694.1)
  • AWG is an important component in WDM networks. It is mainly used in OTM stations to multiplex or demultiplex optical signals or optical paths.
  • AWG is mainly composed of input waveguide, input coupling region, array waveguide region, output coupling region, and output waveguide region.
  • Figure 1 is a schematic diagram of the AWG structure.
  • the input coupling region also known as the input slab waveguide region
  • the output coupling region also known as the output slab waveguide region
  • the input and output waveguides limit and conduct optical signals, respectively.
  • the ports of the input waveguide and the output waveguide are located on the circumference of the Roland circle, and the array waveguide is located on the circumference of the concave grating.
  • a large optical path difference is introduced at the array waveguide to make the grating work at high-order diffraction.
  • the input optical fiber input optical signal is sent to the input coupling region through the input waveguide.
  • the input coupling region and the output coupling region are both structures of the Roland Park, and the input coupling region and the output coupling region form a mirror image relationship.
  • the characteristic of Roland Park is that the light signal from any point on Roland Park is still focused on the Roland circle after reflection.
  • a large optical path difference is introduced at the array waveguide to make the grating work at higher-order diffraction.
  • the optical path difference formed by the input coupling region, the array waveguide, and the output coupling region needs to satisfy the grating equation in order to focus on the Roland Park in the output coupling region.
  • Each frequency component is introduced at the array waveguide to make the grating work at higher-order diffraction.
  • the output waveguide outputs each frequency component of the input optical signal, that is, each output waveguide outputs a partial frequency component of the input optical signal (each output optical signal includes a partial frequency component of the input optical signal).
  • the output waveguide transmits the output optical signal to the output fiber.
  • an input optical signal of the AWG includes multiple optical paths, and an output optical signal includes only one optical path.
  • the process of optical signal multiplexing is the reverse of the process of demultiplexing an optical signal.
  • the input optical signal contains part of the frequency component of the output optical signal.
  • the process of optical signal multiplexing can be the interchange of input and output parts in the process of demultiplexing the optical signal.
  • the AWG shown is used for optical signal multiplexing
  • the input optical signal is input from the output waveguide
  • the output optical signal is output from the input waveguide.
  • the AWG is used for optical signal demultiplexing
  • each input optical signal contains one optical path
  • the output optical signal usually has only one optical path and can include multiple optical paths.
  • there is a rotating AWG (cylic AWG).
  • the input optical signal can have multiple channels.
  • Each input optical signal can include multiple optical channels.
  • the output can also have multiple optical channels.
  • Each output optical signal can include Multiple light paths.
  • Rotating the AWG can send the optical path in each input optical signal to a different output optical signal, which is equivalent to the superposition of multiple AWGs. The principle is similar to the above-mentioned AWG, and is not repeated here.
  • the grating equation of AWG is shown in formula (1):
  • n si is the refractive index of the input coupling region, n so the refractive index of the output coupling region, n c is the refractive index of the array waveguides, d i in the cycle of the input to the arrayed waveguide coupling region side, d o Is the period of the array waveguide at the output coupling region side, ⁇ i is the diffraction angle at the input coupling region, ⁇ o is the diffraction angle at the output coupling region, m is the diffraction order of the AWG operation, ⁇ is the wavelength of the optical signal, and ⁇ L is The lengths of adjacent array waveguides are different.
  • n g is a group refractive index (average refractive index of multiplexed light), where,
  • n g n c - ⁇ b * (dn c / d ⁇ ) (3)
  • the dispersion angle of the AWG in the input coupling region and the output coupling region is substantially uniform. That is, regardless of the position of the output waveguide, the position of each frequency component in the coupling region Roland Park is fixed and is distributed substantially uniformly on the Roland circle.
  • the etched diffraction grating can also achieve the same optical signal multiplexing or demultiplexing function as AWG.
  • EDG mainly includes a coupling region and a concave grating. The principle is similar to AWG. .
  • FIG. 2 is a schematic principle diagram of optical signal demultiplexing performed by an AWG.
  • the input optical signal is sequentially transmitted to the input coupling region, the array waveguide region, and the output coupling region through the input waveguide. Since the input coupling region and the output coupling region are both structures of the Roland Park, a large optical path difference is introduced at the array waveguide.
  • the frequency components of each optical path included in the input optical signal may be dispersed on the Roland Park in the output coupling region.
  • the output waveguide outputs frequency components of the optical path.
  • each frequency point (frequency) in the Roland Park in the output coupling region is fixed and is evenly distributed on the Roland Park in the output coupling region.
  • the circular arc marked in black on the Roland Park in the output coupling area in FIG. 2 is the position where the frequency components included in the input optical signal are scattered. All possible frequency components of the optical signal that the AWG can process are scattered over this arc.
  • the output waveguide is connected to the Roland Park in the output coupling region, and, for an AWG, no matter what the frequency component of the output optical signal or the position of the output waveguide, in the Roland Park in the output coupling region, each frequency The position of the point (frequency) is fixed.
  • the output waveguide is implemented by a fixed optical waveguide, and the position of each output waveguide is fixed, that is, the frequency component of the optical signal that each output waveguide can output is fixed.
  • FIG. 3 is a schematic diagram in which frequency components of an input optical signal are dispersed on a circular arc of a Roland Park in an output coupling region.
  • the input optical signal is composed of 6 optical paths, and the input optical signal sequentially passes through the input coupling region, the array waveguide region, and the output coupling region.
  • the frequency corresponding to the position of each point is fixed.
  • the six optical paths have different frequency domain components, so they can be distributed at different positions of the arc.
  • each output waveguide is used to output one optical path.
  • each output waveguide is 0.050THz (0.050THz can also be written as 50GHz), and each output waveguide can be viewed as a Output path.
  • the path intervals are all 50 GHz.
  • the position of each frequency point (or frequency component) in the Roland Park in the output coupling region is fixed. Since the output waveguide is implemented by a fixed optical waveguide, the position of each output waveguide is fixed, which means that the start and stop positions in the frequency domain of the optical path that each output waveguide can output and the width of the frequency domain that can be transmitted are fixed.
  • the center frequency of an optical path in an input optical signal is 193.125 THz.
  • the corresponding frequency domain range of the output waveguide that is, the range of the effective frequency component of the optical path that the output waveguide can output, or the maximum effective frequency component of the optical path that the output waveguide can output Range
  • the positions of the output waveguides in the AWG are fixed, the AWG cannot output the optical path (or the performance of the optical path is greatly damaged after output).
  • the position of the output waveguide is fixed, that is, the path interval is fixed, and only the optical path corresponding to the position of the output waveguide can be output, that is, only a fixed output can be output.
  • Path-spaced optical signal is various.
  • the path interval of 100Gbps is generally at 50GHz
  • the path interval of 200Gbps may be 62.5GHz
  • the path interval of 400Gbps may be 75GHz
  • the path interval of 1Tbps may be 100GHz.
  • the AWG of the prior art is required to make an AWG for each channel interval, such as a 50 GHz channel interval AWG, a 62.5 GHz channel interval AWG, a 75 GHz channel interval AWG, and a 100 GHz interval AWG and more.
  • there are many types of AWG which increases the cost of maintenance and management, and increases the cost of stocking.
  • a variety of AWGs have diluted the number of each type of AWG (the cost of optical modules is closely related to shipments), so it has raised the manufacturing cost of AWGs, affecting market promotion and applications.
  • this application provides an optical waveguide device, which can satisfy the transmission of optical signals with different channel intervals or the mixed transmission of optical signals with different channel intervals, reducing costs and meeting the needs of the market and users.
  • the performance of the optical waveguide device is improved.
  • FIG. 4 is a schematic structural block diagram of the optical waveguide device provided in the present application. As shown in FIG. 4, the optical waveguide device 100 includes:
  • the first dispersion unit 110 and the separation unit 120 are connected to the separation unit 120.
  • the first dispersion unit 110 is configured to disperse the frequency components of at least one first optical signal;
  • the separation unit 120 is configured to disperse the frequencies of the at least one first optical signal according to the configuration information.
  • the components are separated into at least one second optical signal.
  • the separation unit 120 is implemented by a variable optical waveguide, which is an optical waveguide that forms an optical signal transmission path, or eliminates the optical signal transmission path, or changes the shape of the optical signal transmission path based on the configuration information.
  • the variable optical waveguide is an optical waveguide capable of achieving at least one of the functions of forming an optical waveguide, eliminating an existing optical waveguide, and changing the shape of an existing optical waveguide based on the configuration information.
  • the first dispersion unit 110 may disperse the frequencies of at least one first optical signal input to the first dispersion unit 110. That is, the first dispersion unit 110 can implement a dispersion function.
  • the dispersion function refers to dispersing an optical signal according to frequency components.
  • the separation unit 120 can perform any one or more of the functions of forming an optical waveguide, eliminating the optical waveguide, or changing the shape of the optical waveguide.
  • the formation of an optical waveguide can be understood as a newly formed optical waveguide, that is, a new optical signal transmission path is formed.
  • the variable optical waveguide may be defined as an optical waveguide that realizes at least one of the functions of forming a transmission path of an optical signal, eliminating a transmission path of the optical signal, and changing a shape of the transmission path of the optical signal based on the configuration information.
  • the separation unit 120 may separate the frequency components of at least one first optical signal dispersed by the first dispersion unit 110 into at least one second optical signal according to the configuration information.
  • the separation unit 120 mainly performs two functions: Some functions complete the separation of the frequency components of at least one first optical signal dispersed by the first dispersion unit 110 according to the configuration information. This part of the functions is mainly.
  • the second part functions to combine the separated frequency components into at least one second optical signal according to the configuration information.
  • the separation unit 120 may form a transmission path that outputs each of the at least one second optical signal according to the configuration information.
  • the at least one second optical signal is output.
  • the center frequency of each second optical signal in the at least one second optical signal may be different.
  • the path interval of each second optical signal in the at least one second optical signal may also be different. In the frequency domain, the effective frequency components of different second optical signals in the at least one second optical signal do not overlap.
  • the configuration information may be stored in the optical waveguide device in advance, or may not be stored in the optical waveguide device.
  • the configuration information is obtained from the outside and used.
  • the configuration information may include a composition of a frequency component of each of the at least one second optical signal. That is, the configuration information may be a preset effective frequency component width (or simply a frequency domain width) of each of the at least one second optical signal that needs to be output, a start and end position of the effective frequency component, a path interval, and a center. Any one or more of the frequency (or the nominal center frequency) may also be a frequency grid or the like that needs to be met by at least one second optical signal.
  • the separating unit 120 separates the frequency components of the at least one first optical signal into at least one preset second optical signal according to the configuration information.
  • the composition of the frequency components of each second optical signal may be different.
  • the composition of the frequency component may include any one or more of the following information: the center frequency of the second optical signal, the path interval of the second optical signal, the frequency grid to which the second optical signal is applicable, and the second optical signal The start and end positions of the effective frequency component of, the effective frequency component width of the second optical signal, and the like. That is, the separation unit 120 can flexibly form a transmission path for outputting the at least one second optical signal according to the configuration information, and the effective frequency component width and the effective frequency component start and end positions of each transmission path can be flexibly set according to the configuration information.
  • the separation unit 120 may separate the frequency components of the first optical signal into at least one second optical signal according to the configuration information.
  • the separation unit 120 will separate the frequency components of the first optical signal of the first channel into two second optical signals according to the configuration information, and the center frequencies thereof are 193.13125THz and 193.01875, respectively.
  • THz the path interval is 75GHz, 150GHz, it can also be said that the width of its effective frequency component is 75GHz, 150GHz, respectively. That is, the maximum ranges of the effective frequency components of the optical signal path formed by the separation unit 120 are 193.009375 THz to 193.115625 THz and 192.994375 THz to 193.009375 THz, respectively.
  • the first optical signal usually has only one channel.
  • the waveguide device is used as a rotating AWG, there may be multiple first optical signals.
  • the composition of the frequency components of the first optical signals of the other channels may be the same as or different from those of the first optical signals.
  • the separation unit 120 can make the widths (path intervals) of the effective frequency components of the at least one second optical signal separated according to the configuration information, that is, the optical waveguide device 100 can support different path intervals. Output of light signals.
  • the width (path interval) of the effective frequency components of the at least one second optical signal separated by the separation unit 120 may be the same.
  • the optical frequency component of at least one of the first optical signals dispersed by the first dispersion unit according to the configuration information can be separated by the separation unit, which is flexible according to preset requirements or needs.
  • the optical waveguide device can support different channel intervals (the width of effective frequency components), that is, according to different application requirements or application conditions, the frequency components of at least one first optical signal dispersed by the first dispersion unit can be separated into different At least one second optical signal, that is, the frequency components of at least one first optical signal can be flexibly separated, and different path intervals can be supported.
  • optical waveguide device for a path interval, and improves the use efficiency and performance of the optical waveguide device.
  • the type of the optical waveguide device can be reduced, the stocking cost can be reduced, and the maintenance and management costs of the optical waveguide device can be reduced.
  • the optical waveguide device may include one or more first dispersion units.
  • the one first dispersion unit may be used to disperse the frequency components of the at least one first optical signal.
  • each A dispersing unit can disperse the frequencies of one channel of the first optical signal, or disperse the frequencies of multiple channels of the first optical signal (for example, realize the function of rotating the AWG). This application is not limited here.
  • the separation unit 120 is further configured to change the composition of the frequency components of the at least one second optical signal according to the configuration information.
  • the network manager may configure transmitters corresponding to different optical channels to change the frequency component composition of the corresponding optical channels according to the configuration information.
  • the separation unit 120 may be further configured to change the composition of the frequency components of the at least one second optical signal according to the configuration information.
  • the composition of the frequency component of the second optical signal may include any one or more of the following information: the center frequency of the second optical signal, the path interval of the second optical signal, the frequency grid to which the second optical signal applies, The start and end positions of the effective frequency component of the second optical signal, the effective frequency component width of the second optical signal, and the like.
  • the separation unit 120 determines two second optical signals that need to be separated into frequency components of the first optical signal according to the configuration information.
  • the effective frequency components (maximum) ranges are 193.025 THz to 193.075 THz, 193.125 THz to 193.175, respectively.
  • THz that is, the center frequencies of the optical signal paths formed by the separation unit 120 are 193.05 THz and 193.15 THz, respectively, and the path intervals are 50 GHz.
  • the center frequencies of the two second optical signals are 193.13125THz and 193.01875THz, and the effective frequency component widths (path intervals) are 75GHz and 150GHz, respectively.
  • the maximum ranges are 193.909375 THz to 193.115625 THz and 192.994375 THz to 193.009375 THz. Therefore, the separation unit 120 needs to change the composition of the frequency components of the at least one second optical signal according to the configuration information.
  • the composition of the effective frequency components of the two second optical signals is from 193.025 THz to 193.075. THz, 193.125THz ⁇ 193.175THz changed to 193.009375THz ⁇ 193.15625THz, 192.994375THz ⁇ 193.09375THz.
  • the composition of the frequency components such as the center frequency and the effective frequency component width of the two second optical signals can be changed.
  • the separating unit 120 changes the composition of the frequency components of the at least one second optical signal according to the configuration information, so that the optical waveguide device may have outputs of the second optical signals composed of different frequency components.
  • the use efficiency and performance of the optical waveguide device are further improved.
  • the use range of the optical waveguide device is increased.
  • the optical waveguide device 100 further includes a control unit 130.
  • the control unit 130 is connected to the separation unit 120.
  • the control unit 130 is configured to control the separation unit 120 to separate the frequency component of the at least one first optical signal into the at least one second optical signal according to the configuration information.
  • the control unit 130 is further configured to control the separation unit 120 to change the composition of the frequency components of the at least one second optical signal according to the configuration information.
  • the control unit 130 may control the separation unit 120 according to the configuration information.
  • the control unit 130 may also be located inside the separation unit 120.
  • the control unit 130 may obtain the configuration information, and control the separation unit 120 to separate the frequency component of the at least one first optical signal into the configuration information based on the composition information of the frequency components of the at least one second optical signal in the configuration information. At least one second optical signal, or changing the composition of frequency components of the at least one second optical signal.
  • the optical waveguide device may include one or more control units.
  • a first dispersion unit it may correspond to one control unit or multiple control units.
  • multiple first dispersion units there may also be one or more control units. This application is not limited here.
  • the separation unit 120 includes a liquid crystal material
  • the control unit 130 includes at least one electrode.
  • the at least one electrode determines whether a voltage is applied or not applied to the at least one electrode (the voltage is applied or not depends on the type of the liquid crystal material) according to the configuration information, so that the at least one second circuit is formed in the liquid crystal material.
  • the optical signal transmission path controls the liquid crystal material to separate the frequency component of the at least one first optical signal into the at least one second optical signal.
  • the variable optical waveguide may be implemented by a liquid crystal material. Therefore, the separation unit 120 may be implemented by a liquid crystal material.
  • the characteristic of the liquid crystal material is that it can be controlled under the action of an electric field.
  • the refractive index of some regions of the liquid crystal material thereby achieving any one or more of the following functions: forming a required optical waveguide, eliminating unnecessary waveguides, changing the shape of the waveguide, changing the direction of the optical waveguide, changing the transmission of the optical waveguide Performance (e.g., loss value, refractive index, etc.) and so on.
  • the control unit 130 includes electrodes, that is, the control unit 130 is implemented by using electrodes.
  • the control unit 130 may be integrated with the separation unit 120 (for example, integrated into an optical chip).
  • the control unit 130 may use a dot matrix electrode, and apply an electric field to the electrode at a position where the liquid crystal material needs the light signal to pass, so that the refractive index at the desired position is greater than the refractive index of other points, thereby forming a variety of liquid crystal materials.
  • the control unit 130 can control the separation unit 120 to form a desired optical waveguide in the separation unit, so as to separate the frequency components of the dispersed at least one channel of the first optical signal into at least one channel of the second light. signal.
  • the control unit 130 may be separated from the separation unit 120 (the control unit 130 is provided outside the separation unit 120).
  • the control unit 130 may be implemented by an electric field generating device.
  • the configuration information may include information for generating an electric field formed according to a composition of frequency components of each of the at least one second optical signal. Such as the voltage value applied to the electrodes, which electrodes need to change the voltage and so on.
  • the configuration information includes a voltage application method corresponding to a dot matrix electrode and / or which electrodes need to be changed in voltage, and a dot matrix corresponding to a preset area of the liquid crystal material.
  • Type electrode with corresponding voltage (or no corresponding voltage, with or without voltage depends on the type of liquid crystal material), so that the refractive index of the preset region is greater than the refractive index of other regions of the liquid crystal material, so that The area forms a transmission path for the optical signal.
  • Different positions or shapes of the preset areas can implement various light processing functions, such as a function of transmitting a light signal, a function of changing a shape of a light signal transmission path, and the like.
  • the control unit 130 may determine the electrodes to be applied with voltage according to the above-mentioned configuration information, so as to control the separation unit 120 to separate the frequency components of the at least one first optical signal after dispersion into at least one second optical signal to form the at least one first Two optical signal transmission paths.
  • FIG. 6 is a schematic diagram of a control unit (electrode) controlling and separating unit separating an frequency component of a first optical signal into at least one second optical signal according to an embodiment of the present application.
  • a control unit electrode controlling and separating unit separating an frequency component of a first optical signal into at least one second optical signal according to an embodiment of the present application.
  • multiple control units may determine whether to apply a voltage to the electrode according to the configuration information to form an output of the at least one channel of the second channel.
  • the separating unit separates the frequency component of the first optical signal into at least one second optical signal mainly including two parts.
  • the first part a control unit close to the position where the first dispersion unit disperses the frequency components of the inputted at least one first optical signal, and determines whether to apply a voltage (or no voltage) to the control unit according to the configuration information, thereby
  • the control separation unit separates or divides frequency components of at least one first optical signal dispersed by the first dispersion unit.
  • the position where the first dispersing unit disperses the frequency components of the at least one input of the first optical signal is the part of the circular arc in the Roland Park that is close to the separating unit in the output coupling region.
  • the separation unit separates or divides the frequency components of at least one of the first optical signals dispersed by the first dispersion unit, theoretically the separated or divided frequency components can form at least one second optical signal, and the separation unit is completed.
  • the frequency components of at least one first optical signal dispersed by the first dispersion unit are separated into at least one second optical signal.
  • the second part can be added (that is, the second part is not necessary).
  • the first dispersion unit only disperses the frequency components of at least one first optical signal, and does not complete the separation or division. The separation or division is completed by the separation unit.
  • the second part according to the configuration information, the control unit on the corresponding path determines whether a voltage is applied (or not applied) to the control unit, so as to control the separation unit to separate or separate at least one of the first optical signals of the first optical signal.
  • the frequency components are transmitted to the corresponding output ports, so that the separation unit completes the separation of the frequency components of at least one first optical signal dispersed by the first dispersion unit into at least one second optical signal.
  • the output port may be an interface of an output fiber, an output unit, or an internal interface of the optical waveguide device.
  • the corresponding path refers to a path between the separated or dispersed frequency components corresponding to the at least one second optical signal to the output ports corresponding to the at least one second optical signal. For example, as shown in FIG.
  • a plurality of electrodes may not apply a voltage to the electrodes in the area between the transmission path of the first second optical signal and the transmission path of the second second optical signal according to the configuration information. No voltage is applied to the electrode, which means that the optical signal cannot pass, that is, the selective transmission of the optical signal is achieved, so that the transmission path of the first second optical signal and the transmission path of the second second optical signal are separated. Applying a voltage to the electrodes of the corresponding areas of the first and second optical signals and the second and second optical signals so that the optical signals can pass through to form the first and second optical signals respectively Transmission path.
  • the maximum range of the effective frequency component of the second optical signal of the first channel is 193.0093375 THz to 193.1156625 THz
  • the maximum range of the effective frequency component of the second optical signal of the second channel is 192.994375 THz to 193.009375 THz. That is, the path interval (the maximum width of the effective frequency component) of the second optical signal of the first channel is 75 GHz, and the path interval (or the maximum width of the effective frequency component) of the second optical signal of the second channel is 150 GHz.
  • the filter spectrum of a module that implements optical signal multiplexing, demultiplexing, or add / drop multiplexing cannot be completely rectangular.
  • the control unit corresponding to a position where the first dispersing unit disperses the frequency components of at least one input of the first optical signal is selected, and the control unit corresponding to a frequency range of 193.909325 THz to 193.009425 THz is not selected.
  • the voltage is applied to separate the first optical signal from the second optical signal.
  • control unit corresponding to a frequency range from 193.909425 THz to 193.15575 THz it is also necessary to select a control unit corresponding to a frequency range from 193.909425 THz to 193.15575 THz to apply a voltage to a control unit near a position where the first dispersive unit disperses the input frequency components of at least one first optical signal.
  • the second optical signal of the second channel is transmitted, and a control unit corresponding to a frequency range of 192.994425 THz to 193.009325 THz is selected to apply a voltage to transmit the second optical signal of the second channel.
  • the transmission path of at least one second optical signal formed by the control separation unit is linear, that is, the optical waveguide formed in the separation unit is straight .
  • the transmission path (or waveguide) formed in the separation unit may also have other shapes such as a wedge shape and a curved shape. The embodiments of the present application are not limited herein.
  • the separation unit 120 may also be composed of a magnetic fluid material, that is, a magnetic field may be used to change the refractive index of a preset region of the separation unit 120 so that the refractive index of the preset region is greater than that of other regions of the separation unit 120. Refractive index, so that a transmission path of optical signals can be formed in a preset area.
  • the control unit 130 can be a magnet, and the separation unit 120 can form at least one second optical signal to pass through the magnetic field generated by the control unit 130, respectively.
  • the control unit 130 may not be provided inside the optical waveguide device 100, that is, it may be provided separately from the optical waveguide device 100, and the configuration information may be the intensity of the magnetic field and the like. This application is not limited here.
  • control unit 130 may also change the refractive index of the preset region in a temperature-controlled manner to implement a variable optical waveguide, and the configuration information is corresponding to temperature and other information. This application is not limited here.
  • the separation unit 120 may also be implemented using other materials with variable refractive index.
  • the first dispersion unit 110 may be implemented by a variable optical waveguide or a fixed optical waveguide. This application is not limited here.
  • a frequency width allowed to be blocked between adjacent second optical signals in the at least one second optical signal is greater than or equal to a frequency width corresponding to any one of the at least one electrode.
  • the first width at a position where the first dispersion unit disperses the frequency components of the inputted at least one first optical signal is greater than or equal to the width of any one of the at least one electrode; the first The width corresponds to a frequency width that is allowed to be blocked between adjacent second optical signals in the at least one second optical signal.
  • the maximum range of the effective frequency component of the second optical signal of the first channel is 193.0093375 THz to 193.515625 THz
  • the maximum range of the effective frequency component of the second optical signal of the second channel is 192.994375 THz ⁇ 193.09375THz.
  • the first second optical signal and the second second optical signal need to be separated, at a position where the first dispersing unit disperses the input frequency components of at least one first optical signal, the first second optical signal
  • the width at the position corresponding to the allowed frequency width between the signal and the second optical signal of the second channel must be greater than or equal to the width of the electrode, that is, the first optical signal of the second channel and the second optical signal of the second channel.
  • the frequency interval between the optical signals that can be blocked is at least one electrode needs to be placed in the corresponding area at this position, so that the first second optical signal and the second second optical signal can be separated.
  • the allowed frequency width between adjacent optical signals is 1 GHz
  • two rows of electrodes can be placed at a corresponding width of 1 GHz at a position where the first dispersion unit disperses the input frequency components of at least one of the first optical signals.
  • the two rows of electrodes are used to separate the first second optical signal and the second second optical signal, and no voltage is applied to the two rows of electrodes, so that the optical signal transmission can be prevented. Therefore, only when the first dispersion unit disperses the input frequency components of at least one channel of the first optical signal at a first width that is not less than the width of the electrode, the electrode can divide at least one channel of the second light. Two adjacent second optical signals in the signal are separated to form an output path for outputting each second optical signal.
  • the first dispersion unit disperses the frequency components of at least one of the first optical signals onto the AWG's output coupling region, Roland Park, which can be obtained from formula (6):
  • R is the radius of the Roland Park.
  • f c / n * ⁇ , where f is the frequency, n is the refractive index of the waveguide where the optical signal is located, c is the speed of light, and ⁇ is the optical signal wavelength.
  • ⁇ g is the minimum width corresponding to the electrode.
  • ⁇ f is the allowed frequency width between adjacent optical signals. If ⁇ f is 1GHz, f is 191.2THz, and n so is 1.5, then 2R * m / ⁇ g * d o ⁇ 2.7 * 10 5 .
  • the minimum electrode size of liquid crystal materials is about 3um. Therefore, 2R * m / ⁇ g * d o needs to be increased by more than an order of magnitude compared with the current commonly used values.
  • a frequency width allowed to be blocked between adjacent second optical signals in the at least one second optical signal is greater than or equal to the at least one
  • the frequency width corresponding to any one of the electrodes can be understood as: the frequency width corresponding to each of the at least one electrode is less than the frequency allowed to be blocked between adjacent second optical signals in the at least one second optical signal It can also be understood that: as long as the frequency width corresponding to one of the at least one electrode is smaller than the allowed frequency width between adjacent second optical signals in the at least one second optical signal. This application is not limited here.
  • the optical waveguide device 100 includes: an input unit 140 and an output unit 150.
  • the input unit 140 is connected to the first dispersion unit 110.
  • the at least one first optical signal is transmitted to the first dispersion unit 110;
  • the output unit 150 is connected to the separation unit 120, and the output unit 150 is configured to output the at least one second optical signal.
  • the optical waveguide device 100 further includes an input unit 140 and an output unit 150.
  • the input unit 140 is configured to transmit the at least one first optical signal to the first dispersion unit 110.
  • the output unit 140 is configured to output the at least one second optical signal.
  • the input unit 140 may be an input waveguide, and the input fiber transmits the at least one first optical signal to the input waveguide, and the input waveguide transmits the at least one first optical signal to the first dispersion unit 110.
  • the input unit 140 may also be an input fiber, and the at least one first optical signal is directly transmitted to the first dispersion unit through the input fiber. There may be multiple input waveguides or input fibers, and each input waveguide or each input fiber is used to transmit a first optical signal.
  • the output unit 150 may also be an output waveguide or an output fiber, and there may be multiple output waveguides or output fibers. Each output waveguide or each output fiber is used to output a second optical signal.
  • the optical waveguide device 100 further includes a control unit 130.
  • the input unit 140 and the output unit 150 may also be other components or structural units that can transmit optical signals. This application is not limited here.
  • the first dispersion unit includes an arrayed waveguide or a concave grating.
  • the first dispersion unit 110 can implement a dispersion function.
  • the first dispersion unit may be part of an AWG.
  • the first dispersion unit may include an input coupling area, an array waveguide, and an output coupling area in the AWG.
  • the core component is an array waveguide, and the first dispersion unit may also be Only array waveguides are included.
  • the first dispersion unit may be a part of an etched diffraction grating (EDG).
  • EDG etched diffraction grating
  • a coupling region and a concave grating in the EDG may be included, and a core component thereof is a concave grating, and the first dispersion unit may also include only a concave grating.
  • the first dispersion unit 110 may include an input coupling region, an array waveguide region, and an output coupling region as an example for description: the input coupling region and the output coupling region both have the structure of a Roland Park.
  • the first dispersing unit 110 may disperse the frequency component of the at least one first optical signal at a position of an arc adjacent to the separating unit 120 in the Rowland Garden of the output coupling region.
  • the separating unit 120 may separate the frequency components of the at least one first optical signal into at least one second light from a position where the first dispersion unit 110 disperses the frequency components of the at least one first optical signal according to the configuration information. signal.
  • first dispersion unit 110 may further include other components or other structures, as long as the dispersion function can be achieved, that is, the frequency components of the at least one first optical signal are dispersed.
  • the embodiments of the present application are not limited herein.
  • FIG. 8 is a schematic structural diagram of an optical waveguide device 200 according to an embodiment of the present application.
  • FIG. 8 may be a schematic structural top view of the waveguide device 200.
  • the optical waveguide device 200 includes an input waveguide (input unit), a first dispersion unit, and a separation unit.
  • the input fiber is used to transmit at least one first optical signal to the input waveguide.
  • the input waveguide transmits the at least one first optical signal to the first dispersion unit.
  • the first dispersion unit includes an input coupling region, an array waveguide region, and an output coupling region. Complete the dispersion function.
  • the first dispersion unit disperses the frequency component of the at least one first optical signal at the position of the Roland Park in the output coupling region.
  • the separation unit separates the frequency components of the at least one first optical signal into at least one second optical signal or changes the composition of the frequency components of the at least one second optical signal according to the configuration information.
  • the output fiber outputs the at least one second optical signal.
  • the optical waveguide device 200 may further include a control unit, and the control unit may be an electrode or the like. It is used to control the separation unit to separate the frequency component of the at least one first optical signal into the at least one second optical signal, or to change the composition of the frequency component of the at least one second optical signal.
  • FIG. 8 is only exemplary, and the structure of the optical waveguide device 200 should not be limited.
  • the optical waveguide device 200 may further include other structural units.
  • the first dispersion unit may also be a concave grating similar to that in EDG. This application is not limited here.
  • FIG. 9 is a schematic structural diagram of an optical waveguide device 300 according to an embodiment of the present application.
  • FIG. 9 may be a schematic structural front view of an optical waveguide device 300.
  • the optical waveguide device 300 includes an input waveguide, a first dispersion unit (composed of an input coupling region, an array waveguide region, and an output coupling region). ), Separation unit, coating and electrode layer (control unit).
  • the input fiber is used to transmit at least one first optical signal to an input waveguide.
  • the input waveguide transmits the at least one first optical signal to the input coupling region.
  • the at least one first optical signal passes through the array waveguide region and the output coupling region, and the frequency components of the at least one first optical signal are dispersed in the output coupling region.
  • the electrode layer control unit
  • the electrode layer may be a dot matrix electrode and is mainly used to provide a voltage.
  • the separation unit separates the frequency components of the at least one first optical signal into at least one second optical signal according to the configuration information by whether or not a voltage is applied to the electrodes in the electrode layer.
  • the output fiber is used to output the at least one second optical signal.
  • the cladding layer is mainly a material with a variable refractive index for sealing and separating the unit.
  • an indium tin oxide (ITO) glass substrate is used.
  • the cladding layer can also double as a ground layer and provide the required voltage with the electrode layer.
  • an electrode may be provided on the coating, so that the coating can also serve as an electrode layer.
  • FIG. 9 is only exemplary, and the structure of the optical waveguide device 300 should not be limited.
  • the electrode layer may be located only outside the separation unit.
  • the optical waveguide device 200 may further include other structural units. This application is not limited here.
  • At least one of the at least one first optical signal includes a plurality of optical paths.
  • the separation unit 120 can separate the frequency component of the at least one first optical signal into at least one second optical signal
  • at least one of the at least one first optical signal in the at least one first optical signal may include multiple Light paths. That is, the optical waveguide device of the present application can implement the function of an optical signal demultiplexer. It also supports the transmission of optical signals with different path intervals. The efficiency and performance of the optical waveguide device are improved.
  • a part of the first optical signals in the at least one first optical signal may include multiple optical paths. That is, part of the first optical signals in the plurality of first optical signals may include multiple optical paths, and part of the first optical signals may have only one optical path. This application is not limited here.
  • each second optical signal may have only one optical path.
  • part of the second optical signal may include multiple optical paths, and part of the second optical signal may have only a single optical path. This application is not limited here.
  • the optical waveguide device 100 further includes a second dispersion unit 160; the second dispersion unit 160 is connected to the separation unit 120; and the separation unit 120 is further configured to change the at least At least a part of the second optical signal in one channel of the second optical signal is transmitted to the second dispersion unit 160; the second dispersion unit 160 is configured to synthesize the part of the second optical signal into at least one third optical signal.
  • the optical waveguide device 100 further includes a second dispersion unit 160.
  • the example shown in FIG. 10 includes two second dispersion units 160.
  • the optical waveguide device 100 may include only one second dispersion unit 160, or may include more second dispersion units 160.
  • the second dispersion unit 160 may implement a dispersion function.
  • the separation unit 120 is further configured to transmit at least a part of the second optical signal of the at least one second optical signal to the second dispersion unit 160 according to the configuration information.
  • the optical waveguide device 100 may further include a control unit 130.
  • the control unit 130 is configured to control the separation unit 120 to separate at least one first optical signal frequency component into at least one second optical signal and control the separation unit 120 to separate at least one of the at least one second optical signal according to the configuration information.
  • Part of the second optical signal is transmitted to the second dispersion unit 160.
  • the separation unit 120 transmits four of them to a second dispersion unit 160, and transmits the other four channels to another one.
  • the second dispersion unit 160 may implement a dispersion function, that is, at least one second optical signal transmitted to the second dispersion unit 160 may be synthesized into at least one third optical signal. In the example shown in FIG.
  • each of the second dispersing units 160 can synthesize four second optical signals into one third optical signal.
  • the optical waveguide device 100 may also output the at least one third optical signal. Since the multiple second optical signals may be different optical signals, the separation unit 120 may transmit at least one second optical signal having different frequency components to the same second dispersing unit 160, thereby realizing a second signal having different frequency components.
  • the mixed transmission and exchange of optical signals that is, the realization of mixed transmission and exchange of optical signals with different path intervals, that is, the waveguide device realizes the functions that Flexible WSS can achieve. The performance and efficiency of the optical waveguide device are improved.
  • the at least one third optical signal may include multiple optical paths, or may include only one optical path. Or part contains multiple light paths, and part contains only a single light path. This application is not limited here.
  • FIG. 10 is only exemplary and should not cause a limitation to the structure of the optical waveguide device.
  • the optical waveguide device may further include more first dispersion units and / or second dispersion units.
  • the first optical signal, the second optical signal, and the third optical signal may further include more channels.
  • the optical waveguide device may further include an output unit. At least one second optical signal separated by the first dispersing unit or part of the first dispersing unit may not be connected to the second dispersing unit, and may be directly (connected to an output unit) and output. This application is not limited here.
  • the structure of the second dispersion unit may be similar to that of the first dispersion unit described above.
  • the second dispersion unit includes an arrayed waveguide or a concave grating.
  • the second dispersion unit may include an input coupling region, an array waveguide region, and an output coupling region. This application is not limited here.
  • the optical waveguide device 100 further includes an input unit 140 and an output unit 150.
  • the input unit 140 is connected to the first dispersion unit 110, and an input optical fiber transmits at least one first optical signal to the input unit, and the input unit 110 is configured to transmit the at least one first optical signal to the first dispersion unit 110;
  • the first dispersion unit 110 disperses the frequencies of at least one first optical signal input to the first dispersion unit 110.
  • the separating unit 120 separates the frequency components of the at least one first optical signal into at least one second optical signal and transmits at least a portion of the second optical signal of the at least one second optical signal to the second dispersion unit 160 according to the configuration information.
  • the second dispersion unit 160 may combine at least one second optical signal transmitted to the second dispersion unit into at least one third optical signal.
  • the output unit 150 is connected to the second dispersion unit 160, and the output unit 150 is configured to output the at least one third optical signal.
  • the at least one third optical signal is transmitted to an output fiber.
  • FIG. 12 is a schematic structural diagram of an optical waveguide device according to an embodiment of the present application. As shown in FIG. 12, the optical waveguide device 400 includes:
  • the combining unit 410 and the third dispersing unit 420 are connected to the third dispersing unit 420, and the combining unit is configured to transmit at least one fourth optical signal to a position corresponding to a composition of frequency components of the at least one fourth optical signal according to configuration information; the The third dispersing unit 420 is configured to synthesize the at least one fourth optical signal from at least one fifth optical signal from a position corresponding to a composition of frequency components of the at least one fourth optical signal.
  • the combining unit is composed of a variable light.
  • variable optical waveguide is an optical waveguide that realizes at least one of the functions of forming a transmission path of an optical signal, eliminating the transmission path of the optical signal, and changing the shape of the transmission path of the optical signal based on the configuration information.
  • the combining unit 410 can implement any one or more of forming an optical waveguide, eliminating an optical waveguide, or changing the shape of an optical waveguide.
  • functions such as forming a transmission path of an optical signal, eliminating the transmission path of the optical signal, or changing the shape of the transmission path of the optical signal can be performed.
  • the combining unit 410 may transmit at least one fourth optical signal to a position corresponding to the composition of the frequency components of the at least one fourth optical signal according to the configuration information. That is, the combining unit 410 may form a preset signal according to the configuration information.
  • Each of the at least one fourth optical signal is a transmission path of the fourth optical signal, and the transmission path of each fourth optical signal is used to transmit each of the fourth optical signals, and finally the at least one fourth optical signal is sent to the at least one The position corresponding to the composition of the frequency components of the fourth optical signal.
  • the position corresponding to the composition of the frequency components of the at least one fourth optical signal may be a corresponding position on the Roland Park in the coupling region of the third dispersion unit 420.
  • the frequency components of each of the at least one fourth optical signal may be different, that is, the frequency domains of the at least one fourth optical signal do not overlap.
  • the third dispersion unit 420 may synthesize the at least one fourth optical signal from the position corresponding to the composition of the frequency components of the at least one fourth optical signal to at least one fifth optical signal. That is, the third dispersion unit 420 can implement a dispersion function, and can combine multiple optical signals including different frequency components into one or multiple optical signals including multiple optical paths.
  • the fourth optical signal may have one channel or multiple channels.
  • the combining unit 410 may form the fourth optical signal transmission path according to the configuration information, and transmit the fourth optical signal to the frequency component of the fourth optical signal. Make up the corresponding position.
  • the third dispersion unit 420 obtains the fourth optical signal from a position corresponding to the composition of the frequency components of the fourth optical signal, and outputs the fourth optical signal. That is, when there is only one fourth optical signal, the fifth optical signal is the same as the fourth optical signal, and is the same optical signal.
  • the function of the third dispersion unit 420 is to obtain the fourth optical signal from a position corresponding to the composition of the frequency components of the fourth optical signal and output the fourth optical signal.
  • the configuration information may be stored in the optical waveguide device in advance, or may not be stored in the optical waveguide device, and the combining unit 410 needs to transmit at least one fourth optical signal to a frequency component with the at least one fourth optical signal. Used when the composition corresponds to the position.
  • the configuration information may include a composition of a frequency component of each of the at least one fourth optical signal. That is, the configuration information may be a preset effective frequency component width (referred to as "frequency domain width"), an effective frequency component maximum width, and an effective frequency component of at least one fourth optical signal that needs to be transmitted. Any one or more of the start-stop position, the path interval, the center frequency, and the nominal center frequency may also include at least one frequency grid that the fourth optical signal needs to meet.
  • the combining unit 410 can flexibly form a transmission path for transmitting each fourth optical signal according to the configuration information, that is, according to a preset frequency component of each fourth optical signal, and transmit each fourth optical signal. To a position corresponding to the composition of the frequency component of the fourth optical signal of each channel.
  • the composition of the frequency components of each fourth optical signal may be different. That is, the combining unit 410 can flexibly form a transmission path for transmitting the at least one fourth optical signal according to the configuration information, and the effective frequency component width and effective frequency component start and end positions of each transmission path can be flexibly set according to the configuration information.
  • the effective frequency component width or path interval of a transmission path may be different, and the effective frequency component width or path interval thereof may be changed.
  • the combining unit 410 forms a transmission path of a plurality of fourth optical signals respectively for transmitting different frequency components according to the configuration information, and transmits the plurality of fourth optical signals to a composition with the frequency components of the plurality of fourth optical signals. Corresponding position.
  • the path interval can also be flexibly changed, that is, it can support the output of optical signals with different path intervals.
  • the combining unit can implement any one or more functions of forming an optical waveguide, eliminating the optical waveguide, or changing the shape of the optical waveguide. That is, functions such as forming a transmission path of an optical signal, eliminating the transmission path of the optical signal, or changing the shape of the transmission path of the optical signal can be performed.
  • the combining unit can flexibly form a transmission path for transmitting the at least one fourth optical signal according to the configuration information, and transmit the at least one fourth optical signal to a position corresponding to a composition of frequency components of the at least one fourth optical signal.
  • the third dispersion unit may synthesize the at least one fourth optical signal from the position corresponding to the composition of the frequency components of the at least one fourth optical signal to at least one fifth optical signal.
  • the optical waveguide device can support unused path intervals, that is, a transmission path capable of transmitting the different fourth optical signals can be formed according to the composition of frequency components of different fourth optical signals. It avoids the need for an optical waveguide device for a path interval, and improves the use efficiency and performance of the optical waveguide device.
  • the type of the optical waveguide device can be reduced, the stocking cost can be reduced, and the maintenance and management costs of the optical waveguide device can be reduced.
  • the waveguide device may include one or more third dispersion units.
  • each third dispersion unit may synthesize the at least one fourth optical signal from at a position corresponding to the composition of the frequency components of the at least one fourth optical signal to at least one fifth Light signal. This application is not limited here.
  • the combining unit is further configured to change a composition of frequency components of the at least one fourth optical signal according to the configuration information.
  • the frequency components of the fourth optical signals of different channels may be different. Therefore, the combining unit needs to form a transmission path for transmitting the fourth optical signal of different channels according to the configuration information. Or, for the same fourth optical signal, due to different actual needs or different transmission conditions, the combining unit needs to change the composition of the frequency component of the fourth optical signal according to the configuration information at different transmission times.
  • the composition of the frequency component of the fourth optical signal may include any one or more of the following information: the center frequency of the fourth optical signal, the path interval of the fourth optical signal, the frequency grid to which the fourth optical signal is applied, The start and end positions of the effective frequency component of the fourth optical signal, the effective frequency component width of the fourth optical signal, and the like.
  • the effective frequency components (maximum) ranges are 193.025 THz to 193.075 THz, 193.125 THz to 193.175 THz, that is, the center frequencies of the two fourth optical signals are 193.05 THz and 193.15 THz, respectively.
  • the path interval is 50 GHz.
  • the combining unit forms each fourth optical signal transmission path.
  • the combining unit can change the composition of the frequency components of the two fourth optical signals according to the configuration information.
  • the center frequencies of the two fourth optical signals are 193.13125THz, respectively.
  • the effective frequency component width (path interval) is 75GHz, 150GHz respectively, that is, the maximum range of its effective frequency component is 193.0093375THz ⁇ 193.15625THz, 192.994375THz ⁇ 193.09375THz.
  • the combining unit accordingly forms the transmission paths of the two fourth optical signals according to the configuration information.
  • the combining unit changes the composition of the frequency components of the at least one fourth optical signal according to the configuration information, so that the optical waveguide device can support the transmission of fourth optical signals with different frequency components, and support for different effective frequency component widths. Transmission of a fourth optical signal.
  • the use efficiency and performance of the optical waveguide device are further improved.
  • the use range of the optical waveguide device is increased.
  • the optical waveguide device 400 further includes a control unit 430, which is connected to the combining unit 410, and the control unit 430 is configured to control the unit according to the configuration information.
  • the combining unit 410 transmits the at least one fourth optical signal to a position corresponding to a composition of frequency components of the at least one fourth optical signal.
  • control unit 430 controls the combining unit 410 to transmit the at least one fourth optical signal to a position corresponding to the composition of the frequency components of the at least one fourth optical signal according to the configuration information.
  • the control unit 430 may be located inside or outside the combining unit 410.
  • the control unit 430 may obtain the configuration information, and control the combining unit 420 to form the transmission path for transmitting the at least one fourth optical signal according to the frequency component information of the at least one fourth optical signal in the configuration information, and
  • the at least one fourth optical signal is transmitted to a position corresponding to a composition of a frequency component of the at least one fourth optical signal.
  • optical waveguide device may include one or more control units. This application is not limited here.
  • the combining unit includes a liquid crystal material
  • the control unit includes at least one electrode
  • a frequency width allowed to be blocked between two adjacent fourth optical signals in the at least one fourth optical signal is greater than or equal to a frequency width corresponding to any one of the at least one electrode .
  • the optical waveguide device further includes an input unit and an output unit.
  • the input unit is connected to the combining unit, and the input unit is configured to transmit the at least one fourth optical signal to the combining unit.
  • the output unit is connected to the third dispersion unit, and the output unit is configured to output the at least one fifth optical signal.
  • the third dispersion unit includes an arrayed waveguide or a concave grating.
  • At least one fifth optical signal in the at least one fifth optical signal includes multiple optical paths.
  • the third dispersing unit starts from the at least one fourth optical signal.
  • the position corresponding to the composition of the frequency components of the at least one fourth optical signal is synthesized into at least one fifth optical signal, and at least one of the at least one fifth optical signal may include multiple optical paths.
  • One optical path corresponds to one single-wave optical signal. That is, the fifth optical signal may include multiple optical paths.
  • the optical waveguide device of the present application can implement the function of multiplexing optical signals. It also supports the transmission of optical signals with different path intervals. The efficiency and performance of the optical waveguide device are improved.
  • a part of the fifth optical signal in the at least one first optical signal may include multiple optical paths. That is, part of the fifth optical signal in the first multi-channel optical signal may include multiple optical paths, and part of the fifth optical signal may include only one optical path. This application is not limited here.
  • each fourth optical signal may include a single optical path.
  • part of the fourth optical signal may include multiple optical paths, and part of the fourth optical signal may have only one optical path. This application is not limited here.
  • the first, second, and the like are only used to indicate that multiple objects are different.
  • the first optical signal and the second optical signal are only used to represent different optical signals. It should not have any impact on the optical signal itself, and the above first, second, etc. should not cause any limitation to the embodiments of the present application.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially a part that contributes to the existing technology or a part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the functions of the embodiments of the present application.
  • the aforementioned storage media include: U disks, mobile hard disks, read-only memories (ROM), random access memories (RAM), magnetic disks or optical disks, and other media that can store program codes .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Integrated Circuits (AREA)
  • Dispersion Chemistry (AREA)

Abstract

一种光波导装置(100),包括:第一色散单元(110)和分离单元(120),该第一色散单元(110)连接该分离单元(120),该第一色散单元(110)用于将至少一路第一光信号的频率分量分散开;该分离单元(120)用于根据配置信息,将该第一色散单元(110)分散开的该至少一路第一光信号的频率分量分离成至少一路第二光信号,其中,该分离单元(120)由可变光波导实现,该可变光波导是基于该配置信息实现形成光波导、消除光波导和改变光波导的形状中的至少一种功能的光波导。该光波导装置(100),可以支持不同通路间隔的光信号传输或者不同通路间隔的光信号的混传,降低了成本,满足了市场和用户的需求,提高了光波导装置(100)的性能。

Description

光波导装置
本申请要求于2018年6月29日提交中国专利局、申请号为201810717423.3、申请名称为“光波导装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信领域,更为具体的,涉及一种光波导装置。
背景技术
阵列波导光栅(arrayed waveguide grating,AWG)是波分网络中的重要组成部分,主要用于光终端复用器(optical terminal multiplexer,OTM)站点中,用于实现光信号的复用(multiplex)或解复用(de-multiplex)。现有的AWG的通路间隔(channel spacing)是固定的,通常情况下,一个AWG只能支持一种通路间隔。而目前的波分网络中对通路间隔的需求是多种的。因此,现有的AWG不能满足使用需求,如何有效地使得同一AWG可以满足不同的通路间隔成为目前急需解决的问题。
发明内容
本申请提供一种光波导装置,该光波导装置可以满足不同通路间隔的光信号传输或者不同通路间隔的光信号的混传,降低了成本,满足了市场和用户的需求,提高了光波导装置的性能。
第一方面,提供了一种光波导装置,包括:第一色散单元和分离单元,该第一色散单元连接该分离单元,该第一色散单元用于将至少一路第一光信号的频率分量分散开;该分离单元用于根据配置信息,将该第一色散单元分散的该至少一路第一光信号的频率分量分离成至少一路第二光信号,其中,该分离单元由可变光波导实现,该可变光波导是基于该配置信息实现形成光信号的传输通路、消除光信号的传输通路和改变光信号的传输通路形状中的至少一种功能的光波导。
第一方面提供的光波导装置,由于分离单元由可变光波导实现,分离单元可以根据配置信息,将第一色散单元分散的至少一路第一光信号的频率分量根据预设的要求或者需要,灵活地切割成需要输出的至少一路第二光信号的频率分量。该光波导装置可以支持不同的通路间隔(有效频率分量的宽度),避免了对于一种通路间隔需要设一种光波导装置,提高该光波导装置的使用效率和性能。可以减少光波导装置的种类,减少备货成本,同时减少该光波导装置的维护和管理成本。
在第一方面的一种可能的实现方式中,该分离单元还用于根据该配置信息,改变该至少一路第二光信号的频率分量的组成。在该实现方式中,可以使得该光波导装置支持具有不同频率分量组成的第二光信号的输出。进一步地提高该光波导装置的使用效率和性能。增大该光波导装置的使用范围。进一步地降低成本。
在第一方面的一种可能的实现方式中,该频率分量的组成包括:光信号的通路间隔、光信号的中心频率、光信号频率栅格中的至少一个。
在第一方面的一种可能的实现方式中,该装置还包括控制单元,该控制单元连接该分离单元,该控制单元用于根据该配置信息,控制该分离单元将该至少一路第一光信号的频率分量分离成该至少一路第二光信号。
在第一方面的一种可能的实现方式中,该分离单元包括液晶材料,该控制单元包括至少一个电极,该至少一个电极根据该配置信息,确定是否在该至少一个电极上施加电压,以使得在该液晶材料中实现形成光波导、消除已有光波导和改变已有光波导的形状中的至少一种功能,控制该液晶材料将该至少一路第一光信号的频率分量分离成该至少一路第二光信号。在该实现方式中,通过电极和液晶材料分别实现该控制单元和分离单元,成本较低,便于实现。
在第一方面的一种可能的实现方式中,该至少一路第二光信号中相邻第二光信号之间允许被阻断的频率宽度大于或者等于该至少一个电极中任意一个电极对应的频率宽度。
在第一方面的一种可能的实现方式中,该装置还包括:输入单元和输出单元,该输入单元连接该第一色散单元,该输入单元用于将该至少一路第一光信号传送给该第一色散单元;该输出单元连接该分离单元,该输出单元用于输出该至少一路第二光信号。
在第一方面的一种可能的实现方式中,该第一色散单元包括阵列波导或凹面光栅。
在第一方面的一种可能的实现方式中,该至少一路第一光信号中至少有一路第一光信号包括多个光通路。
在第一方面的一种可能的实现方式中,该装置还包括第二色散单元;该第二色散单元连接该分离单元;该分离单元还用于根据该配置信息,将该至少一路第二光信号中的至少部分第二光信号传输至该第二色散单元;该第二色散单元用于将该部分第二光信号合成为至少一路第三光信号。在该实现方式中,实现了具有不同频率分量的第二光信号的混传和交换,即实现了具有不同通路间隔的光信号的混传和交换。提高了该光波导装置的性能和效率。
在第一方面的一种可能的实现方式中,该装置包括输出单元,该输出单元连接该第二色散单元,该输出单元用于输出该至少一路第三光信号。
在第一方面的一种可能的实现方式中,该配置信息包括:该至少一路第二光信号中每一路第二光信号的频率分量的组成。
第二方面,提供了一种光波导装置,包括:合路单元和第三色散单元;该合路单元连接该第三色散单元,该合路单元用于根据配置信息,将至少一路第四光信号传输到与该至少一路第四光信号的频率分量的组成对应的位置;该第三色散单元用于从与该至少一路第四光信号的频率分量的组成对应的位置将该至少一路第四光信号合成至少一路第五光信号,其中,该合路单元由可变光波导实现,该可变光波导是基于该配置信息实现形成光信号的传输通路、消除光信号的传输通路和改变光信号的传输通路形状中的至少一种功能的光波导。
第二方面提供的光波导装置,由于合路单元由可变光波导实现,即可以形成光信号的传输通路、消除光信号的传输通路或者改变光信号的传输通路形状等功能。该合路单元可以根据配置信息,灵活的形成传输该至少一路第四光信号传输通路,并将该至少一路第四 光信号传输到与该至少一路第四光信号的频率分量的组成对应的位置,该第三色散单元可以从与该至少一路第四光信号的频率分量的组成对应的位置将该至少一路第四光信号合成至少一路第五光信号。该光波导装置可以支持不用的通路间隔,即可以根据不同的第四光信号的频率分量的组成,形成可以传输该不同的第四光信号的传输通路。避免了对于一种通路间隔需要设一种光波导装置,提高该光波导装置的使用效率和性能。可以减小光波导装置的种类,减少备货成本,同时减少该光波导装置的维护和管理成本。
在第二方面的一种可能的实现方式中,该合路单元还用于根据该配置信息,改变该至少一路第四光信号的频率分量的组成。在该实现方式中,可以使得该光波导装置可以支持具有不同频率分量的第四光信号的传输。进一步的提高该光波导装置的使用效率和性能。增大该光波导装置的使用范围。
在第二方面的一种可能的实现方式中,该频率分量的组成包括:光信号的通路间隔、光信号的中心频率、光信号频率栅格中的至少一个。
在第二方面的一种可能的实现方式中,该装置还包括控制单元,该控制单元连接该合路单元,该控制单元用于根据该配置信息,控制该合路单元将该至少一路第四光信号传输到与该至少一路第四光信号的频率分量的组成对应的位置。
在第二方面的一种可能的实现方式中,该合路单元包括液晶材料,该控制单元包括至少一个电极,该至少一个电极根据该配置信息,确定是否在该至少一个电极上施加电压,以使得在该液晶材料中形成该至少一路第四光信号的传输通路,控制该液晶材料将该至少一路第四光信号传输到与该至少一路第四光信号的频率分量的组成对应的位置。
在第二方面的一种可能的实现方式中,该至少一路第四光信号中相邻两路第四光信号之间允许被阻断的频率宽度大于或者等于该至少一个电极中任意一个电极对应的频率宽度。
在第二方面的一种可能的实现方式中,该装置还包括:输入单元和输出单元,该输入单元连接该合路单元,该输入单元用于将该至少一路第四光信号传送给该合路单元;该输出单元连接该第三色散单元,该输出单元用于输出该至少一路第五光信号。
在第二方面的一种可能的实现方式中,该第三色散单元包括阵列波导或凹面光栅。
在第二方面的一种可能的实现方式中,该至少一路第五光信号中至少有一路第五光信号包括多个光通路。
在第二方面的一种可能的实现方式中,该配置信息包括:该至少一路第四光信号中每一路第四光信号的频率分量的组成。
附图说明
图1是现有的AWG结构的示意图。
图2是AWG进行光信号解复用的示意性原理图。
图3是输入光信号的频率分量分散在输出耦合区的罗兰园的圆弧上的示意图。
图4是本申请一个实施例的光波导装置的示意性结构框图。
图5是本申请另一个实施例的光波导装置的示意性结构框图。
图6是本申请一个实施例的控制单元控制分离单元将第一光信号的频率分量分离成至少一路第二光信号的示意图。
图7是本申请另一个实施例的光波导装置的示意性结构框图。
图8是本申请另一个实施例的光波导装置的示意性结构框图。
图9是本申请另一个实施例的光波导装置的示意性结构框图。
图10是本申请另一个实施例的光波导装置的示意性结构框图。
图11是本申请另一个实施例的光波导装置的示意性结构框图。
图12是本申请一个实施例的光波导装置的示意性结构框图。
图13是本申请另一个实施例的光波导装置的示意性结构框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
首先简单介绍本申请中涉及的相关术语。
光波导,引导光信号或光波在其中传播的介质结构,或者说是将光信号(或光波)限制在特定介质内部或其表面附近进行传输的导光通路。该介质可以是后面提到的光学材料等,例如,可以包括硅、氧化硅、液晶等。
可变光波导,基于配置信息控制光学材料,形成光信号的传输通路或者消除光信号的传输通路或者改变光信号的传输通路形状,实现对应的光处理功能的部件或介质结构;或者说,可变光波导是基于配置信息控制光学材料,可以形成光波导、或者消除已有光波导、或者改变已有光波导形状的光波导。形成光波导可以理解为形成新的光波导。可变光波导可以基于配置信息调整光波导单元,可以实现光处理功能或者光处理功能对应的性能。例如:基于配置信息控制光学材料形成可以用于传输光信号的传输通路,或者消除已有的用于传输光信号的传输通路,或者改变已有的用于传输光信号的传输通路的形状、方向以及传输性能等。基于配置信息控制光学材料的方式有多种。例如,光学材料是液晶,采用点阵式电极,配置信息中包括对应点阵式电极的加电压方式和/或哪些电极需要改变电压等,在光学材料的预设区域对应的点阵式电极加相应的电压(或者不加相应的电压,加或者不加电压,取决于液晶材料的类型),使该预设区域的折射率大于光学材料的其它区域的折射率,从而可以在预设区域形成光信号的传输通路。
固定光波导,与可变光波导相对应,是预设的光信号的传输通路不能更改的光波导,也即固定光波导制作完成后,预设的光信号的传输通路也都制作完成,在后续一般不能更改。预设的光信号的传输通路是指预先设置的、有成为光信号的传输通路前提条件(或可以成为光信号的传输通路)的通路,一旦往该通路输入光信号就成为光信号的传输通路,如果没有往该通路输入光信号,该通路还不能称为准确意义上的光信号的传输通路。在通常情况下,固定光波导实现的光处理功能不能改变。一般地,在制作完成后,固定光波导实现的光处理功能对应的性能也不能改变。
光通路(optical channel),是在光纤传输系统中承载在单个波长上的光信号(也称为单波光信号、单波长等);或者说是,光通路是一种包含了有一定带宽的信息净荷的信息结构(具体内容请参考ITU-TG.870)。
光信号的通路间隔(channel spacing),是指相邻光通路(optical channel)之间的频率差(参见ITU-T G.692),或者指相邻光通路的中心频率(central frequency)之差或中心波长之差(具体内容请参考ITU-T G.671)。
频率栅格(frequency grid),是用来表示可用于定义应用的允许的标称中心频率(nominal central frequency)的一组参考频率(具体内容可以请参考ITU-T G.694.1)
AWG是波分网络中的重要组成部件,主要用于OTM站点中,用于实现光信号或光通路的复用或解复用。
AWG主要由输入波导、输入耦合区、阵列波导区、输出耦合区、输出波导区几大部分组成。如图1所示,图1是AWG结构的示意图。输入耦合区(或称为输入平板波导区)和输出耦合区(或称为输出平板波导区)采用采用类似凹面光栅和罗兰圆的结构。输入波导和输出波导分别对光信号进行限制和传导。输入波导和输出波导的端口位于罗兰圆的圆周上,阵列波导位于凹面光栅的圆周上,阵列波导处引入一个较大的光程差,使光栅工作在高阶衍射。
以光信号解复用的过程为例简单说明AWG的工作原理。输入光纤输入光信号,通过输入波导送到输入耦合区。输入耦合区和输出耦合区都是罗兰园的结构,输入耦合区和输出耦合区形成镜像关系。罗兰园的特点是罗兰园上任一点发出的光信号经过反射后仍聚焦在罗兰圆上。阵列波导处引入一个较大的光程差,使光栅工作在高阶衍射。输入耦合区、阵列波导以及输出耦合区一起形成的光程差,需要满足光栅方程,才能在输出耦合区的罗兰园上聚焦,同时近似均匀地在输出耦合区的罗兰园上分布输入光信号的各频率分量。输出波导将输入光信号的各频率分量进行输出,即每个输出波导输出输入光信号的部分频率分量(每路输出光信号包含输入光信号的部分频率分量)。输出波导将输出光信号传输到输出光纤。通常情况下,在光信号解复用的过程中,AWG的输入光信号中包含多个光通路,而一路输出光信号中只包含一个光通路。光信号复用的过程为光信号解复用过程的逆过程,输入的光信号包含输出光信号的部分频率分量。根据光路可逆的原理,并且由于在AWG中输入耦合区与输出耦合区是对称的,因此光信号复用的过程可以是将光信号解复用过程中输入输出部分互换,例如当图1所示的AWG用于光信号复用时,输入光信号是从输出波导输入的,而输出光信号是从输入波导输出的。当AWG用于光信号解复用时,输入光信号通常只有一路,且可以包含多路光通路,输出光信号通常有多路,每路输出光信号只包含一路光通路。当AWG用于光信号复用时,输入光信号通常有多路,每路输入光信号包含一路光通路,而输出光信号通常只有一路,且可以包含多路光通路。另外,还有一种旋转AWG(cylic AWG),其输入光信号可以有多路,每路输入光信号可以包含多个光通路,其输出也可以有多个光通路,每路输出光信号可以包含多个光通路。旋转AWG可以将每路输入光信号中的光通路送到不同的输出光信号中,相当于多个AWG叠加,其原理和上述AWG类似,这里不再赘述。
AWG的一些结构参数需要满足光栅方程,才可以实现光信号复用或解复用的功能。AWG的光栅方程如公式(1)所示:
n si*d i*sinθ i+n c*ΔL+n so*d o*sinθ o=mλ   (1)
公式(1)中,n si为输入耦合区的折射率,n so为输出耦合区的折射率,n c为阵列波导的折射率,d i为阵列波导在输入耦合区侧的周期,d o为阵列波导在输出耦合区侧的周期,θ i为输入耦合区上的衍射角,θ o为输出耦合区上的衍射角,m为AWG工作的衍射级次,λ为光信号波长,ΔL为相邻阵列波导的长度差。
根据AWG的光栅方程可以推导出AWG的角色散方程,如公式(2)所示:
o/dλ=n g*m/n so*d o*n c   (2)
公式(2)中,n g为群折射率(合波光的平均折射率),其中,
n g=n cb*(dn c/dλ)   (3)
λ b=n c*(ΔL/m)        (4)
可得公式(5):
Δθ o=n g*m*Δλ/n so*d o*n c   (5)
由于λ b*(dn c/dλ)是一个相对小量,因此,n g≈n c,公式(2)可以变形为公式(6)
o/dλ=m/n so*d o    (6)
由公式(6)可以看出,AWG在输入耦合区和输出耦合区色散角度基本上是均匀的。即不管输出波导的位置如何,在耦合区罗兰园上,每个频率分量的位置是固定的,而且是基本均匀地分布在该罗兰圆上的。
刻蚀衍射光栅(etched diffraction grating,EDG)也能实现类似AWG同样的光信号复用或解复用功能,EDG主要包括耦合区和凹面光栅,其原理和AWG类似,为了简洁,这里不再赘述。
图2是AWG进行光信号解复用的示意性原理图。如图2所示,输入光信号通过输入波导依次传送到输入耦合区、阵列波导区和输出耦合区。由于输入耦合区和输出耦合区都是罗兰园的结构,阵列波导处引入一个较大的光程差。在输入光信号到达输出耦合区的罗兰园上时,可以将输入光信号中包括的各光通路的频率分量分散在输出耦合区的罗兰园上。输出波导将光通路的频率分量进行输出。由上述的分析可知,在输出耦合区的罗兰园,每个频点(频率)的位置是固定的,而且是均匀分布在输出耦合区的罗兰园上。例如。图2中在输出耦合区的罗兰园上标黑的一段圆弧为输入光信号包括的各频率分量分散的位置。AWG能处理的光信号的所有可能的频率分量都在分散在这段圆弧上。输出波导连接该在输出耦合区的罗兰园上,并且,对于一个AWG而言,无论输出光信号的频率的分量是多少,或者输出波导的位置如何,在输出耦合区的罗兰园,每个频点(频率)的位置是固定的。而且,对于一个AWG而言,输出波导由固定光波导实现,每个输出波导的位置是固定的,即每个输出波导可以输出的光信号的频率分量是固定的。
图3是输入光信号的频率分量分散在输出耦合区的罗兰园的圆弧上的示意图。如图3所示,假设输入光信号由6路光通路组成,输入光信号依次经过输入耦合区、阵列波导区和输出耦合区,6路光通路的频域分量分散在输出耦合区的罗兰园上的圆弧上。在输出耦合区的罗兰园上的圆弧上,每个点的位置对应的频率是固定的。6路光通路的频域分量不同,因此可以分布在该圆弧的不同位置上。对应6个输出波导,每个输出波导用于输出一路光通路。图3所示的例子中,可以看出每个输出波导的所占的频率宽度(或称为频域宽度)都为0.050THz(0.050THz也可以写成50GHz),每个输出波导可以看成一个输出通路。图3所示的例子中,通路间隔都为50GHz。对于一个AWG而言,不管通路间隔如何变化,在输出耦合区的罗兰园,每个频点(或频率分量)的位置是固定的。由于输出波导由固定光波导实现,每个输出波导的位置是固定的,意味着每个输出波导能输出的光通路的频域起止位置、可以传输的频域宽度都是固定的。即只能输出预设的与该输出波导对应的光通路。例如,假设输入光信号中有一路光通路的中心频率为193.125THz。对于这路光通路,如果通路间隔为50GHz,需要输出波导对应的频域范围(即输出波导能输出的光 通路的有效频率分量的范围,或者输出波导能输出的光通路的有效频率分量的最大范围)在193.10THz~193.15THz。但是由于该AWG中的输出波导的位置都是固定的,因此,对于这路光通路,该AWG是不能输出的(或者输出后该光通路的性能受到非常大的损伤)。
现有技术中,对于一个(或者一种)AWG而言,其输出波导的位置是固定的,即通路间隔是固定的,只能输出和该输出波导位置对应的光通路,即只能输出固定通路间隔的光信号。但是现在的波分网络的通路间隔是多种的,例如,100Gbps的通路间隔一般在50GHz,200Gbps的通路间隔可能会到62.5GHz,400Gbps的通路间隔可能会到75GHz,1Tbps的通路间隔可能会到100GHz。
因此,采用现有技术的AWG,为了满足这种需求,就需要针对每种通路间隔制作一种AWG,例如50GHz通路间隔的AWG、62.5GHz通路间隔的AWG、75GHz通路间隔的AWG、100GHz间隔的AWG等等。这样会导致较高的成本。并且,AWG的种类较多,增加了维护、管理的成本,同时增加了备货的成本。多种AWG摊薄了每种AWG的数量(光模块的成本和出货量密切相关),因此抬高了AWG的制造成本,影响市场的推广以及应用。
另外,在波分网络中,还要求支持不同通路间隔的光信号混传,同一个AWG需要支持不同通路间隔的光信号混传,即支持灵活栅格特性(flexible grid)。采用现在技术的AWG无法支持不同通路间隔的光信号混传。为了在OTM站点支持FlexGrid,只能采用弹性波长选择开关(flexible wavelength selective switch,Flexible WSS),但是Flexible WSS成本太高。一个AWG成本大约几百美元,但是一个Flexible WSS的成本大约几千美金。严重影响用户的使用需求。
基于上述问题,本申请提供了一种光波导装置,该光波导装置可以满足不同通路间隔的光信号传输或者不同通路间隔的光信号的混传,降低了成本,满足了市场和用户的需求,提高了光波导装置的性能。
下面结合图4说明本申请提供的光波导装置,图4是本申请提供的光波导装置的示意性结构框图,如图4所示,该光波导装置100包括:
第一色散单元110和分离单元120,该第一色散单元110连接该分离单元120。该第一色散单元110用于将至少一路第一光信号的频率分量分散开;该分离单元120用于根据配置信息,将该第一色散单元110分散开的该至少一路第一光信号的频率分量分离成至少一路第二光信号。其中,该分离单元120由可变光波导实现,该可变光波导是基于该配置信息形成光信号的传输通路、或者消除光信号的传输通路、或者改变光信号的传输通路的形状的光波导;或者,该可变光波导是基于该配置信息能实现形成光波导、消除已有的光波导和改变已有光波导的形状中的至少一种功能的光波导。
具体而言,第一色散单元110可以将输入该第一色散单元110的至少一路第一光信号的频率分散开。即第一色散单元110可以实现色散功能。色散功能是指将一路光信号按照频率分量散开。
由于分离单元120由可变光波导实现,该分离单元120可以实现形成光波导、消除光波导或改变光波导的形状中的任一种或多种功能。形成光波导可以理解为新形成的光波导,即形成新的光信号的传输通路。或者,该可变光波导也可以定义为基于该配置信息实现形成光信号的传输通路、消除光信号的传输通路和改变光信号的传输通路形状中的至少 一种功能的光波导。该分离单元120可以根据配置信息,将该第一色散单元110分散开的至少一路的第一光信号的频率分量分离成至少一路第二光信号,即该分离单元120主要完成两部分功能:第一部分功能,根据配置信息,完成该第一色散单元110分散开的至少一路的第一光信号的频率分量的分离,这部分功能是主要的。第二部分功能,根据配置信息,将分离的频率分量组合成至少一路第二光信号。简单来说,该分离单元120可以根据配置信息,形成输出该至少一路第二光信号中每一路第二光信号的传输通路。最终将该至少一路第二光信号输出。该至少一路第二光信号中每一路第二光信号的中心频率可以不同,特别地,该至少一路第二光信号中每一路第二光信号的通路间隔也可以不同。在频域上,该至少一路第二光信号中不同的第二光信号的有效频率分量不重合。
该配置信息可以预先存储在该光波导装置中,或者可以不存储在该光波导装置中,在分离单元120需要将该至少一路第一光信号的频率分量进行分离时从外界获取并使用。该配置信息可以包括该至少一路第二光信号中每一路第二光信号的频率分量的组成。即该配置信息可以是预先设置的需要输出的至少一路第二光信号中每一路第二光信号的有效频率分量宽度(或简称为频域宽度)、有效频率分量的起止位置、通路间隔、中心频率(或标称中心频率)中的任意一个或多个,也可以是至少一路第二光信号需要满足的频率栅格等。分离单元120根据该配置信息,将该至少一路第一光信号的频率分量分离成预设的至少一路第二光信号。每一路第二光信号的频率分量的组成可以不同。频率分量的组成可以包括以下信息中的任何一个或多个:该第二光信号的中心频率、该第二光信号的通路间隔、该第二光信号适用的频率栅格、该第二光信号的有效频率分量的起止位置、该第二光信号的有效频率分量宽度等。即分离单元120可以根据配置信息,灵活地形成输出该至少一路第二光信号的传输通路,每个传输通路的有效频率分量宽度和有效频率分量的起止位置可以根据配置信息灵活设置。对于不同的第一光信号,分离单元120可以根据配置信息,将该第一光信号的频率分量分离成的至少一路第二光信号的频率分量可以是不同的。例如,对于第一路第一光信号,分离单元120将根据配置信息,将该第一路第一光信号的频率分量分离成的两路第二光信号,其中心频率分别为193.13125THz、193.01875THz,其通路间隔分别为75GHz、150GHz,也可以说是其有效频率分量的宽度分别是75GHz、150GHz。即分离单元120形成的光信号通路的有效频率分量的最大范围分别为193.09375THz~193.15625THz、192.94375THz~193.09375THz。这种频率分量范围的划分也构成了一种频率栅格。当该波导装置用做光信号解复用时,第一光信号通常只有一路。但是如前所述,当该波导装置用作旋转AWG时,可以存在多路第一光信号。其他路的第一光信号的频率分量的组成可以和第一路光信号的相同或者不同。注意到,在这个例子中,分离单元120可以根据配置信息,使得分离出至少一路第二光信号的有效频率分量的宽度(通路间隔)是不同的,即该光波导装置100可以支持不同通路间隔的光信号的输出。当然,分离单元120分离出的至少一路第二光信号的有效频率分量的宽度(通路间隔)当然也可以是相同的。
本申请提供的光波导装置,由于分离单元由可变光波导实现,分离单元可以根据配置信息,将第一色散单元分散的至少一路第一光信号的频率分量根据预设的要求或者需要,灵活的切割成需要的输出的至少一路第二光信号的频率分量。该光波导装置可以支持不同的通路间隔(有效频率分量的宽度),即可以根据不同的应用需求或者应用条件,将第一 色散单元分散开的至少一路第一光信号的频率分量分离成不同的至少一路第二光信号,即可以灵活地进行至少一路第一光信号的频率分量的分离,可以支持不同通路间隔。避免了对于一种通路间隔需要设置一种光波导装置,提高该光波导装置的使用效率和性能。可以减少光波导装置的种类,减少备货成本,同时减少该光波导装置的维护和管理成本。
应理解,该光波导装置可以包括一个或者多个第一色散单元。在只包括一个第一色散单元的情况下,该一个第一色散单元可以用于将该至少一路第一光信号的频率分量分散开,在包括多个第一色散单元的情况下,每一个第一色散单元可以将一路第一光信号的频率分散开,也可以将多路第一光信号的频率分散开(例如实现旋转AWG的功能)。本申请在此不作限制。
可选的,作为一个实施例,该分离单元120还用于根据该配置信息,改变该至少一路第二光信号的频率分量的组成。
具体而言,由于对于每一路的第一光信号,其中的光通路的频率分量的组成或划分会发生变化。例如,网络管理器可以根据该配置信息,配置不同的光通道对应的发射机改变相应光通道的频率分量组成。在这种情况下,分离单元120还可以用于根据该配置信息,改变该至少一路第二光信号的频率分量的组成。第二光信号的频率分量的组成可以包括以下信息中的任何一个或多个:该第二光信号的中心频率、该第二光信号的通路间隔、该第二光信号适用的频率栅格、该第二光信号的有效频率分量的起止位置、该第二光信号的有效频率分量宽度等。例如,假设分离单元120根据配置信息,确定需要将第一光信号的频率分量分离成的两路第二光信号,其有效频率分量(最大)范围分别为193.025THz~193.075THz、193.125THz~193.175THz,即分离单元120形成的光信号通路的中心频率分别为193.05THz、193.15THz,通路间隔为50GHz。当网络管理器根据配置信息,更改了该第一光信号中的光通道对应的发射机发送的光通道的频率组成,相应地,该分离单元120就可以根据配置信息,改变该两路的第二光信号的频率分量的组成,例如,该两路第二光信号的中心频率分别为193.13125THz、193.01875THz,其有效频率分量宽度(通路间隔)分别为75GHz、150GHz,即其有效频率分量的最大范围分别为193.09375THz~193.15625THz、192.94375THz~193.09375THz。因此,分离单元120需要根据配置信息,可以改变该至少一路第二光信号的频率分量的组成,在上面的例子中,将该两路第二光信号的有效频率分量的组成由193.025THz~193.075THz、193.125THz~193.175THz改变成193.09375THz~193.15625THz、192.94375THz~193.09375THz。可以看出,两路第二光信号的中心频率、有效频率分量宽度等频率分量的组成都可以改变。分离单元120根据该配置信息,改变该至少一路第二光信号的频率分量的组成,可以使得该光波导装置可以具有不同频率分量组成的第二光信号的输出。进一步的提高该光波导装置的使用效率和性能。增大该光波导装置的使用范围。
可选的,作为一个实施例,如图5所示,该光波导装置100还包括控制单元130。该控制单元130连接该分离单元120,该控制单元130用于根据该配置信息,控制该分离单元120将该至少一路第一光信号的频率分量分离成该至少一路第二光信号。进一步地,该控制单元130还用于根据该配置信息,控制分离单元120改变该至少一路第二光信号的频率分量的组成。
具体而言,分离单元120将该至少一路第一光信号的频率分量分离成该至少一路第二 光信号时,可以是该控制单元130根据配置信息控制该分离单元120完成的。该控制单元130也可以位于该分离单元120的内部。该控制单元130可以获取该配置信息,根据该配置信息中的该至少一路第二光信号的频率分量的组成的信息,控制该分离单元120将该至少一路第一光信号的频率分量分离成该至少一路第二光信号,或者改变该至少一路第二光信号的频率分量的组成。
应理解,该光波导装置可以包括一个或者多个控制单元。例如,假设有一个第一色散单元,可以对应一个控制单元或者多个控制单元。对存在多个第一色散单元的情况下,也可以有一个或多个控制单元。本申请在此不作限制。
可选的,该分离单元120包括液晶材料,该控制单元130包括至少一个电极。该至少一个电极根据该配置信息,确定是否在该至少一个电极上施加电压或不施加电压(施加或不施加电压取决于液晶材料的类型),以使得在该液晶材料中形成该至少一路第二光信号的传输通路,控制该液晶材料将该至少一路第一光信号的频率分量分离成该至少一路第二光信号。
具体而言,由于分离单元120由可变光波导实现,可变光波导可以是由液晶材料实现,因此,分离单元120可以由液晶材料实现,液晶材料的特点是在电场的作用下,可以控制该液晶材料某些区域的折射率,从而实现以下功能中任一种或多种:形成需要的光波导、消除不需要的波导、改变波导的形状、改变光波导的方向、改变光波导的传输性能(例如,损耗值、折射率等)等等。该控制单元130包括电极,即控制单元130利用电极来实现。控制单元130(电极)可以和该分离单元120集成在一起(例如,集成在一个光芯片中)。控制单元130可以采用点阵式电极,在液晶材料需要光信号通过的位置的电极上加上电场,使得所需位置上的折射率大于其他点的折射率,从而在液晶材料形成各种各样的光波导,这样该控制单元130就能控制该分离单元120在该分离单元中形成想要的光波导,从而将该分散开的至少一路第一光信号的频率分量分离成至少一路第二光信号。可选地,控制单元130也可以和分离单元120是分离的(控制单元130设置在分离单元120的外部),这种情况下,控制单元130可以由电场产生装置实现。
该配置信息可以包括根据该至少一路第二光信号中每一路光信号的频率分量的组成形成的用于生成电场的信息。如为电极施加的电压值、哪些电极需要改变电压等。当该分离单元120为液晶材料,该控制单元130为电极时,配置信息中包括对应点阵式电极的加电压方式和/或哪些电极需要改变电压,在液晶材料的预设区域对应的点阵式电极加相应的电压(或不加相应的电压,加或不加电压取决于液晶材料的类型),使该预设区域的折射率大于液晶材料的其它区域的折射率,从而可以在预设区域形成光信号的传输通路。该预设区域的位置或形状不同,就可以实现各种光处理功能,例如可以实现光信号的传输通路功能、改变光信号的传输通路的形状的功能等。控制单元130可以根据上述的配置信息,确定需要施加电压的电极,从而控制分离单元120将该分散开后至少一路第一光信号的频率分量分离成至少一路第二光信号,形成该至少一路第二光信号的传输通路。
图6是本申请一个实施例的控制单元(电极)控制分离单元将第一光信号的频率分量分离成至少一路第二光信号的示意图。如图6所示,在第一色散单元将至少一路第一光信号的频率分量分散开后,多个控制单元可以根据配置信息,确定是否在电极上施加电压,来形成输出该至少一路第二光信号的传输通路。具体地,分离单元将第一光信号的频率分 量分离成至少一路第二光信号主要包括两部分。第一部分:与第一色散单元将输入的至少一路第一光信号的频率分量分散开的位置相近的控制单元,根据配置信息,确定是否在该控制单元上施加电压(或不施加电压),从而控制分离单元将该第一色散单元分散开的至少一路的第一光信号的频率分量进行分离或分割。在本实施例中,第一色散单元将输入的至少一路第一光信号的频率分量分散开的位置为输出耦合区的罗兰园中靠近分离单元的那部分圆弧。分离单元将该第一色散单元分散开的至少一路第一光信号的频率分量进行分离或分割后,理论上分离或分割后的频率分量就可以形成至少一路第二光信号,从而分离单元就完成了将第一色散单元分散开的至少一路第一光信号的频率分量分离成至少一路第二光信号。但是在实际实现时,还需要将分离或分割后的频率分量传输到相应的输出端口,因此可以增加第二部分(也即第二部分不是必需的)。同时,需要注意到,第一色散单元只是将至少一路第一光信号的频率分量分散开,并没有完成将其分离或分割开,分离或分割开是由分离单元完成的。第二部分:根据配置信息,在相应的路径上的控制单元确定是否在该控制单元上施加电压(或不施加电压),从而控制分离单元将分离或分割开的至少一路的第一光信号的频率分量传输到相应的输出端口,这样分离单元就完成将第一色散单元分散的至少一路第一个光信号的频率分量分离成至少一路第二光信号。输出端口可以是输出光纤的接口、也可以是输出单元、还可以是该光波导装置的内部接口。相应的路径指至少一路第二光信号对应的分离或分散的频率分量到至少一路第二光信号对应的输出端口之间的路径。例如,图6中所示的,多个电极可以根据配置信息,在第一路第二光信号的传输通路和第二路第二光信号的传输通路之间区域的电极上不施加电压。电极上不施加电压,意味着光信号不可以通过,即实现了对光信号的选择性通过,使得第一路第二光信号的传输通路和第二路第二光信号的传输通路分隔开,在第一路第二光信号和第二路第二光信号的对应的区域的电极上施加电压,使得光信号可以通过,形成可以分别使得第一路和第二路第二光信号通过的传输通路。例如,第一路第二光信号的有效频率分量的最大范围为193.09375THz~193.15625THz,第二路第二光信号的有效频率分量的最大范围为192.94375THz~193.09375THz。即第一路第二光信号的通路间隔(有效频率分量的最大宽度)为75GHz,第二路第二光信号的通路间隔(或有效频率分量的最大宽度)为150GHz。在实际应用时,由于实现光信号复用、解复用或分插复用的模块的滤波谱形做不到完全矩形,为了防止相邻的光信号之间发生串扰,因此相邻光信号之间需要保留一定的频率宽度允许被这些模块阻断。通常这个相邻光信号之间允许阻断的频率宽度通常为1GHz。因此,在本实施例中,可以在临近第一色散单元将输入的至少一路第一光信号的频率分量分散开的位置的控制单元中,选择对应频率范围在193.09325THz~193.09425THz的控制单元不施加电压,从而将第一路第二光信号和第二路第二光信号分离开。显然,也需要在临近第一色散单元将输入的至少一路第一光信号的频率分量分散开的位置的控制单元中,选择对应频率范围在193.09425THz~193.15575THz的控制单元施加电压,将第一路第二光信号传输出来,选择对应频率范围在192.94425THz~193.09325THz的控制单元施加电压,将第二路第二光信号传输出来。同理,对于第三路第二光信号至第五路第二光信号,在相邻的两路第二光信号传输通路之间的间隔区域内的电极不施加电压,而在与每个第二光信号传输通路对应的区间内的电极上施加电压,使得形成输出相应第二光信号的传输通路。
应理解,图6中,控制单元上施加电压(或不施加电压),控制分离单元形成的至少 一路第二光信号的传输通路是直线形的,即在分离单元中形成的光波导是直的。可选地,分离单元中形成的传输通路(或波导)也可以是楔形、弯曲形状等其他形状。本申请实施例在此不限制。
还应理解,该分离单元120还可以由磁流体材料组成,即可以采用磁场来改变该分离单元120的预设区域的折射率,使该预设区域的折射率大于分离单元120的其它区域的折射率,从而可以在预设区域形成光信号的传输通路,该控制单元130可以是磁体,分离单元120可以在控制单元130产生的磁场的作用下,形成可以分别使得至少一路第二光信号通过的传输通路,在这种情况下,控制单元130可以不设置在该光波导装置100的内部,即可以和光波导装置100分开设置,该配置信息可以为磁场的强度等。本申请在此不作限制。
还应理解,控制单元130也可以采用温度控制的方式来改变该预设区域的折射率,从而实现可变光波导,该配置信息相应的为温度等信息。本申请在此不作限制。
还应理解,该分离单元120还可以采用其他折射率可变的材料实现。该第一色散单元110可以由可变光波导实现,也可以由固定光波导实现。本申请在此不作限制。
可选的,作为一个实施例,该至少一路第二光信号中相邻第二光信号之间允许被阻断的频率宽度大于或者等于该至少一个电极中任意一个电极对应的频率宽度。
具体而言,即在该第一色散单元将输入的至少一路第一光信号的频率分量分散开的位置上的第一宽度,大于或者等于该至少一个电极中任意一个电极的宽度;该第一宽度对应于该至少一路第二光信号中相邻第二光信号之间允许被阻断的频率宽度。以图6所示的为例进行说明,假设第一路第二光信号的有效频率分量的最大范围为193.09375THz~193.15625THz,第二路第二光信号的有效频率分量的最大范围为192.94375THz~193.09375THz。如果需要将第一路第二光信号和第二路第二光信号分割开,在第一色散单元将输入的至少一路第一光信号的频率分量分散开的位置上,第一路第二光信号和第二路第二光信号之间允许被阻断的频率宽度对应的该位置上的宽度需要大于或者等于该电极的宽度才可以,即第一路第二光信号和第二路第二光信号之间允许阻断的频率间隔在该位置上对应的区域至少需要放下一个电极,才可以将该第一路第二光信号和第二路第二光信号分割开。假设相邻光信号之间允许被阻断的频率宽度为1GHz,且1GHz在第一色散单元将输入的至少一路第一光信号的频率分量分散开的位置上对应的宽度可以放置两排电极。该两排电极用于将第一路第二光信号和第二路第二光信号分隔开,在该两排电极上不施加电压,从而可以阻止光信号传输。因此,在该第一色散单元将输入的至少一路第一光信号的频率分量分散开的位置上的第一宽度,不小于一个该电极的宽度的情况下,电极才可以将至少一路第二光信号中相邻两路第二光信号分离开,形成输出每一路第二光信号的输出通路。
举例来说明,假设第一色散单元将至少一路第一光信号的频率分量分散到AWG的输出耦合区罗兰园上,从公式(6)可得:
Δθ o=m*Δλ/n so*d o   (7)
由此可得相邻两路第二光信号之间的频域间隔的宽度Δw为:
Δw=2R*Δθ 0=2R*m*Δλ/n so*d o   (8)
公式(8)中,R为罗兰园的半径,对于光信号,有f=c/n*λ,其中,f为频率,n 为光信号所在波导的折射率,c为光速,λ为光信号波长。因此可以得到公式(9)
Δλ=-c*Δf/f 2*n    (9)
将公式(9)带入公式(8),可得:
|Δw|=2R*m*c*Δf/n so 2*d o*f 2≥Δg    (10)
公式(10)中,Δg为电极对应的最小宽度。Δf为相邻光信号之间允许阻断的频率宽度,取Δf为1GHz,f为191.2THz,n so为1.5,则2R*m/Δg*d o≥2.7*10 5。在一个AWG的实际例子中,2R=3600um,m=100,d o=10um,可以估算出Δg≤0.13(μm)。而目前液晶材料的最小电极尺寸在3um左右。因此,需要2R*m/Δg*d o比现有通常采用的数值提高一个数量级以上,可以通过降低Δg或者提高2R*m/d o值,比较实际的是大幅降低d o。例如,取Δg=1um,d o=2um,2R=7200um,m=150,则可满足式(10),且相邻两路第二光信号之间的允许阻断的频率宽度在AWG输出耦合区罗兰园上对应的宽度可以放下2个电极。
应理解,由于该至少一个电极中不同电极的尺寸可以相同也可以不同,因此,该至少一路第二光信号中相邻第二光信号之间允许被阻断的频率宽度大于或者等于该至少一个电极中任意一个电极对应的频率宽度,可以理解为:该至少一个电极中每一个电极对应的频率宽度都小于该至少一路第二光信号中相邻第二光信号之间允许被阻断的频率宽度;也可以理解为:只要该至少一个电极中有一个电极对应的频率宽度小于该至少一路第二光信号中相邻第二光信号之间允许被阻断的频率宽度即可。本申请在此不做限制。
可选的,作为一个实施例,如图7所示,该光波导装置100该包括:输入单元140和输出单元150,该输入单元140连接该第一色散单元110,该输入单元110用于将该至少一路第一光信号传送给该第一色散单元110;该输出单元150连接该分离单元120,该输出单元150用于输出该至少一路第二光信号。
具体而言,如图7所示,该光波导装置100还包括输入单元140和输出单元150,该输入单元140用于将该至少一路第一光信号传输给该第一色散单元110。该输出单元140用于将输出该至少一路第二光信号。该输入单元140可以是输入波导,输入光纤将该至少一路第一光信号传输给该输入波导,该输入波导将该至少一路第一光信号传输给该第一色散单元110。或者,该输入单元140还可以是输入光纤,该至少一路第一光信号直接通过该输入光纤传输给该第一色散单元。输入波导或者输入光纤可以有多个,每个输入波导或者每个输入光纤用于传输一路第一光信号。同理,对于输出单元150,也可以是输出波导或者输出光纤,输出波导或者输出光纤也可以有多个,每个输出波导或者每个输出光纤用于输出一路第二光信号。可选的,该光波导装置100还包括控制单元130。
应理解,该输入单元140和输出单元150还可以是其他可以传输光信号的部件或者结构单元等。本申请在此不作限制。
可选的,第一色散单元包括阵列波导或凹面光栅。
具体而言,由于第一色散单元110可以实现色散功能。可选地,该第一色散单元可以是AWG中的部分部件,例如,可以包括AWG中的输入耦合区、阵列波导、输出耦合区,其中的核心部件是阵列波导,该第一色散单元也可以只包括阵列波导。另外,该第一色散单元也可以是刻蚀衍射光栅(etched diffraction grating,EDG)中的部分部件。例如,可以包括EDG中的耦合区和凹面光栅,其中的核心部件是凹面光栅,该第一色散单元也可以 只包括凹面光栅。以该第一色散单元110可以包括输入耦合区、阵列波导区以及输出耦合区为例进行说明:输入耦合区和输出耦合区都是罗兰园的结构。第一色散单元110可以将该至少一路第一光信号的频率分量分散在该输出耦合区的罗兰园中与分离单元120相邻的圆弧的位置上。分离单元120可以根据配置信息,从该第一色散单元110将该至少一路第一光信号的频率分量分散开的位置开始,将该至少一路第一光信号的频率分量分离成至少一路第二光信号。
应理解,该第一色散单元110还可以包括其他部件或者包括其他结构,只要可以实现色散功能,即将该至少一路第一光信号的频率分量分散开即可。本申请实施例在此不限制。
图8是本申请一个实施例提供光波导装置200的示意性结构图。例如,图8可以是波导装置200的示意性结构顶视图。如图8所示,该光波导装置200包括输入波导(输入单元)、第一色散单元、分离单元。输入光纤用于将至少一路第一光信号传送输入波导,输入波导将该至少一路第一光信号传送到第一色散单元,第一色散单元包括输入耦合区、阵列波导区以及输出耦合区,可以完成色散功能。第一色散单元将该至少一路第一光信号的频率分量分散在该输出耦合区的罗兰园的位置上。分离单元根据配置信息,将该至少一路第一光信号的频率分量分离成至少一路第二光信号,或者改变该至少一路第二光信号的频率分量的组成。输出光纤将该至少一路第二光信号输出。可选的,光波导装置200还可以包括控制单元,该控制单元可以是电极等。用于控制该分离单元将该至少一路第一光信号的频率分量分离成该至少一路第二光信号,或者改变该至少一路第二光信号的频率分量的组成。
应理解,图8只是示例性的,不应该对该光波导装置200的结构造成限制,例如,该光波导装置200还可以包括其他的结构单元。该第一色散单元还可以是类似EDG中的凹面光栅等。本申请在此不作限制。
图9是本申请一个实施例提供光波导装置300的示意性结构图。例如,图9可以是光波导装置300的示意性结构正视图,如图9所示,该光波导装置300包括输入波导、第一色散单元(由输入耦合区、阵列波导区以及输出耦合区组成)、分离单元、覆层以及电极层(控制单元)组成。输入光纤用于将至少一路第一光信号传送输入波导。输入波导将该至少一路第一光信号传送到输入耦合区,该至少一路第一光信号经过阵列波导区以及输出耦合区,完成将该至少一路第一光信号的频率分量分散在该输出耦合区的罗兰园对应的位置上。该电极层(控制单元)可以是点阵式电极,主要用于提供电压。分离单元在该电极层的控制下,根据配置信息,通过是否给电极层中的电极施加电压将该至少一路第一光信号的频率分量分离成至少一路第二光信号。输出光纤用于将该至少一路第二光信号输出。覆层主要是密封分离单元的折射率可变的材料,一般采用氧化铟锡(indium tin oxide,ITO)玻璃基板。覆层同时也可以兼做地层,和电极层一起提供所需电压。另外也可以在覆层上上电极,这样覆层可以兼做电极层。
应理解,图9只是示例性的,不应该对该光波导装置300的结构造成限制,例如,该电极层可以只位于分离单元的外部等。或者,该光波导装置200还可以包括其他的结构单元等。本申请在此不作限制。
可选的,该至少一路第一光信号中至少有一路第一光信号包括多个光通路。
具体而言,由于分离单元120可以将该至少一路第一光信号的频率分量分离成至少一 路第二光信号,因此,该至少一路第一光信号中的至少有一路第一光信号可以包括多个光通路。即本申请的光波导装置可以实现光信号解复用器的功能。并且支持不同通路间隔的光信号的传输。提高了该光波导装置的效率和使用性能。
应理解,该至少一路第一光信号中的部分第一光信号可以包括多个光通路。即多路第第一光信号中的部分第一光信号可以包括多个光通路,部分第一光信号可以只有一个光通路。本申请在此不作限制。
还应理解,该至少一路第二光信号中,每一路第二光信号可以只有一个光通路。或者,该至少一路第二光信号中,部分第二光信号可以包含多个光通路,部分第二光信号可以只有单个光通路。本申请在此不作限制。
可选的,如图10所示,该光波导装置100还包括第二色散单元160;该第二色散单元160连接该分离单元120;该分离单元120还用于根据该配置信息,将该至少一路第二光信号中的至少部分第二光信号传输至该第二色散单元160;该第二色散单元160用于将该部分第二光信号合成为至少一路第三光信号。
具体而言,如图10所示,该光波导装置100还包括第二色散单元160。图10所示的例子为包括两个第二色散单元160。在本申请实施例中,该光波导装置100可以只包括一个第二色散单元160,或者可以包括更多的第二色散单元160。该第二色散单元160可以实现色散功能。该分离单元120还用于根据该配置信息,将该至少一路第二光信号中的至少部分第二光信号传输至该第二色散单元160。可选的,该光波导装置100还可以包括控制单元130。该控制单元130用于根据该配置信息,控制该分离单元120将至少一路第一光信号的频率分量分离成至少一路第二光信号以及控制该分离单元120将至少一路第二光信号中的至少部分第二光信号传输至该第二色散单元160。如图10所示出的,总共有8路第二光信号,分离单元120根据配置信息,分别将其中的四路传输到一个第二色散单元160中,将另外的四路传输到另外一个第二色散单元160中。第二色散单元160可以实现色散功能,即可以将传输到该第二色散单元160中的至少一路第二光信号合成为至少一路第三光信号。图10中所示的例子中,每个第二色散单元160可以将4路第二光信号合成为一路第三光信号。光波导装置100还可以输出该至少一路第三光信号。由于多路第二光信号可以为不同的光信号,分离单元120可以将具有不同频率分量的至少一路第二光信号传输至同一个第二色散单元160中,实现了具有不同频率分量的第二光信号的混传和交换,即实现了具有不同通路间隔的光信号的混传和交换,即该波导装置实现了Flexible WSS能实现的功能。提高了该光波导装置的性能和效率。
应理解,该至少一路第三光信号可以包含多个光通路,也可以是只包括一个光通路。或者部分包含多个光通路,部分只包含单个光通路。本申请在此不作限制。
还应理解,图10只是示例性的,不应该对该光波导装置的结构造成限制。例如,该光波导装置还可以包括更多的第一色散单元和/或第二色散单元。该第一光信号、该第二光信号以及该第三光信号还可以包括更多路。该光波导装置还可以包括输出单元。该第一色散单元或部分第一色散单元分离出的至少一路第二光信号可以不用连接第二色散单元,可以直接(连接输出单元)输出等。本申请在此不作限制。
还应理解,该第二色散单元的结构可以上述的第一色散单元的结构类似。例如,该第二色散单元包括阵列波导或凹面光栅。具体的,该第二色散单元可以包括输入耦合区、阵 列波导区以及输出耦合区等。本申请在此不作限制。
可选的,如图11所示,光波导装置100还包括输入单元140和输出单元150。该输入单元140连接该第一色散单元110,输入光纤将至少一路第一光信号传输到该输入单元,该输入单元110用于将该至少一路第一光信号传送给该第一色散单元110;该第一色散单元110将输入该第一色散单元110的至少一路第一光信号的频率分散开。分离单元120根据配置信息,将至少一路第一光信号的频率分量分离成至少一路第二光信号以及将至少一路第二光信号中的至少部分第二光信号传输至该第二色散单元160。该第二色散单元160可以将传输到该第二色散单元中的至少一路第二光信号合成为至少一路第三光信号。该输出单元150连接该第二色散单元160,该输出单元150用于输出该至少一路第三光信号。将该至少一路第三光信号传输到输出光纤。
上文主要说明了光波导装置作为分波器进行光信号的分离的过程。下面将介绍光波导装置作为合波器进行光信号合成的过程。应理解,光信号合成的过程为光信号的分离过程逆过程,类似的描述可以参考上述对于光波导装置100至光波导装置300中类似的描述。
图12是本申请一个实施例提供的光波导装置的示意性结构图,如图12所示,该光波导装置400包括:
合路单元410和第三色散单元420。该合路单元410连接该第三色散单元420,该合路单元用于根据配置信息,将至少一路第四光信号传输到与该至少一路第四光信号的频率分量的组成对应的位置;该第三色散单元420用于从与该至少一路第四光信号的频率分量的组成对应的位置将该至少一路第四光信号合成至少一路第五光信号,其中,该合路单元由可变光波导实现,该可变光波导是基于该配置信息实现形成光信号的传输通路、消除光信号的传输通路和改变光信号的传输通路形状中的至少一种功能的光波导。
具体而言,如图12所示,由于合路单元410由可变光波导实现,该合路单元410可以实现形成光波导、消除光波导或改变光波导的形状中的任一种或多种功能。即可以形成光信号的传输通路、消除光信号的传输通路或者改变光信号的传输通路形状等功能。该合路单元410可以根据配置信息,将至少一路第四光信号传输到与该至少一路第四光信号的频率分量的组成对应的位置,即合路单元410可以根据配置信息,形成预设的至少一路第四光信号中每一路第四光信号的传输通路,该每一路第四光信号的传输通路用于传输该每一路第四光信号,最终将该至少一路第四光信送到该至少一路第四光信号的频率分量的组成对应的位置。该至少一路第四光信号的频率分量的组成对应的位置可以是第三色散单元420的耦合区罗兰园上对应的位置。该至少一路第四光信号中每一路第四光信号的频率分量可以不同,即该至少一路第四光信号的频域不重合。
第三色散单元420可以从与该至少一路第四光信号的频率分量的组成对应的位置将该至少一路第四光信号合成至少一路第五光信号。即第三色散单元420可以实现色散功能,可以将多路包含不同频率分量的光信号合成一路或者多路包含多个光通路的光信号。
应理解,第四光信号可以有一路或者多路。在第四光信号只有一路的情况下,合路单元410可以根据配置信息,形成该一路第四光信号传输通路,将该一路第四光信号传输到与该一路第四光信号的频率分量的组成对应的位置。第三色散单元420从与该一路第四光信号的频率分量的组成对应的位置获取该一路第四光信号,将该一路第四光信号输出。即在第四光信号只有一路的情况下,该第五光信号和该第四光信号相同,为同一路光信号。 第三色散单元420的作用是从与该一路第四光信号的频率分量的组成对应的位置获取该一路第四光信号并将该一路第四光信号输出。
该配置信息可以预先存储在该光波导装置中,或者可以不存储在该光波导装置中,在合路单元410需要将至少一路第四光信号传输到与该至少一路第四光信号的频率分量的组成对应的位置时使用。该配置信息可以包括该至少一路第四光信号中每一路第四光信号的频率分量的组成。即该配置信息可以是预先设置的需要传输的至少一路第四光信号中每一路第四光信号的有效频率分量宽度(简称为“频域宽度”)、有效频率分量最大宽度、有效频率分量的起止位置、通路间隔、中心频率、标称中心频率中的任一个或多个,也可以包括至少一路第四光信号需要满足的频率栅格等。合路单元410可以根据该配置信息,即根据预设的每一路第四光信号的频率分量的组成,可以灵活的形成传输每一路第四光信号的传输通路,将每一路第四光信号传输到与该每一路第四光信号的频率分量的组成对应的位置。每一路第四光信号的频率分量的组成可以不同。即合路单元410可以根据配置信息,灵活地形成传输该至少一路第四光信号的传输通路,每个传输通路的有效频率分量宽度和有效频率分量的起止位置可以根据配置信息灵活设置,每个传输通路的有效频率分量宽度或通路间隔可以不同,其有效频率分量宽度或通路的间隔可以改变。合路单元410根据配置信息形成分别用于传输不同频率分量的多路第四光信号的传输通路,并将该多路第四光信号传输到与该多路第四光信号的频率分量的组成对应的位置。通路间隔也可以进行灵活的改变,即可以支持不同通路间隔的光信号的输出。
本申请提供的光波导装置,由于合路单元由可变光波导实现,合路单元可以实现形成光波导、消除光波导或改变光波导的形状中的任一种或多种功能。即可以形成光信号的传输通路、消除光信号的传输通路或者改变光信号的传输通路形状等功能。该合路单元可以根据配置信息,灵活地形成传输该至少一路第四光信号传输通路,并将该至少一路第四光信号传输到与该至少一路第四光信号的频率分量的组成对应的位置,该第三色散单元可以从与该至少一路第四光信号的频率分量的组成对应的位置将该至少一路第四光信号合成至少一路第五光信号。该光波导装置可以支持不用的通路间隔,即可以根据不同的第四光信号的频率分量的组成,形成可以传输该不同的第四光信号的传输通路。避免了对于一种通路间隔需要设一种光波导装置,提高该光波导装置的使用效率和性能。可以减小光波导装置的种类,减少备货成本,同时减少该光波导装置的维护和管理成本。
应理解,该波导装置可以包括一个或者多个第三色散单元。在包括多个第三色散单元的情况下,每一个第三色散单元可以从与该至少一路第四光信号的频率分量的组成对应的位置,将该至少一路第四光信号合成至少一路第五光信号。本申请在此不作限制。
可选的,作为一个实施例,该合路单元还用于根据该配置信息,改变该至少一路第四光信号的频率分量的组成。
具体而言,对于不同路的第四光信号,其频率分量可以是不同的。因此,合路单元需要根据配置信息,形成用于传输不同路的第四光信号的传输通路。或者,对于同一路第四光信号,由于实际需要的不同或者传输的情况不同,合路单元在不同的传输时刻需要根据配置信息改变该第四光信号的频率分量的组成。第四光信号的频率分量的组成可以包括以下信息中的任何一个或多个:该第四光信号的中心频率、该第四光信号的通路间隔、该第四光信号适用的频率栅格、该第四光信号的有效频率分量的起止位置、该第四光信号的有 效频率分量宽度等。例如,对于两路第四光信号,其有效频率分量(最大)范围分别为193.025THz~193.075THz、193.125THz~193.175THz,即这两路第四光信号的中心频率分别为193.05THz、193.15THz,通路间隔为50GHz,合路单元根据该配置信息,形成的每一路第四光信号的传输通路。在传输情况发生改变的情况下,该合路单元就可以根据配置信息,改变该两路的第四光信号的频率分量的组成,例如,该两路第四光信号的中心频率分别为193.13125THz、193.01875THz,其有效频率分量宽度(通路间隔)分别为75GHz、150GHz,即其有效频率分量的最大范围分别为193.09375THz~193.15625THz、192.94375THz~193.09375THz。合路单元根据该配置信息,相应地形成该两路第四光信号的传输通路。合路单元根据该配置信息,改变该至少一路第四光信号的频率分量的组成,可以使得该光波导装置可以支持具有不同频率分量的第四光信号的传输,支持具有不同有效频率分量宽度的第四光信号的传输。进一步地提高该光波导装置的使用效率和性能。增大该光波导装置的使用范围。
可选的,作为一个实施例,如图13所示,该光波导装置400还包括:控制单元430,该控制单元430连接该合路单元410,该控制单元430用于根据配置信息,控制该合路单元410将该至少一路第四光信号传输到与该至少一路第四光信号的频率分量的组成对应的位置。
具体而言,控制单元430根据配置信息,控制该合路单元410将该至少一路第四光信号传输到与该至少一路第四光信号的频率分量的组成对应的位置。控制单元430可以位于该合路单元410的内部或外部。该控制单元430可以获取该配置信息,根据该配置信息中的该至少一路第四光信号的频率分量的信息,控制该合路单元420形成该传输该至少一路第四光信号的传输通路,并将该至少一路第四光信号传输到与该至少一路第四光信号的频率分量的组成对应的位置。
应理解,该光波导装置可以包括一个或者多个控制单元。本申请在此不作限制。
可选的,作为一个实施例,该合路单元包括液晶材料,该控制单元包括至少一个电极。
可选的,作为一个实施例,该至少一路第四光信号中相邻两路第四光信号之间允许被阻断的频率宽度大于或者等于一个该至少一个电极中任意一个电极对应的频率宽度。
可选的,作为一个实施例,该光波导装置还包括:输入单元和输出单元,该输入单元连接该合路单元,该输入单元用于将该至少一路第四光信号传送给该合路单元;该输出单元连接该第三色散单元,该输出单元用于输出该至少一路第五光信号。
可选的,作为一个实施例,该第三色散单元包括阵列波导或凹面光栅。
应理解,上述的几个实施例与光波导装置100中对应的实施例类似,具体的描述可以参考上述的对光波导装置100中的相关的实施例类似的描述,为了简洁,在此不在赘述。
可选的,作为一个实施例,该至少一路第五光信号中至少有一路第五光信号包括多个光通路。
具体而言,由于合路单元可以将该至少一路第四光信号传输到与该至少一路第四光信号的频率分量的组成对应的位置,该第三色散单元从与该至少一路第四光信号的频率分量的组成对应的位置将该至少一路第四光信号合成至少一路第五光信号,该至少一路第五光信号中至少有一路第五光信号可以包括多个光通路。一个光通路对应一路单波光信号。即第五光信号可以包含多个光通路。即本申请的光波导装置可以实现光信号复用的功能。并 且支持不同通路间隔的光信号的传输。提高了该光波导装置的效率和使用性能。
应理解,该至少一路第一光信号中的部分第五光信号可以包括多个光通路。即多路第第一光信号中的部分第五光信号可以包含多个光通路,部分第五光信号可以只包含一个光通路。本申请在此不作限制。
还应理解,该至少一路第四光信号中,每一路第四光信号可以包含单个光通路。或者,该至少一路第四光信号中,部分第四光信号可以包含多个光通路,部分第四光信号可以只有一个光通路。本申请在此不作限制。
应理解,在本申请的各个实施例中,第一、第二等只是为了表示多个对象是不同的。例如第一光信号和第二光信号只是为了表示出不同的光信号。而不应该对光信号的本身产生任何影响,上述的第一、第二等不应该对本申请的实施例造成任何限制。
还应理解,上述只是为了帮助本领域技术人员更好地理解本申请实施例,而非要限制本申请实施例的范围。本领域技术人员根据所给出的上述示例,显然可以进行各种等价的修改或变化,例如,上述装置100至400中某些单元或者部件可以是不必须的,或者可以新加入某些单元或者部件等。或者上述任意两种或者任意多种实施例的组合。这样的修改、变化或者组合后的方案也落入本申请实施例的范围内。
还应理解,上文对本申请实施例的描述着重于强调各个实施例之间的不同之处,未提到的相同或相似之处可以互相参考,为了简洁,这里不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计 算机,服务器,或者网络设备等)执行本申请各个实施例的全部或部分功能。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种光波导装置,其特征在于,包括:第一色散单元和分离单元,所述第一色散单元连接所述分离单元,所述第一色散单元用于将至少一路第一光信号的频率分量分散开;所述分离单元用于根据配置信息,将所述第一色散单元分散开的所述至少一路第一光信号的频率分量分离成至少一路第二光信号,其中,所述分离单元由可变光波导实现,所述可变光波导是基于所述配置信息实现形成光波导、消除光波导和改变光波导的形状中的至少一种功能的光波导。
  2. 根据权利要求1所述的装置,其特征在于,所述分离单元还用于根据所述配置信息,改变所述至少一路第二光信号的频率分量的组成。
  3. 根据权利要求2所述的装置,其特征在于,所述频率分量的组成包括:光信号的通路间隔、光信号的中心频率、光信号频率栅格中的至少一个。
  4. 根据权利要求1至3中任一项所述的装置,其特征在于,所述装置还包括控制单元,所述控制单元连接所述分离单元,所述控制单元用于根据所述配置信息,控制所述分离单元将所述至少一路第一光信号的频率分量分离成所述至少一路第二光信号。
  5. 根据权利要求4所述的装置,其特征在于,所述分离单元包括液晶材料,所述控制单元包括至少一个电极,所述至少一个电极根据所述配置信息,确定是否在所述至少一个电极上施加电压,以使得在所述液晶材料中实现形成光波导、消除已有光波导和改变已有光波导的形状中的至少一种功能,控制所述液晶材料将所述至少一路第一光信号的频率分量分离成所述至少一路第二光信号。
  6. 根据权利要求5所述的装置,其特征在于,所述至少一路第二光信号中相邻第二光信号之间允许被阻断的频率宽度大于或者等于所述至少一个电极中任意一个电极对应的频率宽度。
  7. 根据权利要求1至6中任一项所述的装置,其特征在于,所述装置还包括:输入单元和输出单元,所述输入单元连接所述第一色散单元,所述输入单元用于将所述至少一路第一光信号传送给所述第一色散单元;所述输出单元连接所述分离单元,所述输出单元用于输出所述至少一路第二光信号。
  8. 根据权利要求1至7中任一项所述的装置,其特征在于,所述第一色散单元包括阵列波导或凹面光栅。
  9. 根据权利要求1至8中任一项所述的装置,其特征在于,所述至少一路第一光信号中至少有一路第一光信号包括多个光通路。
  10. 根据权利要求1至9中任一项所述的装置,其特征在于,所述装置还包括第二色散单元;所述第二色散单元连接所述分离单元;所述分离单元还用于根据所述配置信息,将所述至少一路第二光信号中的至少部分第二光信号传输至所述第二色散单元;所述第二色散单元用于将所述部分第二光信号合成为至少一路第三光信号。
  11. 根据权利要求10所述的装置,其特征在于,所述装置包括输出单元,所述输出单元连接所述第二色散单元,所述输出单元用于输出所述至少一路第三光信号。
  12. 根据权利要求1至11中任一项所述的装置,其特征在于,所述配置信息包括: 所述至少一路第二光信号中每一路第二光信号的频率分量的组成。
  13. 一种光波导装置,其特征在于,包括:合路单元和第三色散单元;所述合路单元连接所述第三色散单元,所述合路单元用于根据配置信息,将至少一路第四光信号传输到与所述至少一路第四光信号的频率分量的组成对应的位置;所述第三色散单元用于从与所述至少一路第四光信号的频率分量的组成对应的位置将所述至少一路第四光信号合成至少一路第五光信号,其中,所述合路单元由可变光波导实现,所述可变光波导是基于所述配置信息实现形成光信号的传输通路、消除光信号的传输通路和改变光信号的传输通路形状中的至少一种功能的光波导。
  14. 根据权利要求13所述的装置,其特征在于,所述合路单元还用于根据所述配置信息,改变所述至少一路第四光信号的频率分量的组成。
  15. 根据权利要求14所述的装置,其特征在于,所述频率分量的组成包括:光信号的通路间隔、光信号的中心频率、光信号频率栅格中的至少一个。
  16. 根据权利要求13至15中任一项所述的装置,其特征在于,所述装置还包括控制单元,所述控制单元连接所述合路单元,所述控制单元用于根据所述配置信息,控制所述合路单元将所述至少一路第四光信号传输到与所述至少一路第四光信号的频率分量的组成对应的位置。
  17. 根据权利要求16所述的装置,其特征在于,其特征在于,所述合路单元包括液晶材料,所述控制单元包括至少一个电极,所述至少一个电极根据所述配置信息,确定是否在所述至少一个电极上施加电压,以使得在所述液晶材料中形成所述至少一路第四光信号的传输通路,控制所述液晶材料将所述至少一路第四光信号传输到与所述至少一路第四光信号的频率分量的组成对应的位置。
  18. 根据权利要求17所述的装置,其特征在于,所述至少一路第四光信号中相邻两路第四光信号之间允许被阻断的频率宽度大于或者等于所述至少一个电极中任意一个电极对应的频率宽度。
  19. 根据权利要求13至18中任一项所述的装置,其特征在于,所述装置还包括:输入单元和输出单元,所述输入单元连接所述合路单元,所述输入单元用于将所述至少一路第四光信号传送给所述合路单元;所述输出单元连接所述第三色散单元,所述输出单元用于输出所述至少一路第五光信号。
  20. 根据权利要求13至19中任一项所述的装置,其特征在于,所述第三色散单元包括阵列波导或凹面光栅。
  21. 根据权利要求13至20中任一项所述的装置,其特征在于,所述至少一路第五光信号中至少有一路第五光信号包括多个光通路。
  22. 根据权利要求13至21中任一项所述的装置,其特征在于,所述配置信息包括:所述至少一路第四光信号中每一路第四光信号的频率分量的组成。
PCT/CN2019/093961 2018-06-29 2019-06-29 光波导装置 WO2020001653A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19826372.5A EP3800490A4 (en) 2018-06-29 2019-06-29 FIBER OPERATING DEVICE
US17/135,018 US11353653B2 (en) 2018-06-29 2020-12-28 Optical waveguide apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810717423.3 2018-06-29
CN201810717423.3A CN110658585B (zh) 2018-06-29 2018-06-29 光波导装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/135,018 Continuation US11353653B2 (en) 2018-06-29 2020-12-28 Optical waveguide apparatus

Publications (1)

Publication Number Publication Date
WO2020001653A1 true WO2020001653A1 (zh) 2020-01-02

Family

ID=68985834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/093961 WO2020001653A1 (zh) 2018-06-29 2019-06-29 光波导装置

Country Status (4)

Country Link
US (1) US11353653B2 (zh)
EP (1) EP3800490A4 (zh)
CN (1) CN110658585B (zh)
WO (1) WO2020001653A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111830486B (zh) * 2020-07-27 2023-04-28 电子科技大学 一种全固态激光雷达片上集成芯片及其设计方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5193130A (en) * 1988-08-05 1993-03-09 Matsushita Electric Industrial Co., Ltd. Light deflecting device
JPH0886924A (ja) * 1994-09-16 1996-04-02 Nippon Telegr & Teleph Corp <Ntt> 光スイッチ
US6154591A (en) * 1998-04-20 2000-11-28 British Telecommunications Public Limited Company Tunable optical device
CN103091783A (zh) * 2013-01-25 2013-05-08 华中科技大学 一种基于液晶波导的可调谐阵列波导光栅
CN107688250A (zh) * 2017-09-20 2018-02-13 香港理工大学深圳研究院 一种基于液晶电光波导的光学交叉互连器件
CN107768786A (zh) * 2017-10-09 2018-03-06 广东工业大学 一种解复用器

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3963310A (en) * 1973-08-20 1976-06-15 The United States Of America As Represented By The Secretary Of The Navy Liquid crystal waveguide
GB8608276D0 (en) * 1986-04-04 1986-05-08 British Telecomm Optical devices
JP3098235B2 (ja) * 1998-08-04 2000-10-16 日本電信電話株式会社 波長分波器、光スペクトラムアナライザおよび光バンドパスフィルタ
US6701043B2 (en) 2000-04-20 2004-03-02 Jds Uniphase Inc. Arrayed waveguide grating having a reflective input coupling
KR100399049B1 (ko) * 2001-04-16 2003-09-26 한국전자통신연구원 고속 파장 선택기와 그를 이용한 고속 광자 집적 회로형공간 및 파장 다중 채널 선택 장치
JP3929844B2 (ja) * 2002-02-19 2007-06-13 株式会社フジクラ 光スイッチ、光アドドロップモジュール及び光通信システム
US6823097B2 (en) * 2002-04-24 2004-11-23 Fujitsu Limited Optical switching apparatus with divergence correction
KR100462470B1 (ko) * 2002-06-05 2004-12-17 한국전자통신연구원 파장 분할 다중 네트워크용 파장 선택기
US6888661B1 (en) * 2002-06-13 2005-05-03 Cheetah Omni, Llc Square filter function tunable optical devices
US7151868B1 (en) * 2002-10-15 2006-12-19 Finisar Corporation Optical switch having a reflective component
CA2511944C (en) * 2002-12-26 2010-09-28 Nippon Telegraph And Telephone Corporation Wave transmission medium and waveguide circuit
US7181095B1 (en) 2003-07-29 2007-02-20 Cisco Technology, Inc. Low loss, noise filtering multiplexer/demultiplexer for reconfigurable OADMs
US20050111775A1 (en) * 2003-08-21 2005-05-26 Vitaly Fridman Method and apparatus for a dynamically reconfigurable waveguide in an integrated circuit
US7050659B1 (en) * 2005-03-31 2006-05-23 Hewlett-Packard Development Company, L.P. Optically modulable photonic bandgap medium
US7450309B1 (en) * 2006-06-13 2008-11-11 Optonet, Inc. Integrated signal manipulator for manipulating optical signals
KR100899808B1 (ko) * 2007-11-01 2009-05-28 한국전자통신연구원 파장 선택 스위치
CN104155723B (zh) * 2014-08-25 2016-10-26 华中科技大学 一种基于楔形液晶盒的光交换模块
CN204479798U (zh) 2015-03-11 2015-07-15 中央民族大学 一种基于复合硅基液晶的m×n端口可重构光分插复用器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5193130A (en) * 1988-08-05 1993-03-09 Matsushita Electric Industrial Co., Ltd. Light deflecting device
JPH0886924A (ja) * 1994-09-16 1996-04-02 Nippon Telegr & Teleph Corp <Ntt> 光スイッチ
US6154591A (en) * 1998-04-20 2000-11-28 British Telecommunications Public Limited Company Tunable optical device
CN103091783A (zh) * 2013-01-25 2013-05-08 华中科技大学 一种基于液晶波导的可调谐阵列波导光栅
CN107688250A (zh) * 2017-09-20 2018-02-13 香港理工大学深圳研究院 一种基于液晶电光波导的光学交叉互连器件
CN107768786A (zh) * 2017-10-09 2018-03-06 广东工业大学 一种解复用器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3800490A4

Also Published As

Publication number Publication date
US20210149269A1 (en) 2021-05-20
EP3800490A4 (en) 2021-08-11
CN110658585A (zh) 2020-01-07
CN110658585B (zh) 2022-01-11
EP3800490A1 (en) 2021-04-07
US11353653B2 (en) 2022-06-07

Similar Documents

Publication Publication Date Title
US6163637A (en) Chirped waveguide grating router as a splitter/router
CN111736266B (zh) 一种面向PON的WDM1r合波器
US7321704B2 (en) Wavelength cross connect with per port performance characteristics
US7174071B2 (en) Arrayed waveguide grating with increased uniformity of a performance parameter
JPH11326851A (ja) プログラム可能な波長分割多重化追加/ドロップ装置
US6526203B1 (en) Arrayed waveguide grating with reduced crosstalk
EP1148358B1 (en) An arrayed waveguide grating type optical multiplexer/demultiplexer
US20020131684A1 (en) Planar lightwave wavelength blocker
WO2023061025A1 (zh) 片上集成波分复用器及芯片
WO2020001653A1 (zh) 光波导装置
US20020176660A1 (en) Optical wavelength multiplexer/demultiplexer and use method thereof
US7031568B2 (en) Optical power monitor
WO2019165947A1 (zh) 光波导装置
JP2003504667A (ja) 波長選択性デバイスおよびスイッチおよびそれを使った方法
JP2005043866A (ja) セグメント化された反射機を用いた通過帯域平坦化デマルチプレクサ及びそれに由来する装置
US20230093290A1 (en) Grating and grating characteristic adjustment method and device
CN108398743B (zh) 滤波器和输入通道级联实现频谱均匀的awg路由器
KR20210023511A (ko) 배열도파로 격자 형태의 파장역다중화 소자 및 그 제조방법
JP5798096B2 (ja) アレイ導波路回折格子型ルータ
EP1447693A1 (en) Flexible Passband Filter
JP2000032510A (ja) 光スイッチアレイ及びこれを用いた光アド・ドロップマルチプレクサ
KR100357851B1 (ko) 모드 부정합을 이용한 다채널 광통신 모듈 손실 변화균일화장치
CN116990903A (zh) 基于级联法布里-珀罗光滤波器的片上密集波分复用系统
KR100393610B1 (ko) 교란 요소를 이용한 다-채널 광통신 모듈 손실 변화균일화 장치
Fondeur et al. High-performance arrayed waveguide grating

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19826372

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019826372

Country of ref document: EP

Effective date: 20210104