WO2020001552A1 - 旋转式变压器 - Google Patents

旋转式变压器 Download PDF

Info

Publication number
WO2020001552A1
WO2020001552A1 PCT/CN2019/093345 CN2019093345W WO2020001552A1 WO 2020001552 A1 WO2020001552 A1 WO 2020001552A1 CN 2019093345 W CN2019093345 W CN 2019093345W WO 2020001552 A1 WO2020001552 A1 WO 2020001552A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
rotor
stator
rotary transformer
core
Prior art date
Application number
PCT/CN2019/093345
Other languages
English (en)
French (fr)
Inventor
葛笑
万佳
Original Assignee
广东威灵汽车部件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201821022202.6U external-priority patent/CN208608878U/zh
Priority claimed from CN201810700480.0A external-priority patent/CN110661392B/zh
Application filed by 广东威灵汽车部件有限公司 filed Critical 广东威灵汽车部件有限公司
Priority to JP2021518842A priority Critical patent/JP7087199B2/ja
Priority to EP19826357.6A priority patent/EP3799277A4/en
Publication of WO2020001552A1 publication Critical patent/WO2020001552A1/zh
Priority to US17/119,186 priority patent/US11578998B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2046Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by a movable ferromagnetic element, e.g. a core
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/488Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by variable reluctance detectors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K24/00Machines adapted for the instantaneous transmission or reception of the angular displacement of rotating parts, e.g. synchro, selsyn
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/70Position sensors comprising a moving target with particular shapes, e.g. of soft magnetic targets
    • G01D2205/77Specific profiles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/03Machines characterised by aspects of the air-gap between rotor and stator

Definitions

  • the present application relates to the field of transformers, and in particular, to a rotary transformer.
  • Rotary transformer is an electromagnetic sensor, also known as synchronous resolver. It is used to measure the angular displacement and angular velocity of the rotating shaft of a rotating object. It consists of a stator and a rotor. Among them, the stator winding serves as the round edge of the transformer and receives the excitation voltage. The rotor winding As the secondary side of the transformer, the induced voltage is obtained through electromagnetic coupling. Because the primary and secondary windings of the transformer are selected to change relative positions with the angular displacement of the rotor, the output voltage varies with the angular displacement of the rotor. The voltage amplitude of the output winding has a sine and cosine function relationship with the rotor rotation angle.
  • Salient pole resolvers are widely used in places with high safety performance requirements, such as automotive motors, because of their simple fabrication, high stability, and good temperature resistance.
  • the salient pole rotor of a salient pole resolver usually adopts a sine-shaped rotor shape, but has the following defects:
  • the rotor error is large and the position accuracy is not high.
  • an object of the present application is to provide a rotary transformer.
  • an embodiment of the present application proposes a rotary transformer, including: a stator, including a stator core, and an input winding and an output winding wound on the stator core.
  • a stator including a stator core, and an input winding and an output winding wound on the stator core.
  • a plurality of inner walls of the stator core are provided.
  • Stator slots Multiple stator slots are distributed in the circumferential direction, and the two end faces of the stator iron core are respectively conducted, so that stator teeth are formed between any two adjacent stator slots, so that the input winding and the output winding are respectively wound.
  • the rotor includes a rotor core, and the rotor core is sleeved in the stator core. Among them, an air gap is defined between an inner wall of the stator core and an outer wall of the rotor core.
  • the mechanical rotation angle ⁇ with the rotor in the circumferential direction satisfies a sine function relationship including the third harmonic component, and periodically changes according to the function relationship to define the shape of the rotor core.
  • the rotary transformer is a reluctance rotary transformer, and the input winding and output winding (including the sine winding and cosine winding) are wound on the stator teeth of the stator core according to a specified winding method to pass the input
  • the stator is excited by the windings.
  • the ⁇ ie, the air gap length
  • the third harmonic is injected into the air gap of the rotary transformer to weaken the third harmonic of the output potential at the output end, thereby reducing the measurement error of the reluctance rotary transformer and improving the position measurement accuracy of the rotary transformer.
  • the structure of the rotary transformer ensures that the magnetic flux distribution in the air gap conforms to the sine law when the rotor rotates once, the air gap magnetic field is approximated to a sine shape by special design of the rotor shape.
  • the third sine component By improving the rotor shape, Injecting the third sine component, compared with the sine shape in the prior art, by injecting the third sine component, the difference between the maximum air gap length and the minimum air gap length can be reduced, and the third harmonic interference in the measurement process can be reduced. At the same time, it is still able to output the same potential.
  • the rotor structure in the present application when the difference between the maximum air gap length and the minimum air gap length decreases, the number of stator teeth does not change.
  • the output potential is the same as that of the rotor structure in the prior art. Therefore, the rotor structure in the present application is adopted without reducing the maximum air gap length and the minimum air pressure.
  • the difference between the gap lengths can not only improve the detection accuracy of the rotor position, but also achieve the purpose of increasing the output potential, thereby improving the operating efficiency of the rotary transformer.
  • the transformer rotor in the prior art is realized by increasing the difference between the maximum air gap and the minimum air gap, which results in a large rate of change in the outer dimensions of the rotor and requires higher machining accuracy of the rotor.
  • the rotor of the technical solution of the present application by injecting the third harmonic, the rotor processing difficulty can also be reduced.
  • rotary transformer in the above technical solution provided in the present application may also have the following additional technical features:
  • the input winding includes an excitation winding
  • the output winding includes a sine winding and a cosine winding, wherein two stator teeth are provided at intervals between any two adjacent excitation windings, so as to wind the sine respectively. Winding and cosine winding.
  • two stator teeth are arranged at intervals between any adjacent two exciting windings, so that the sine winding and the cosine winding are respectively wound, so that the exciting winding, the sine winding and the cosine winding are distributed along the circumferential direction.
  • stator teeth include a first stator tooth for winding an exciting winding, a second stator tooth for winding a sine winding, and a third stator tooth for winding a cosine winding, wherein any adjacent two first stator teeth There is a second stator tooth and a third stator tooth between the sub teeth.
  • one of any two adjacent exciting windings is wound with a sine winding on both sides and the other with a cosine winding.
  • a plurality of stator teeth distributed in the circumferential direction can be divided into a first stator tooth, a second stator tooth, a third stator tooth, a first stator tooth, and a second stator according to different windings.
  • the number of teeth is the same as the number of the third stator teeth, so that the excitation windings used for signal input, and the sine windings and cosine windings used for signal output are respectively wound, wherein the adjacent first stator teeth, the second stator teeth and The third stator tooth is a set of winding teeth, and the plurality of stator teeth distributed in the circumferential direction are composed of a plurality of winding teeth, so as to achieve the regular winding of the reluctance rotary transformer, and the injection of three sinusoidal components is combined to achieve The purpose of improving measurement accuracy.
  • the input winding and the output winding can be divided into multiple winding units, and the multiple winding units are connected end to end along the circumferential direction to complete the winding.
  • the excitation winding, the sine winding, the cosine winding, and The exciting winding, the cosine winding, and the sine winding, or in the counterclockwise direction include the exciting winding, the cosine winding, the sine winding, the exciting winding, the sine winding, and the cosine winding.
  • the rotary transformer is realized While the output potential of the sine winding is equal to the amplitude of the first fundamental wave of the output potential of the cosine winding, the detection accuracy of the rotor position is improved by the third sine component of the length of the injected air gap.
  • the number of turns of the exciting winding on each first stator tooth is the same; the number of turns of the sine winding is the same as the number of turns of the cosine winding.
  • the stator excitation is uniformly generated, thereby achieving uniform rotation of the rotor.
  • the number of turns is the same, so that the output potential of the sine winding and the output potential of the cosine winding differ only in phase, thereby ensuring accurate measurement of the angular displacement and angular velocity of the rotating shaft.
  • the length ⁇ of the air gap and the mechanical angle ⁇ of the rotor also satisfy the following formula: Among them, ⁇ min is the minimum length of the air gap, K is the primary sine component coefficient, and k is the cubic sine component coefficient, 1 ⁇ K ⁇ 2, 0 ⁇ k ⁇ (K-1).
  • ⁇ min 0.72 mm
  • K 1.9
  • k 0.09
  • p 2.
  • stator teeth 2
  • the number of stator teeth is 24, that is, a salient-pole rotary transformer of 4 poles and 24 slots, in which an exciting winding, a sine winding, and a cosine winding are sequentially arranged on three adjacent teeth, respectively.
  • the coils of these three teeth are arranged in an array of eight along the circumference, that is, eight excitation coils are provided, each coil has 25 turns, and the wire diameter 0.1mm, 55 turns per coil for sine and cosine windings, wire diameter
  • the punching piece of the rotary transformer is made of silicon steel sheet of DW310-35.
  • the maximum air gap length ⁇ max 13.68mm
  • the minimum air gap length ⁇ min 0.72mm
  • the length of the maximum air gap ⁇ max of the rotary transformer is 7.2 mm
  • the minimum length of the air gap ⁇ min is 0.76 mm
  • the electrical angle error e1 of the rotor after decoding the rotary transformer is e.
  • the rotor electrical angle error after decoding the salient pole rotary transformer of the rotor shape injected with the third sine component is 3.81% of the rotor electrical angle error after decoding by the salient pole rotary transformer of the sine wave rotor shape in the prior art. Achieved reduced rotor errors.
  • the difference between the maximum air gap length and the minimum air gap length can be made the same as in the prior art, and the output potential amplitude can be increased without increasing the number of turns of the output winding. At the same time, the detection accuracy of the rotor position is improved.
  • the rotor core is configured as a salient pole structure according to the number of rotor pole pairs, so that the length ⁇ of the air gap varies with the mechanical rotation angle ⁇ in the circumferential direction.
  • a limiting groove is provided on the inner side wall of the shaft hole of the rotor core; a limiting rib that cooperates with the limiting groove is provided on the outer side wall of the rotating shaft.
  • the number of stator teeth is an integer multiple of twelve.
  • the stator core is formed by a plurality of silicon steel sheets superimposed on the axis of the rotation axis; the rotor core is formed by a plurality of silicon steel sheets superimposed on the axis of the rotation axis.
  • the two end surfaces of the rotor core are respectively protruded from the two end surfaces of the stator core in the axial direction.
  • the third harmonic can be injected into the air gap of the rotary transformer to reduce the output potential of the output terminal.
  • the third harmonic can reduce the measurement error of the reluctance resolver and improve the position measurement accuracy of the resolver.
  • FIG. 1 is a schematic cross-sectional structure diagram of a rotor of a resolver in the related art
  • FIG. 2 is a schematic cross-sectional structure diagram of a rotor of a resolver according to an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a rotary transformer according to an embodiment of the present application.
  • the rotary transformer 1 includes a stator 10 including a stator core 102 and input and output windings wound on the stator core 102, and the stator core A plurality of stator slots are provided on the inner wall of 102, and the plurality of stator slots are distributed in the circumferential direction, and the two end faces of the stator core 102 are respectively conducted, so that stator teeth are formed between any two adjacent stator slots.
  • the stator 20 is wound around 10 slots respectively; the rotor 20 includes a rotor core, and the rotor core is sleeved in the stator core; wherein an air gap is defined between an inner wall of the stator core 102 and an outer wall of the rotor core,
  • the length of the air gap ⁇ ie, the air gap length
  • the mechanical rotation angle ⁇ of the rotor 20 satisfies a sine function relationship including the third harmonic component, and performs a periodic change according to the function relationship to define The shape of the rotor core.
  • the resolver 1 is a reluctance resolver.
  • the input winding (excitation winding 104) and output winding (including sine winding 106 and cosine winding 108) are wound around the stator core according to a specified winding method.
  • the excitation of the stator 10 is achieved through the exciting winding 104.
  • the sine winding 106 and the cosine winding 108 output a change signal that forms a special functional relationship with the mechanical rotation angle ⁇ of the rotor 20.
  • the shape of the rotor 20 is specially designed to make the air gap magnetic field approximate a sinusoidal shape. Shape, to achieve the injection of the third sine component. Compared with the sine shape in the prior art, by injecting the third sine component, the difference between the maximum air gap length and the minimum air gap length can be reduced. Harmonic interference can still output the same potential.
  • the transformer rotor 20 in the prior art is implemented by increasing the difference between the maximum air gap and the minimum air gap, which results in a large rate of change in the external dimensions of the rotor 20, and the machining accuracy of the rotor 20 The requirements are high.
  • the rotor 20 according to the technical solution of the present application can also reduce the processing difficulty of the rotor 20 by injecting the third harmonic.
  • the input winding includes an excitation winding 104;
  • the output winding includes a sine winding 106 and a cosine winding 108, wherein two stator teeth are arranged at intervals between any two adjacent excitation windings 104 to A sine winding 106 and a cosine winding 108 are respectively wound.
  • two stator teeth are arranged at intervals between any two adjacent exciting windings 104 to respectively sine winding 106 and cosine winding 108, so that the exciting winding 104, sine winding 106 and cosine winding 108 is distributed along the circumferential direction, combined with excitation winding 104 to achieve stator excitation, and sine winding 106 and cosine winding 108 output a change signal that forms a special function relationship with the mechanical rotation angle ⁇ of the rotor.
  • the third harmonic is injected into the air gap, The position measurement accuracy of the resolver 1 is improved.
  • stator teeth include a first stator tooth for winding the field winding 104, a second stator tooth for winding the sine winding 106, and a third stator tooth for winding the cosine winding 108, of which any two adjacent ones There is a second stator tooth and a third stator tooth between the first stator teeth.
  • one of any two adjacent exciting windings 104 is wound with a sine winding 106 on both sides, and the other with a cosine winding 108 on both sides.
  • a plurality of stator teeth distributed in the circumferential direction can be divided into a first stator tooth, a second stator tooth, a third stator tooth, a first stator tooth, and a second stator according to different windings.
  • the number of teeth is the same as the number of the third stator teeth, so that the excitation windings 104 for signal input, and the sine windings 106 and cosine windings 108 for signal output are respectively wound.
  • the stator teeth and the third stator teeth are a set of winding teeth, and the plurality of stator teeth distributed in the circumferential direction are composed of a plurality of winding teeth, so as to realize the regular winding of the magnetoresistive rotary transformer, combined with the injection of three sinusoidal components To achieve the purpose of improving measurement accuracy.
  • the input winding and the output winding can be divided into a plurality of winding units, and the plurality of winding units are connected end to end along the circumferential direction to complete the winding.
  • the excitation winding 104 is sequentially included in a counterclockwise direction.
  • Sine winding 106, cosine winding 108, field winding 104, cosine winding 108, and sine winding 106, or in the counterclockwise direction sequentially includes field winding 104, cosine winding 108, sine winding 106, field winding 104, sine winding 106, and cosine winding 108.
  • the rotary transformer is realized. While the output potential of the sine winding 106 of 1 is equal to the amplitude of the first fundamental wave of the output potential of the cosine winding 108, the accuracy of detecting the position of the rotor 20 is improved by the third sine component of the length of the injected air gap.
  • the number of turns of the field winding 104 on each first stator tooth is the same; the number of turns of the sine winding 106 is the same as the number of turns of the cosine winding 108.
  • the stator 10 is uniformly excited, thereby achieving uniform rotation of the rotor 20, and by limiting the number of turns of the sine winding 106 to The number of turns of the cosine winding 108 is the same, so that there is only a phase difference between the output potential of the sine winding 106 and the output potential of the cosine winding 108, thereby ensuring accurate measurement of the angular displacement and angular velocity of the rotating shaft.
  • the length ⁇ of the air gap and the mechanical angle ⁇ of the rotor 20 also satisfy the following formula: Among them, ⁇ min is the minimum length of the air gap, K is the primary sine component coefficient, and k is the cubic sine component coefficient, 1 ⁇ K ⁇ 2, 0 ⁇ k ⁇ (K-1).
  • the specific relationship formula is defined to realize the change of the air gap length with the change of the mechanical angle.
  • a rotor injected with a cubic sine component is obtained. 20 outlines to achieve the purpose of improving the accuracy of rotation angle measurement.
  • ⁇ min 0.72 mm
  • K 1.9
  • k 0.09
  • p 2.
  • stator teeth 2
  • the number of stator teeth is 24, that is, a salient-pole rotary transformer of 4 poles and 24 slots, wherein the excitation winding 104, the sine winding 106, and the cosine are sequentially arranged on three adjacent teeth, respectively Winding 108, arrange the coils of these three teeth along the circumference into an array of eight, that is, set eight excitation coils, each coil has 25 turns, and the wire diameter 0.1mm, 55 turns per coil for sine winding 106 and cosine winding 108, wire diameter For 0.13mm, the punching piece of the rotary transformer is DW310-35 silicon steel piece.
  • the maximum contour size of the rotor core is 98.56mm
  • the minimum contour gear is 72.64mm
  • the maximum air gap length ⁇ max 13.68 mm
  • the minimum air gap length ⁇ min 0.72mm
  • the maximum outline size of the rotor core is 98.48mm
  • the minimum profile gear is 85.6mm
  • the maximum air gap length ⁇ max of the rotary transformer is 7.2 mm
  • the minimum air gap length ⁇ min is 0.76 mm.
  • Rotary transformer decoded electrical angle error of the rotor 20 e1 ⁇ 0.04 °, that is, the electrical angle error of the decoded rotor 20 of the salient pole resolver of the rotor 20 injected with the third sinusoidal component is the sine wave rotor 20
  • the profiled salient-pole resolver decodes 3.81% of the electrical angle error of the rotor 20, thereby reducing the rotor 20 error.
  • the rotor shape of a salient pole resolver with a length of an air gap distributed along the circumference of the circumference, wherein the stator inner diameter
  • the minimum air gap length ⁇ min 0.72mm
  • the formula of the air gap length along the circumferential direction is as follows:
  • p the number of pole pairs of the salient pole rotor.
  • p 2, that is, the rotor includes 2 pairs of magnetic poles.
  • the mechanical angle of the length of the air gap rotating along the circumference.
  • Figure 2 shows the rotor shape of a salient pole resolver injected with a sine component of three times.
  • the length of the air gap in the circumferential direction is as follows:
  • k 0.09.
  • the difference between the maximum air gap length and the minimum air gap length can be made the same as in the prior art, and the output potential amplitude can be improved without increasing the number of turns of the output winding. At the same time, the detection accuracy of the position of the rotor 20 is improved.
  • the rotor core is structured as a salient pole structure according to the number of poles of the rotor 20, so that the length ⁇ of the air gap varies with the mechanical rotation angle ⁇ in the circumferential direction.
  • a limiting groove is provided on the inner side wall of the shaft hole of the rotor core; a limiting rib is provided on the outer side wall of the rotating shaft to cooperate with the limiting groove.
  • the number of stator teeth is an integer multiple of twelve.
  • the stator core 102 is formed by a plurality of silicon steel sheets superimposed on the axis of the rotation axis; the rotor core is formed by a plurality of silicon steel sheets superimposed on the axis of the rotation axis.
  • the two end surfaces of the rotor core are respectively protruded from the two end surfaces of the stator core 102 in the axial direction.
  • the rotary transformer is a reluctance rotary transformer.
  • the excitation winding and the output winding (including the sine winding and the cosine winding) are wound on the stator teeth of the stator core according to a specified winding method.
  • the stator is excited by the windings.
  • the sine winding and the cosine winding output and the mechanical rotation angle ⁇ of the rotor form a special function relationship change signal.
  • the third harmonic By setting the length of the air gap ⁇ in the circumferential direction and the mechanical rotation angle ⁇ of the rotor, the third harmonic The sine function relationship of the components to inject the third harmonic into the air gap of the resolver to weaken the third harmonic of the output potential at the output end, thereby reducing the measurement error of the reluctance resolver and improving the position of the resolver measurement accuracy.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

本申请提出了一种旋转式变压器,包括:定子,包括定子铁芯以及绕设在定子铁芯上的输入绕组与输出绕组,定子铁芯的内侧壁上开设多个定子槽,多个定子槽沿周向分布,并分别使定子铁芯的两个端面导通,使任意两个相邻的定子槽之间形成定子齿,以分别绕设输入绕组与输出绕组;转子,包括转子铁芯;其中,定子铁芯的内侧壁与转子铁芯的外侧壁之间限定出空气间隙,在转子旋转时,空气间隙的长度δ沿周向与转子的机械转角θ满足包含三次谐波分量的正弦函数关系,并根据函数关系执行周期性改变,以限定出转子铁芯的外形。通过本申请的技术方案,在相同最大和最小气隙的情况下,能够提高旋转式变压器的输出信号幅值和位置测量精度。

Description

旋转式变压器
本申请要求于2018年06月29日提交中国专利局、申请号为201810700480.0、发明名称为“旋转式变压器”的中国专利申请的优先权,以及申请号为201821022202.6、实用新型名称为“旋转变压器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及变压器领域,具体而言,涉及一种旋转式变压器。
背景技术
旋转式变压器是一种电磁式传感器,又称同步分解器,用于测量旋转物体的转轴角位移和角速度,由定子和转子组成,其中,定子绕组作为变压器的圆边,接受励磁电压,转子绕组作为变压器的副边,通过电磁耦合得到感应电压,而由于选择变压器的原边、副边绕组随转子的角位移发生相对位置的变化,因而其输出电压的大小随转子的角位移而发生变化,输出绕组的电压幅值与转子转角呈正弦、余弦函数关系。
凸极式旋转变压器由于制作简单、稳定性高、耐温性好而广泛应用在安全性能要求高的场合,如汽车电机。相关技术中,如图1所示,凸极式旋转变压器的凸极转子通常采用正弦分布的转子外形,但存在以下缺陷:
转子误差大、位置精度不高。
申请内容
为了解决上述技术问题至少之一,本申请的一个目的在于提供一种旋转式变压器。
为了实现上述目的,本申请实施例提出了一种旋转式变压器,包括:定子,包括定子铁芯以及绕设在定子铁芯上的输入绕组与输出绕组,定子铁芯的内侧 壁上开设多个定子槽,多个定子槽沿周向分布,并分别使定子铁芯的两个端面导通,使任意两个相邻的定子槽之间形成定子齿,以分别绕设输入绕组与输出绕组;转子,包括转子铁芯,转子铁芯套设在定子铁芯内;其中,定子铁芯的内侧壁与转子铁芯的外侧壁之间限定出空气间隙,在转子旋转时,空气间隙的长度δ沿周向与转子的机械转角θ满足包含三次谐波分量的正弦函数关系,并根据函数关系执行周期性改变,以限定出转子铁芯的外形。
在该技术方案中,旋转式变压器为磁阻式旋转变压器,将输入绕组与输出绕组(包括正弦绕组与余弦绕组)根据指定的绕线方式绕设在定子铁芯的定子齿上,以通过输入绕组实现定子激励,通过输出绕组输出变化的电势信号,通过将空气间隙的长度δ(即气隙长度)设置为沿周向与转子的机械转角θ满足包含三次谐波分量的正弦函数关系,以实现向旋转式变压器的空气间隙注入三次谐波,以削弱输出端输出电势的三次谐波,从而能够降低磁阻式旋转变压器的测量误差,以提高旋转式变压器的位置测量精度。
由于旋转式变压器在结构上保证了在转子旋转一周时,空气间隙内的磁通分布符合正弦规律,通过将转子形状做特殊设计,使得气隙磁场近似于正弦形,同时通过改进转子形状,实现注入三次正弦分量,相对于现有技术中的正弦形,通过注入三次正弦分量,能够减小最大气隙长度与最小气隙长度之间的差值,在实现降低测量过程中的三次谐波干扰的同时,仍能够相同的输出电势。
根据上述描述,本领域的技术人员还能够理解的是,采用本申请中的转子结构,在最大气隙长度与最小气隙长度之间的差值减小的情况下,在定子齿数量不变,且绕组匝数不变的前提下,输出的电势与采用现有技术中的转子结构输出的电势相同,从而在采用本申请中的转子结构的同时,不减小最大气隙长度与最小气隙长度之间的差值,在提高转子位置检测精度的同时,还可以达到提高输出电势的目的,从而能够提升旋转式变压器的运行效率。
另外,为了生成较大的输出信号,现有技术中的变压器转子通过增加最大气隙和最小气隙之间差值来实现,从而导致转子外形尺寸变化率大,对于转子机械加工精度要求较高,根据本申请的技术方案的转子,通过注入三次谐波,还能够降低转子加工难度。
另外,本申请提供的上述技术方案中的旋转式变压器还可以具有如下附加 技术特征:
在上述技术方案中,可选地,输入绕组包括励磁绕组;输出绕组包括正弦绕组与余弦绕组,其中,在任意相邻的两个励磁绕组之间间隔设置两个定子齿,以分别绕设正弦绕组与余弦绕组。
在该技术方案中,通过在任意相邻的两个励磁绕组之间间隔设置两个定子齿,以分别绕设正弦绕组与余弦绕组,以使励磁绕组、正弦绕组与余弦绕组沿周向间隔分布,结合由励磁绕组实现定子激励,并由正弦绕组与余弦绕组输出与转子的机械转角θ形成特殊函数关系的变化信号,在向空气间隙注入三次谐波时,实现了提高旋转式变压器的位置测量精度。
具体地,定子齿包括用于绕设励磁绕组的第一定子齿,绕设正弦绕组的第二定子齿以及绕设余弦绕组的第三定子齿,其中,任意相邻的两个第一定子齿之间具有一个第二定子齿与一个第三定子齿。
在上述任一技术方案中,可选地,任意相邻的两个励磁绕组中的一个两侧绕设正弦绕组,另一个两侧绕设余弦绕组。
在该技术方案中,根据绕设不同的绕组,可以将周向分布的多个定子齿划分为第一定子齿、第二定子齿与第三定子齿,第一定子齿、第二定子齿与第三定子齿的数量相同,以分别绕设用于信号输入的励磁绕组,以及用于信号输出的正弦绕组与余弦绕组,其中,相邻的第一定子齿、第二定子齿与第三定子齿为一组绕设齿,则周向分布的多个定子齿由多组绕设齿组成,以实现磁阻式旋转式变压器的规则绕设,结合三次正弦分量的注入,以达到提升测量精度的目的。
具体地,输入绕组与输出绕组可以分为多个绕组单元,多个绕组单元沿周向首尾相连完成绕设,在一个绕组单元中,沿逆时针方向依次包括励磁绕组、正弦绕组、余弦绕组、励磁绕组、余弦绕组以及正弦绕组,或沿逆时针方向依次包括励磁绕组、余弦绕组、正弦绕组、励磁绕组、正弦绕组以及余弦绕组。
在上述任一技术方案中,可选地,空气间隙的长度δ同时满足机械转角θ的一次正弦分量分布与三次正弦分量分布,即δ=f(cos(pθ),cos(3pθ)),其中,p为旋转式变压器的转子极对数。
在该技术方案中,通过限定空气间隙的长度δ同时满足机械转角θ的一次 正弦分量分布与三次正弦分量分布,即δ=f(cos(pθ),cos(3pθ)),在实现旋转式变压器的正弦绕组的输出电势与余弦绕组的输出电势的一次基波幅值相等的同时,通过注入空气间隙的长度的三次正弦分量,提升转子位置的检测精度。
在上述任一技术方案中,可选地,每个第一定子齿上的励磁绕组的线圈匝数相同;正弦绕组的线圈匝数与余弦绕组的线圈匝数相同。
在该技术方案中,通过限定每个第一定子齿上励磁绕组的线圈匝数相同,以均匀产生定子激励,从而实现转子的均匀旋转,通过限定正弦绕组的线圈匝数与余弦绕组的线圈匝数相同,使正弦绕组的输出电势与余弦绕组的输出电势只存在相位上的差别,从而保证了转轴角位移和角速度的准确测量。
在上述任一技术方案中,可选地,空气间隙的长度δ与转子的机械角度θ还满足以下公式:
Figure PCTCN2019093345-appb-000001
其中,δ min为空气间隙的最小长度,K为一次正弦分量系数,k为三次正弦分量系数,1<K<2,0<k<(K-1)。
在该技术方案中,通过限定具体的关系公式,以实现空气间隙的长度随机械角度的变化而变化,结合对一次正弦分量系数K、三次正弦分量系数k的调整,得到注入三次正弦分量的转子外形轮廓,以达到提升旋转角度测量精度的目的。
在上述任一技术方案中,可选地,δ min=0.72mm,K=1.9,k=0.09,p=2。
在该技术方案中,作为一种较优的实施方式,通过限定δ min=0.72mm,K=1.9,k=0.09,p=2,以得到空气间隙的长度δ与转子的机械角度θ之间明确的函数关系,从而方便实施。
作为一种具体的实施方式,P=2,定子齿数为24,即4极24槽的凸极式旋转式变压器,其中,相邻三个齿上分别依次设置励磁绕组、正弦绕组、余弦绕组,沿圆周将这三个齿的线圈排布阵列8个,即设置8个励磁线圈,每个线圈匝数25匝,线径
Figure PCTCN2019093345-appb-000002
为0.1mm,正弦绕组和余弦绕组的每个线圈匝数55匝,线径
Figure PCTCN2019093345-appb-000003
为0.13mm,旋转式变压器的冲片选用DW310-35的硅钢片,根据现有技术的设置方案,最大空气间隙的长度δ max=13.68mm,空气间隙的最小长度δ min=0.72mm,旋转式变压器解码后的转子电角度误差为e1=±1.05°。
根据本申请的转子轮廓,旋转式变压器的最大空气间隙的长度 δ max=7.2mm,空气间隙的最小长度δ min=0.76mm,旋转式变压器解码后的转子电角度误差e1=±0.04°,即注入三次正弦分量的转子外形的凸极式旋转式变压器解码后的转子电角度误差是现有技术中的正弦波转子外形的凸极式旋转式变压器解码后的转子电角度误差的3.81%,从而实现了减小转子误差。
表1
θ(°) δ1(mm)现有技术 δ2(mm)本申请的技术方案
0 0.720 0.756
15 0.769 0.769
30 0.943 0.888
45 1.368 1.368
60 2.487 2.974
75 6.202 6.202
90 13.680 7.200
105 6.202 6.202
120 2.487 2.974
135 1.368 1.368
150 0.943 0.888
165 0.769 0.769
180 0.720 0.756
195 0.769 0.769
210 0.943 0.888
225 1.368 1.368
240 2.487 2.974
255 6.202 6.202
270 13.680 7.200
285 6.202 6.202
300 2.487 2.974
315 1.368 1.368
330 0.943 0.888
345 0.769 0.769
360 0.720 0.756
由表1可知,在定子尺寸与现有技术相同的情况下,最大气隙长度与最小气隙长度之间的差值减小,旋转式变压器的正弦绕组的输出电势与余弦绕组的输出电势的一次基波幅值相等,但是转子位置的检测精度提升。
另外,通过调节定子铁芯的内径,可以使最大气隙长度与最小气隙长度之间的差值与现有技术相同,无须增加输出绕组的匝数,即可实现输出电势幅值的提高,同时提升转子位置的检测精度。
在上述任一技术方案中,可选地,转子铁芯根据转子极对数构造为凸极式结构,以使空气间隙的长度δ沿周向随机械转角θ变化。
在上述任一技术方案中,可选地,转子铁芯的轴孔的内侧壁上开设有限位槽;转轴的外侧壁上设置有与限位槽配合的限位筋。
在上述任一技术方案中,可选地,定子齿的数量为12的整数倍。
在上述任一技术方案中,可选地,定子铁芯由多个硅钢片沿转轴的轴向叠加构造形成;转子铁芯由多个硅钢片沿转轴的轴向叠加构造形成。其中,转子铁芯的两端端面沿轴向分别凸出于定子铁芯的两端端面设置。
本申请技术方案中提供的一个或多个技术方案,至少具有如下技术效果或优点:
通过将空气间隙的长度δ设置为沿周向与转子的机械转角θ满足包含三次谐波分量的正弦函数关系,以实现向旋转式变压器的空气间隙注入三次谐波,以削弱输出端输出电势的三次谐波,从而能够降低磁阻式旋转变压器的测量误差,以提高旋转式变压器的位置测量精度。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了相关技术中的旋转式变压器的转子的截面结构示意图;
图2示出了根据本申请的一个实施例的旋转式变压器的转子的截面结构示意图;
图3示出了根据本申请的一个实施例的旋转式变压器的结构示意图。
其中,图2与图3中附图标记与部件名称之间的对应关系为:
1旋转式变压器,10定子,102定子铁芯,104励磁绕组,106正弦绕组,108余弦绕组,20转子。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图2与图3描述根据本申请一些实施例的旋转式变压器。
如图2与图3所示,根据本申请的实施例的旋转式变压器1,包括:定子10,包括定子铁芯102以及绕设在定子铁芯102上的输入绕组与输出绕组,定子铁芯102的内侧壁上开设多个定子槽,多个定子槽沿周向分布,并分别使定子铁芯102的两个端面导通,使任意两个相邻的定子槽之间形成定子齿,以分别绕设定子10槽;转子20,包括转子铁芯,转子铁芯套设在定子铁芯内;其中,定子铁芯102的内侧壁与转子铁芯的外侧壁之间限定出空气间隙,在转子20旋转时,空气间隙的长度δ(即气隙长度)沿周向与转子20的机械转角θ满足包含三次谐波分量的正弦函数关系,并根据函数关系执行周期性改变,以限定出转子铁芯的外形。
在该实施例中,旋转式变压器1为磁阻式旋转变压器,将输入绕组(励磁绕组104)与输出绕组(包括正弦绕组106与余弦绕组108)根据指定的绕线方式绕设在定子铁芯102的定子齿上,通过励磁绕组104实现定子10激励,以由正弦绕组106与余弦绕组108输出与转子20的机械转角θ形成特殊函数关系的变化信号,通过将空气间隙的长度δ设置为沿周向与转子20的机械转角θ满足包含三次谐波分量的正弦函数关系,以实现向旋转式变压器的空气间隙注入三次谐波,以削弱输出端输出电势的三次谐波,从而能够降低磁阻式旋转变压器的测量误差,以提高旋转式变压器的位置测量精度。
由于旋转式变压器在结构上保证了在转子20旋转一周时,空气间隙内的磁通分布符合正弦规律,通过将转子20形状做特殊设计,使得气隙磁场近似于正弦形,同时通过改进转子20形状,实现注入三次正弦分量,相对于现有技术中的正弦形,通过注入三次正弦分量,能够减小最大气隙长度与最小气隙长度之间的差值,在实现降低测量过程中的三次谐波干扰的同时,仍能够相同 的输出电势。
根据上述描述,本领域的技术人员还能够理解的是,如图2所示,采用本申请中的转子结构,在最大气隙长度与最小气隙长度之间的差值减小的情况下,在定子齿数量不变,且绕组匝数不变的前提下,输出的电势与图1示出的采用现有技术中的转子结构输出的电势相同,从而在采用本申请中的转子结构的同时,不减小最大气隙长度与最小气隙长度之间的差值,在提高转子20位置检测精度的同时,还可以达到提高输出电势的目的,从而能够提升旋转式变压器的运行效率。
另外,为了生成较大的输出信号,现有技术中的变压器转子20通过增加最大气隙和最小气隙之间差值来实现,从而导致转子20外形尺寸变化率大,对于转子20机械加工精度要求较高,根据本申请的技术方案的转子20,通过注入三次谐波,还能够降低转子20加工难度。
在上述实施例中,可选地,输入绕组包括励磁绕组104;输出绕组包括正弦绕组106与余弦绕组108,其中,在任意相邻的两个励磁绕组104之间间隔设置两个定子齿,以分别绕设正弦绕组106与余弦绕组108。
在该实施例中,通过在任意相邻的两个励磁绕组104之间间隔设置两个定子齿,以分别绕设正弦绕组106与余弦绕组108,以使励磁绕组104、正弦绕组106与余弦绕组108沿周向间隔分布,结合由励磁绕组104实现定子激励,并由正弦绕组106与余弦绕组108输出与转子的机械转角θ形成特殊函数关系的变化信号,在向空气间隙注入三次谐波时,实现了提高旋转式变压器1的位置测量精度。
具体地,定子齿包括用于绕设励磁绕组104的第一定子齿,绕设正弦绕组106的第二定子齿以及绕设余弦绕组108的第三定子齿,其中,任意相邻的两个第一定子齿之间具有一个第二定子齿与一个第三定子齿。
在上述任一实施例中,可选地,任意相邻的两个励磁绕组104中的一个两侧绕设正弦绕组106,另一个两侧绕设余弦绕组108。
在该实施例中,根据绕设不同的绕组,可以将周向分布的多个定子齿划分为第一定子齿、第二定子齿与第三定子齿,第一定子齿、第二定子齿与第三定子齿的数量相同,以分别绕设用于信号输入的励磁绕组104,以及用于信号输 出的正弦绕组106与余弦绕组108,其中,相邻的第一定子齿、第二定子齿与第三定子齿为一组绕设齿,则周向分布的多个定子齿由多组绕设齿组成,以实现磁阻式旋转式变压器的规则绕设,结合三次正弦分量的注入,以达到提升测量精度的目的。
如图3所示,具体地,输入绕组与输出绕组可以分为多个绕组单元,多个绕组单元沿周向首尾相连完成绕设,在一个绕组单元中,沿逆时针方向依次包括励磁绕组104、正弦绕组106、余弦绕组108、励磁绕组104、余弦绕组108以及正弦绕组106,或沿逆时针方向依次包括励磁绕组104、余弦绕组108、正弦绕组106、励磁绕组104、正弦绕组106以及余弦绕组108。
在上述任一实施例中,可选地,空气间隙的长度δ同时满足机械转角θ的一次正弦分量分布与三次正弦分量分布,即δ=f(cos(pθ),cos(3pθ)),其中,p为旋转式变压器1的转子20极对数,θ为转子20的机械转角。
在该实施例中,通过限定空气间隙的长度δ同时满足机械转角θ的一次正弦分量分布与三次正弦分量分布,即δ=f(cos(pθ),cos(3pθ)),在实现旋转式变压器1的正弦绕组106的输出电势与余弦绕组108的输出电势的一次基波幅值相等的同时,通过注入空气间隙的长度的三次正弦分量,提升转子20位置的检测精度。
在上述任一实施例中,可选地,每个第一定子齿上的励磁绕组104的线圈匝数相同;正弦绕组106的线圈匝数与余弦绕组108的线圈匝数相同。
在该实施例中,通过限定每个第一定子齿上励磁绕组104的线圈匝数相同,以均匀产生定子10激励,从而实现转子20的均匀旋转,通过限定正弦绕组106的线圈匝数与余弦绕组108的线圈匝数相同,使正弦绕组106的输出电势与余弦绕组108的输出电势只存在相位上的差别,从而保证了转轴角位移和角速度的准确测量。
在上述任一实施例中,可选地,空气间隙的长度δ与转子20的机械角度θ还满足以下公式:
Figure PCTCN2019093345-appb-000004
其中,δ min为空气间隙的最小长度,K为一次正弦分量系数,k为三次正弦分量系数,1<K<2,0<k<(K-1)。
在该实施例中,通过限定具体的关系公式,以实现空气间隙的长度随机械 角度的变化而变化,结合对一次正弦分量系数K、三次正弦分量系数k的调整,得到注入三次正弦分量的转子20外形轮廓,以达到提升旋转角度测量精度的目的。
在上述任一实施例中,可选地,δ min=0.72mm,K=1.9,k=0.09,p=2。
在该实施例中,作为一种较优的实施方式,通过限定δ min=0.72mm,K=1.9,k=0.09,p=2,以得到空气间隙的长度δ与转子20的机械角度θ之间明确的函数关系,从而方便实施。
作为一种具体的实施方式,P=2,定子齿数为24,即4极24槽的凸极式旋转式变压器,其中,相邻三个齿上分别依次设置励磁绕组104、正弦绕组106、余弦绕组108,沿圆周将这三个齿的线圈排布阵列8个,即设置8个励磁线圈,每个线圈匝数25匝,线径
Figure PCTCN2019093345-appb-000005
为0.1mm,正弦绕组106和余弦绕组108的每个线圈匝数55匝,线径
Figure PCTCN2019093345-appb-000006
为0.13mm,旋转式变压器的冲片选用DW310-35的硅钢片。
如图1所示,根据现有技术的设置方案,转子铁芯最大轮廓尺寸为98.56mm,最小轮廓齿轮为72.64mm,最大空气间隙的长度δ max=13.68mm,空气间隙的最小长度δ min=0.72mm,旋转式变压器解码后的转子20电角度误差为e1=±1.05°。
根据本申请的转子轮廓,转子铁芯最大轮廓尺寸为98.48mm,最小轮廓齿轮为85.6mm,旋转式变压器的最大空气间隙的长度δ max=7.2mm,空气间隙的最小长度δ min=0.76mm,旋转式变压器解码后的转子20电角度误差e1=±0.04°,即注入三次正弦分量的转子20外形的凸极式旋转变压器解码后的转子20电角度误差是现有技术中的正弦波转子20外形的凸极式旋转变压器解码后的转子20电角度误差的3.81%,从而实现了减小转子20误差。
如图1所示,现有技术中的空气间隙的长度沿圆周正弦分布的凸极式旋转变压器的转子外形,其中定子内径
Figure PCTCN2019093345-appb-000007
最小气隙长度δ min=0.72mm,气隙长度沿周向的公式如下:
Figure PCTCN2019093345-appb-000008
其中,1<K<2,该实施例中,K=1.9。
p——凸极转子的极对数,在该实施例中,p=2,即转子包括2对磁极。
θ——空气间隙的长度沿圆周旋转的机械角度。
图2示出了注入三次正弦分量的凸极式旋转变压器的转子外形,空气间隙的长度沿周向的公式如下:
其中,
Figure PCTCN2019093345-appb-000009
0<k<(K-1),k为大于0的正数,该实施例中,k=0.09。
表1
θ(°) δ1(mm)现有技术 δ2(mm)本申请的实施例
0 0.720 0.756
15 0.769 0.769
30 0.943 0.888
45 1.368 1.368
60 2.487 2.974
75 6.202 6.202
90 13.680 7.200
105 6.202 6.202
120 2.487 2.974
135 1.368 1.368
150 0.943 0.888
165 0.769 0.769
180 0.720 0.756
195 0.769 0.769
210 0.943 0.888
225 1.368 1.368
240 2.487 2.974
255 6.202 6.202
270 13.680 7.200
285 6.202 6.202
300 2.487 2.974
315 1.368 1.368
330 0.943 0.888
345 0.769 0.769
360 0.720 0.756
由表1可知,在定子10尺寸与现有技术相同的情况下,最大气隙长度与最小气隙长度之间的差值减小,旋转式变压器1的正弦绕组106的输出电势与 余弦绕组108的输出电势的一次基波幅值相等,但是转子20位置的检测精度提升。
另外,通过调节定子铁芯102的内径,可以使最大气隙长度与最小气隙长度之间的差值与现有技术相同,无须增加输出绕组的匝数,即可实现输出电势幅值的提高,同时提升转子20位置的检测精度。
在上述任一实施例中,可选地,转子铁芯根据转子20极对数构造为凸极式结构,以使空气间隙的长度δ沿周向随机械转角θ变化。
在上述任一实施例中,可选地,转子铁芯的轴孔的内侧壁上开设有限位槽;转轴的外侧壁上设置有与限位槽配合的限位筋。
在上述任一实施例中,可选地,定子齿的数量为12的整数倍。
在上述任一实施例中,可选地,定子铁芯102由多个硅钢片沿转轴的轴向叠加构造形成;转子铁芯由多个硅钢片沿转轴的轴向叠加构造形成。其中,转子铁芯的两端端面沿轴向分别凸出于定子铁芯102的两端端面设置。
根据本申请的技术方案,旋转式变压器为磁阻式旋转变压器,将励磁绕组与输出绕组(包括正弦绕组与余弦绕组)根据指定的绕线方式绕设在定子铁芯的定子齿上,通过励磁绕组实现定子激励,以由正弦绕组与余弦绕组输出与转子的机械转角θ形成特殊函数关系的变化信号,通过将空气间隙的长度δ设置为沿周向与转子的机械转角θ满足包含三次谐波分量的正弦函数关系,以实现向旋转式变压器的空气间隙注入三次谐波,以削弱输出端输出电势的三次谐波,从而能够降低磁阻式旋转变压器的测量误差,以提高旋转式变压器的位置测量精度。
在本申请中,术语“第一”、“第二”、“第三”仅用于描述的目的,而不能理解为指示或暗示相对重要性;术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请的描述中,需要理解的是,术语“上”、“下”、“左”、“右”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描 述本申请和简化描述,而不是指示或暗示所指的装置或单元必须具有特定的方向、以特定的方位构造和操作,因此,不能理解为对本申请的限制。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种旋转式变压器,其中,包括:
    定子,包括定子铁芯以及绕设在所述定子铁芯上的输入绕组与输出绕组,所述定子铁芯的内侧壁上开设多个定子槽,所述多个定子槽沿周向分布,并分别使所述定子铁芯的两个端面导通,以使任意两个相邻的所述定子槽之间形成定子齿,以分别绕设所述输入绕组与所述输出绕组;
    转子,包括转子铁芯,所述转子铁芯套设在所述定子铁芯内;
    其中,所述定子铁芯的内侧壁与所述转子铁芯的外侧壁之间限定出空气间隙,在所述转子旋转时,所述空气间隙的长度δ沿周向与所述转子的机械转角θ满足包含三次谐波分量的正弦函数关系,并根据所述函数关系执行周期性改变,以限定出所述转子铁芯的外形。
  2. 根据权利要求1所述的旋转式变压器,其中,
    所述输入绕组包括励磁绕组;
    所述输出绕组包括正弦绕组与余弦绕组,
    其中,在任意相邻的两个所述励磁绕组之间间隔设置两个所述定子齿,以分别绕设所述正弦绕组与所述余弦绕组。
  3. 根据权利要求2所述的旋转式变压器,其中,
    任意相邻的两个所述励磁绕组中的一个两侧绕设所述正弦绕组,另一个两侧绕设所述余弦绕组。
  4. 根据权利要求1至3中任一项所述的旋转式变压器,其中,
    所述空气间隙的长度δ同时满足所述转子的机械转角θ的一次正弦分量分布与三次正弦分量分布,即δ=f(cos(pθ),cos(3pθ)),
    其中,p为所述旋转式变压器的转子极对数。
  5. 根据权利要求1至3中任一项所述的旋转式变压器,其中,
    每个所述定子齿上的所述励磁绕组的线圈匝数相同;
    所述正弦绕组的线圈匝数与所述余弦绕组的线圈匝数相同。
  6. 根据权利要求4所述的旋转式变压器,其中,所述空气间隙的长度δ与所述转子的机械角度θ还满足以下公式:
    Figure PCTCN2019093345-appb-100001
    其中,δ min为所述空气间隙的最小长度,K为一次正弦分量系数,k为三次正弦分量系数,1<K<2,0<k<(K-1)。
  7. 根据权利要求6所述的旋转式变压器,其中,
    δ min=0.72mm,K=1.9,k=0.09,p=2。
  8. 根据权利要求1至7中任一项所述的旋转式变压器,其中,
    所述转子铁芯的轴孔的内侧壁上开设有限位槽。
  9. 根据权利要求1至8中任一项所述的旋转式变压器,其中,
    所述定子齿的数量为12的整数倍。
  10. 根据权利要求1至9中任一项所述的旋转式变压器,其中,
    所述定子铁芯由多个硅钢片沿所述转子铁芯的转轴的轴向叠加构造形成;
    所述转子铁芯由多个硅钢片沿所述转子铁芯的转轴的轴向叠加构造形成,其中,所述转子铁芯的两端端面沿轴向分别凸出于所述定子铁芯的两端端面设置。
PCT/CN2019/093345 2018-06-29 2019-06-27 旋转式变压器 WO2020001552A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021518842A JP7087199B2 (ja) 2018-06-29 2019-06-27 回転式変圧器
EP19826357.6A EP3799277A4 (en) 2018-06-29 2019-06-27 ROTATING TRANSFORMER
US17/119,186 US11578998B2 (en) 2018-06-29 2020-12-11 Rotary transformer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201821022202.6U CN208608878U (zh) 2018-06-29 2018-06-29 旋转变压器
CN201810700480.0A CN110661392B (zh) 2018-06-29 2018-06-29 旋转式变压器
CN201821022202.6 2018-06-29
CN201810700480.0 2018-06-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/119,186 Continuation US11578998B2 (en) 2018-06-29 2020-12-11 Rotary transformer

Publications (1)

Publication Number Publication Date
WO2020001552A1 true WO2020001552A1 (zh) 2020-01-02

Family

ID=68985816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/093345 WO2020001552A1 (zh) 2018-06-29 2019-06-27 旋转式变压器

Country Status (4)

Country Link
US (1) US11578998B2 (zh)
EP (1) EP3799277A4 (zh)
JP (1) JP7087199B2 (zh)
WO (1) WO2020001552A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115443401A (zh) * 2020-04-09 2022-12-06 三菱电机株式会社 冗余旋转变压器及搭载有冗余旋转变压器的电动助力转向装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3086885B1 (fr) * 2018-10-05 2020-11-20 Safran Landing Systems Dispositif de mesure de la pression d'un pneumatique

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5763976A (en) * 1993-12-15 1998-06-09 Parker-Hannifin Corp. Stator wound resolver with staggered rotor
CN104184236A (zh) * 2014-09-05 2014-12-03 宁波市北仑海伯精密机械制造有限公司 用于电机的永磁体及其该永磁体的设计方法
CN206250940U (zh) * 2015-11-13 2017-06-13 Ls汽车电子株式会社 旋转变压器
CN208608878U (zh) * 2018-06-29 2019-03-15 广东威灵电机制造有限公司 旋转变压器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2866913A (en) * 1956-06-27 1958-12-30 Bell Telephone Labor Inc Multipole pair resolver
US4631510A (en) * 1985-09-03 1986-12-23 Powerton, Division Of Contraves Goerz Corporation Harmonically graded airgap reluctance-type rotating electric resolver
JP2698013B2 (ja) 1993-01-19 1998-01-19 彰 石崎 位置検出装置
JP2005049183A (ja) * 2003-07-28 2005-02-24 Minebea Co Ltd バリアブルリラクタンス型レゾルバ
JP4797917B2 (ja) * 2006-09-29 2011-10-19 日本電産株式会社 レゾルバ、モータおよびパワーステアリング装置
JP4395163B2 (ja) * 2006-12-28 2010-01-06 日本航空電子工業株式会社 バリアブルリラクタンス型レゾルバ
DE102009061032A1 (de) * 2009-05-15 2010-11-18 Tyco Electronics Belgium Ec Bvba Magnetoelektronischer Winkelsensor, insbesondere Reluktanzresolver
JP5802429B2 (ja) * 2011-05-02 2015-10-28 オークマ株式会社 ステータおよびレゾルバ
US8816555B2 (en) * 2011-07-19 2014-08-26 GM Global Technology Operations LLC Rotor for a permanent magnet electric machine
JP5712899B2 (ja) * 2011-11-02 2015-05-07 トヨタ自動車株式会社 ステータ固定構造
JP5892196B2 (ja) * 2014-01-27 2016-03-23 日本精工株式会社 レゾルバ装置、モータ及びアクチュエータ
JP6928470B2 (ja) * 2016-09-30 2021-09-01 ミネベアミツミ株式会社 ステータ構造及びレゾルバ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5763976A (en) * 1993-12-15 1998-06-09 Parker-Hannifin Corp. Stator wound resolver with staggered rotor
CN104184236A (zh) * 2014-09-05 2014-12-03 宁波市北仑海伯精密机械制造有限公司 用于电机的永磁体及其该永磁体的设计方法
CN206250940U (zh) * 2015-11-13 2017-06-13 Ls汽车电子株式会社 旋转变压器
CN208608878U (zh) * 2018-06-29 2019-03-15 广东威灵电机制造有限公司 旋转变压器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3799277A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115443401A (zh) * 2020-04-09 2022-12-06 三菱电机株式会社 冗余旋转变压器及搭载有冗余旋转变压器的电动助力转向装置

Also Published As

Publication number Publication date
EP3799277A1 (en) 2021-03-31
JP2021526656A (ja) 2021-10-07
JP7087199B2 (ja) 2022-06-20
US20210096000A1 (en) 2021-04-01
EP3799277A4 (en) 2021-07-28
US11578998B2 (en) 2023-02-14

Similar Documents

Publication Publication Date Title
US9515528B2 (en) Permanent magnet rotary electric machine
US8519593B2 (en) Brushless motor with low cogging torque
CN106441081B (zh) 无转子绕组的时栅角位移传感器
WO2020001552A1 (zh) 旋转式变压器
CN102930966B (zh) 一种无刷线性旋转变压器
KR20170056313A (ko) 레졸버
CN208608878U (zh) 旋转变压器
CN202816634U (zh) 一种无刷线性旋转变压器
CN105281449B (zh) 利用非均匀定子槽抑制永磁同步电机齿槽转矩的方法
CN110661392B (zh) 旋转式变压器
CN208272823U (zh) 旋转式变压器
CN206790229U (zh) 一种高效低噪音定子冲片
CN110277889B (zh) 一种定子永磁式旋转变压器
CN109950035B (zh) 单对极绕线式旋转变压器绕组配合与线匝选择方法
CN102906543B (zh) 可变磁阻式旋转变压器
CN104200975A (zh) 单层信号绕组径向磁路旋转变压器及信号绕组绕线方法
JP2014131480A (ja) 回転機
JP2008017657A (ja) 直流モータ及びその製造方法
JP5758835B2 (ja) バリアブルリラクタンス型レゾルバの設計方法
JP6650188B2 (ja) レゾルバ
JP5777869B2 (ja) 回転電機
CN206401166U (zh) 旋转变压器
CN104200969B (zh) 单层信号绕组轴向磁路多极旋转变压器及绕组绕线方法
CN203573808U (zh) 定子与转子槽13/16配合的小尺寸旋转变压器
CN107340002B (zh) 一种小惯量有限角度传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19826357

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021518842

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019826357

Country of ref document: EP

Effective date: 20201222