WO2020001361A1 - 射频脉冲匹配方法及其装置、脉冲等离子体产生系统 - Google Patents

射频脉冲匹配方法及其装置、脉冲等离子体产生系统 Download PDF

Info

Publication number
WO2020001361A1
WO2020001361A1 PCT/CN2019/092075 CN2019092075W WO2020001361A1 WO 2020001361 A1 WO2020001361 A1 WO 2020001361A1 CN 2019092075 W CN2019092075 W CN 2019092075W WO 2020001361 A1 WO2020001361 A1 WO 2020001361A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
matching
radio frequency
matcher
threshold value
Prior art date
Application number
PCT/CN2019/092075
Other languages
English (en)
French (fr)
Inventor
成晓阳
韦刚
卫晶
柏锦枝
杨京
Original Assignee
北京北方华创微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京北方华创微电子装备有限公司 filed Critical 北京北方华创微电子装备有限公司
Priority to KR1020207036461A priority Critical patent/KR102251093B1/ko
Priority to JP2020572768A priority patent/JP7085655B2/ja
Publication of WO2020001361A1 publication Critical patent/WO2020001361A1/zh
Priority to US17/134,113 priority patent/US11056316B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32146Amplitude modulation, includes pulsing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/327Arrangements for generating the plasma

Definitions

  • the invention belongs to the technical field of semiconductor processing, and particularly relates to a radio frequency pulse matching method, a radio frequency pulse device and a pulse plasma generating system.
  • pulsed plasma equipment used for silicon etching processes usually uses the principle of Inductively Coupled Plasma (ICP).
  • ICP Inductively Coupled Plasma
  • the RF power is supplied by the RF power to the chamber under ionized high vacuum conditions.
  • Special gas which generates a plasma containing a large number of active particles such as electrons, ions, excited atoms, molecules, and free radicals.
  • active particles and the wafer placed in the cavity and exposed to the plasma environment are complicated.
  • the interaction between the wafer material surface causes various physical and chemical reactions, thereby changing the surface properties of the wafer and completing the wafer etching process.
  • Pulsed plasma technology is used to reduce plasma induced damage (Plasma Induced Damage, PID for short) caused by continuous wave radio frequency energy, improve loading effect in the etching process, and significantly increase the selectivity of etching , And increase the process adjustment means and window, so the design of the pulsed plasma source is very critical.
  • PID plasma induced damage
  • a pulse-type inductively coupled plasma device is used in an etching process of a large-sized wafer (300 mm or more in diameter).
  • the pulse-type inductively coupled plasma device includes a reaction chamber 1, an electrostatic chuck located inside the reaction chamber 1, a dielectric window 4 on the top of the reaction chamber 1, an inductive coupling coil 3 placed on the top of the dielectric window 4, and an inductor.
  • the coupling coil 3 includes an inner coil 31 and an outer coil 32.
  • the electrostatic chuck 2 is electrically connected to the lower matcher 9 and the lower RF power source 10, and a wafer 5 is mounted on the electrostatic chuck 2.
  • the upper RF power source 7 outputs energy to the inner coil 31 and the outer coil 32 through an upper matcher 7 having a current distribution function, respectively.
  • the upper RF power supply 7 and the lower RF power supply 10 have a power supply device for generating a pulsed RF signal.
  • a pulse synchronization line 12 (pulse signal phase difference control line) is connected between the two power supplies. The entire system is loaded with a pulsed RF signal into the chamber.
  • a pulse-type plasma 6 is generated and acts on the wafer 5 to realize an etching process.
  • FIG. 2 shows a typical dual-coil inductively coupled plasma device.
  • the upper RF power source 8 is connected to the current distribution unit 70 through the upper matcher 7 and outputs energy to the inner coil 31 and the outer coil 32 respectively.
  • the radio frequency energy ionizes the gas input from the nozzle 11, thereby generating
  • the plasma 6 acts on the wafer 5 to perform a process.
  • the upper RF power source 8 and the lower RF power source 10 are pulsed RF power sources that output pulsed RF signals.
  • a pulse synchronization line 12 is connected between the two power sources. This equipment uses pulse technology to output radio frequency energy to the chamber, reducing plasma damage and improving process performance.
  • the pulse application method is that the upper electrode system (including the upper RF power supply 8, the upper matcher 7 and the current distribution unit 70) uses pulse wave radio frequency energy, and the lower electrode system (including the lower RF power supply 10 and lower matcher 9) also uses pulse wave RF energy, and the frequency of the RF energy loaded on the upper and lower electrodes are equal, the phases of the RF waveforms are synchronized, and the pulse frequency and duty cycle of the RF energy are also equal.
  • the synchronization pulses of the upper and lower electrodes the particle velocity and particle temperature of the plasma are reduced to a greater extent, so that the particle energy that bombards the wafer 5 is greatly reduced, as shown in FIG. 3.
  • the time length of the pulse Pulseon (pulse on period) of the loading signal is Tm
  • the time length of Pulse off (pulse stop period) is Tn
  • the pulse duty cycle D Tm / (Tm + Tn).
  • FIG. 5 The process flow using pulse synchronization matching is shown in Figure 5, where the upper electrode pulse signal and the lower electrode pulse signal are loaded into the chamber at the same time. Due to the coupling between the upper electrode and the lower electrode pulse signals, the mutual influence causes the upper electrode impedance and the lower electrode. The impedances are constantly fluctuating. The plasma impedance will not stabilize until the upper electrode matches the glow and the lower electrode matches the glow. As shown in FIG. 4, in the pulse matching of the plasma device in FIG. 2, since the upper electrode system and the lower electrode system are simultaneously loaded with a radio frequency pulse signal to excite the plasma, and the power loading time in the pulse mode is short, the plasma is difficult to achieve.
  • the plasma changes with the two matching systems when the upper and lower electrodes are matched at the same time, the fluctuation is large, and the matching time is longer; moreover, the plasma of the chamber plasma in pulse mode is unstable and the impedance fluctuation is easy to cause The mismatch phenomenon leads to a smaller process application window of the device.
  • the technical problem to be solved by the present invention is to address the above-mentioned shortcomings in the prior art, and to provide a radio frequency pulse matching method, a radio frequency pulse device and a pulse plasma generating system, which at least partially solve the problem of slow pulse matching speed and plasma instability. problem.
  • a radio frequency pulse matching method including the following steps:
  • Step S1 preset a matching threshold value and initialize the pulse count value to a pulse reference value
  • Step S2 Pulse power is applied to the upper electrode and the lower electrode, respectively.
  • the upper electrode includes an upper radio frequency power source and an upper matching device corresponding thereto, and the lower electrode includes a lower radio frequency power source and a corresponding lower matching device;
  • Step S3 Collect pulse signals of pulse power loaded by the upper RF power source, and calculate matching parameters of the upper matcher according to the pulse signals;
  • Step S4 Determine the size of the matching parameter and the matching threshold value, and reset the pulse count value according to the size of the matching parameter and the matching threshold value;
  • Step S5. According to the consistency of the reset pulse count value and the pulse reference value, the upper matcher matches the upper radio frequency power supply or the lower matcher matches any of the lower radio frequency power supplies;
  • Step S6 Repeat steps S4 and S5 until the upper RF power supply and the lower RF power supply are matched.
  • step S4 specifically includes:
  • step S1 the pulse reference value is initialized to a first constant
  • step S4 if the matching parameter is greater than the matching threshold, reset the pulse count value to a first constant or a value equal to the first constant parity; if the matching parameter is less than Is equal to the matching threshold value, the pulse count value is reset to a second constant, the second constant is not equal to the first constant or has a different parity from the first constant;
  • step S5 if the pulse count value is equal to the pulse reference value or has the same parity as the pulse reference value, the upper matcher matches the upper RF power source; if the pulse count value If it is not equal to the pulse reference value or is different from the parity of the pulse reference value, the lower matcher matches the lower radio frequency power supply.
  • the matching threshold value includes any one of a standing wave ratio threshold value, a reflection coefficient threshold value, or an impedance threshold value of the upper matcher, and the matching parameter is the upper matching value corresponding thereto. Any of the standing wave ratio, reflection coefficient, or impedance of the matcher.
  • the matching threshold value is a standing wave ratio threshold value of the upper matcher
  • the value of the standing wave ratio threshold value ranges from 1 to 10.
  • the radio frequency signal frequency of the pulse power loaded on the upper electrode and the lower electrode is the same, the pulse signal frequency is the same, and the pulse signal duty cycle is the same.
  • a radio frequency pulse device which includes an upper electrode and a lower electrode, the upper electrode includes an upper radio frequency power source and an upper matching device corresponding thereto, and the lower electrode includes a lower radio frequency power source and a corresponding electrode.
  • a corresponding lower matching device, the upper RF power supply and the lower RF power supply are connected to a pulse synchronization line, wherein a pulse matching timing control line and a timing matching module are provided between the upper matching device and the lower matching device,
  • the timing matching module includes a preprocessing unit, a loading unit, an obtaining unit, a judgment unit, and a matching unit, wherein:
  • the preprocessing unit is configured to preset a matching threshold value and initialize a pulse count value to a pulse reference value
  • the loading unit is configured to load pulse power to the upper electrode and the lower electrode, respectively;
  • the acquiring unit is configured to collect a pulse signal of pulse power loaded by the upper RF power source, and calculate a matching parameter of the upper matcher according to the pulse signal;
  • the judging unit is configured to judge the size of the matching parameter and the matching threshold, and reset a pulse count value according to the size of the matching parameter and the matching threshold;
  • the matching unit is configured to make the upper matcher match the upper radio frequency power supply or the lower matcher match the lower radio frequency power supply according to the consistency of the reset pulse count value and the pulse reference value.
  • the judging unit judges the size of the matching parameter with respect to the matching threshold value at each rising edge of the pulse period of the upper RF power source, and judges the pulse according to the judgment result.
  • the count value is reset to be consistent or changed to be inconsistent.
  • the pre-processing unit initializes the pulse reference value to a first constant
  • the judging unit judges that the matching parameter is greater than the matching threshold, resets the pulse count value to a first constant or a value equal to the parity of the first constant; if the matching parameter is less than Is equal to the matching threshold value, the pulse count value is reset to a second constant, the second constant is not equal to the first constant or has a different parity from the first constant;
  • the matching unit causes the upper matcher to match the upper RF power source; if the pulse count value Not equal to the pulse reference value or different from the parity of the pulse reference value, the matching unit causes the lower matcher to match the lower radio frequency power supply.
  • the matching threshold value includes any one of a standing wave ratio threshold value, a reflection coefficient threshold value, or an impedance threshold value of the upper matcher;
  • the matching parameter is any one of a standing wave ratio, a reflection coefficient, or an impedance of the upper matcher corresponding thereto.
  • the matching threshold value is a standing wave ratio threshold value of the upper matcher
  • the value of the standing wave ratio threshold value ranges from 1 to 10.
  • a pulsed plasma generating system including the above-mentioned radio frequency pulse device.
  • the beneficial effect of the present invention is that the radio frequency pulse matching method, the radio frequency pulse device and the pulse plasma generating system have a fast pulse plasma matching speed, and the pulse plasma is less affected by two electrodes and has small fluctuations. Therefore, the stability is high.
  • FIG. 1 is a schematic structural diagram of a pulse-type inductively coupled plasma system in the prior art
  • FIG. 2 is a schematic structural diagram of a dual-coil inductively coupled plasma system in the prior art
  • FIG. 3 is a pulse timing diagram of the dual-coil inductively coupled plasma device in FIG. 2;
  • FIG. 4 is a timing chart of pulse signal waveform and standing wave ratio in the case of pulse synchronization in FIG. 2;
  • FIG. 5 is a process flowchart in the case of pulse synchronization in FIG. 2;
  • FIG. 6 is a flowchart of a radio frequency pulse matching method according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of a pulse matching process according to an embodiment of the present invention.
  • FIG. 9 is another timing diagram of pulse matching in the embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a pulsed plasma generation system according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of another pulsed plasma generating system according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a radio frequency pulse device according to an embodiment of the present invention.
  • 1-reaction chamber 2-electrostatic chuck; 3-inductive coupling coil; 31-inner coil; 32-outer coil; 4-dielectric window; 5-wafer; 6-plasma; 7-up matcher; 70 -Current distribution unit; 8-up RF power; 9-down matcher; 10-down RF power; 11-nozzle;
  • This embodiment provides a radio frequency pulse matching method, which is used to control the pulse timings of the upper and lower matchers to match the upper and lower RF power sources, respectively.
  • the reduction can be achieved. Impedance fluctuation, reducing the mutual interference between the two matchers, improving the pulse matching speed, effectively preventing mismatch conditions and enhancing the stability of the plasma.
  • the radio frequency pulse matching method includes the following steps:
  • Step S1 preset a matching threshold value and initialize the pulse count value to a pulse reference value
  • Step S2 Pulse power is applied to the upper electrode and the lower electrode, respectively.
  • the upper electrode includes an upper radio frequency power source and an upper matching device corresponding thereto, and the lower electrode includes a lower radio frequency power source and a corresponding lower matching device;
  • Step S3 Collect the pulse signal of the pulse power loaded by the RF power source, and calculate the matching parameters of the upper matcher according to the pulse signal;
  • Step S4. Determine the size of the matching parameter and the matching threshold, and reset the pulse count value according to the size of the matching parameter and the matching threshold.
  • Step S5 According to the consistency of the reset pulse count value and the pulse reference value, make the upper matcher match the upper RF power supply or the lower matcher match either the lower RF power supply;
  • Step S6 Repeat steps S4 and S5 until the upper RF power supply and the lower RF power supply are matched.
  • the timing of the upper matcher and the lower matcher is used to perform out-of-step pulse matching, that is, the upper matcher and the lower matcher do not perform pulse matching at the same time. For example, when the upper electrode is matched, the lower electrode maintains the previous state, otherwise, When the electrodes are matched, the upper electrode remains in the previous state. In this way, it is possible to prevent mutual coupling signals from affecting the plasma impedance fluctuation, and then the matching time.
  • step S4 at each rising edge of the pulse period of the upper RF power source, the size of the matching parameter relative to the matching threshold value is judged once, and the pulse count value is reset to be consistent or changed according to the judgment result.
  • the consistency can be the same value, or the parity of the value can be the same, of course, it can also be other properties, this is just an example without limitation. For example, resetting the pulse count value according to the judgment result remains unchanged or adding 1, or resetting the pulse count value of the judgment result keeps the same or changes to the opposite parity.
  • the key steps to achieve include:
  • step S1 the pulse reference value is a first constant
  • step S4 if the matching parameter is greater than the matching threshold value, reset the pulse count value to the first constant or the same value as the first constant parity; if the matching parameter is less than or equal to the matching threshold value, the pulse count is counted The value is reset to a second constant, the second constant is not equal to the first constant or has a different parity from the first constant;
  • step S5 if the pulse count value is equal to the pulse reference value or has the same parity with the pulse reference value, the upper matcher matches the upper RF power; if the pulse count value is not equal to the pulse reference value or the parity with the pulse reference value Different, the lower matcher matches the lower RF power.
  • the pulse count value is kept unchanged; if the matching parameter is less than or equal to the matching threshold value, the pulse count value is increased by 1;
  • the pulse count value if the pulse count value and the pulse reference value are both an even number, the upper matcher matches the upper RF power supply; if the pulse count value and the pulse reference value are both an odd number, the lower matcher matches the lower RF power supply Make a match.
  • the pulse count value is maintained. If the matching parameter is less than or equal to the matching threshold value, the pulse count value is on the rising edge of each pulse cycle of the upper RF power supply. Cycle through the operations of adding 1 and subtracting 1;
  • the pulse count value if the pulse count value and the pulse reference value are both 0, the upper matcher matches the upper RF power supply; if the pulse count value and the pulse reference value are both 1, the lower matcher matches the lower RF power supply Make a match.
  • the matching threshold includes any one of the standing wave ratio threshold, reflection coefficient threshold, or impedance threshold of the upper matcher.
  • the matching parameter is the standing wave ratio of the corresponding upper matcher ( Voltage Standing and Wave Ratio (abbreviated as VSWR), reflection coefficient or impedance. That is, the working levels of the upper and lower matchers are limited by the standing wave ratio threshold value VSWR (or the reflection coefficient ⁇ , impedance Z, etc.) and the pulse count value i.
  • the standing wave ratio threshold value VSWR, the reflection coefficient threshold value ⁇ , or the impedance threshold value ZL can be calculated through conversion by formulas (1) and (2).
  • Z0 is the characteristic impedance value, which is generally 50 ⁇ .
  • the matching threshold of VSWR ranges from 1 to 10.
  • the matching threshold of VSWR ranges from any integer between 1 and 10.
  • the threshold ZL can be calculated according to formulas (1) and (2).
  • the working level is controlled between the two matching devices, and the working level is realized by an independent algorithm program inside the matching device.
  • the standing wave ratio as the matching parameter as an example, referring to FIG. 7, the specific process flow of the RF pulse matching method in this embodiment is as follows:
  • the upper matcher starts to match after sensing the pulse signal, and judges the relationship between the standing wave ratio VSWR_1 of the upper matcher and the matching threshold VSWR_0 (generally 1-10, which indicates the plasma on-state and the impedance is relatively stable):
  • the pulse count value i is initialized to 0, and the matching timing diagram shown in FIG. 8 is described as follows:
  • pulse power is applied to the upper electrode and pulse power is applied to the lower electrode;
  • the upper matcher The working level is high level 1.
  • the working level of the upper matcher When it is 0, the upper matcher does not perform the matching action and keeps the previous state.
  • the pulse count value i is also initialized to 0, and the matching timing diagram shown in FIG. 9 is described as follows:
  • pulse power is applied to the upper electrode and pulse power is applied to the lower electrode;
  • the upper matcher working level Low level keep the previous state unchanged;
  • the working level of the lower matcher is high 1, so the lower matcher performs the matching action, so that VSWR-2 approaches VSWR-T2;
  • the working voltage of the upper matcher The level is 0, the upper matcher does not perform the matching action, and the previous state remains unchanged.
  • the synchronous pulse signals loaded on the upper electrode and the lower electrode are signals of the same frequency and duty cycle, and the synchronous triggering starts at time 0, and the high power of the pulse power is loaded on the upper electrode.
  • the matcher performs pulse matching, and the standing wave ratio VSWR_1 of the upper electrode impedance keeps approaching the target value VSWR_T1.
  • the matching is achieved at the time point T1.
  • the lower electrode is loaded with the pulse power at a high level period.
  • the matcher also performs pulse matching. After the upper electrode achieves impedance matching, the plasma stabilizes, and the standing wave ratio VSWR_2 of the lower electrode impedance continues to approach the target value VSWR_T2.
  • T2 time point After several pulse cycles, matching is achieved at the T2 time point. . It can be seen that after the pulse matching timing control method is used in this embodiment, the two matchers can achieve precise control, and the matching is realized at the T4 (or T5) time point.
  • the matching time T4 is less than or equal to the matching time T2 in the prior art, which greatly improves The matching speed.
  • the radio frequency signal frequency of the pulse power loaded on the upper electrode and the lower electrode is the same, the pulse signal frequency is the same, and the pulse signal duty cycle is the same.
  • pulse frequency 100Hz or other pulse frequency 50% duty cycle or other duty cycle.
  • the RF frequency loaded on the electrode is not limited to 13.56MHz, but also includes 400kHz, 2MHz, 27MHz, 40MHz, 60MHz, or 100MHz. It can also load more than two frequency signals, such as 2MHz and 13.56MHz.
  • this embodiment also provides a radio frequency pulse device and a pulsed plasma generating system including the radio frequency pulse device.
  • the radio frequency pulse device includes an upper electrode and a lower electrode.
  • the upper electrode includes an upper radio frequency power source and a corresponding upper matcher.
  • the lower electrode includes a lower radio frequency power source and a corresponding lower matcher.
  • the upper radio frequency power source and the lower radio frequency power source connect pulses. Synchronization line, pulse matching timing control line and timing matching module are set between the upper matcher and the lower matcher, to achieve precise timing control of matching.
  • the timing matching module here can be implemented by a program set in the upper matcher.
  • FIG. 10 is a schematic structural diagram of a pulsed plasma generating system in this embodiment.
  • the electrostatic chuck 2 is located at the lower part of the reaction chamber 1
  • the dielectric window 4 (such as ceramic material or quartz material) is located at the upper part of the reaction chamber 1.
  • gas nozzle 11 In the center of the medium window 4, there is a gas nozzle 11 through which gas (such as argon Ar, helium He, nitrogen N 2 , hydrogen H 2 , oxygen O 2 , chlorine Cl 2 , hydrogen bromide HBr, boron trichloride) BCl 3 , octafluorocyclobutane C 4 F 8 , tetrafluoromethane CF 4 , sulfur hexafluoride SF 6 and the like) pass into the chamber.
  • gas such as argon Ar, helium He, nitrogen N 2 , hydrogen H 2 , oxygen O 2 , chlorine Cl 2 , hydrogen bromide HBr, boron trichloride
  • BCl 3 octafluorocyclobutane C 4 F 8 , tetrafluoromethane CF 4 , sulfur hexafluoride SF 6 and the like
  • the inductive coupling coil 3 is composed of two sets of sub-coils of an outer coil 32 and an inner coil 31, and the two sub-coils are a planar structure located on the dielectric window 4 and perpendicular to the central axis.
  • the upper electrode RF system is an RF power supply connected to an upper matcher 7 with a current distribution function, and then connected to an inductive coupling coil 3 to output energy to the inner coil 31 and the outer coil 32, respectively.
  • the lower electrode is connected to the lower matcher 9 by a radio frequency power supply, and then connected to the electrostatic chuck 2 to realize the radio frequency power feeding of the lower electrode.
  • the wafer 5 is placed directly above the electrostatic chuck 2.
  • the upper RF power supply 8 and the lower RF power supply 10 are connected to a pulse synchronization line 12 as a pulse phase difference synchronization control.
  • a pulse matching control line 13 is connected between the upper matcher 7 and the lower matcher 9 as a pulse between the two matchers. Matching timing control.
  • the electromagnetic field formed by the upper and lower electrodes in the chamber ionizes the special gas introduced by the nozzle 11 to generate plasma 6 and then acts on the wafer 5 to realize the process.
  • the pulsed plasma generation system may have a non-nozzle structure.
  • the device consists of a reaction chamber 1, an electrostatic chuck 2 and an inductive coupling coil 3, etc.
  • the inductive coupling coil 3 is composed of an inner coil 31 and an outer coil 32, which are all located above the dielectric window 4; the electrostatic card
  • the disk 2 is located inside the reaction chamber 1 and is connected to the lower matcher 9 and the lower RF power source 10.
  • a wafer 5 is mounted on the electrostatic chuck 2.
  • the upper RF power supply 8 outputs energy to the inner coil 31 and the outer coil 32 through a dual output matcher with a current distribution function, respectively.
  • the upper RF power supply 8 and the lower RF power supply 10 have a power supply device for generating a pulsed RF signal.
  • a pulse synchronization line 12 is connected between the two power supplies, and a pulse matching control line 13 is connected between the two matchers.
  • the entire system is loaded with pulses.
  • the radio frequency signal generates a pulsed plasma 6 into the chamber, and acts on the wafer 5 to realize an etching process.
  • the pulsed plasma generating system in FIG. 10 and FIG. 11 both adopt a radio frequency pulse device.
  • the timing matching module in the radio frequency pulse device includes a preprocessing unit 14, an obtaining unit 15, a judging unit 16, and a matching unit. Unit 17 and loading unit 18.
  • the specific structure of the radio frequency pulse device includes:
  • the preprocessing unit 14 is configured to preset a matching threshold value and initialize a pulse count value to a pulse reference value;
  • a loading unit 18 for loading pulse power to the upper electrode and the lower electrode, respectively;
  • the obtaining unit 15 is configured to collect a pulse signal of pulse power loaded by an RF power source, and calculate a matching parameter of an upper matcher according to the pulse signal;
  • the judging unit 16 is configured to judge the size of the matching parameter and the matching threshold value, and reset the pulse count value according to the size of the matching parameter and the matching threshold value;
  • the matching unit 17 is configured to make the upper matcher match the upper radio frequency power supply or the lower matcher match the lower radio frequency power supply according to the consistency of the reset pulse count value and the pulse reference value.
  • the judging unit 16 judges the size of the matching parameter relative to the matching threshold value at each rising edge of the pulse period of the radio frequency power supply, and resets the pulse count value to be consistent or changed to be inconsistent according to the judgment result. .
  • the preprocessing unit 14 initializes the pulse reference value to a first constant
  • the pulse count value is reset to the first constant or the same value as the first constant parity; if the matching parameter is less than or equal to the matching threshold value, the pulse count value is reset Reset to a second constant, the second constant is not equal to the first constant or has a different parity from the first constant;
  • the matching unit 17 causes the upper matcher to match the upper RF power; if the pulse count value is not equal to the pulse reference value or the parity with the pulse reference value Different, the matching unit 17 makes the lower matcher match the lower radio frequency power supply.
  • the matching threshold includes any one of a standing wave ratio threshold, a reflection coefficient threshold, or an impedance threshold of the upper matcher 7.
  • the matching parameter is Any one of the standing wave ratio, the reflection coefficient, or the impedance of the upper matcher 7 corresponding thereto.
  • the range of the matching threshold of VSWR is 1 to 10, more preferably the range of the matching threshold of VSWR is any integer between 1 and 10, and the reflection coefficient threshold ⁇
  • the impedance threshold value ZL can be calculated according to the above formulas (1) and (2), and is not repeated here.
  • the radio frequency signal of the pulse power loaded by the upper electrode and the lower electrode in the radio frequency pulse device has the same frequency, the pulse signal frequency is the same, and the pulse signal duty cycle is the same.
  • the upper and lower matchrs working simultaneously will cause the continuous fluctuation of the impedance.
  • the effect of the simultaneous operation of two matchers the plasma impedance fluctuates greatly, the matching time of the upper matcher and the lower matcher is relatively long, and the matching is achieved at T2 time.
  • the radio frequency pulse device of this embodiment by adding a pulse matching timing control line between the two matchers, the actions of the two matchers are accurately controlled. The actions of the upper matcher and the lower matcher are performed independently.
  • the influence of other electrode matching reduces the mutual interference between the two, the matching speed is faster, and the occurrence of mismatching is prevented, and the stability of the process is enhanced.
  • the matching speed is fast, the matching stability is good, the plasma stability is high, and the risk of the matcher mismatch is greatly reduced, which is beneficial to the expansion of the hardware window and the stability of the process.
  • the radio frequency pulse matching method and the radio frequency pulse device of the present invention have the following two prominent beneficial effects:
  • Pulse plasma matching speed is fast
  • the pulsed plasma is less affected by the two electrodes and has less fluctuation, so it has high stability.
  • the radio frequency pulse matching method and the radio frequency pulse device of the present invention also include other examples derived from it, such as: the upper electrode of the plasma system can be a multi-plane or three-dimensional coil group structure; and the pulse plasma generating device is also applicable.
  • the machine is not limited, and can be used in ICP equipment, CCP (Capacitively Coupled Plasma) equipment and other equipment.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

本发明属于半导体加工技术领域,具体涉及射频脉冲匹配方法、射频脉冲装置和脉冲等离子体产生系统。该射频脉冲匹配方法,包括S1、预设匹配门限值,以及将脉冲计数值初始化为脉冲参考值;S2、分别向上电极和下电极加载脉冲功率;S3、采集上射频电源的脉冲信号,并计算匹配参数;S4、判断匹配参数与匹配门限值的大小,并根据匹配参数与匹配门限值的大小设置脉冲计数值;S5、根据脉冲计数值与脉冲参考值的一致性,使得上匹配器对上射频电源进行匹配或下匹配器对下射频电源任一进行匹配;S6、重复S4和S5,直至上射频电源和下射频电源均实现匹配。该射频脉冲匹配方法及其装置,具有较快的脉冲等离子体匹配速度,而且脉冲等离子体受两个电极的影响小,稳定性高。

Description

射频脉冲匹配方法及其装置、脉冲等离子体产生系统 技术领域
本发明属于半导体加工技术领域,具体涉及一种射频脉冲匹配方法、射频脉冲装置和脉冲等离子体产生系统。
背景技术
半导体装备中,用于硅刻蚀工艺的脉冲等离子体(pulsing plasma)设备通常应用电感耦合等离子体(Inductively Coupled Plasma,简称ICP)原理,由射频电源提供射频能量到腔室中电离高真空状态下的特殊气体,产生含有大量的电子、离子、激发态的原子、分子和自由基等活性粒子的等离子体,这些活性粒子和置于腔体并曝露在等离子体环境下的晶圆之间发生复杂的相互作用,使晶圆材料表面发生各种物理和化学反应,从而使晶圆表面性能发生变化,完成晶圆的刻蚀工艺过程。
随着集成电路的进一步发展,原有的技术方案已无法满足20nm及以下刻蚀工艺的要求,而脉冲等离子体新技术的应用则实现了微细化工艺上的突破。脉冲等离子体技术用于减小连续波射频能量带来的等离子体诱导损伤(Plasma Induced Damage,简称PID),改善刻蚀工艺中的负载效应(loading effect),显著提高刻蚀选择比(Selectivity),并且增大了工艺调节手段和窗口,因此对于脉冲等离子体源的设计则是非常关键。
如图1所示为一种用于大尺寸晶圆(直径大于等于300mm)的刻蚀工艺中的脉冲型电感耦合等离子体设备。该脉冲型电感耦合等离子体设备包括反应腔室1、位于反应腔室1内部的静电卡盘2、位于反应腔室1顶部的介质窗4、放置在介质窗4顶部的电感耦合线圈3,电感耦合线圈3包括内线圈31和外线圈32。静电卡盘2与下匹配器9和下射频电源10电连接,静电卡盘2上安装晶圆5。上射频电源7通过具有电流分配功能的上匹配器7将能量分别输出至内线圈31和外线圈32上。其中上射频电源7和下射频电源10具有产生脉冲射频信号的电源装置,两个电源之间有脉冲同步线12(脉冲信号相位差控制线)连接,整个系统通过加载脉冲射频信号到腔室中产生脉冲型等离子体6,作用于晶圆5上,实现刻蚀工艺。
如图2所示为一种典型的双线圈电感耦合等离子体设备。其中,与图1不同的是,上射频电源8通过上匹配器7再连接电流分配单元70将能量分别输出到内线圈31和外线圈32上,射频能量将喷嘴11输入的气体电离,从而产生等离子体6,作用于晶圆5上进行工艺。上射频电源8和下射频电源10为输出脉冲型射频信号的脉冲射频电源,两个电源之间有脉冲同步线12连接。该设备采用脉冲技术输出射频能量到腔室,实现等离子体损伤的减小和工艺性能改善。脉冲应用方式为上电极系统(包括上射频电源8、上匹配器7和电流分配单元70)采用脉冲波射频能量,同时下电极系统(包括下射频电源10和下匹配器9)也采用脉冲波射频能量,而且上、下电极加载的射频能量频率相等,射频波形的相位同步,射频能量的脉冲频率和占空比也相等。通过上、下电极的同步脉冲,更大限度的减小了等离子体的粒子速度和粒子温度,使得轰击晶圆5的粒子能量大大减小,如图3所示。其中,加载信号的脉冲Pulse on(脉冲开启周期)的时间长度为Tm,Pulse off(脉冲停止周期)的时间长度为Tn,脉冲频率为f=1/(Tm+Tn),脉冲占空比D=Tm/(Tm+Tn)。
应用脉冲同步匹配的工艺流程见图5,其中上电极脉冲信号和下电极脉冲信号同时加载到腔室,由于上电极和下电极脉冲信号之间存在耦合,其相互影响导致上电极阻抗和下电极阻抗均在不断波动状态下,直到上电极实现起辉匹配和下电极起辉匹配后等离子体阻抗才会稳定下来。如图4所示,图2的等离子体设备的脉冲匹配中,由于上电极系统和下电极系统同时加载射频脉冲信号激发等离子体,而脉冲模式下功率加载时间较短,等离子体较难实现起辉,而且上电极和下电极同时匹配时等离子体随着两个匹配系统而变化,波动较大,匹配时间较长;而且,腔室等离子体在脉冲模式的等离子体不稳定和阻抗波动容易造成失配现象,导致设备的工艺应用窗口较小。
可见,设计一种具有较佳的射频脉冲匹配方式,提高脉冲匹配速度,增强等离子体稳定性成为目前亟待解决的技术问题。
发明内容
本发明所要解决的技术问题是针对现有技术中存在的上述不足,提供一种射频脉冲匹配方法、射频脉冲装置和脉冲等离子体产生系统,至少部分解决脉冲匹配速度慢,等离子体不稳定性的问题。
本发明的第一方面,提供了一种射频脉冲匹配方法,包括以下步骤:
步骤S1、预设匹配门限值,以及将脉冲计数值初始化为脉冲参考值;
步骤S2、分别向上电极和下电极加载脉冲功率,所述上电极包括上射频电源和与之对应的上匹配器,所述下电极包括下射频电源和与之对应的下匹配器;
步骤S3、采集所述上射频电源所加载的脉冲功率的脉冲信号,并根据该脉冲信号计算所述上匹配器的匹配参数;
步骤S4、判断所述匹配参数与所述匹配门限值的大小,并根据所述匹配参数与所述匹配门限值的大小重新设置脉冲计数值;
步骤S5、根据重新设置后的脉冲计数值与所述脉冲参考值的一致性,使得上匹配器对所述上射频电源进行匹配或下匹配器对下射频电源任一进行匹配;
步骤S6、重复步骤S4和步骤S5,直至所述上射频电源和所述下射频电源均实现匹配。
优选的是,步骤S4具体包括:
在所述上射频电源的每个脉冲周期上升沿,均对所述匹配参数相对于所述匹配门限值的大小进行一次判断,并根据判断结果将所述脉冲计数值重新设置为保持一致或改为不一致。
优选的是,在步骤S1中:初始化所述脉冲参考值为第一常数;
在步骤S4中:若所述匹配参数大于所述匹配门限值,则将所述脉冲计数值重新设置为第一常数或与所述第一常数奇偶性相同的数值;若所述匹配参数小于等于所述匹配门限值,则将所述脉冲计数值重新设置为第二常数,所述第二常数不等于所述第一常数或与所述第一常数具有不同的奇偶性;
在步骤S5中:若所述脉冲计数值等于所述脉冲参考值或与所述脉冲参考值的奇偶性相同,则所述上匹配器对所述上射频电源进行匹配;若所述脉冲计数值不等于所述脉冲参考值或与所述脉冲参考值的奇偶性不同,则所述下匹配器对所述下射频电源进行匹配。
优选的是,所述匹配门限值包括所述上匹配器的驻波比门限值、反射系数门限值或阻抗门限值中的任一个,所述匹配参数为与其对应的所述上匹配器的驻波比、反射系数或阻抗中的任一个。
优选的是,在所述匹配门限值为所述上匹配器的驻波比门限值时,所述驻波比门限值的取值范围为1~10。
优选的是,所述上电极和所述下电极上所加载的脉冲功率的射频信号频率相 同,脉冲信号频率相同,并且脉冲信号占空比相同。
本发明的第二方面,提供了一种射频脉冲装置,包括上电极和下电极,所述上电极包括上射频电源和与之对应的上匹配器,所述下电极包括下射频电源和与之对应的下匹配器,所述上射频电源和所述下射频电源连接脉冲同步线,其中,所述上匹配器与所述下匹配器之间设置有脉冲匹配时序控制线和时序匹配模组,所述时序匹配模组包括预处理单元、加载单元、获取单元、判断单元和匹配单元,其中:
所述预处理单元,用于预设匹配门限值,以及将脉冲计数值初始化为脉冲参考值;
所述加载单元,用于分别向所述上电极和所述下电极加载脉冲功率;
所述获取单元,用于采集所述上射频电源所加载的脉冲功率的脉冲信号,并根据该脉冲信号计算所述上匹配器的匹配参数;
所述判断单元,用于判断所述匹配参数与所述匹配门限值的大小,并根据所述匹配参数与所述匹配门限值的大小重新设置脉冲计数值;
所述匹配单元,用于根据重新设置后的脉冲计数值与所述脉冲参考值的一致性,使得上匹配器对所述上射频电源进行匹配或下匹配器对下射频电源进行匹配。
优选的是,所述判断单元在所述上射频电源的每个脉冲周期上升沿,均对所述匹配参数相对于所述匹配门限值的大小进行一次判断,并根据判断结果将所述脉冲计数值重新设置为保持一致或改为不一致。
优选的是,所述预处理单元初始化所述脉冲参考值为第一常数;
若所述判断单元判断所述匹配参数大于所述匹配门限值,则将所述脉冲计数值重新设置为第一常数或与所述第一常数奇偶性相同的数值;若所述匹配参数小于等于所述匹配门限值,则将所述脉冲计数值重新设置为第二常数,所述第二常数不等于所述第一常数或与所述第一常数具有不同的奇偶性;
若所述脉冲计数值等于所述脉冲参考值或与所述脉冲参考值的奇偶性相同,则所述匹配单元使得所述上匹配器对所述上射频电源进行匹配;若所述脉冲计数值不等于所述脉冲参考值或与所述脉冲参考值的奇偶性不同,则所述匹配单元使得所述下匹配器对所述下射频电源进行匹配。
优选的是,在所述预处理单元中,所述匹配门限值包括所述上匹配器的驻波比门限值、反射系数门限值或阻抗门限值中的任一个;
在所述获取单元中,所述匹配参数为与其对应的所述上匹配器的驻波比、反 射系数或阻抗中的任一个。
优选的是,在所述匹配门限值为所述上匹配器的驻波比门限值时,所述驻波比门限值的取值范围为1~10。
本发明的第三方面,提供了一种脉冲等离子体产生系统,包括上述的射频脉冲装置。
本发明的有益效果是:该射频脉冲匹配方法及其射频脉冲装置、脉冲等离子体产生系统,具有较快的脉冲等离子体匹配速度,而且脉冲等离子体受两个电极的影响较小,波动小,因此稳定性高。
附图说明
图1为现有技术中一种脉冲型电感耦合等离子体系统的结构示意图;
图2为现有技术中一种双线圈电感耦合等离子体系统的结构示意图;
图3为图2中双线圈电感耦合等离子体装置的脉冲时序图;
图4为图2中脉冲同步的情况下脉冲信号波形和驻波比时序图;
图5为图2中脉冲同步的情况下的工艺流程图;
图6为本发明实施例中射频脉冲匹配方法的流程图;
图7为本发明实施例中脉冲匹配的工艺流程图;
图8为本发明实施例中脉冲匹配的一种时序图;
图9为本发明实施例中脉冲匹配的另一种时序图;
图10为本发明实施例中一种脉冲等离子体产生系统的结构示意图;
图11为本发明实施例中另一种脉冲等离子体产生系统的结构示意图;
图12为本发明实施例中射频脉冲装置结构示意图;
附图标示中:
1-反应腔室;2-静电卡盘;3-电感耦合线圈;31-内线圈;32-外线圈;4-介质窗;5-晶圆;6-等离子体;7-上匹配器;70-电流分配单元;8-上射频电源;9-下匹配器;10-下射频电源;11-喷嘴;
12-脉冲同步线;13-脉冲匹配控制线;
14-预处理单元;15-获取单元;16-判断单元;17-匹配单元。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明射频脉冲匹配方法、射频脉冲装置和脉冲等离子体产生系统作进一步详细描述。
本实施例提供一种射频脉冲匹配方法,用于控制上匹配器和下匹配器分别匹配上射频电源和下射频电源的脉冲时序,通过对上电极和下电极的匹配器时序进行控制,达到减少阻抗波动,减少两个匹配器之间的相互干扰,提高脉冲匹配速度,有效防止失配情况以及增强等离子体稳定性的目的。
本实施例的射频脉冲匹配方法及其射频脉冲装置中,为了防止两个电极之间脉冲匹配的相互干扰,技术构思遵循如下规律:
1)上电极实现脉冲匹配,形成稳定的等离子体后,才可开始下电极的脉冲匹配。因为如果上电极未能达到匹配,此时等离子体不稳定,下电极阻抗波动受到影响较大,较难实现起辉和匹配。
2)上电极匹配后等离子体达到稳定状态,此时下电极的起辉过程依然会影响上电极等离子体阻抗并引发波动,因此上匹配器持续匹配中,同时下匹配器也在匹配中,两者都会带来阻抗的持续波动,由于波动叠加,因此其匹配时间大于各自单独的匹配时间。通过在两个匹配器之间设置脉冲匹配时序控制线,可以实现两者之间的实时通讯和择一匹配控制。
如图6所示,本发明在控制上匹配器和下匹配器的时序以进行错步脉冲匹配动作的过程中,该射频脉冲匹配方法包括以下步骤:
步骤S1、预设匹配门限值,以及将脉冲计数值初始化为脉冲参考值;
步骤S2、分别向上电极和下电极加载脉冲功率,上电极包括上射频电源和与之对应的上匹配器,下电极包括下射频电源和与之对应的下匹配器;
步骤S3、采集上射频电源所加载的脉冲功率的脉冲信号,并根据该脉冲信号计算上匹配器的匹配参数;
步骤S4、判断匹配参数与匹配门限值的大小,并根据匹配参数与匹配门限值的大小重新设置脉冲计数值;
步骤S5、根据重新设置后的脉冲计数值与脉冲参考值的一致性,使得上匹配器对上射频电源进行匹配或下匹配器对下射频电源任一进行匹配;
步骤S6、重复步骤S4和步骤S5,直至上射频电源和下射频电源均实现匹配。
上匹配器和下匹配器的时序以进行错步脉冲匹配,即上匹配器和下匹配器不同时进行脉冲匹配动作,例如,在上电极进行匹配时,下电极保持前一状态,反之,当下电极进行匹配时,上电极保持前一状态,这样,能够防止相互耦合信号影响等离子体阻抗波动,进而影响匹配时间。
其中,在步骤S4中:在上射频电源的每个脉冲周期上升沿,均对匹配参数相对于匹配门限值的大小进行一次判断,并根据判断结果将脉冲计数值重新设置为保持一致或改为不一致。这里的一致性可以为数值相同,也可以为数值的奇偶性相同,当然也可以为其他的性质,这里仅作示例而不做限定。例如,根据判断结果重新设置脉冲计数值保持不变或加1,或判断结果重新设置脉冲计数值的奇偶性保持不变或变为相反的奇偶性。
在匹配过程中,实现的关键步骤包括:
在步骤S1中:脉冲参考值为第一常数;
在步骤S4中:若匹配参数大于匹配门限值,则将脉冲计数值重新设置为第一常数或与第一常数奇偶性相同的数值;若匹配参数小于等于匹配门限值,则将脉冲计数值重新设置为第二常数,第二常数不等于第一常数或与第一常数具有不同的奇偶性;
在步骤S5中:若脉冲计数值等于脉冲参考值或与脉冲参考值的奇偶性相同,则上匹配器对上射频电源进行匹配;若脉冲计数值不等于脉冲参考值或与脉冲参考值的奇偶性不同,则下匹配器对下射频电源进行匹配。
以下将进行两个简单的示例说明:
首先初始化脉冲参考值为0;
在计算得到匹配参数后,若匹配参数大于匹配门限值,则保持脉冲计数值不变,若匹配参数小于等于匹配门限值,则脉冲计数值加1;
然后,根据脉冲计数值:若脉冲计数值与脉冲参考值同为偶数,则上匹配器对上射频电源进行匹配;若脉冲计数值与脉冲参考值同为奇数,则下匹配器对下射频电源进行匹配。
或者,
首先初始化脉冲参考值为0;
在计算得到匹配参数后,若匹配参数大于匹配门限值,则保持脉冲计数值不变,若匹配参数小于等于匹配门限值,则脉冲计数值在上射频电源的每个脉冲周期 上升沿依次循环进行加1和减1的操作;
然后,根据脉冲计数值:若脉冲计数值与脉冲参考值同为0,则上匹配器对上射频电源进行匹配;若脉冲计数值与脉冲参考值同为1,则下匹配器对下射频电源进行匹配。
其中,匹配门限值包括上匹配器的驻波比门限值、反射系数门限值或阻抗门限值中的任一个,相应的,匹配参数为与其对应的上匹配器的驻波比(Voltage Standing Wave Ratio,简称VSWR)、反射系数或阻抗中的任一个。即上匹配器和下匹配器的工作电平受到驻波比门限值VSWR(或者反射系数Γ,阻抗Z等)和脉冲计数值i的限制。这里,驻波比门限值VSWR、反射系数门限值Γ或阻抗门限值ZL之间可通过公式(1)、(2)进行转换计算得到。
其中:
VSWR=(1+|Γ|)/(1-|Γ|)      (1)
Γ=(ZL-Z0)/(ZL+Z0)         (2)
其中Z0为特征阻抗值,一般为50Ω。
通常情况下,VSWR的匹配门限值的取值范围为1~10,优选地VSWR的匹配门限值的取值范围为1~10之间的任一个整数,反射系数门限值Γ或阻抗门限值ZL可根据公式(1)、(2)计算得到。
在上电极和下电极脉冲同步(Pulsing synchronize)的匹配中,两个匹配器之间受工作电平的控制,工作电平由匹配器内部的独立算法程序实现。以驻波比作为匹配参数作为示例,参考图7,本实施例中射频脉冲匹配方法的具体工艺流程如下:
上匹配器感应到脉冲信号后开始匹配,判断上匹配器的驻波比VSWR_1与匹配门限值VSWR_0(一般为1~10,表示等离子体起辉状态,阻抗比较稳定)的关系:
Case1:如果VSWR_1大于门限值VSWR_0,则上匹配器的工作电平为高电平1,上匹配器进行匹配,脉冲计数值i保持不变,仍为i=0,脉冲计数值i在上射频电源的每个脉冲周期上升沿都需要判断一次,是保持不变还是增加1;同时下匹配器工作电平为低电平0,保持当前状态不进行匹配;
Case2:如果VSWR_1小于等于门限值VSWR_0,则脉冲计数值i在每个脉冲周期上升沿都增加1或者循环进行增加1或减1动作,当脉冲计数值i为偶数时(包含0),上匹配器工作电平为高电平1,进行上匹配器匹配动作,而下匹配器工作 电平为低电平0,则下匹配器保持前一状态不变;当脉冲计数值i为奇数时,上匹配器工作电平为低电平0,上匹配器保持前一状态不变,而下匹配器工作电平为1,下匹配器执行匹配动作。由于每次匹配时的等离子体不会受到另一个电极匹配器引发的阻抗波动影响,仅工作电平为高电平的匹配器在进行阻抗匹配,因此匹配速度会比较快。
将脉冲计数值i初始化为0,现对图8所示的匹配时序图说明如下:
1)从时间0开始,上电极加载脉冲功率,下电极加载脉冲功率;
2)在脉冲周期1,上匹配器感应到脉冲信号后,判断上电极驻波比VSWR_1大于门限值VSWR_0,因此脉冲计数值i=0,脉冲计数值与脉冲参考值奇偶性相同,此时上匹配器工作电平为高电平1,因此上匹配器执行匹配动作,上电极的驻波比从VSWR_1不断逼近匹配点VSWR_T1;同时,在脉冲周期1中,下匹配器工作电平为低电平0,因此下匹配器保持前一状态不变;
3)在脉冲周期2,上匹配器判断驻波比VSWR_1大于门限值VSWR_0,脉冲计数值保持不变,仍为i=0,脉冲计数值与脉冲参考值奇偶性相同,此时上匹配器工作电平为高电平1,继续执行匹配动作,在时间T3实现匹配(VSWR-1=VSWR-T1);同时,下匹配器工作电平为低电平0,因此保持前一状态不变;
4)在脉冲周期3,上匹配器判断驻波比VSWR_1小于等于门限值VSWR_0,脉冲计数值i=1,脉冲计数值与脉冲参考值奇偶性不相同,此时上匹配器的工作电平为0,不执行匹配动作,上匹配器保持前一状态不变;同时,由于脉冲计数值i=1,下匹配器工作电平为高电平1,因此下匹配器执行匹配动作,使得VSWR-2趋近于VSWR-T2;
5)在脉冲周期4,上匹配器判断驻波比VSWR_1小于等于门限值VSWR_0,脉冲计数值i=2,脉冲计数值与脉冲参考值奇偶性相同,此时上匹配器的工作电平为1,上匹配器执行匹配动作;同时,由于脉冲计数值i=2,下匹配器工作电平为低电平0,因此下匹配器不执行匹配动作,保持前一状态不变;
6)在脉冲周期5,上匹配器判断驻波比VSWR_1小于等于门限值VSWR_0,脉冲计数值i=3,脉冲计数值与脉冲参考值奇偶性不相同,此时上匹配器的工作电平为0,上匹配器不执行匹配动作,保持前一状态不变;同时,由于脉冲计数值i=3,下匹配器工作电平为高电平1,因此下匹配器执行匹配动作,并在时间T4实现阻 抗匹配(VSWR-2=VSWR-T2);
7)如此,后续脉冲周期不断循环判断进行匹配,保持阻抗稳定,直到完成工艺后结束匹配。
又如,同样将脉冲计数值i初始化为0,对图9所示的匹配时序图说明如下:
1)从时间0开始,上电极加载脉冲功率,下电极加载脉冲功率;
2)在脉冲周期1,上匹配器感应到脉冲信号后,判断上电极阻抗驻波比VSWR-1小于门限值VSWR-0,脉冲计数值i=0,脉冲计数值与脉冲参考值相等,此时上匹配器工作电平为高电平1,因此上匹配器执行匹配动作,上电极的阻抗驻波比从VSWR-1不断逼近并达到匹配点VSWR-T1;同时,下匹配器工作电平为低电平0,下匹配器不执行匹配动作,因此保持前一状态不变;
3)在脉冲周期2,上匹配器判断驻波比VSWR-1小于门限值VSWR-0,脉冲计数值i=1,脉冲计数值与脉冲参考值不相等,此时上匹配器工作电平为低电平0,保持前一状态不变;同时,下匹配器工作电平为高电平1,因此下匹配器执行匹配动作,使得VSWR-2趋近于VSWR-T2;
4)在脉冲周期3,上匹配器判断驻波比VSWR-1小于门限值VSWR-0,脉冲计数值i=0,脉冲计数值与脉冲参考值相等,此时上匹配器的工作电平为1,上匹配器执行匹配动作;同时,由于脉冲计数值i=2,下匹配器工作电平为低电平0,因此下匹配器不执行匹配动作,保持前一状态不变;
5)在脉冲周期4,上匹配器判断驻波比VSWR-1小于门限值VSWR-0,脉冲计数值i=1,脉冲计数值与脉冲参考值不相等,此时上匹配器的工作电平为0,上匹配器不执行匹配动作,保持前一状态不变;同时,由于脉冲计数值i=3,下匹配器工作电平为高电平1,因此下匹配器执行匹配动作,并在时间T5实现阻抗匹配(VSWR-2=VSWR-T2);
6)如此,后续脉冲周期不断循环判断进行匹配,保持阻抗稳定,直到完成工艺后结束匹配。
相比而言,在现有技术的图4中,上电极和下电极加载的同步脉冲信号为相同频率和占空比的信号,在时间0开始同步触发,在上电极加载脉冲功率的高电平时段上匹配器进行脉冲匹配,上电极阻抗的驻波比VSWR_1不断趋近于目标值VSWR_T1,经过若干脉冲周期后在T1时间点实现匹配;同时下电极同步加载脉冲功率的高电平时段下匹配器也进行脉冲匹配,在上电极实现阻抗匹配后等离子体趋 于稳定,下电极阻抗的驻波比VSWR_2也在不断趋近于目标值VSWR_T2,再经过若干脉冲周期后在T2时间点实现匹配。可见,本实施例中采用脉冲匹配时序控制方式后,两个匹配器可以实现精确控制,在T4(或T5)时间点实现匹配,匹配时间T4小于等于现有技术中的匹配时间T2,大大提高了匹配速度。
优选的是,上电极和下电极上所加载的脉冲功率的射频信号频率相同,脉冲信号频率相同,并且脉冲信号占空比相同。如脉冲频率100Hz或其它脉冲频率,占空比50%或其它占空比。电极加载的射频频率不限于13.56MHz,也包含400kHz、2MHz、27MHz、40MHz、60MHz或100MHz等高频频率;同时也可以加载两个以上的频率信号,如2MHz和13.56MHz等。
相应的,本实施例还提供一种射频脉冲装置,和包括该射频脉冲装置的脉冲等离子体产生系统。该射频脉冲装置包括上电极和下电极,上电极包括上射频电源和与之对应的上匹配器,下电极包括下射频电源和与之对应的下匹配器,上射频电源和下射频电源连接脉冲同步线,上匹配器与下匹配器之间设置有脉冲匹配时序控制线和时序匹配模组,实现匹配的精确时序控制。这里的时序匹配模组可以以设置在上匹配器中的程序方式实现。
图10为本实施例中脉冲等离子体产生系统的一种结构示意图。从图10中可见,在等离子体腔室中,静电卡盘2位于反应腔室1下部,介质窗4(如陶瓷材料或石英材料)位于反应腔室1上部。介质窗4中心有气路喷嘴11,通过喷嘴11将气体(如氩气Ar、氦气He、氮气N 2、氢气H 2、氧气O 2、氯气Cl 2、溴化氢HBr、三氯化硼BCl 3、八氟环丁烷C 4F 8、四氟甲烷CF 4、六氟化硫SF 6等)通入腔室。射频能量将喷嘴11输入的气体电离,从而产生等离子体6,作用于晶圆5上进行工艺。电感耦合线圈3由外线圈32和内线圈31两组子线圈组成,两个子线圈为位于介质窗4上的垂直于中心轴的平面结构。上电极射频系统为射频电源连接具有电流分配功能的上匹配器7,再连接电感耦合线圈3,将能量分别输出到内线圈31和外线圈32上。下电极由射频电源连接下匹配器9,再连接静电卡盘2,实现下电极的射频功率馈入,晶圆5放置在静电卡盘2正上方。上射频电源8和下射频电源10连接脉冲同步线12,作为脉冲相位差同步控制;同时上匹配器7和下匹配器9之间连接脉冲匹配控制线13,作为两个匹配器之间的脉冲匹配时序控制。上下电极在腔室内形成的电磁场将喷嘴11通入的特殊气体电离产生等离子体6后作用于晶 圆5上,实现工艺。
当然,脉冲等离子体产生系统也可以为非喷嘴方式的结构。如图11所示,该设备由反应腔室1、静电卡盘2和电感耦合线圈3等组成,电感耦合线圈3由内线圈31和外线圈32组成,都位于介质窗4的上方;静电卡盘2位于反应腔室1的内部,与下匹配器9和下射频电源10连接,静电卡盘2上安装晶圆5。上射频电源8通过具有电流分配功能的双输出匹配器将能量分别输出到内线圈31和外线圈32上。其中上射频电源8和下射频电源10具有产生脉冲射频信号的电源装置,两个电源之间有脉冲同步线12连接,两个匹配器之间有脉冲匹配控制线13连接,整个系统通过加载脉冲射频信号到腔室中产生脉冲型等离子体6,作用于晶圆5上,实现刻蚀工艺。
在图10和图11中的脉冲等离子体产生系统均采用射频脉冲装置,如图12所示,其射频脉冲装置中的时序匹配模组包括预处理单元14、获取单元15、判断单元16、匹配单元17和加载单元18。该射频脉冲装置的具体结构包括:
预处理单元14,用于预设匹配门限值,以及将脉冲计数值初始化为脉冲参考值;
加载单元18,用于分别向上电极和下电极加载脉冲功率;
获取单元15,用于采集上射频电源所加载的脉冲功率的脉冲信号,并根据该脉冲信号计算上匹配器的匹配参数;
判断单元16,用于判断匹配参数与匹配门限值的大小,并根据匹配参数与匹配门限值的大小重新设置脉冲计数值;
匹配单元17,用于根据重新设置后的脉冲计数值与脉冲参考值的一致性,使得上匹配器对上射频电源进行匹配或下匹配器对下射频电源进行匹配。
其中,判断单元16在上射频电源的每个脉冲周期上升沿,均对匹配参数相对于匹配门限值的大小进行一次判断,并根据判断结果将脉冲计数值重新设置为保持一致或改为不一致。
进一步细化为:
预处理单元14初始化脉冲参考值为第一常数;
若判断单元16判断匹配参数大于匹配门限值,则将脉冲计数值重新设置为第一常数或与第一常数奇偶性相同的数值;若匹配参数小于等于匹配门限值,则将脉冲计数值重新设置为第二常数,第二常数不等于第一常数或与第一常数具有不同的 奇偶性;
若脉冲计数值等于脉冲参考值或与脉冲参考值的奇偶性相同,则匹配单元17使得上匹配器对上射频电源进行匹配;若脉冲计数值不等于脉冲参考值或与脉冲参考值的奇偶性不同,则匹配单元17使得下匹配器对下射频电源进行匹配。
其中,在预处理单元14中,匹配门限值包括上匹配器7的驻波比门限值、反射系数门限值或阻抗门限值中的任一个;在获取单元15中,匹配参数为与其对应的上匹配器7的驻波比、反射系数或阻抗中的任一个。优选的是,VSWR的匹配门限值的取值范围为1~10,更优选的是VSWR的匹配门限值的取值范围为1~10之间的任一个整数,反射系数门限值Γ或阻抗门限值ZL可根据上述公式(1)、(2)计算得到,在此不作赘述。
与射频脉冲匹配方法相应,该射频脉冲装置中上电极和下电极加载的脉冲功率的射频信号频率相同,其脉冲信号频率相同,脉冲信号占空比相同。
结合在射频脉冲匹配方法部分的说明,在现有技术脉冲等离子体的应用中,上电极和下电极同时加载脉冲信号时上匹配器和下匹配器同时工作会引起阻抗的持续波动,由于受到两个匹配器同时动作的影响,等离子体阻抗波动较大,上匹配器和下匹配器的匹配时间都比较长,在T2时间实现的匹配。而在本实施例的射频脉冲装置中,通过在两个匹配器之间增加脉冲匹配时序控制线来精确的控制两个匹配器的动作,上匹配器和下匹配器的动作独立进行,由于没有其它电极匹配的影响,减少两者之间的相互干扰,匹配速度比较快,并防止失配情况的发生,增强工艺的稳定性。另外,由于匹配速度(Tuning time)较快,匹配稳定性(Tuning stability)好,等离子体稳定性较高,匹配器失配的风险大大降低,有利于硬件窗口的扩大和工艺的稳定性。
综上,本发明射频脉冲匹配方法及其射频脉冲装置具有如下两个突出的有益效果:
1.脉冲等离子体匹配速度快;
2.脉冲等离子体受两个电极的影响较小,波动小,因此稳定性高。
本发明射频脉冲匹配方法及其射频脉冲装置,也包括其衍生的其它实例,例如包括:等离子体系统的上电极可以为多平面或立体线圈组的结构;同时也适用的脉冲等离子体产生装置应用机台不限,可用于ICP设备、CCP(Capacitively Coupled Plasma)设备及其它设备中。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。。

Claims (12)

  1. 一种射频脉冲匹配方法,其特征在于,包括以下步骤:
    步骤S1、预设匹配门限值,以及将脉冲计数值初始化为脉冲参考值;
    步骤S2、分别向上电极和下电极分别加载脉冲功率,所述上电极包括上射频电源和与之对应的上匹配器,所述下电极包括下射频电源和与之对应的下匹配器;
    步骤S3、采集所述上射频电源所加载的脉冲功率的脉冲信号,并根据该脉冲信号计算所述上匹配器的匹配参数;
    步骤S4、判断所述匹配参数与所述匹配门限值的大小,并根据所述匹配参数与所述匹配门限值的大小重新设置脉冲计数值;
    步骤S5、根据重新设置后的脉冲计数值与所述脉冲参考值的一致性,使得上匹配器对所述上射频电源进行匹配或下匹配器对下射频电源任一进行匹配;
    步骤S6、重复步骤S4和步骤S5,直至所述上射频电源和所述下射频电源均实现匹配。
  2. 根据权利要求1所述的射频脉冲匹配方法,其特征在于,步骤S4具体包括:
    在所述上射频电源的每个脉冲周期上升沿,均对所述匹配参数相对于所述匹配门限值的大小进行一次判断,并根据判断结果将所述脉冲计数值重新设置为保持一致或改为不一致。
  3. 根据权利要求1所述的射频脉冲匹配方法,其特征在于,
    在步骤S1中:初始化所述脉冲参考值为第一常数;
    在步骤S4中:若所述匹配参数大于所述匹配门限值,则将所述脉冲计数值重新设置为第一常数或与所述第一常数奇偶性相同的数值;若所述匹配参数小于等于所述匹配门限值,则将所述脉冲计数值重新设置为第二常数,所述第二常数不等于所述第一常数或与所述第一常数具有不同的奇偶性;
    在步骤S5中:若所述脉冲计数值等于所述脉冲参考值或与所述脉冲参考值的奇偶性相同,则所述上匹配器对所述上射频电源进行匹配;若所述脉冲计数值不等于所述脉冲参考值或与所述脉冲参考值的奇偶性不同,则所述下匹配器对所述下射频电源进行匹配。
  4. 根据权利要求1-3任一项所述的射频脉冲匹配方法,其特征在于,所述匹配门限值包括所述上匹配器的驻波比门限值、反射系数门限值或阻抗门限值中的任一个,所述匹配参数为与其对应的所述上匹配器的驻波比、反射系数或阻抗中的任一个。
  5. 根据权利要求4所述的射频脉冲匹配方法,其特征在于,在所述匹配门限值为所述上匹配器的驻波比门限值时,所述驻波比门限值的取值范围为1~10。
  6. 根据权利要求1-3任一项所述的射频脉冲匹配方法,其特征在于,所述上电极和所述下电极上所加载的脉冲功率的射频信号频率相同,脉冲信号频率相同,并且脉冲信号占空比相同。
  7. 一种射频脉冲装置,包括上电极和下电极,所述上电极包括上射频电源和与之对应的上匹配器,所述下电极包括下射频电源和与之对应的下匹配器,所述上射频电源和所述下射频电源连接脉冲同步线,其特征在于,所述上匹配器与所述下匹配器之间设置有脉冲匹配时序控制线和时序匹配模组,所述时序匹配模组包括预处理单元、加载单元、获取单元、判断单元和匹配单元,其中:
    所述预处理单元,用于预设匹配门限值,以及将脉冲计数值初始化为脉冲参考值;
    所述加载单元,用于分别向所述上电极和所述下电极加载脉冲功率;
    所述获取单元,用于采集所述上射频电源所加载的脉冲功率的脉冲信号,并根据该脉冲信号计算所述上匹配器的匹配参数;
    所述判断单元,用于判断所述匹配参数与所述匹配门限值的大小,并根据所述匹配参数与所述匹配门限值的大小重新设置脉冲计数值;
    所述匹配单元,用于根据重新设置后的脉冲计数值与所述脉冲参考值的一致性,使得上匹配器对所述上射频电源进行匹配或下匹配器对下射频电源进行匹配。
  8. 根据权利要求7所述的射频脉冲装置,其特征在于,所述判断单元在所述上射频电源的每个脉冲周期上升沿,均对所述匹配参数相对于所述匹配门限值的大小进行一次判断,并根据判断结果将所述脉冲计数值重新设置为保持一致或改 为不一致。
  9. 根据权利要求7所述的射频脉冲装置,其特征在于,
    所述预处理单元初始化所述脉冲参考值为第一常数;
    若所述判断单元判断所述匹配参数大于所述匹配门限值,则将所述脉冲计数值重新设置为第一常数或与所述第一常数奇偶性相同的数值;若所述匹配参数小于等于所述匹配门限值,则将所述脉冲计数值重新设置为第二常数,所述第二常数不等于所述第一常数或与所述第一常数具有不同的奇偶性;
    若所述脉冲计数值等于所述脉冲参考值或与所述脉冲参考值的奇偶性相同,则所述匹配单元使得所述上匹配器对所述上射频电源进行匹配;若所述脉冲计数值不等于所述脉冲参考值或与所述脉冲参考值的奇偶性不同,则所述匹配单元使得所述下匹配器对所述下射频电源进行匹配。
  10. 根据权利要求7-9任一项所述的射频脉冲装置,其特征在于,在所述预处理单元中,所述匹配门限值包括所述上匹配器的驻波比门限值、反射系数门限值或阻抗门限值中的任一个;
    在所述获取单元中,所述匹配参数为与其对应的所述上匹配器的驻波比、反射系数或阻抗中的任一个。
  11. 根据权利要求10所述的射频脉冲装置,其特征在于,在所述匹配门限值为所述上匹配器的驻波比门限值时,所述驻波比门限值的取值范围为1~10。
  12. 一种脉冲等离子体产生系统,其特征在于,包括权利要求7-11任一项所述的射频脉冲装置。
PCT/CN2019/092075 2018-06-27 2019-06-20 射频脉冲匹配方法及其装置、脉冲等离子体产生系统 WO2020001361A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207036461A KR102251093B1 (ko) 2018-06-27 2019-06-20 Rf 펄스 매칭 방법 및 이의 장치, 펄싱 플라즈마 생성 시스템
JP2020572768A JP7085655B2 (ja) 2018-06-27 2019-06-20 無線周波数パルス整合方法およびそのデバイス、ならびに、パルスプラズマ生成システム
US17/134,113 US11056316B2 (en) 2018-06-27 2020-12-24 Radio frequency pulse matching method and device thereof and pulsing plasma generation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810678471.6A CN110648888B (zh) 2018-06-27 2018-06-27 射频脉冲匹配方法及其装置、脉冲等离子体产生系统
CN201810678471.6 2018-06-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/134,113 Continuation US11056316B2 (en) 2018-06-27 2020-12-24 Radio frequency pulse matching method and device thereof and pulsing plasma generation system

Publications (1)

Publication Number Publication Date
WO2020001361A1 true WO2020001361A1 (zh) 2020-01-02

Family

ID=68986179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092075 WO2020001361A1 (zh) 2018-06-27 2019-06-20 射频脉冲匹配方法及其装置、脉冲等离子体产生系统

Country Status (5)

Country Link
US (1) US11056316B2 (zh)
JP (1) JP7085655B2 (zh)
KR (1) KR102251093B1 (zh)
CN (1) CN110648888B (zh)
WO (1) WO2020001361A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022220576A1 (ko) * 2021-04-16 2022-10-20 고려대학교 세종산학협력단 유도 결합 플라즈마 식각 장치 및 이를 이용한 유도 결합 플라즈마 식각 방법
CN114650092B (zh) * 2022-03-16 2023-07-21 中山大学 一种基于环境光强度自适应调整的单光子雪崩二极管光信号接收电路
CN116087598B (zh) * 2023-04-07 2023-07-21 深圳市广能达半导体科技有限公司 射频匹配电压检测方法、检测装置、电子设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103681195A (zh) * 2012-09-14 2014-03-26 朗姆研究公司 基于三个或更多个状态的功率和频率的调节
CN105206494A (zh) * 2014-06-18 2015-12-30 北京北方微电子基地设备工艺研究中心有限责任公司 脉冲射频电源的阻抗匹配方法及等离子体设备的匹配方法
CN106711005A (zh) * 2015-11-13 2017-05-24 北京北方微电子基地设备工艺研究中心有限责任公司 半导体加工设备及等离子体产生方法

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4838525B2 (ja) 2005-03-31 2011-12-14 東京エレクトロン株式会社 プラズマ処理方法及びプラズマ処理装置及び可変整合器におけるインピーダンスのプリセット値を決定するためのプログラム
JP2008053496A (ja) 2006-08-25 2008-03-06 Sumitomo Precision Prod Co Ltd エッチング装置
JP5319150B2 (ja) 2008-03-31 2013-10-16 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法及びコンピュータ読み取り可能な記憶媒体
US8264154B2 (en) * 2008-05-14 2012-09-11 Applied Materials, Inc. Method and apparatus for pulsed plasma processing using a time resolved tuning scheme for RF power delivery
JP2010238881A (ja) * 2009-03-31 2010-10-21 Tokyo Electron Ltd プラズマ処理装置及びプラズマ処理方法
US8741097B2 (en) * 2009-10-27 2014-06-03 Tokyo Electron Limited Plasma processing apparatus and plasma processing method
CN102409303A (zh) * 2010-09-25 2012-04-11 北京北方微电子基地设备工艺研究中心有限责任公司 一种靶材功率加载方法、靶材电源及半导体处理设备
JP5808012B2 (ja) * 2011-12-27 2015-11-10 東京エレクトロン株式会社 プラズマ処理装置
US9171699B2 (en) 2012-02-22 2015-10-27 Lam Research Corporation Impedance-based adjustment of power and frequency
US9390893B2 (en) * 2012-02-22 2016-07-12 Lam Research Corporation Sub-pulsing during a state
US10128090B2 (en) * 2012-02-22 2018-11-13 Lam Research Corporation RF impedance model based fault detection
US9197196B2 (en) * 2012-02-22 2015-11-24 Lam Research Corporation State-based adjustment of power and frequency
US8952765B2 (en) * 2012-03-23 2015-02-10 Mks Instruments, Inc. System and methods of bimodal automatic power and frequency tuning of RF generators
US9408288B2 (en) * 2012-09-14 2016-08-02 Lam Research Corporation Edge ramping
CN103730316B (zh) * 2012-10-16 2016-04-06 中微半导体设备(上海)有限公司 一种等离子处理方法及等离子处理装置
CN103943448B (zh) * 2013-01-17 2016-06-08 中微半导体设备(上海)有限公司 一种等离子处理装置的等离子处理方法
US9230819B2 (en) * 2013-04-05 2016-01-05 Lam Research Corporation Internal plasma grid applications for semiconductor fabrication in context of ion-ion plasma processing
US9711332B2 (en) * 2013-05-09 2017-07-18 Lam Research Corporation Systems and methods for tuning an impedance matching network in a step-wise fashion for multiple states of an RF generator
CN103476196B (zh) * 2013-09-23 2016-02-03 中微半导体设备(上海)有限公司 等离子体处理装置及等离子体处理方法
KR20150087702A (ko) * 2014-01-22 2015-07-30 삼성전자주식회사 플라즈마 발생 장치
JP6424024B2 (ja) 2014-06-24 2018-11-14 株式会社日立ハイテクノロジーズ プラズマ処理装置及びプラズマ処理方法
US9640371B2 (en) * 2014-10-20 2017-05-02 Lam Research Corporation System and method for detecting a process point in multi-mode pulse processes
KR101700391B1 (ko) * 2014-11-04 2017-02-13 삼성전자주식회사 펄스 플라즈마의 고속 광학적 진단 시스템
CN105695936B (zh) * 2014-11-26 2018-11-06 北京北方华创微电子装备有限公司 预清洗腔室及等离子体加工设备
CN105826154B (zh) * 2015-01-06 2017-12-19 北京北方华创微电子装备有限公司 针对脉冲射频电源的阻抗匹配方法及装置
US9595424B2 (en) * 2015-03-02 2017-03-14 Lam Research Corporation Impedance matching circuit for operation with a kilohertz RF generator and a megahertz RF generator to control plasma processes
US9761459B2 (en) * 2015-08-05 2017-09-12 Lam Research Corporation Systems and methods for reverse pulsing
US10937672B2 (en) * 2015-10-09 2021-03-02 Beijing Naura Microelectronics Equipment Co., Ltd. Heating device and heating chamber
CN106876239B (zh) * 2015-12-14 2018-10-16 中微半导体设备(上海)有限公司 脉冲射频等离子体的阻抗匹配方法和装置
JP6780009B2 (ja) * 2016-03-23 2020-11-04 北京北方華創微電子装備有限公司Beijing Naura Microelectronics Equipment Co., Ltd. インピーダンス整合システム、インピーダンス整合方法および半導体処理装置
US10026592B2 (en) * 2016-07-01 2018-07-17 Lam Research Corporation Systems and methods for tailoring ion energy distribution function by odd harmonic mixing
US10672590B2 (en) * 2018-03-14 2020-06-02 Lam Research Corporation Frequency tuning for a matchless plasma source
US11282679B2 (en) * 2019-05-22 2022-03-22 Samsung Electronics Co., Ltd. Plasma control apparatus and plasma processing system including the same
JP7234036B2 (ja) * 2019-05-28 2023-03-07 東京エレクトロン株式会社 プラズマ処理方法及びプラズマ処理装置
CN110299279B (zh) * 2019-08-22 2019-11-12 中微半导体设备(上海)股份有限公司 一种射频电源系统、等离子体处理器及其调频匹配方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103681195A (zh) * 2012-09-14 2014-03-26 朗姆研究公司 基于三个或更多个状态的功率和频率的调节
CN105206494A (zh) * 2014-06-18 2015-12-30 北京北方微电子基地设备工艺研究中心有限责任公司 脉冲射频电源的阻抗匹配方法及等离子体设备的匹配方法
CN106711005A (zh) * 2015-11-13 2017-05-24 北京北方微电子基地设备工艺研究中心有限责任公司 半导体加工设备及等离子体产生方法

Also Published As

Publication number Publication date
KR102251093B1 (ko) 2021-05-12
CN110648888A (zh) 2020-01-03
KR20210002740A (ko) 2021-01-08
US11056316B2 (en) 2021-07-06
JP2021530864A (ja) 2021-11-11
US20210118651A1 (en) 2021-04-22
CN110648888B (zh) 2020-10-13
JP7085655B2 (ja) 2022-06-16

Similar Documents

Publication Publication Date Title
JP6312405B2 (ja) プラズマ処理装置
JP2022183200A (ja) 制御方法、プラズマ処理装置、プロセッサ、及び非一時的コンピュータ可読記録媒体
US11056316B2 (en) Radio frequency pulse matching method and device thereof and pulsing plasma generation system
US20170040176A1 (en) Systems and methods for reverse pulsing
JPWO2017126184A1 (ja) プラズマ処理方法およびプラズマ処理装置
US20120212135A1 (en) Control apparatus, plasma processing apparatus, method for controlling control apparatus
TW200845183A (en) Plasma processing apparatus of substrate and plasma processing method thereof
KR20080020463A (ko) 기판의 플라즈마 처리장치 및 플라즈마 처리방법
US11398387B2 (en) Etching isolation features and dense features within a substrate
US10964511B2 (en) Semiconductor manufacturing device and method of operating the same
KR20210065045A (ko) 플라즈마 처리 방법 및 플라즈마 처리 장치
EP0721514A1 (en) Magnetically enhanced multiple capacitive plasma generation apparatus and related method
KR20210077597A (ko) 플라즈마 처리 장치 및 플라즈마 처리 방법
CN108471666B (zh) 一种等离子体产生方法及装置和半导体处理设备
KR100878467B1 (ko) 반도체 기판 처리장치
US20080053817A1 (en) Plasma processing apparatus and plasma processing method
CN118103945A (zh) 无传感器rf阻抗匹配网络
CN110752135B (zh) 射频偏压调节方法、装置及等离子体刻蚀设备
JP2001257198A (ja) プラズマ処理方法
CN106298419B (zh) 电感耦合等离子体处理系统及处理方法
CN109427551A (zh) 一种基片刻蚀方法及相应的处理装置
US11581170B2 (en) Plasma processing apparatus and processing method
US20230170194A1 (en) Ion energy control on electrodes in a plasma reactor
US20240162007A1 (en) Reducing aspect ratio dependent etch with direct current bias pulsing
TWI605487B (zh) Inductively coupled plasma processing system and processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825307

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207036461

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020572768

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19825307

Country of ref document: EP

Kind code of ref document: A1