WO2020001289A1 - 一种恒流源励磁的三自由度无轴承开关磁阻电机 - Google Patents

一种恒流源励磁的三自由度无轴承开关磁阻电机 Download PDF

Info

Publication number
WO2020001289A1
WO2020001289A1 PCT/CN2019/091312 CN2019091312W WO2020001289A1 WO 2020001289 A1 WO2020001289 A1 WO 2020001289A1 CN 2019091312 W CN2019091312 W CN 2019091312W WO 2020001289 A1 WO2020001289 A1 WO 2020001289A1
Authority
WO
WIPO (PCT)
Prior art keywords
axial
rotor
core
teeth
radial
Prior art date
Application number
PCT/CN2019/091312
Other languages
English (en)
French (fr)
Inventor
张涛
倪伟
张粤
丁祖军
王业琴
唐中一
丁卫红
Original Assignee
淮阴工学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 淮阴工学院 filed Critical 淮阴工学院
Priority to US17/256,888 priority Critical patent/US11303191B2/en
Publication of WO2020001289A1 publication Critical patent/WO2020001289A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current
    • H02K19/103Motors having windings on the stator and a variable reluctance soft-iron rotor without windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • H02K1/246Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/18Windings for salient poles
    • H02K3/20Windings for salient poles for auxiliary purposes, e.g. damping or commutating
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/12Transversal flux machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/18Machines moving with multiple degrees of freedom
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the invention relates to the technical field of bearingless and magnetic levitation motor manufacturing, and in particular to a three-degree-of-freedom bearingless switched reluctance motor excited by a constant current source.
  • Bearingless and magnetic levitation motors are new high-speed special motors developed in the late 1980s.
  • Bearingless motors are mainly divided into three types: magnetoresistive, induction and bearingless switched reluctance motors. Compared with the other two, bearingless
  • the switched reluctance motor rotor has no permanent magnets, simple structure, high rotor strength, and the influence of the complex induction magnetic field of the rotor on the suspension and rotation of the induction-free bearingless motor, which is the most bearingless motor with industrial application prospects.
  • An object of the present invention is to provide a three-degree-of-freedom bearingless switched reluctance motor with a compact structure and a constant current source excitation without coupling of axial suspension force, radial suspension force, and torque.
  • a three-degree-of-freedom bearingless switched reluctance motor excited by a constant current source includes a rotor and a stator.
  • the rotor is composed of a rotating shaft and a rotor core.
  • the outer circumference of the rotor core is evenly arranged with several rotor teeth.
  • the stator includes A stator core, a magnetic isolation ring, an axial suspension winding, a magnetically permeable ring, and an axial control core and a toroidal constant current source winding symmetrically arranged on both sides of the stator core are sequentially connected in a radial outward direction of the rotor core.
  • the outer edge of the axial control core is connected to the magnetically permeable ring, and the inner edge extends to the rotor core and is provided with an axial working air gap; the stator core and the magnetic isolation ring are connected to the inner wall of the axial portion by the axial portion and the outer end A T-shaped structure composed of radial portions of the stator core.
  • the outer wall of the axial portion of the stator core fits the inner wall of the axial portion of the magnetic isolation ring.
  • the radial portion of the magnetic isolation ring connects the axial portion and the radial portion of the stator core.
  • the inner circumference of the radial part of the stator core is provided with four suspension teeth uniformly, and the inner circumference of the stator core between adjacent suspension teeth is connected with a magnetic barrier, which is uniform on the magnetic barrier Several torque set teeth, the teeth of the suspension, the working air gap between the radial teeth of the rotor core disposed torque, and the torque of the suspension gear teeth are wound with radial suspension windings, the winding torque.
  • the torque winding adopts a split-phase structure.
  • the tooth width of the floating teeth is greater than the tooth width of the torque teeth, and the tooth width of the floating teeth is greater than one pole pitch of the motor.
  • the present invention has the following advantages:
  • the integration of two-degree-of-freedom bearingless switched reluctance motors and axial magnetic bearings is realized. It is a three-degree-of-freedom bearingless switched reluctance motor with a novel structure and the world's first.
  • the constant current source windings provide axial and radial bias magnetic fluxes respectively.
  • the axial suspension windings are energized to generate axial suspension magnetic fluxes.
  • the radial suspension windings are energized to generate radial suspension magnetic fluxes.
  • the radial and axial suspension magnetic fluxes are adjusted separately.
  • Biasing the magnetic flux strengthens the magnetic field on one side of the axial and radial air gaps, while weakening the magnetic field in the opposite direction produces a levitation force pointing in the direction of increasing magnetic fields.
  • a closed-loop control system for axial and radial displacement is established.
  • FIG. 1 is a sectional view of an axial structure and a magnetic flux of the present invention.
  • FIG. 2 is a schematic diagram of a stator core and a rotor core structure and a radial magnetic flux of the present invention.
  • FIG. 3 is a schematic diagram of the phase A of the torque winding of the present invention.
  • FIG. 4 is a schematic diagram of phase B of the torque winding of the present invention.
  • a three-degree-of-freedom bearingless switched reluctance motor excited by a constant current source as shown in FIG. 1 to FIG. 4 includes a stator and a rotor.
  • the rotor is composed of a rotating shaft 12 and a rotor core 11.
  • a plurality of rotor teeth 13 are uniformly arranged on the circumference.
  • the stator includes a stator core 5, a magnetic isolation ring 8, a circular annular axial suspension winding 4, a magnetically permeable ring 2, and a left side symmetrically arranged on both sides of the stator core 5 along the rotor core 11.
  • Side axial control iron core 1 and right axial control iron core 3 left circular ring constant current source winding 6, right circular ring constant current source winding 7, left axial control iron 1 and right axial control
  • the iron core 3 may have a magnetic pole structure such as a disc shape, a three pole, or a four pole. This embodiment has a disc shape.
  • the left circular constant current source winding 6 and the right circular constant current source winding 7 may be connected in series.
  • the outer edges of the left axial control iron core 1 and the right axial control iron core 3 are respectively connected to the left and right sides of the magnetically conductive ring 2, and the inner edges respectively extend to the rotor core 11 and are provided with a left axial working air gap.
  • stator core 5 and the magnetic isolation ring 8 are T-shaped structures composed of an axial portion and a radial portion whose outer end is connected to the inner wall of the axial portion, and the shaft of the stator core 5
  • An axial part of the inner wall of the magnetic isolation ring 8 is attached to a part of the outer wall, and the radial part of the magnetic isolation ring 8 connects the axial part of the stator core 5
  • the radial part is divided into two parts of left and right symmetrical 7-shape.
  • the thickness of the radial part of the magnetic isolation ring 8 is greater than the sum of the left and right axial working air gaps; the axial part of the stator core 5, The axial part of the magnetic isolation ring 8 and the left and right sides of the axial suspension winding 4 fit the inner wall of the left axial control iron core 1 and the right axial control iron core 3 respectively; the magnetic isolation ring 8 is made of a single piece of aluminum The left and right sides of the left circular annular constant current source winding 6 and the outer wall are respectively fitted to the left axial control iron core 1, the stator core 5, and the right circular annular constant current source winding 7 The left and right sides and the outer wall are respectively attached to the right axial control iron core 3 and the stator iron core 5.
  • the inner circumference of the radial portion of the stator core 5 is uniformly provided with four suspension teeth 18 in the x-direction and the y-direction.
  • the inner circumference of the stator core 5 between adjacent suspension teeth 18 is connected with a spacer magnet 20.
  • Several torque teeth 19 are evenly mounted on 20, the tooth width of the suspension teeth 18 is greater than the tooth width of the torque teeth 19, and the tooth width of the suspension teeth 18 is greater than one pole pitch of the motor, and the suspension teeth 18 and the torque teeth 19
  • a radial working air gap is provided between the rotor core 11 and the radial suspension winding 10 and the torque winding 9 respectively wound on the suspension teeth 18 and the torque teeth 19.
  • the rotor core 11, the rotor teeth 13, the left axial control core 1, the right axial control core 3, and the stator core 5 are all made of materials with good axial and radial magnetic permeability.
  • the radial suspension windings 10, The torque windings 9 are all concentrated windings.
  • the levitation winding 4, the magnetically permeable ring 2, the radial levitation winding 10, and the torque winding 9 are laminated in the axial direction.
  • the number of the rotor teeth 13 and the torque teeth 19 is adjustable.
  • the levitation principle is: the left circular constant current source winding 6 and the right circular annular constant current source winding 7 generate left bias magnetic flux 17, right bias magnetic flux 16, and left bias magnetic flux 17 respectively. Passes the left axial control iron core 1, the left axial working air gap, the rotor core 11, the radial working air gap, the floating teeth 18, and the stator core 5, and the right bias magnetic flux 16 passes through the right axial control core in order. 3.
  • the right axial working air gap, rotor core 11, radial working air gap, suspension teeth 18, and stator core 5 form two symmetrical closed paths.
  • the axial suspension winding 4 is energized to generate an axial suspension magnetic flux 15, which passes through the magnetic flux ring 2, the left axial control core 1, the left axial working air gap, the rotor core 11, and the right axial.
  • the air gap and the right axial control iron core 3 form a closed path;
  • the radial suspension winding 10 is energized to generate a radial suspension magnetic flux 14, which passes through the stator core 5 above, the radial working air gap above, the rotor teeth 13 above, the rotor core 11, and the rotor teeth below 13.
  • the lower radial working air gap and the lower stator core 5 form a closed path with the stator core choke.
  • the radial and axial levitation magnetic fluxes adjust the corresponding bias magnetic fluxes, so that the air gap magnetic field on the radial and axial sides is strengthened, while the air gap magnetic field on the opposite direction is weakened, thereby generating a levitation force pointing in the direction of the air gap magnetic field enhancement.
  • Axial and radial displacement sensors are installed on the stator, or radial and axial displacement signals of the rotor are detected and identified through a displacement-free sensor algorithm, and closed-loop control of axial and radial displacement is established to achieve stable suspension of three degrees of freedom of the rotor.
  • the principle of rotation is: divide the torque winding 9 on the torque tooth 19 into a multi-phase structure. Take two phases as an example, energize phase A and phase B respectively.
  • the magnetic field of the torque winding is between the torque tooth 19 and the rotor tooth 13 A closed path is formed between them, generating magnetic resistance, generating torque, and achieving rotor rotation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Synchronous Machinery (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

本发明公开了一种恒流源励磁的三自由度无轴承开关磁阻电机,包括转子和定子,所述转子由转轴和转子铁心组成,所述转子铁心的外圆周均匀布置有数个转子齿;所述定子包括依次相连的定子铁心、隔磁环、轴向悬浮绕组、导磁环,以及对称设置于定子铁心两侧的轴向控制铁心和圆环形恒流源绕组,所述轴向控制铁心的外沿连接导磁环,内沿向转子铁心延伸;所述定子铁心和隔磁环均是由轴向部分和外端连接于轴向部分内壁的径向部分组成,所述定子铁心的轴向部分外壁贴合隔磁环的轴向部分内壁,所述隔磁环的径向部分将定子铁心的轴向部分和径向部分分隔为两部分;所述定子铁心的径向部内圆周设置有数个悬浮齿、转矩齿,所述悬浮齿和转矩齿上分别绕制有径向悬浮绕组、转矩绕组。

Description

一种恒流源励磁的三自由度无轴承开关磁阻电机 技术领域
本发明涉及无轴承和磁悬浮电机制造技术领域,具体涉及一种恒流源励磁的三自由度无轴承开关磁阻电机。
背景技术
无轴承和磁悬浮电机是上世纪80年代末发展起来的新型高速特种电机,无轴承电机主要分为磁阻型、感应型和无轴承开关磁阻电机三种,与其他两种相比,无轴承开关磁阻电机转子无永磁体,结构简单,转子强度高,且无感应型无轴承电机存在的转子复杂的感应磁场对悬浮和旋转的影响,是最具有工业应用前景的一种无轴承电机。传统的无轴承开关磁阻电机内部仅存在两个磁场,即转矩绕组磁场和悬浮绕组磁场,且转矩绕组磁场极对数P M和悬浮绕组磁场极对数P B之间必须满足P M=P B±1的关系,才能够产生稳定可控的径向悬浮力,转矩主要由转矩绕组磁场经过定转子齿形成的磁阻力产生,悬浮力由悬浮绕组磁场和转矩绕组磁场相互作用产生,造成传统无轴承开关磁阻电机悬浮力和转矩之间的解耦控制极为复杂,限制了传统无轴承开关磁阻电机的工业应用进程。
此外,无轴承电机若要实现五自由度悬浮运行,需要轴向磁悬浮轴承与其配合使用。轴向磁轴承势必会增加悬浮电机系统的轴向长度,进而降低临界转速和功率密度。因此,在实现转矩和悬浮力解耦控制基础上,实现无轴承开关磁阻电机和轴向磁轴承的集成化已成为磁悬浮电机领域的研究热点。
发明内容
本发明的目的是提供一种结构紧凑,轴向悬浮力、径向悬浮力和转矩无耦合的恒流源励磁的三自由度无轴承开关磁阻电机。
本发明通过以下技术方案实现:
一种恒流源励磁的三自由度无轴承开关磁阻电机,包括转子和定子,所述转子由转轴和转子铁心组成,所述转子铁心的外圆周均匀布置有数个转子齿;所述定子包括沿转子铁心径向向外依次相连的定子铁心、隔磁环、轴向悬浮绕组、导磁环,以及对称设置于定子铁心两侧的轴向控制铁心和圆环形恒流源绕组,所述轴向控 制铁心的外沿连接导磁环,内沿向转子铁心延伸并设置有轴向工作气隙;所述定子铁心和隔磁环均是由轴向部分和外端连接于轴向部分内壁的径向部分组成的T字形结构,所述定子铁心的轴向部分外壁贴合隔磁环的轴向部分内壁,所述隔磁环的径向部分将定子铁心的轴向部分和径向部分分隔为对称的两部分;所述定子铁心的径向部分内圆周均匀设置有四个悬浮齿,相邻悬浮齿之间的定子铁心的内圆周连接有隔磁体,所述隔磁体上均匀布置有数个转矩齿,所述悬浮齿、转矩齿与转子铁心之间设置有径向工作气隙,所述悬浮齿和转矩齿上分别绕制有径向悬浮绕组、转矩绕组。
本发明的进一步方案是,所述转矩绕组采用分相结构。
本发明的进一步方案是,所述悬浮齿的齿宽大于转矩齿的齿宽,且悬浮齿齿宽大于电机一个极距。
本发明与现有技术相比的优点在于:
一、实现了两自由度无轴承开关磁阻电机和轴向磁轴承的集成化,是一种结构新颖、世界首创的一种三自由度无轴承开关磁阻电机,是由两个圆环形恒流源绕组分别提供轴向和径向偏置磁通,轴向悬浮绕组通电产生轴向悬浮磁通,径向悬浮绕组通电产生径向悬浮磁通,径向和轴向悬浮磁通分别调节偏置磁通,使轴向和径向气隙一侧的磁场增强,而相反方向磁场减弱,产生指向磁场增强方向的悬浮力,根据现有技术,建立轴向和径向位移闭环控制系统,实现转子轴向和径向三自由度稳定悬浮;转矩齿通过隔磁体与定子铁心连为一体,转矩绕组磁场和悬浮磁场经过不同的磁路形成闭合路径,且转矩绕组磁场极对数P M和悬浮绕组磁场极对数P B之间无需满足P M=P B±1关系,转矩和悬浮力无耦合,控制简单,易于实现;
二、应用于五自由度悬浮驱动系统中,可以代替一个轴向磁轴承和两自由度无轴承开关磁阻电机,将极大地缩小轴向长度和系统体积与重量,对实现无轴承开关磁阻电机工业应用具有里程碑式的重要意义。
附图说明
图1为本发明的轴向结构与磁通剖视图。
图2为本发明的定子铁心、转子铁心结构和径向磁通示意图。
图3为本发明的转矩绕组A相示意图。
图4为本发明的转矩绕组B相示意图。
具体实施方式
如图1~图4所示的一种恒流源励磁的三自由度无轴承开关磁阻电机,包括定子和转子,所述转子由转轴12和转子铁心11组成,所述转子铁心11的外圆周均匀布置有数个转子齿13。
所述定子包括沿转子铁心11径向向外依次相连的定子铁心5、隔磁环8、圆环形的轴向悬浮绕组4、导磁环2,以及对称设置于定子铁心5两侧的左侧轴向控制铁心1和右侧轴向控制铁心3、左侧圆环形恒流源绕组6、右侧圆环形恒流源绕组7,左侧轴向控制铁心1和右侧轴向控制铁心3可以为圆盘形、三极、四极等磁极式结构,本实施例为圆盘形,左侧圆环形恒流源绕组6、右侧圆环形恒流源绕组7可以串联,所述左侧轴向控制铁心1和右侧轴向控制铁心3的外沿分别连接导磁环2的左、右两侧面,内沿分别向转子铁心11延伸并设置有左轴向工作气隙、右轴向工作气隙;所述定子铁心5和隔磁环8均是由轴向部分和外端连接于轴向部内壁的径向部分组成的T字形结构,所述定子铁心5的轴向部分外壁贴合隔磁环8的轴向部分内壁,所述隔磁环8的径向部分将定子铁心5的轴向部分和径向部分隔为左、右对称的7字形的两部分,所述隔磁环8的径向部分的厚度大于左、右轴向工作气隙之和;所述定子铁心5的轴向部分、隔磁环8的轴向部分、轴向悬浮绕组4的左右两侧分别贴合左侧轴向控制铁心1、右侧轴向控制铁心3内壁;所述隔磁环8由整块铝材制成;所述左侧圆环形恒流源绕组6的左、右两侧及外壁分别贴合左侧轴向控制铁心1、定子铁心5,所述右侧圆环形恒流源绕组7的左、右两侧及外壁分别贴合右侧轴向控制铁心3、定子铁心5。
所述定子铁心5的径向部内圆周在x方向和y方向上均匀设置有四个悬浮齿18,相邻悬浮齿18之间的定子铁心5的内圆周连接有隔磁体20,所述隔磁体20上均匀安装有数个转矩齿19,所述悬浮齿18的齿宽大于转矩齿19的齿宽,且悬浮齿18齿宽大于电机一个极距,所述悬浮齿18、转矩齿19与转子铁心11之间设置有径向工作气隙,所述悬浮齿18和转矩齿19上分别绕制有径向悬浮绕组10、转矩绕组9。
转子铁心11、转子齿13、左侧轴向控制铁心1、右侧轴向控制铁心3、 定子铁心5均由轴向和径向导磁性能良好的材料制成,所述径向悬浮绕组10、转矩绕组9均为集中绕组。
所述左侧轴向控制铁心1、右侧轴向控制铁心3、左侧圆环形恒流源绕组6、右侧圆环形恒流源绕组7、定子铁心5、隔磁环8、轴向悬浮绕组4、导磁环2、径向悬浮绕组10、转矩绕组9沿轴向叠压。
所述转子齿13、转矩齿19数量可调。
悬浮原理是:左侧圆环形恒流源绕组6、右侧圆环形恒流源绕组7分别产生左侧偏置磁通17、右侧偏置磁通16,左侧偏置磁通17依次经过左侧轴向控制铁心1、左轴向工作气隙、转子铁心11、径向工作气隙、悬浮齿18、定子铁心5,右侧偏置磁通16依次经过右侧轴向控制铁心3、右轴向工作气隙、转子铁心11、径向工作气隙、悬浮齿18、定子铁心5,形成两条对称的闭合路径。
轴向悬浮绕组4通电产生轴向悬浮磁通15,轴向悬浮磁通15依次经过导磁环2、左侧轴向控制铁心1、左轴向工作气隙、转子铁心11、右轴向工作气隙、右侧轴向控制铁心3形成闭合路径;
径向悬浮绕组10通电,产生径向悬浮磁通14,径向悬浮磁通14经过上方的定子铁心5、上方的径向工作气隙、上方的转子齿13、转子铁心11、下方的转子齿13、下方的径向工作气隙、下方的定子铁心5,与定子铁心扼部形成闭合路径。径向和轴向悬浮磁通调节相应的偏置磁通,使径向和轴向一侧气隙磁场增强,而相反方向气隙磁场减弱,从而产生指向气隙磁场增强方向的悬浮力,在定子上安装轴向和径向位移传感器,或者通过无位移传感器算法,检测和辨识转子径向和轴向位移信号,建立轴向和径向位移闭环控制,实现转子三自由度稳定悬浮。
旋转原理是:将转矩齿19上的转矩绕组9分为多相结构,以两相为例,分别对A相和B相先后通电,转矩绕组磁场在转矩齿19和转子齿13之间形成闭合路径,产生磁阻力,产生转矩,实现转子旋转。

Claims (3)

  1. 一种恒流源励磁的三自由度无轴承开关磁阻电机,包括转子和定子,所述转子由转轴(12)和转子铁心(11)组成,其特征在于:所述转子铁心(11)的外圆周均匀布置有数个转子齿(13);所述定子包括沿转子铁心(11)径向向外依次相连的定子铁心(5)、隔磁环(8)、轴向悬浮绕组(4)、导磁环(2),以及对称设置于定子铁心(5)两侧的轴向控制铁心和圆环形恒流源绕组,所述轴向控制铁心的外沿连接导磁环(2),内沿向转子铁心(11)延伸并设置有轴向工作气隙;所述定子铁心(5)和隔磁环(8)均是由轴向部分和外端连接于轴向部分内壁的径向部分组成的T字形结构,所述定子铁心(5)的轴向部分外壁贴合隔磁环(8)的轴向部分内壁,所述隔磁环(8)的径向部分将定子铁心(5)的轴向部分和径向部分分隔为对称的两部分;所述定子铁心(5)的径向部分内圆周均匀设置有四个悬浮齿(18),相邻悬浮齿(18)之间的定子铁心(5)的内圆周连接有隔磁体(20),所述隔磁体(20)上均匀布置有数个转矩齿(19),所述悬浮齿(18)、转矩齿(19)与转子铁心(11)之间设置有径向工作气隙,所述悬浮齿(18)和转矩齿(19)上分别绕制有径向悬浮绕组(10)、转矩绕组(9)。
  2. 如权利要求1所述的一种恒流源励磁的三自由度无轴承开关磁阻电机,其特征在于:所述转矩绕组(9)采用分相结构。
  3. 如权利要求1所述的一种恒流源励磁的三自由度无轴承开关磁阻电机,其特征在于:所述悬浮齿(15)的齿宽大于转矩齿(16)的齿宽,且悬浮齿(15)齿宽大于电机一个极距。
PCT/CN2019/091312 2018-06-30 2019-06-14 一种恒流源励磁的三自由度无轴承开关磁阻电机 WO2020001289A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/256,888 US11303191B2 (en) 2018-06-30 2019-06-14 Three-degree-of-freedom bearingless switch reluctance motor excited by constant current source

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810715528.5A CN108809031B (zh) 2018-06-30 2018-06-30 一种恒流源励磁的三自由度无轴承开关磁阻电机
CN201810715528.5 2018-06-30

Publications (1)

Publication Number Publication Date
WO2020001289A1 true WO2020001289A1 (zh) 2020-01-02

Family

ID=64074206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091312 WO2020001289A1 (zh) 2018-06-30 2019-06-14 一种恒流源励磁的三自由度无轴承开关磁阻电机

Country Status (3)

Country Link
US (1) US11303191B2 (zh)
CN (1) CN108809031B (zh)
WO (1) WO2020001289A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108809030B (zh) * 2018-06-30 2019-12-31 淮阴工学院 一种外绕组控制的两自由度无轴承开关磁阻电机
CN108809031B (zh) * 2018-06-30 2020-08-21 淮阴工学院 一种恒流源励磁的三自由度无轴承开关磁阻电机
CN108809023B (zh) * 2018-06-30 2020-04-24 淮阴工学院 一种盘式三自由度磁悬浮开关磁阻电机
GB2582941B (en) * 2019-04-09 2023-08-02 Centre Nat Rech Scient A stator winding arrangement
CN116169801B (zh) * 2022-12-23 2023-12-01 南京航空航天大学 一种三自由度悬浮的无轴承双凸极电机及其控制方法
CN116255395B (zh) * 2022-12-30 2024-01-05 淮阴工学院 一种恒流源励磁六极主动电磁轴承及设计方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103016525A (zh) * 2012-12-19 2013-04-03 江苏大学 一种恒流源偏置径-轴向磁轴承
CN103715945A (zh) * 2013-12-20 2014-04-09 北京航空航天大学 一种12/14无轴承永磁偏置开关磁阻电机
CN108809031A (zh) * 2018-06-30 2018-11-13 淮阴工学院 一种恒流源励磁的三自由度无轴承开关磁阻电机

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5818137A (en) * 1995-10-26 1998-10-06 Satcon Technology, Inc. Integrated magnetic levitation and rotation system
CN1078765C (zh) * 1999-05-04 2002-01-30 李宜和 改良结构的辅助动力电动机
US7663281B1 (en) * 2004-08-31 2010-02-16 Jeffrey J Nau Magnetic field generating device
CN101207309A (zh) * 2007-12-07 2008-06-25 沈阳工业大学 高速磁悬浮无轴承永磁电机
CN101207310B (zh) * 2007-12-12 2010-08-18 南京航空航天大学 轴向主动悬浮的三自由度无轴承交替极永磁电机
CN101710809B (zh) * 2009-12-16 2011-08-24 南京航空航天大学 一种单相无轴承开关磁阻电机
CN103296810B (zh) * 2013-05-10 2015-11-18 东南大学 一种无轴承式半齿绕开关磁阻电机
CN103326530B (zh) * 2013-06-27 2015-07-08 北京航空航天大学 一种12/14结构无轴承开关磁阻电机
CN108809030B (zh) * 2018-06-30 2019-12-31 淮阴工学院 一种外绕组控制的两自由度无轴承开关磁阻电机
CN108809023B (zh) * 2018-06-30 2020-04-24 淮阴工学院 一种盘式三自由度磁悬浮开关磁阻电机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103016525A (zh) * 2012-12-19 2013-04-03 江苏大学 一种恒流源偏置径-轴向磁轴承
CN103715945A (zh) * 2013-12-20 2014-04-09 北京航空航天大学 一种12/14无轴承永磁偏置开关磁阻电机
CN108809031A (zh) * 2018-06-30 2018-11-13 淮阴工学院 一种恒流源励磁的三自由度无轴承开关磁阻电机

Also Published As

Publication number Publication date
CN108809031B (zh) 2020-08-21
US20210320575A1 (en) 2021-10-14
US11303191B2 (en) 2022-04-12
CN108809031A (zh) 2018-11-13

Similar Documents

Publication Publication Date Title
WO2020001289A1 (zh) 一种恒流源励磁的三自由度无轴承开关磁阻电机
US11456631B2 (en) Disc-type three-degree-of-freedom magnetic suspension switched reluctance motor
WO2020001290A1 (zh) 一种恒流源励磁的三自由度无轴承异步电机
WO2020001293A1 (zh) 一种外绕组控制的两自由度无轴承开关磁阻电机
CN108712047A (zh) 一种三自由度无轴承开关磁阻电机
CN104214216A (zh) 一种四自由度内转子磁轴承
WO2020001294A1 (zh) 一种五自由度无轴承开关磁阻电机
CN108712043A (zh) 一种定子永磁偏置五自由度无轴承异步电机
CN104141685A (zh) 一种主被动内转子磁轴承
CN108696190A (zh) 一种带隔磁环的三自由度永磁型无轴承电机
CN108599500A (zh) 一种定子永磁式外转子片状无轴承异步电机
CN104121288A (zh) 一种主被动外转子磁轴承
WO2020001292A1 (zh) 一种三自由度异步型无轴承电机
CN108649764B (zh) 一种恒流源励磁的三自由度无轴承永磁电机
CN108808916A (zh) 一种新型的三自由度永磁型无轴承电机
CN108712048B (zh) 一种定子永磁式五自由度锥形无轴承开关磁阻电机
CN108712044B (zh) 一种定子永磁偏置片状内转子无轴承异步电机
CN108847726B (zh) 一种盘式三自由度无轴承异步电机
CN108768115A (zh) 一种新型的三自由度无轴承异步电机
CN108599502A (zh) 一种永磁体轴向磁化的三自由度永磁型无轴承电机
CN104214217B (zh) 一种四自由度外转子磁轴承
CN108808915A (zh) 一种三自由度永磁型无轴承电机
CN104121290A (zh) 一种内转子磁轴承
CN108809025A (zh) 一种永磁体轴向磁化的三自由度异步型无轴承电机
CN108809021A (zh) 一种双薄片式五自由度无轴承开关磁阻电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19826611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19826611

Country of ref document: EP

Kind code of ref document: A1