WO2020001292A1 - 一种三自由度异步型无轴承电机 - Google Patents

一种三自由度异步型无轴承电机 Download PDF

Info

Publication number
WO2020001292A1
WO2020001292A1 PCT/CN2019/091317 CN2019091317W WO2020001292A1 WO 2020001292 A1 WO2020001292 A1 WO 2020001292A1 CN 2019091317 W CN2019091317 W CN 2019091317W WO 2020001292 A1 WO2020001292 A1 WO 2020001292A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
rotor
axial
core
iron core
Prior art date
Application number
PCT/CN2019/091317
Other languages
English (en)
French (fr)
Inventor
张涛
陈万
鲁庆
丁祖军
丁卫红
唐中一
王业琴
Original Assignee
淮阴工学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 淮阴工学院 filed Critical 淮阴工学院
Publication of WO2020001292A1 publication Critical patent/WO2020001292A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/17Stator cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N15/00Holding or levitation devices using magnetic attraction or repulsion, not otherwise provided for

Definitions

  • the invention relates to the technical field of bearingless and magnetic levitation motor manufacturing, and in particular to a three-degree-of-freedom asynchronous bearingless motor.
  • Bearingless and magnetic levitation motors are new high-speed special motors developed in the late 1980s.
  • Bearingless motors are mainly divided into three types: magnetoresistive, induction and asynchronous bearingless motors. Compared with the other two types, asynchronous The bearing motor rotor has no permanent magnet, simple structure, high rotor strength, and non-reluctance type bearingless motor has the disadvantages of rotor vibration during rotation, which is the most bearingless motor with industrial application prospects.
  • the magnetic field with the same number of pole pairs of the torque winding magnetic field and the same magnetic field as the number of pole pairs of the floating winding magnetic field are induced, which makes the decoupling control between the suspension force and torque of the traditional asynchronous bearingless motor extremely complicated, and the rotor guide bar
  • the rotor induced magnetic field generated by cutting the suspension winding magnetic field has a weakening effect on the levitation force.
  • axial magnetic suspension bearings are required to be used in conjunction with them.
  • Axial magnetic bearings will inevitably increase the axial length of the suspension motor system, thereby reducing the critical speed and power density. Therefore, the integration of asynchronous bearingless motors and axial magnetic bearings has become a research hotspot in the field of magnetic levitation motors.
  • the object of the present invention is to provide a three-degree-of-freedom asynchronous bearingless motor with a compact structure and no coupling of axial levitation force, radial levitation force, and torque.
  • a three-degree-of-freedom asynchronous bearingless motor includes a rotor and a stator.
  • the rotor is composed of a rotating shaft and a rotor core. An even number of rotor guide bars are installed on the surface of the rotor core.
  • the stator includes a radial outward direction along the rotor core.
  • a stator iron core, a stator permanent magnet ring, and an axial control iron core and an axial suspension winding symmetrically arranged on both sides of the stator iron core are connected in this order.
  • An axial working air gap is extended along the rotor core, and the axial suspension winding fits the inner wall of the outer edge of the axial control core and is spaced from the stator core.
  • the stator core is wound on the inner layer respectively. And outer motor torque windings, radial suspension windings.
  • the stator core is provided with a stator slot, and the motor torque winding and the radial suspension winding are respectively embedded in the stator slot.
  • the rotor guide bar, the stator permanent magnet ring, and the stator permanent magnet ring are made of a rare earth permanent magnet material or a ferrite permanent magnet material.
  • the rotor guide bar adopts a phase separation structure, and each phase is insulated from each other.
  • the number of pole pairs of the rotor guide bar is the same as the number of pole pairs of the motor torque winding and the number of pole pairs of the radial suspension winding. The number is different.
  • the present invention has the following advantages:
  • the integration of a two-degree-of-freedom asynchronous bearingless motor and an axial magnetic bearing is realized. It is a three-degree-of-freedom asynchronous bearingless motor with a novel structure and the world's first. It consists of a radially magnetized stator. The permanent magnet ring provides axial and radial bias magnetic fluxes respectively. The axial suspension windings are energized to generate axial suspension magnetic fluxes. The radial suspension windings are energized to generate radial suspension magnetic fluxes. The radial and axial suspension magnetic fluxes are adjusted respectively.
  • the magnetic field on one side of the axial and radial air gaps is strengthened, while the magnetic field on the opposite direction is weakened, resulting in a levitation force pointing in the direction of the magnetic field enhancement.
  • a closed-loop control system of axial and radial displacement is established to achieve Rotor axial and radial three degrees of freedom stable suspension; and the rotor guide bar is an even number, the rotor guide bar adopts a phase separation structure, each phase is insulated from each other, the rotor guide bar cuts the torque winding magnetic field, the floating winding magnetic field and the offset
  • the magnetic field only induces the rotor induced magnetic field with the same number of pole pairs as the torque winding.
  • the torque is generated by the interaction of the motor torque winding magnetic field and the rotor induced magnetic field. There is no coupling between torque and levitation force. Simple, easy to implement;
  • FIG. 1 is a sectional view of an axial structure and a magnetic flux of the present invention.
  • FIG. 2 is a schematic diagram of the structure and magnetic flux on the left side of the axial control core of the present invention.
  • FIG. 3 is a schematic diagram of the right structure and magnetic flux of the axial control core of the present invention.
  • FIG. 4 is a schematic diagram of a stator core and a rotor structure, a winding arrangement, and a magnetic flux according to the present invention.
  • FIG. 5 is a first phase separation structure diagram of a stator rotor winding or a guide bar of the present invention.
  • FIG. 6 is a second phase splitting structure diagram of a stator rotor winding or a guide bar of the present invention.
  • FIG. 7 is a third phase separation structure diagram of a stator rotor winding or a guide bar of the present invention.
  • a three-degree-of-freedom asynchronous bearingless motor as shown in FIGS. 1 to 7 includes a rotor and a stator.
  • the rotor is composed of a rotating shaft 9 and a rotor core 8.
  • Each of the rotor core 8 is provided with a rotor slot.
  • Cage-shaped rotor guide bars 7 are cast in the slots, and the number of rotor slots and rotor guide bars 7 is even.
  • the stator includes a stator core 3, a stator permanent magnet ring 4, which are sequentially connected along the radial direction of the rotor core 8, and an axial control core 1, an axial suspension winding 2, and an axial control symmetrically disposed on both sides of the stator core 3.
  • the iron core 1 may have a magnetic pole type structure such as a disc shape, a three pole, or a four pole.
  • the axial control iron core 1 of this embodiment is a four pole type, and the outer edges of the axial control iron core 1 are butted and attached to the stator permanent magnet ring.
  • stator permanent magnet ring 4 is a radial magnetized permanent magnet made of a rare earth permanent magnet material or a ferrite permanent magnet material.
  • a radial working air gap is provided between the stator core 3 and the rotor core 8.
  • the stator core 3 is provided with a stator slot, and the stator slot is embedded with a motor torque winding 6 located on the inner layer and the outer layer, respectively. 5.
  • Radial suspension winding 5, radial suspension winding 5 is a concentrated winding, as shown in Figure 4, the motor torque winding 6 is arranged in the same way as a normal asynchronous motor.
  • the radial suspension winding 5 is divided into the x-direction suspension control winding and y Directional suspension control windings, x-direction control windings include windings L X1 to L X12 , which are connected in series as one phase in the direction shown in FIG. 4; y-direction suspension control windings include windings L Y1 to L Y12 , which are connected in series as one in the direction shown in FIG. 4 phase.
  • the rotor core 8, the axial control core 1, and the stator core 3 are all made of materials with good axial and radial magnetic permeability.
  • the axial control iron core 1, the winding to the floating winding 2, the stator iron core 3, the motor torque winding 6, and the radial floating winding 5 are stacked in the axial direction.
  • the levitation principle is: the stator permanent magnet ring 4 generates left bias magnetic flux 10 and right bias magnetic flux 13 to the left and right, respectively, and the left bias magnetic flux 10 passes from the N pole of the stator permanent magnet ring 4 Through the left axial control iron core 1, the left axial working air gap, the rotor iron core 8, the radial working air gap, and the stator iron core 3 return to the S pole, and the right bias magnetic flux 13 from the stator permanent magnet ring 4 The N pole passes through the right axial control iron core 1, the right axial working air gap, the rotor iron core 8, the radial working air gap, and the stator iron core 3 back to the S pole in order, forming two symmetrical closed paths.
  • Axial suspension magnetic flux 11 is generated by energizing to the levitation winding 2.
  • the axial suspension magnetic flux 11 passes through the axial control iron core 1, the left axial working air gap, the rotor core 8, and the right axial working air gap to form a closed path;
  • the levitation winding 5 is energized to generate a radial levitation magnetic flux 12, which passes through the stator core 3 above, the radial working air gap above, the rotor core 8, the radial working air gap below, and the stator below
  • the core 3 forms a closed path with the stator core choke.
  • the radial and axial levitation magnetic fluxes adjust the corresponding bias magnetic fluxes, so that the air gap magnetic field on the radial and axial sides is strengthened, while the air gap magnetic field on the opposite direction is weakened, thereby generating a levitation force pointing in the direction of the air gap magnetic field enhancement.
  • Axial and radial displacement sensors are installed on the stator, or radial and axial displacement signals of the rotor are detected and identified through a displacement-free sensor algorithm, and closed-loop control of axial and radial displacement is established to achieve stable suspension of three degrees of freedom of the rotor.
  • the principle of rotation is as follows: the motor torque winding 6 is energized to generate a torque winding magnetic field.
  • the number of pole pairs P M of the magnetic field of the torque winding and the number of pole pairs P B of the magnetic field of the suspension winding satisfy P M ⁇ P B.
  • Layer insulation, the phase is divided by the terminating part, the number of phases and poles of the rotor guide bar 7 must be the same as the torque winding, so the rotor guide bar 7 also adopts a phase separation structure, that is, the first, fourth, seventh, and tenth guides.
  • the bars are connected to one phase; the bars 2, 5, 8, 11 are connected to one phase; the bars 3, 6, 9, 12 are connected to one phase, and the three phases are insulated from each other; in this way, When the motor is running, only the torque winding magnetic field will generate a rotor rotating magnetic field in the rotor guide bar among the suspension winding magnetic field, the torque winding magnetic field, and the bias magnetic field generated by the permanent magnet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

本发明公开了一种三自由度异步型无轴承电机,包括转子和定子,所述转子由转轴和转子铁心组成,所述转子铁心的外圆周安装有转子导条;所述定子包括沿转子铁心径向向外依次相连的定子铁心、定子永磁环,以及对称设置于定子铁心两侧的轴向控制铁心、轴向悬浮绕组,所述轴向控制铁心的外沿对接并贴合定子永磁环外壁,内沿向转子铁心延伸并设置有轴向工作气隙,所述轴向悬浮绕组贴合轴向控制铁心的外沿内壁,并与定子铁心间隔设置,所述定子铁心上绕制有分别位于内层和外层的电机转矩绕组、径向悬浮绕组。

Description

一种三自由度异步型无轴承电机 技术领域
本发明涉及无轴承和磁悬浮电机制造技术领域,具体涉及一种三自由度异步型无轴承电机。
背景技术
无轴承和磁悬浮电机是上世纪80年代末发展起来的新型高速特种电机,无轴承电机主要分为磁阻型、感应型和异步型无轴承电机三种,与其他两种相比,异步型无轴承电机转子无永磁体,结构简单,转子强度高,且无磁阻型无轴承电机存在的转子旋转时的振动缺点,是最具有工业应用前景的一种无轴承电机。传统的异步型无轴承电机内部仅存在三个磁场,即转矩绕组磁场、悬浮绕组磁场和转子感应磁场,且转矩绕组磁场极对数P M和悬浮绕组磁场极对数P B之间必须满足P M=P B±1的关系,转矩主要由转矩绕组磁场和转子感应磁场作用产生,悬浮力主要由悬浮绕组磁场和转矩绕组磁场作用产生,转子导条既要感应出与转矩绕组磁场极对数相同的磁场,还要感应出与悬浮绕组磁场极对数相同的磁场,造成传统异步型无轴承电机悬浮力和转矩之间的解耦控制极为复杂,且转子导条切割悬浮绕组磁场产生的转子感应磁场对悬浮力有削弱作用,这两个固有缺点限制了传统异步型无轴承电机的工业应用进程。
此外,异步型无轴承电机若要实现五自由度悬浮运行,需要轴向磁悬浮轴承与其配合使用。轴向磁轴承势必会增加悬浮电机系统的轴向长度,进而降低临界转速和功率密度。因此,实现异步型无轴承电机和轴向磁轴承的集成化已成为磁悬浮电机领域的研究热点。
发明内容
本发明的目的是提供一种结构紧凑,轴向悬浮力、径向悬浮力和转矩无耦合的三自由度异步型无轴承电机。
本发明通过以下技术方案实现:
一种三自由度异步型无轴承电机,包括转子和定子,所述转子由转轴和转子铁心组成,所述转子铁心表面安装有偶数个转子导条;所述定子包括沿转子铁心径向 向外依次相连的定子铁心、定子永磁环,以及对称设置于定子铁心两侧的轴向控制铁心、轴向悬浮绕组,所述轴向控制铁心的外沿对接并贴合定子永磁环外壁,内沿向转子铁心延伸并设置有轴向工作气隙,所述轴向悬浮绕组贴合轴向控制铁心的外沿内壁,并与定子铁心间隔设置,所述定子铁心上绕制有分别位于内层和外层的电机转矩绕组、径向悬浮绕组。
本发明的进一步方案是,所述定子铁心上设置有定子槽,所述电机转矩绕组、径向悬浮绕组分别嵌入定子槽中。
本发明的进一步方案是,所述转子导条、定子永磁环定子永磁环由稀土永磁材料或铁氧永磁材料制成。
本发明的进一步方案是,所述转子导条采用分相结构,每相之间相互绝缘,转子导条的极对数与电机转矩绕组的极对数相同,与径向悬浮绕组的极对数不同。
本发明与现有技术相比的优点在于:
一、实现了两自由度异步型无轴承电机和轴向磁轴承的集成化,是一种结构新颖、世界首创的一种三自由度异步型无轴承电机,是由由一个径向磁化的定子永磁环分别提供轴向和径向偏置磁通,轴向悬浮绕组通电产生轴向悬浮磁通,径向悬浮绕组通电产生径向悬浮磁通,径向和轴向悬浮磁通分别调节偏置磁通,使轴向和径向气隙一侧的磁场增强,而相反方向磁场减弱,产生指向磁场增强方向的悬浮力,根据现有技术,建立轴向和径向位移闭环控制系统,实现转子轴向和径向三自由度稳定悬浮;且转子导条为偶数个,转子导条采用分相结构,每相之间相互绝缘,转子导条切割转矩绕组磁场、悬浮绕组磁场和偏置磁场,仅感应出与转矩绕组极对数相同的转子感应磁场,转矩是由电机转矩绕组磁场和转子感应磁场相互作用产生,转矩和悬浮力无耦合,控制简单,易于实现;
二、应用于五自由度悬浮驱动系统中,可以代替一个轴向磁轴承和两自由度异步型无轴承电机,将极大地缩小轴向长度和系统体积与重量,对实现异步型无轴承电机工业应用具有里程碑式的重要意义。
附图说明
图1为本发明的轴向结构与磁通剖视图。
图2为本发明的轴向控制铁心左侧结构与磁通示意图。
图3为本发明的轴向控制铁心右侧结构与磁通示意图。
图4为本发明的定子铁心与转子结构、绕组排列及磁通示意图。
图5本发明的定子转子绕组或导条第一分相结构图。
图6本发明的定子转子绕组或导条第二分相结构图。
图7本发明的定子转子绕组或导条第三分相结构图。
具体实施方式
如图1~7所示的一种三自由度异步型无轴承电机,包括转子和定子,所述转子由转轴9和转子铁心8组成,所述转子铁心8上均开有转子槽,在转子槽中浇注笼型的转子导条7,转子槽和转子导条7的数目为偶数。
所述定子包括沿转子铁心8径向向外依次相连的定子铁心3、定子永磁环4,以及对称设置于定子铁心3两侧的轴向控制铁心1、轴向悬浮绕组2,轴向控制铁心1可以为圆盘形、三极、四极等磁极式结构,本实施例的轴向控制铁心1为四极式,所述轴向控制铁心1的外沿对接并贴合定子永磁环4外壁,内沿向转子铁心8延伸并设置有左轴向工作气隙、右轴向工作气隙;所述轴向悬浮绕组2贴合轴向控制铁心1的外沿内壁,并与定子铁心3间隔设置,所述定子永磁环4为稀土永磁材料或铁氧永磁材料制成的径向充磁的永磁体。
所述定子铁心3与转子铁心8之间设置有径向工作气隙,所述定子铁心3上设置有定子槽,所述定子槽中嵌入有分别位于内层、外层的电机转矩绕组6、径向悬浮绕组5,径向悬浮绕组5为集中式绕组,如图4所示,电机转矩绕组6排列方式与普通异步电机相同,径向悬浮绕组5分为x方向悬浮控制绕组和y方向悬浮控制绕组,x方向控制绕组包括绕组L X1~L X12,按照图4所示方向串联为一相;y方向悬浮控制绕组包括绕组L Y1~L Y12,按照图4所示方向串联为一相。
转子铁心8、轴向控制铁心1、定子铁心3均由轴向和径向导磁性能良好的材料制成。所述轴向控制铁心1、绕向悬浮绕组2、定子铁心3、电机转矩绕组6、径向悬浮绕组5沿轴向叠压。
悬浮原理是:定子永磁环4产生分别向左、右两侧的左侧偏置磁通10、右侧偏置磁通13,左侧偏置磁通10从定子永磁环4的N极,依次经过左侧的轴向控制铁心1、左轴向工作气隙、转子铁心8、径向工作气隙、定子铁心3返回S极,右侧偏置磁通13从定子永磁环4的N极,依次经过右侧的轴向控制铁心 1、右轴向工作气隙、转子铁心8、径向工作气隙、定子铁心3返回S极,形成两条对称的闭合路径。
绕向悬浮绕组2通电产生轴向悬浮磁通11,轴向悬浮磁通11依次经过轴向控制铁心1、左轴向工作气隙、转子铁心8、右轴向工作气隙形成闭合路径;径向悬浮绕组5通电,产生径向悬浮磁通12,径向悬浮磁通12经过上方的定子铁心3、上方的径向工作气隙、转子铁心8、下方的径向工作气隙、下方的定子铁心3,与定子铁心扼部形成闭合路径。径向和轴向悬浮磁通调节相应的偏置磁通,使径向和轴向一侧气隙磁场增强,而相反方向气隙磁场减弱,从而产生指向气隙磁场增强方向的悬浮力,在定子上安装轴向和径向位移传感器,或者通过无位移传感器算法,检测和辨识转子径向和轴向位移信号,建立轴向和径向位移闭环控制,实现转子三自由度稳定悬浮。
旋转原理是:电机转矩绕组6通电产生转矩绕组磁场,转矩绕组磁场极对数P M和悬浮绕组磁场极对数P B之间满足P M≠P B,而转子导条7的外层绝缘,通过端接部分将其分相,转子导条7的相数和极数必须与转矩绕组相同,因此转子导条7也采用分相结构,即第1、4、7、10导条连接为一相;第2、5、8、11导条连接为一相;第3、6、9、12导条连接为一相,且三相之间相互绝缘;按照此种方式设置,在该电机运行时,悬浮绕组磁场、转矩绕组磁场和永磁体产生的偏置磁场三者中只有转矩绕组磁场在转子导条中会产生转子旋转磁场。

Claims (4)

  1. 一种三自由度异步型无轴承电机,包括转子和定子,所述转子由转轴(9)和转子铁心(8)组成,其特征在于:所述转子铁心(8)的上安装有偶数个转子导条(7);所述定子包括沿转子铁心(8)径向向外依次相连的定子铁心(3)、定子永磁环(4),以及对称设置于定子铁心(3)两侧的轴向控制铁心(1)、轴向悬浮绕组(2),所述轴向控制铁心(1)的外沿对接并贴合定子永磁环(4)外壁,内沿向转子铁心(8)延伸并设置有轴向工作气隙,所述轴向悬浮绕组(2)贴合轴向控制铁心(1)的外沿内壁,并与定子铁心(3)间隔设置,所述定子铁心(3)上绕制有分别位于内层和外层的电机转矩绕组(6)、径向悬浮绕组(5)。
  2. 如权利要求1所述的一种三自由度异步型无轴承电机,其特征在于:所述定子铁心(3)上设置有定子槽,所述电机转矩绕组(6)、径向悬浮绕组(5)分别嵌入定子槽中。
  3. 如权利要求1所述的一种三自由度异步型无轴承电机,其特征在于:所述定子永磁环(4)由稀土永磁材料或铁氧永磁材料制成。
  4. 如权利要求1所述的一种三自由度异步型无轴承电机,其特征在于:所述转子导条(7)采用分相结构,每相之间相互绝缘,转子导条(7)为偶数个,且其极对数与电机转矩绕组(4)的极对数相同,与径向悬浮绕组(5)的极对数不同。
PCT/CN2019/091317 2018-06-30 2019-06-14 一种三自由度异步型无轴承电机 WO2020001292A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810702159.6 2018-06-30
CN201810702159.6A CN108599498A (zh) 2018-06-30 2018-06-30 一种三自由度异步型无轴承电机

Publications (1)

Publication Number Publication Date
WO2020001292A1 true WO2020001292A1 (zh) 2020-01-02

Family

ID=63634701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091317 WO2020001292A1 (zh) 2018-06-30 2019-06-14 一种三自由度异步型无轴承电机

Country Status (2)

Country Link
CN (1) CN108599498A (zh)
WO (1) WO2020001292A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108599498A (zh) * 2018-06-30 2018-09-28 淮阴工学院 一种三自由度异步型无轴承电机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201121656Y (zh) * 2007-11-28 2008-09-24 江苏大学 径向四极二相交流驱动的径向-轴向混合磁轴承
CN102305242A (zh) * 2011-08-15 2012-01-04 江苏大学 一种径向-轴向三自由度交直流混合磁轴承
CN102510197A (zh) * 2011-11-14 2012-06-20 江苏大学 锥形无轴承异步电机
CN108599498A (zh) * 2018-06-30 2018-09-28 淮阴工学院 一种三自由度异步型无轴承电机

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101207310B (zh) * 2007-12-12 2010-08-18 南京航空航天大学 轴向主动悬浮的三自由度无轴承交替极永磁电机
CN103016525B (zh) * 2012-12-19 2015-04-22 江苏大学 一种恒流源偏置径-轴向磁轴承
CN103683779B (zh) * 2013-12-25 2016-08-17 淮阴工学院 定子永磁偏置永磁型无轴承电机
CN105827028B (zh) * 2016-05-06 2018-02-27 江苏大学 一种电动车飞轮电池用五自由度轴向磁通无轴承电机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201121656Y (zh) * 2007-11-28 2008-09-24 江苏大学 径向四极二相交流驱动的径向-轴向混合磁轴承
CN102305242A (zh) * 2011-08-15 2012-01-04 江苏大学 一种径向-轴向三自由度交直流混合磁轴承
CN102510197A (zh) * 2011-11-14 2012-06-20 江苏大学 锥形无轴承异步电机
CN108599498A (zh) * 2018-06-30 2018-09-28 淮阴工学院 一种三自由度异步型无轴承电机

Also Published As

Publication number Publication date
CN108599498A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
WO2020001289A1 (zh) 一种恒流源励磁的三自由度无轴承开关磁阻电机
WO2020001290A1 (zh) 一种恒流源励磁的三自由度无轴承异步电机
US11456631B2 (en) Disc-type three-degree-of-freedom magnetic suspension switched reluctance motor
WO2020001294A1 (zh) 一种五自由度无轴承开关磁阻电机
CN104214216A (zh) 一种四自由度内转子磁轴承
WO2022057625A1 (zh) 三悬浮极磁悬浮薄片开关磁阻电机
CN106812797B (zh) 一种双层定子永磁偏置径向磁轴承
WO2020001293A1 (zh) 一种外绕组控制的两自由度无轴承开关磁阻电机
CN109245468B (zh) 一种采用永磁辅助笼障转子的双转子同步电机
CN104141685A (zh) 一种主被动内转子磁轴承
CN108712047A (zh) 一种三自由度无轴承开关磁阻电机
CN108649764B (zh) 一种恒流源励磁的三自由度无轴承永磁电机
CN108712043A (zh) 一种定子永磁偏置五自由度无轴承异步电机
CN108808916A (zh) 一种新型的三自由度永磁型无轴承电机
CN108696190A (zh) 一种带隔磁环的三自由度永磁型无轴承电机
WO2020001292A1 (zh) 一种三自由度异步型无轴承电机
CN108599500A (zh) 一种定子永磁式外转子片状无轴承异步电机
CN108696191A (zh) 一种集成式五自由度无轴承异步电机
CN108808915A (zh) 一种三自由度永磁型无轴承电机
CN108599499A (zh) 一种五自由度定子永磁式无轴承异步电机
CN108712044B (zh) 一种定子永磁偏置片状内转子无轴承异步电机
CN108768115A (zh) 一种新型的三自由度无轴承异步电机
CN108599502A (zh) 一种永磁体轴向磁化的三自由度永磁型无轴承电机
CN108718144A (zh) 四自由度定子永磁式无轴承异步电机
CN108712048A (zh) 一种定子永磁式五自由度锥形无轴承开关磁阻电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19826734

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19826734

Country of ref document: EP

Kind code of ref document: A1