WO2020001127A1 - 使用灵活光网络的业务传输方法、装置、设备及存储介质 - Google Patents

使用灵活光网络的业务传输方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2020001127A1
WO2020001127A1 PCT/CN2019/082271 CN2019082271W WO2020001127A1 WO 2020001127 A1 WO2020001127 A1 WO 2020001127A1 CN 2019082271 W CN2019082271 W CN 2019082271W WO 2020001127 A1 WO2020001127 A1 WO 2020001127A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexo
service data
optical network
customer service
flexible optical
Prior art date
Application number
PCT/CN2019/082271
Other languages
English (en)
French (fr)
Inventor
张源斌
苑岩
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US17/252,813 priority Critical patent/US11329748B2/en
Priority to EP19825374.2A priority patent/EP3817311A4/en
Publication of WO2020001127A1 publication Critical patent/WO2020001127A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1611Synchronous digital hierarchy [SDH] or SONET
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/04Network management architectures or arrangements
    • H04L41/044Network management architectures or arrangements comprising hierarchical management structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0823Configuration setting characterised by the purposes of a change of settings, e.g. optimising configuration for enhancing reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0896Bandwidth or capacity management, i.e. automatically increasing or decreasing capacities

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a service transmission method, device, device, and storage medium using a flexible optical network.
  • the FlexO (Flexible Optical Transport Network, Flexible Optical Network) standard is developed by the International Telecommunication Union (ITU-T) and is an important standard for optical transmission equipment.
  • An important feature of the flexible optical network transmission group is through binding.
  • Multiple PHY (PHYsical Layer) links with the same rate are used to implement the function of carrying large bandwidth services, as shown in FIG. 1. For example, four 100G PHY links are bound to support client services with a medium access control rate of 400G, that is, client services are transmitted in multiple PHY links.
  • the mapping path for services is that services with different bandwidths are first mapped to the corresponding flexible flex optical channel data unit (ODU), that is, ODUflex, one or more ODUflex It is then multiplexed into a container OUT (Optical Transform Unit) Cn of the B100G OTN (Optical Network terminal).
  • ODU flexible flex optical channel data unit
  • Cn container OUT (Optical Transform Unit) Cn of the B100G OTN (Optical Network terminal).
  • the OTUCn is divided into time slots, which can realize the multiplexing of multiple services.
  • the granularity of each time slot is 5G; then OTUCn will be split into n OTUCs, and each OTUC will be mapped into its own FlexO frame, and the FlexO frame data will be sent out through the corresponding optical module.
  • the time slot is just a layer of encapsulation for OTUC.
  • 5G bearer is currently the hottest research topic in the industry. FlexO has become a potential technology for 5G bearer due to its support for binding, channelization and other functions. In order to make the mapping multiplexing level flat, the current idea is to merge the FlexO layer and the OTUCn level, that is, divide the time slot directly in the payload area of the FlexO frame, and one or more ODUflex is directly multiplexed into the FlexO frame.
  • ODUflex can be mapped to the time slot of a FlexO frame of any PHY. This results in a very high complexity in the implementation of service transmission, and it also occupies more time. There are many logical processing units, and this complexity and logical resource occupation will increase with the number of bound PHYs.
  • a service transmission method, device, device, and storage medium using a flexible optical network provided by the embodiments of the present disclosure.
  • the main technical problem to be solved is to solve the high mapping complexity when the related FlexO implements service transmission, and it needs to occupy more logical resources. .
  • an embodiment of the present disclosure provides a service transmission method using a flexible optical network, including:
  • the flexible optical network transmission group is composed of M physical layer PHY links, the M is greater than or equal to 1, the N is greater than or equal to the M, and the customer service data is in a FlexO frame of each of the PHY links.
  • the number of occupied cells is the same as the cell position of the occupied cells.
  • an embodiment of the present disclosure further provides a service transmission method using a flexible optical network, including:
  • the flexible optical network transmission group is composed of M physical layer PHY links, where M is greater than or equal to 1, the N FlexO frames are FlexO frames in the M PHY links, and the customer service data is The number of cells occupied in the FlexO frames of the PHY links is the same as the cell position of the occupied cells.
  • an embodiment of the present disclosure further provides a service transmission apparatus using a flexible optical network, including:
  • a data processing module configured to map customer service data to N flexible optical network FlexO frames of M physical layer PHY links of the flexible optical network transmission group;
  • a data sending module configured to send the N FlexO frames through the flexible optical network transmission group
  • the flexible optical network transmission group is composed of M physical layer PHY links, the M is greater than or equal to 1, the N is greater than or equal to the M, and the customer service data is in a FlexO frame of each of the PHY links.
  • the number of occupied cells is the same as the cell position of the occupied cells.
  • an embodiment of the present disclosure further provides a service transmission apparatus using a flexible optical network, including:
  • a receiving module configured to receive N FlexO frames transmitted using a flexible optical network transmission group
  • An analysis module configured to sequentially extract customer service data from the N FlexO frames
  • the flexible optical network transmission group is composed of M physical layer PHY links, where M is greater than or equal to 1, the N FlexO frames are FlexO frames in the M PHY links, and the customer service data is The number of cells occupied in the FlexO frames of the PHY links is the same as the cell position of the occupied cells.
  • an embodiment of the present disclosure further provides a transmitting-end device, including a first processor, a first memory, and a first communication bus;
  • the first communication bus is configured to implement a communication connection between the first processor and the first memory
  • the first processor is configured to execute one or more first programs stored in the first storage to implement the steps of the service transmission method using the flexible optical network as described above.
  • an embodiment of the present disclosure further provides a receiving end device, including a second processor, a second memory, and a second communication bus;
  • the second communication bus is configured to implement a communication connection between the second processor and the second memory
  • the second processor is configured to execute one or more second programs stored in the second memory to implement the steps of the service transmission method using the flexible optical network as described above.
  • an embodiment of the present disclosure further provides a computer storage medium, where the computer-readable storage medium stores one or more first programs, and the one or more first programs can be processed by one or more The processor executes to implement the steps of the service transmission method using the flexible optical network as described above;
  • the computer-readable storage medium stores one or more second programs, and the one or more second programs can be executed by one or more processors to implement the service transmission method using the flexible optical network as described above. A step of.
  • customer service data is mapped into N flexible optical network FlexO frames on the M PHY links of the flexible optical network transmission group. , And then send the N FlexO frames through the flexible optical network transmission group, and the receiving end sequentially extracts the customer service data from the N FlexO frames.
  • the flexible optical network transmission group consists of M physical layer PHY links, and the customer
  • the number of cells occupied by the service data in the FlexO frame of each PHY link and the cell position of the occupied cells are the same, that is, the embodiment of the present disclosure uses a set of logic to directly map customer service data to the flexible optical network In the N FlexO frames on the M PHY links of the transmission group, the complexity and the logical resources to be occupied are reduced to the greatest extent.
  • FIG. 1 is a schematic diagram of a flexible optical network networking
  • FIG. 2 is a schematic diagram of a flexible optical network networking according to Embodiment 1 of the present disclosure
  • FIG. 3 is a schematic flowchart of a service transmission method using a flexible optical network at a transmitting end according to Embodiment 1 of the present disclosure
  • FIG. 5 is a schematic flowchart of mapping customer service data into a FlexO frame according to the first embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of customer service data mapping according to the first embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart of a service transmission method using a flexible optical network at a receiving end according to Embodiment 1 of the present disclosure
  • FIG. 8 is a schematic flowchart of a process of obtaining customer service data according to the first embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of an overhead of a FlexO frame according to the first embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a service transmission apparatus using a flexible optical network at a transmitting end according to a second embodiment of the present disclosure
  • FIG. 11 is a schematic structural diagram of a service transmission apparatus using a flexible optical network at a receiving end according to a second embodiment of the present disclosure
  • FIG. 12 is a schematic structural diagram of a transmitting device according to Embodiment 2 of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a receiving end device according to Embodiment 2 of the present disclosure.
  • FIG. 14 is a schematic diagram of a flexible optical network networking in scenario 1 of Embodiment 2 of the present disclosure.
  • FIG. 15 is a schematic diagram of flexible optical network networking in scenario 2 of Embodiment 2 of the present disclosure.
  • FIG. 16 is a schematic diagram of mapping customer service data into a FlexO frame according to the second embodiment of the present disclosure.
  • the service transmission method using the flexible optical network maps customer service data to the M of the flexible optical network transmission group.
  • FlexO frames of N flexible optical networks on each PHY link and the number of cells occupied by customer service data in the FlexO frames of each PHY link is the same as the cell position of the occupied cells, that is, the One set of logic directly maps customer service data to N FlexO frames on M PHY links of a flexible optical network transmission group, that is, this embodiment logically merges N FlexO frames on M PHY links into one Logical whole frame.
  • the service mapping can be implemented, which can reduce the complexity and the logical resources required to the greatest extent.
  • N FlexO frames on these M PHY links are logically merged, where M is greater than or equal to 1, and N FlexO frames include FlexO frames of M PHY links.
  • the number of cells occupied by the customer service data in the FlexO frame of each of the PHY links is the same as the cell position of the occupied cells.
  • the type of customer service data can be flexibly set according to the application scenario, including but not limited to at least one of the optical channel data unit ODU service data, Ethernet service data, and synchronous digital hierarchy SDH (Synchronous Digital Hierarchy) service data.
  • ODU service data optical channel data unit
  • Ethernet service data Ethernet service data
  • SDH Synchronous Digital Hierarchy
  • N is greater than or equal to M, and the value of N is generally an integer multiple of M.
  • the rates of the M PHY links in the flexible optical network transmission group are generally the same. This method is also applicable to the case where the M PHY link rates are different.
  • N L * M, for example:
  • the bandwidth of the M PHY links can be set equal to the bandwidth of each FlexO frame of the M PHY links.
  • each PHY link is bound between a transmitting device and a receiving device.
  • the bandwidth of a FlexO frame in each PHY link is the same as that of the PHY link.
  • the bandwidth is equal, and the numbers of the four PHY links are set to 1, 2, 3, and 4 from top to bottom.
  • the numbers of the FlexO frames of the four PHY links are also 1, 2, 3, and 4. ;
  • the exemplary numbering sequence herein can be arbitrarily adjusted flexibly. In one example, assuming that the speeds of the four PHY links are the same, for example, they are all 25G, in this example, you can choose to logically combine the FlexO frames on the four PHY links into one logical whole frame.
  • Each FlexO frame included in a logical whole frame is transmitted on its own PHY link, that is, each FlexO frame included in a logical whole frame is relatively independent, but at this time, there is only one mapping situation when mapping customer service data. That is, only a set of logic is required, so the complexity and resource occupation rate of service transmission can be reduced to the greatest extent.
  • N FlexO frames is only one logical operation, so as to facilitate the mapping of customer services and calculate the cell positions occupied by them, but they are not actually merged.
  • the merging method will be explained in the subsequent examples.
  • FIG. 3 A service transmission method using a flexible optical network at a sending end is shown in FIG. 3, including:
  • S301 Map customer service data to N flexible optical network FlexO frames of the M physical layer PHY links of the flexible optical network transmission group.
  • the N flexible optical networks FlexO frames of the M physical layer PHY links can be regarded as one logical whole frame, and each FlexO frame included in the logical whole frame is transmitted on the respective physical layer link.
  • mapping methods may be used first, including, but not limited to, AMP (Asynchronous Mapping Procedure), BMP (Bit-synchronous Mapping Procedure), GMP (Generic Mapping Procedure), GFP-F (Frame Mapping Generic Framing Procedure) are mapped to ODU signals. For OTN signals, they are directly decapsulated into ODU signals.
  • AMP Asynchronous Mapping Procedure
  • BMP Bit-synchronous Mapping Procedure
  • GMP Generic Mapping Procedure
  • GFP-F Flash Mapping Generic Framing Procedure
  • S302 Send the N FlexO frames to a receiving device through a flexible optical network transmission group.
  • each FlexO frame is sent to the receiving end device through the corresponding optical module and the respective PHY link.
  • the payload area of the FlexO frame on the PHY link is divided into a plurality of cells of a fixed size.
  • the number of cells is related to the cell size and the size of the payload area of the FlexO frame.
  • the cell size can also be flexibly set, for example, it can be 64 bits, 128 bits, 256 bits, and so on.
  • the bandwidth of each cell is proportional to the bandwidth of the FlexO frame.
  • the N FlexO frames can be logically combined into a FlexO full frame, and the bandwidth of the corresponding FlexO logical full frame is expanded. N times, the cell bandwidth in the entire frame of FlexO is also expanded by N times.
  • FIG. 5 Based on the logical merge manner of the above example, the process of carrying the customer service data to be sent into the payload area of the logical whole frame in this embodiment is shown in FIG. 5, including:
  • S501 Determine the number of cells that the customer service data needs to occupy in each FlexO frame according to the service bandwidth of the service to which the customer service data belongs and N times the cell bandwidth of the cells in the FlexO frame.
  • the available service bandwidth of customer service data is divided by N times the cell bandwidth and rounded up to obtain the number of cells that the customer service data needs to occupy in each FlexO frame.
  • S502 Determine the customer service according to the number of cells required by the customer service data in each FlexO frame and the number of idle cells (that is, unoccupied cells) currently remaining in each FlexO frame. The position of each cell that the data needs to occupy in each FlexO frame.
  • a sigma-delta algorithm may be used to calculate the position of each cell occupied by customer service data in each FlexO frame, and it should be understood that the determination of the position in this embodiment is not limited to this example algorithm. Any other algorithm that can implement this function is also applicable.
  • the customer service data is mapped to the cell at the corresponding position in the FlexO frame.
  • the sequence may be in ascending order according to the frame number of each FlexO frame (it should be understood that the order can be flexibly set, for example, it can also be in descending order from large to small or other intervals, etc.)
  • the service is carried on the cell corresponding to the N FlexO frames in the order of the number of N FlexO frames from small to large. See FIG. 6 Show.
  • Each FlexO frame carries the same cell location of the same service, that is, the processing logic of each FlexO frame is the same, which greatly simplifies the hardware implementation.
  • the method further includes: the number of cells that the customer service data needs to occupy in each FlexO frame.
  • the number and service type of customer service data are set in the overhead of at least one FlexO frame.
  • FIG. 7 a service transmission method using a flexible optical network is shown in FIG. 7, including:
  • S701 Receive and send N FlexO frames transmitted by the flexible optical network transmission group.
  • S702 Sequentially extract customer service data from the foregoing N FlexO frames (that is, N FlexO frames belonging to a logical whole frame).
  • the overhead of at least one FlexO frame includes the number of cells occupied by the customer service data in each FlexO frame and the service type of the customer service data;
  • the overhead of at least one FlexO frame includes at least the number of cells in the entire frame occupied by the service described in the customer service data;
  • S801 Determine the position of each cell occupied by customer service data in each FlexO frame according to the number of cells occupied by the customer service data in each FlexO frame.
  • S803 Determine whether to perform conversion processing on the extracted customer service data according to the service type.
  • the service when determining that the service is a non-OTN type according to the service type in the overhead, it also includes demapping the obtained customer service data to restore the original data service conversion process.
  • the ODU service is taken as an example.
  • the transmission service transmission process includes:
  • the N FlexO frames are combined into a FlexO full frame, and according to the ODU service bandwidth and the FlexO full frame cell bandwidth (that is, the cell bandwidth of the cells in the FlexO frame) N times), calculate the number of cells in the entire FlexO frame occupied by the ODU service, and calculate the corresponding positions of these cells in the entire FlexO frame according to the sigma-delta algorithm.
  • the N FlexO frames are sorted according to the number in ascending order, and according to the cell position of each ODU service in the entire FlexO frame, the customer service data is sequentially carried (that is, mapped) to the corresponding N FlexO frames. Cell position.
  • the service type and the number of cells occupied are stored in the FlexO frame overhead, which can be stored only in the FlexO overhead with the lowest number, and the overhead transmission of M ODU services can be completed in a multi-frame manner; it can also be overhead in each FlexO Both are passed.
  • a schematic diagram of the overhead of one FlexO frame is shown in FIG. 9. If H ⁇ N, the overhead transmission of H ODU services can be completed in one cycle. If H> N, ceil (H / N) cycles are required to complete the overhead transmission of H ODU services and the overhead of H ODU services. It can be carried in the overhead area of N FlexO frames in order from small to large. N FlexO frames are sent out through K optical modules, N ⁇ K.
  • optical signals are obtained from K optical modules, and FlexO frames are obtained, and the FlexO frames are sorted in ascending order according to the number.
  • the position of the cell in the payload area of the FlexO frame is obtained according to the sigma-delta algorithm.
  • the ODU service data ie, the ODU signal
  • the ODU signal is sequentially extracted from the cells at the corresponding positions.
  • the FlexO frames of the N physical layer links between the transmitting device and the receiving device are logically combined into one logical whole frame, and the mapping operation can be completed through a set of logic, which greatly reduces FlexO to achieve business.
  • the complexity of the mapping during transmission reduces the logical resources occupied.
  • This embodiment provides a flexible optical network service transmission device.
  • the device may be installed in a transmitting device. Referring to FIG. 10, the device includes:
  • the data processing module 101 is configured to map customer service data to N flexible optical network FlexO frames of M physical layer PHY links of the flexible optical network transmission group.
  • the flexible optical network transmission group consists of M physical layer PHY links, where M is greater than or equal to 1, N is greater than or equal to M, and the number of cells occupied by customer service data in the FlexO frame of each PHY link. The number is the same as the cell position of the occupied cells.
  • the data sending module 102 is configured to send the N FlexO frames through the flexible optical network transmission group.
  • the transmission rates of the above M physical layer links are the same; of course, refer to the analysis in the above embodiment, and it is limited that the transmission rates are the same.
  • the data processing module 101 may be exemplarily set to determine, according to the service bandwidth of the service to which the customer service data belongs and the cell bandwidth of the cells in the FlexO frame that are N times, the customer service data to occupy in each FlexO frame The number of cells, and the number of cells set to be occupied in each FlexO frame according to customer service data, and the number of idle cells (that is, unoccupied cells) currently remaining in each FlexO frame. Number, determine the position of each cell required by the customer service data in each FlexO frame, and then sequentially map the customer service data to the corresponding position cell in each FlexO frame.
  • the data processing module 101 can specifically divide the service bandwidth of the customer service data by N times the cell bandwidth, and round up to obtain the number of cells that the customer service data needs to occupy in each FlexO frame. For a specific mapping process, refer to the foregoing first embodiment, and details are not described herein again.
  • the functions of the data processing module 101 and the data sending module 102 may be specifically implemented by a processor or a controller in the sending-end device.
  • this embodiment further provides a flexible optical network service transmission device that can be set on a receiving end device, including:
  • the receiving module 111 is configured to receive N FlexO frames transmitted by a transmitting end using a flexible optical network transmission group.
  • the analysis module 112 is configured to sequentially extract customer service data from the above-mentioned N FlexO frames (that is, N FlexO frames belonging to a logical whole frame).
  • the logical entire frame is obtained by logically combining N FlexO frames in the M physical layer links between the transmitting end device and the receiving end device.
  • Each FlexO frame included in the logical entire frame is on the respective physical layer link. transmission.
  • the overhead of at least one FlexO frame includes the number of cells occupied by customer service data in each FlexO frame and the service type of the customer service data; the analysis module 112 is configured to The number of cells occupied in each FlexO frame is described, the position of each cell occupied by customer service data in the FlexO frames is determined, and the customer is sequentially extracted from the cells in the corresponding position in each FlexO frame. Business data, and then determine whether to convert the extracted customer business data based on the type of business.
  • the parsing module 112 refers to the process of extracting customer service data as shown in the foregoing embodiment, and details are not described herein again.
  • the functions of the data receiving module 111 and the parsing module 112 in this embodiment may be implemented by a processor or a controller in a receiving device.
  • This embodiment further provides a transmitting-end device, which may be an OTN device, as shown in FIG. 12, and includes a first processor 1201, a first memory 1202, and a first communication bus 1203.
  • a transmitting-end device which may be an OTN device, as shown in FIG. 12, and includes a first processor 1201, a first memory 1202, and a first communication bus 1203.
  • the first communication bus 1203 is configured to implement a communication connection between the first processor 1201 and the first memory 1202;
  • the first processor 1201 is configured to execute one or more first programs stored in the first storage 1202, so as to implement the steps of the service transmission method using the flexible optical network at the transmitting end in the foregoing embodiment.
  • This embodiment also provides a receiving-end device, which may be an OTN device. As shown in FIG. 13, it includes a second processor 1301, a second memory 1302, and a second communication bus 1303.
  • the second communication bus 1303 is configured to implement a communication connection between the second processor 1301 and the second memory 1302.
  • the second processor 1301 is configured to execute one or more second programs stored in the second storage 1302 to implement the steps of the service transmission method using the flexible optical network at the receiving end in the foregoing embodiment.
  • This embodiment also provides a computer storage medium.
  • the computer-readable storage medium stores one or more first programs, and the one or more first programs can be executed by one or more processors to implement the above-mentioned Steps of a service transmission method using a flexible optical network at a transmitting end;
  • the computer-readable storage medium stores one or more second programs, and the one or more second programs can be executed by one or more processors to implement the service transmission method using the flexible optical network at the receiving end as shown above. A step of.
  • the computer storage medium may be disposed in the sending-end device and / or the receiving-end device.
  • this embodiment further describes the present disclosure by taking two specific application scenarios as examples.
  • the service delivery process in this scenario includes:
  • the number of cells occupied by a 10G ODU service is 10 * 1000 / 15 ⁇ 666.67, that is, 667 cells are occupied.
  • the 10G ODU service data is sequentially carried in the cells corresponding to the three FlexO frames ordered from small to large, that is, the first 128 bits of the ODU service are placed on the first corresponding cell of the FlexO frame numbered 1. .
  • the second 128 bits of the ODU service are placed on the first corresponding cell of the FlexO frame numbered 2 and the third 128 bits of the ODU service are placed on the first corresponding cell of the FlexO frame numbered 3.
  • the ODU service The fourth 128 bits are placed on the second corresponding cell of the FlexO frame numbered 1, and so on.
  • the number of the ODU service and the number of occupied cells are stored in the FlexO frame overhead numbered 1.
  • the other FlexO frames are not carried, and data is sent through three 25G optical modules.
  • data is received from the three optical modules, processed for alignment, and the FlexO frame is recovered.
  • the number of the ODU service and the occupied cell information are extracted from the overhead of the FlexO frame number 1, and calculated according to the sigma-delta algorithm.
  • the position of the cells occupied by the ODU service in the FlexO frame is recovered.
  • the data is sequentially extracted in order from the smallest number to form the ODU service, that is, the first 128 bits of the ODU service are extracted from the first corresponding cell of the FlexO frame numbered 1. Extract the data from the first corresponding cell of the FlexO frame number 2 as the second 128-bit of the ODU service, and extract the data from the first corresponding cell of the FlexO frame number 3 as the third of the ODU service 128 bits. The data is extracted from the second corresponding cell of the FlexO frame numbered 1 as the fourth 128 bits of the ODU service, and so on to complete the service extraction.
  • the positions of 2500 cells occupied by 25G ODU services in the entire FlexO frame of 5130 cells are calculated, and the positions of 1500 cells occupied by 15G ODU services are 5130-2500 in the entire frame of FlexO.
  • the 25G ODU service data is sequentially carried in the cells corresponding to the two FlexO frames ordered from small to large, as shown in FIG. 16, that is, the first 128 bits of the 25GODU service are placed in the first FlexO frame with the number 1. On a corresponding cell, the second 128 bits of the 25GODU service are placed on the first corresponding cell of the FlexO frame numbered 2, and the third 128 bits of the 25GODU service are placed on the second FlexO frame numbered 1. On the corresponding cell, the fourth 128-bit of the 25GODU service is placed on the second corresponding cell of the FlexO frame numbered 2, and so on.
  • the implementation method for 15G and 5G ODU services is the same.
  • the cell positions of the ODU service in the two FlexO frames are the same, and 2500, 1500, and 500 cells are allocated to 25G ODU services, 15G ODU services, and 5G ODU services in each FlexO frame. , Only one set of logic can complete the entire operation.
  • the data is received from the two optical modules, processed for alignment, and the FlexO frame is recovered.
  • the 25GODU service number and occupied cell information are extracted from the overhead in the first FlexO multiframe numbered 1.
  • the number of the 15GODU service and the occupied cell information are extracted from the overhead in the first FlexO multiframe of 2.
  • the number of the 5GODU service and the occupied cell information are extracted from the overhead in the second FlexO multiframe with the number 1.
  • the delta algorithm calculates the position of the cells occupied by the mulberry ODU service in the FlexO frame.
  • the data is sequentially extracted in order from the smallest to the largest number to form an ODU service. That is, the first 128-bit data of the ODU service is extracted from the first corresponding cell of the FlexO frame numbered 1. Extract the data from the first corresponding cell of the FlexO frame number 2 as the second 128-bit of the ODU service, and extract the data bit from the second corresponding cell of the FlexO frame number 1 as the third of the ODU service 128 bits, the fourth 128 bits of the data bit ODU service is extracted from the second corresponding cell of the FlexO frame numbered 2, and so on to complete the service extraction.
  • modules or steps of the embodiments of the present disclosure described above may be implemented by a general-purpose computing device, and they may be centralized on a single computing device or distributed on a network composed of multiple computing devices.
  • they can be implemented with program code executable by a computing device, so that they can be stored in a computer storage medium (ROM / RAM, magnetic disk, optical disk) and executed by the computing device, and in some cases
  • ROM / RAM read-only memory
  • magnetic disk magnetic disk
  • optical disk optical disk
  • the steps shown or described may be performed in a sequence different from that here, or they may be separately made into individual integrated circuit modules, or multiple modules or steps among them may be made into a single integrated circuit module. Therefore, the present disclosure is not limited to any specific combination of hardware and software.
  • the embodiment of the present disclosure uses a set of logic to directly map customer service data to N FlexO frames on M PHY links of the flexible optical network transmission group, which can minimize complexity and reduce logical resources to be occupied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本公开实施例提供一种使用灵活光网络的业务传输方法、装置、设备及存储介质,将客户业务数据映射到灵活光网络传输组的M个PHY链路上的N个灵活光网络FlexO帧中,然后通过灵活光网络传输组发送这N个FlexO帧,接收端从这N个FlexO帧中按序提取出客户业务数据,其中灵活光网络传输组由M个物理层PHY链路组成,且客户业务数据在每个PHY链路的FlexO帧中所占用的信元个数和所占用信元的信元位置相同,也即本公开实施例采用一套逻辑将客户业务数据直接映射到灵活光网络传输组的M个PHY链路上的N个FlexO帧中,从而最大程度上降低复杂度和减少需占用的逻辑资源。

Description

使用灵活光网络的业务传输方法、装置、设备及存储介质 技术领域
本公开涉及通信技术领域,尤其涉及一种使用灵活光网络的业务传输方法、装置、设备及存储介质。
背景技术
FlexO(Flexible Optical Transport Network,灵活光传送网,也即灵活光网络)标准由国际电信联盟(ITU-T)制定,是光传输设备的重要标准,灵活光网络传输组一个重要特征为通过绑定多个速率相同的PHY(PHYsical Layer,物理层)链路来实现承载大带宽业务的功能,参见图1所示。例如绑定4个100G的PHY链路来支持介质访问控制速率为400G的客户业务,即客户业务是在多个PHY链路中传输的。
相关的FlexO标准中,对于业务的映射路径是,不同带宽的业务首先映射到对应的灵活flex光通道数据单元ODU(Optical channel Data Unit,光通道数据单元),也即ODUflex,一个或多个ODUflex再复用到B100G OTN(Optical network terminal,光传送网络)的容器OUT(Optical Transform Unit,光转换单元)Cn中,OTUCn中划分有时隙,可以实现多个业务的复用,目前标准中规定每个时隙的颗粒度为5G;然后OTUCn会拆分成n个OTUC,每个OTUC再映射到各自的FlexO帧中,通过对应速率的光模块将FlexO帧数据发送出去,FlexO帧中是没有划分时隙,只是对OTUC做了一层封装。
5G承载是目前业界最热门的一个研究话题,FlexO由于其支持绑定,通道化等功能而成为5G承载的一个潜在技术。为了使得映射复用层次扁平化,目前的思路是将FlexO层和OTUCn层次进行合并,即直接在FlexO帧的净荷区域划分时隙,一个或多个ODUflex直接复用到FlexO帧中。但如图1所示,由于FlexO绑定多个PHY,ODUflex可以映射到任意一个PHY的FlexO帧的时隙中,这就导致业务的传输在实现上的复杂度非常高,同时也会占用较多的逻辑处理单元,而且这个复杂度和逻辑资源占用情况会随着绑定PHY的数量增多而增加。
发明内容
本公开实施例提供的一种使用灵活光网络的业务传输方法、装置、设备及存储介质,主要解决的技术问题是:解决相关FlexO实现业务传输时映射复杂度高,需占用较多的逻辑资源。
为解决上述技术问题,本公开实施例提供一种使用灵活光网络的业务传输方法,包括:
将客户业务数据映射到灵活光网络传输组M个物理层PHY链路的N个灵活光网络FlexO帧中;
通过所述灵活光网络传输组发送所述N个FlexO帧;
所述灵活光网络传输组由M个物理层PHY链路组成,所述M大于等于1,所述N大于等于所述M,所述客户业务数据在每个所述PHY链路的FlexO帧中所占用的信元个数和所占用信元的信元位置相同。
为了解决上述问题,本公开实施例还提供一种使用灵活光网络的业务传输方法,包括:
接收使用灵活光网络传输组传送的N个FlexO帧;
从所述N个FlexO帧中按序提取出客户业务数据;
所述灵活光网络传输组由M个物理层PHY链路组成,所述M大于等于1,所述N个FlexO帧为所述M个PHY链路中的FlexO帧,所述客户业务数据在每个所述PHY链路的FlexO帧中所占用的信元个数和所占用信元的信元位置相同。
为了解决上述问题,本公开实施例还提供一种使用灵活光网络的业务传输装置,包括:
数据处理模块,设置为将客户业务数据映射到灵活光网络传输组M个物理层PHY链路的N个灵活光网络FlexO帧中;
数据发送模块,设置为通过所述灵活光网络传输组发送所述N个FlexO帧;
所述灵活光网络传输组由M个物理层PHY链路组成,所述M大于等于1,所述N大于等于所述M,所述客户业务数据在每个所述PHY链路的FlexO帧中所占用的信元个数和所占用信元的信元位置相同。
为了解决上述问题,本公开实施例还提供一种使用灵活光网络的业务传输装置,包括:
接收模块,设置为接收使用灵活光网络传输组传送的N个FlexO帧;
解析模块,设置为从所述N个FlexO帧中按序提取出客户业务数据;
所述灵活光网络传输组由M个物理层PHY链路组成,所述M大于等于1,所述N个FlexO帧为所述M个PHY链路中的FlexO帧,所述客户业务数据在每个所述PHY链路的FlexO帧中所占用的信元个数和所占用信元的信元位置相同。
为了解决上述问题,本公开实施例还提供一种发送端设备,包括第一处理器、第一存储器以及第一通信总线;
所述第一通信总线设置为实现所述第一处理器与所述第一存储器之间的通信连接;
所述第一处理器设置为执行存所述第一储器中存储的一个或者多个第一程序,以实现如上所述的使用灵活光网络的业务传输方法的步骤。
为了解决上述问题,本公开实施例还提供一种接收端设备,包括第二处理器、第二存储器以及第二通信总线;
所述第二通信总线设置为实现所述第二处理器与所述第二存储器之间的通信连接;
所述第二处理器设置为执行所述第二存储器中存储的一个或者多个第二程序,以实现如上所述的使用灵活光网络的业务传输方法的步骤。
为了解决上述问题,本公开实施例还提供一种计算机存储介质,所述计算机可读存储介质存储有一个或者多个第一程序,所述一个或者多个第一程序可被一个或者多个处理器执行,以实现如上所述的使用灵活光网络的业务传输方法的步骤;
或,
所述计算机可读存储介质存储有一个或者多个第二程序,所述一个或者多个第二程序可被一个或者多个处理器执行,以实现如上所述的使用灵活光网络的业务传输方法的步骤。
本公开的有益效果是:
根据本公开实施例提供的使用灵活光网络的业务传输方法、装置、设备及存储介质,将客户业务数据映射到灵活光网络传输组的M个PHY链路上的N个灵活光网络FlexO帧中,然后通过灵活光网络传输组发送这N个FlexO帧,接收端从这N个FlexO帧中按序提取出客户业务数据,其中灵活光网络传输组由M个物理层PHY链路组成,且客户业务数据在每个PHY链路的FlexO帧中所占用的信元个数和所占用信元的信元位置相同,也即本公开实施例采用一套逻辑将客户业务数据直接映射到灵活光网络传输组的M个PHY链路上的N个FlexO帧中,从而最大程度上降低复杂度和减少需占用的逻辑资源。
本公开其他特征和相应的有益效果在说明书的后面部分进行阐述说明,且应当理解,至少部分有益效果从本公开说明书中的记载变的显而易见。
附图说明
图1为一种灵活光网络组网示意图;
图2为本公开实施例一的灵活光网络组网示意图;
图3为本公开实施例一的发送端使用灵活光网络的业务传输方法流程示意图;
图4为本公开实施例一的FlexO帧划分示意图;
图5为本公开实施例一的客户业务数据映射到FlexO帧中的流程示意图;
图6为本公开实施例一的客户业务数据映射示意图;
图7为本公开实施例一的接收端使用灵活光网络的业务传输方法流程示意图;
图8为本公开实施例一的获取客户业务数据过程流程示意图;
图9为本公开实施例一的FlexO帧的开销示意图;
图10为本公开实施例二的发送端使用灵活光网络的业务传输装置结构示意图;
图11为本公开实施例二的接收端使用灵活光网络的业务传输装置结构示意图;
图12为本公开实施例二的发送端设备结构示意图;
图13为本公开实施例二的接收端设备结构示意图;
图14为本公开实施例二的场景一中灵活光网络组网示意图;
图15为本公开实施例二的场景二中灵活光网络组网示意图;
图16为本公开实施例二的客户业务数据映射到FlexO帧中的示意图。
具体实施方式
为了使本公开的目的、技术方案及优点更加清楚明白,下面通过示例性实施方式结合 附图对本公开实施例作进一步详细说明。应当理解,此处所描述的示例性实施例仅仅用以解释本公开,并不用于限定本公开。
实施例一:
针对解决相关FlexO实现业务传输时映射复杂度高,需占用较多的逻辑资源的问题,本实施例提供的使用灵活光网络的业务传输方法,将客户业务数据映射到灵活光网络传输组的M个PHY链路上的N个灵活光网络FlexO帧中,且客户业务数据在每个PHY链路的FlexO帧中所占用的信元个数和所占用信元的信元位置相同,也即采用一套逻辑将客户业务数据直接映射到灵活光网络传输组的M个PHY链路上的N个FlexO帧中,也即本实施例将M个PHY链路上的N个FlexO帧逻辑合并为一个逻辑整帧,在业务映射时采用一套逻辑即可实现业务映射,可在最大程度上降低复杂度和减少需占用的逻辑资源。
在本实施例中,设发送端设备与接收端设备之间(也即发送端设备与接收端设备之间采用的灵活光网络传输组)具有M条PHY链路,本实施例中,在进行FlexO帧逻辑合并得到逻辑整帧时,直接选择将这M条PHY链路上的N个FlexO帧逻辑合并,M大于等于1,N个FlexO帧中包括M个PHY链路的FlexO帧,所述客户业务数据在每个所述PHY链路的FlexO帧中所占用的信元个数和所占用信元的信元位置相同。
本实施例中,客户业务数据的类型可以根据应用场景灵活设定,其包括但不限于光通道数据单元ODU业务数据、以太网业务数据和同步数字体系SDH(Synchronous Digital Hierarchy)业务数据中的至少一种。
本实施例中,N大于等于M,N的取值一般是M的整数倍。灵活光网络传输组的M个PHY链路的速率一般相同,本方法也适用于M个PHY链路速率不相同的情况;当PHY链路的带宽与FlexO帧的带宽相同时,则N与M相等,当PHY链路的带宽是FlexO帧的带宽的L(L大于等于2)倍时,则N=L*M,例如:
一种示例中,假设灵活光网络传输组包含M个100G的PHY链路,每个PHY链路上的FlexO帧的带宽是100G,则此时M=N。
另一示例中,假设灵活光网络传输组包含M个200G的PHY链路,每个PHY链路上FlexO帧的带宽是100G,也即L的取值为2,则此时N=2*M,应当理解的是,此时在该200G PHY链路中,客户业务数据则由两个100G的FlexO帧交织组成,当L取大于2以上的整数值时,则以此类推。
综上,在本实施例中的一种应用场景中,可设置M个PHY链路的带宽与M个PHY链路各自的FlexO帧的带宽相等。
例如,在一种应用场景中,参见图2所示,发送端设备与接收端设备之间绑定有4条PHY链路,每条PHY链路中的FlexO帧的带宽与该PHY链路的带宽相等,设这4条PHY链路的编号从上往下依次为1、2、3、4,对应的此时这4条PHY链路的FlexO帧的编号也为1、2、3、4;当应当理解的是,此处的示例性编号顺序是可以任意灵活调整的。在一种示例中,假设这4条PHY链路的速率相同,例如都为25G,则在本示例中可以选 择将这4条PHY链路上的FlexO帧逻辑合并为一个逻辑整帧,得到的逻辑整帧所包括的各FlexO帧在各自的PHY链路上传输,也即逻辑整帧所包括的各FlexO帧是相对独立的,但此时在进行客户业务数据映射时只有一种映射情况,也即只需采用一套逻辑,因此可在最大程度上步降低业务传输实现的复杂度和资源占用率。
如上示例可知,在本实施例中将N个FlexO帧逻辑合并只为一个逻辑操作,以方便客户业务的映射和计算其占用的信元位置,实际并未合并。示例性而言合并方式将在后续的示例中进行说明。
在发送端使用灵活光网络的业务传输方法参见图3所示,包括:
S301:将客户业务数据映射到灵活光网络传输组M个物理层PHY链路的N个灵活光网络FlexO帧中。
如上所示,此时M个物理层PHY链路的N个灵活光网络FlexO帧逻辑上可看成一个逻辑整帧,该逻辑整帧包括的各FlexO帧在各自的物理层链路上传输。
在本实施例中,对于非OTN类型的业务,首先可采用各种映射方式例如包括但不限于AMP(Asynchronous Mapping Procedure,异步映射规程)、BMP(Bit-synchronous Mapping Procedure,比特同步映射规程)、GMP(Generic Mapping Procedure,通用映射规程)、GFP-F(Frame mapped Generic Framing Procedure通用成帧规程)等映射到ODU信号,对于OTN类型的信号,直接解封装到ODU信号。
S302:通过灵活光网络传输组发送所述N个FlexO帧到接收端设备。
发送时,各FlexO帧通过对应的光模块和各自的PHY链路发到接收端设备。
为了便于理解,本实施例下面以一种逻辑合并示例进行说明。
在本实施例中,将PHY链路上的FlexO帧的净荷区域划分成固定大小的多个信元,信元数量与信元大小以及FlexO帧净荷区域大小有关,在FlexO帧的净荷区域一定的情况下,信元越大,则信元数量越少,反之,信元越小,信元数目越大。本实施例中信元的大小也可以灵活设定,例如可以为64比特、128比特、256比特等等。每个信元的带宽与FlexO帧的带宽成正比,一种按信元划分FlexO帧的示意图如图4所示。
如上分析所示,当发送端与接收端之间绑定N个FlexO帧来传递业务的时候,可将这N个FlexO帧逻辑合并成一个FlexO整帧,对应的该FlexO逻辑整帧的带宽扩大N倍,FlexO整帧中的信元带宽也对应扩大N倍。
基于上述示例的逻辑合并方式,本实施例中将待发送的客户业务数据承载到逻辑整帧的净荷区域中的过程参见图5所示,包括:
S501:根据客户业务数据所属业务的业务带宽和N倍的FlexO帧中信元的信元带宽,确定客户业务数据在各个FlexO帧中所需占用的信元的个数。
在本实施例中,具体可用客户业务数据的业务带宽除以N倍的信元带宽,并向上取整得到客户业务数据在所述各个FlexO帧中所需占用的信元的个数。
S502:根据客户业务数据在各个FlexO帧中所需占用的信元的个数,和各FlexO帧 中当前剩余的空闲信元(也即未被占用的信元)的个数,确定出客户业务数据所需占用的各信元在各FlexO帧中的位置。
本实施例中,可采用sigma-delta算法计算客户业务数据所需占用的各信元在各FlexO帧中的位置,且应当理解的是,本实施例中位置的确定并不限于该示例算法,其他任意能实现该功能的算法也都可适用。
S503:将客户业务数据依次映射到各FlexO帧中相应位置的信元上。
例如:按FlexO帧的净荷区域中的信元大小为单位,将客户业务数据映射到对应FlexO帧中对应位置的信元上。一种示例中的顺序可以是按各FlexO帧的帧编号从小到大的顺序(应当理解的是该顺序可以灵活设定,例如也可以按从大到小或其他的间隔顺序等)依次映射到对应FlexO帧中对应位置的信元上。具体可根据计算所得的业务在各FlexO中占用的各信元的位置,按照N个FlexO帧编号从小到大的顺序,将业务承载在N个FlexO帧对应位置的信元上,参见图6所示。每个FlexO帧承载同一业务的信元位置全部相同,即每个FlexO帧的处理逻辑都是相同的,极大简化了硬件实现。
在本实施例中,在得到客户业务数据在所述各个FlexO帧中所需占用的信元的个数之后,还包括:将所述客户业务数据在各个FlexO帧中所需占用的信元的个数和客户业务数据的业务类型设置于至少一个FlexO帧的开销中。
对应的,在接收端,其使用灵活光网络的业务传输方法参见图7所示,包括:
S701:接收发送端使用灵活光网络传输组传送的N个FlexO帧。
S702:从上述N个FlexO帧(也即属于一个逻辑整帧的N个FlexO帧)中按序提取出客户业务数据。
本实施例中,至少一个FlexO帧的开销中包括客户业务数据在各个FlexO帧中占用的信元的个数和所述客户业务数据的业务类型;
在本实施例中,至少一个FlexO帧的开销中至少包括客户业务数据所述业务占用的整帧信元个数;
从N个FlexO帧中按序提取出客户业务数据参见图8所示,包括:
S801:根据客户业务数据在所述各个FlexO帧中占用的信元的个数,确定出客户业务数据占用的各信元在所述各FlexO帧中的位置。
S802:按序从各FlexO帧中相应位置的信元上提取出客户业务数据。
S803:根据业务类型确定是否对提取出的客户业务数据进行转换处理。
例如,根据开销中的业务类型确定业务为非OTN类型时,则还包括对得到的客户业务数据进行解映射,恢复原始的数据业务的转换处理。
基于上述分析可知,在本实施例中,以ODU业务为例,示例性而言传送业务传送过程包括:
在发送端,对于非OTN类型的业务,先按照采用映射方式映射到ODU信号,对于OTN类型的信号,直接解封装到ODU信号。
然后当H个ODU业务复用到N个FlexO帧的时候,将N个FlexO帧合并成一个FlexO整帧,根据ODU业务带宽与FlexO整帧信元带宽(也即FlexO帧中信元的信元带宽的N倍)的关系,计算出ODU业务占用的FlexO整帧中的信元个数,并根据sigma-delta算法计算出这些信元在FlexO整帧中的对应位置。
将N个FlexO帧根据编号按照从小到大的顺序进行排序,根据每个ODU业务在FlexO整帧中的信元位置,将客户业务数据依次承载(也即映射)到N个FlexO帧的对应的信元位置上。
将业务类型以及所占用的信元个数存放在FlexO帧开销中,可以只存放在编号最小的FlexO开销中,按照复帧的方式完成M个ODU业务的开销传送;也可在每个FlexO开销中都传递。其中一种FlexO帧的开销示意图参见图9所示。如果H≤N,则一个周期内都可以完成H个ODU业务的开销传送,若H>N,则需要ceil(H/N)个周期完成H个ODU业务的开销传送,H个ODU业务的开销可按照从小到大的顺序依次承载在N个FlexO帧的开销区域中。N个FlexO帧通过K个光模块发送出去,N≥K。
在接收端,从K个光模块中获得光信号,得到FlexO帧,将FlexO帧根据编号按照从小到大的方式进行排序。
从FlexO帧开销中获取ODU业务类型信息以及所占用的信元个数。
根据ODU业务占用的信元个数和FlexO帧净荷区域的信元总个数,按照sigma-delta算法获取信元在FlexO帧净荷区域的位置,从N个FlexO帧中按照从小到大的顺序从对应位置的信元中提取出ODU业务数据(即ODU信号)。
对于非OTN类型的业务,对提取出来的ODU信号进行解映射,恢复原始的数据业务。
可见,本实施例将发送端设备与接收端设备之间的N条物理层链路的FlexO帧逻辑合并为一个逻辑整帧,通过一套逻辑就能完成映射操作,极大的降低FlexO实现业务传输时映射的复杂度,减少占用的逻辑资源。
实施例二:
本实施例提供了一种灵活光网络业务传输装置,该装置可设置于发送端设备中,参见图10所示,其包括:
数据处理模块101,设置为将客户业务数据映射到灵活光网络传输组M个物理层PHY链路的N个灵活光网络FlexO帧中。
如上述实施例所示,灵活光网络传输组由M个物理层PHY链路组成,M大于等于1,N大于等于M,客户业务数据在每个PHY链路的FlexO帧中所占用的信元个数和所占用信元的信元位置相同。
数据发送模块102,设置为通过所述灵活光网络传输组发送所述N个FlexO帧。
本实施例中,上述M个物理层链路的传输速率相同;当然,参见上述实施例中的分析,并受限于传输速率相同。
在本实施例中,数据处理模块101示例性可设置为根据客户业务数据所属业务的业务带宽和N倍的FlexO帧中信元的信元带宽,确定客户业务数据在各个FlexO帧中所需占用的信元的个数,以及设置为根据客户业务数据在各个FlexO帧中所需占用的信元的个数,和各FlexO帧中当前剩余的空闲信元(也即未被占用的信元)的个数,确定出客户业务数据所需占用的各信元在各FlexO帧中的位置,然后将客户业务数据依次映射到各FlexO帧中相应位置的信元上。
数据处理模块101具体可用客户业务数据的业务带宽除以N倍的信元带宽,并向上取整得到客户业务数据在所述各个FlexO帧中所需占用的信元的个数。具体的映射过程参见上述实施例一所示,在此不再赘述。
另外,应当理解的是,数据处理模块101和数据发送模块102的功能具体可通过发送端设备中的处理器或控制器实现。
参见图11所示,本实施例还提供可一种可设置于接收端设备上的灵活光网络业务传输装置,包括:
接收模块111,设置为接收发送端使用灵活光网络传输组传送的N个FlexO帧。
解析模块112,设置为从上述N个FlexO帧(也即属于一个逻辑整帧的N个FlexO帧)中按序提取出客户业务数据。
如上所示,逻辑整帧由发送端设备与接收端设备之间的M条物理层链路中的N个FlexO帧逻辑合并得到,逻辑整帧包括的各FlexO帧在各自的物理层链路上传输。
在本实施例中,至少一个FlexO帧的开销中包括客户业务数据在各个FlexO帧中占用的信元的个数和所述客户业务数据的业务类型;解析模块112设置为根据客户业务数据在所述各个FlexO帧中占用的信元的个数,确定出客户业务数据占用的各信元在所述各FlexO帧中的位置,以及按序从各FlexO帧中相应位置的信元上提取出客户业务数据,然后根据业务类型确定是否对提取出的客户业务数据进行转换处理。
解析模块112示例性而言客户业务数据提取过程参见上述实施例所示,在此不再赘述。
且应当理解的是,本实施例中数据接收模块111和解析模块112的功能示例性可通过接收端设备中的处理器或控制器实现。
本实施例还提供了一种发送端设备,其可为OTN设备,参见图12所示,包括第一处理器1201、第一存储器1202以及第一通信总线1203;
第一通信总线1203设置为实现第一处理器1201与第一存储器1202之间的通信连接;
第一处理器1201设置为执行存第一储器1202中存储的一个或者多个第一程序,以实现如上述实施例中发送端的使用灵活光网络的业务传输方法的步骤。
本实施例还提供了一种接收端设备,其可为OTN设备,参见图13所示,包括第二处理器1301、第二存储器1302以及第二通信总线1303;
第二通信总线1303设置为实现第二处理器1301与第二存储器1302之间的通信连接;
第二处理器1301设置为执行存第二储器1302中存储的一个或者多个第二程序,以实现如上述实施例中接收端的使用灵活光网络的业务传输方法的步骤。
本实施例还提供了一种计算机存储介质,计算机可读存储介质存储有一个或者多个第一程序,一个或者多个第一程序可被一个或者多个处理器执行,以实现如上所示的发送端的使用灵活光网络的业务传输方法的步骤;
或,计算机可读存储介质存储有一个或者多个第二程序,一个或者多个第二程序可被一个或者多个处理器执行,以实现如上所示的接收端的使用灵活光网络的业务传输方法的步骤。
应当理解的是,其中该计算机存储介质可以设置于发送端设备和/或接收端设备内。
为了便于理解本公开提供的技术方案,本实施例下面结合两种具体的应用场景为示例,对本公开进行进一步的说明。
场景一:
本应用场景中两个OTN设备通过绑定三个25G的PHY的灵活光网络组传送一个带宽为10G的ODU业务(应当理解的是也可为其他类型的业务),三个PHY中FlexO帧的编号分别为1,2,3,多余的带宽可以用来传递其他业务,场景图如图14所示。在该场景中的业务传送过程包括:
将信元大小设置为128比特,一个FlexO帧的净荷区大小为(128*5140-1280)=656640比特,一共可以划分出656640/128=5130个信元,每个信元带宽为FlexO净荷带宽/5130,大约为5M。
在发送端,将三个25GFlexO帧合并成一个FlexO整帧,FlexO整帧带宽为75G,FlexO整帧中每个信元带宽大约为15M。此处合并只为一个逻辑操作,方便计算ODU业务的占用的信元位置,实际并未合并。
一个10G的ODU业务占用的信元个数为,10*1000/15≈666.67,即占用667个信元。
根据sigma-delta算法计算该10G ODU业务所占用的667个信元在FlexO整帧中5130个信元所占的位置。
将该10G ODU业务数据依次承载在按照编号从小到大排序的3个FlexO帧对应的信元中,即ODU业务第1个128比特放在编号为1的FlexO帧的第一个对应信元上。ODU业务第2个128比特放在编号为2的FlexO帧的第一个对应信元上,ODU业务第3个128比特放在编号为3的FlexO帧的第一个对应信元上,ODU业务第4个128比特放在编号为1的FlexO帧的第二个对应信元上,依次类推。完成映射后,ODU业务在3个FlexO帧中的信元位置都是相同的,且每个FlexO帧中分配了667个信元给该ODU业务,仅一套逻辑就能完成整个操作。
将该ODU业务的编号以及占用的信元个数存储在编号为1的FlexO帧开销中,其他FlexO帧则不用承载,通过3个25G光模块发送数据。
在接收端,从三个光模块中接收数据,进行对齐等处理,恢复FlexO帧,从编号为1 的FlexO帧的开销中提取ODU业务的编号和占用信元信息,根据sigma-delta算法计算出该ODU业务占用的信元在FlexO帧中的位置。
根据得到的位置,按照编号从小到大的顺序依次提取出数据,组成ODU业务,即从编号为1的FlexO帧的第一个对应信元中提取数据为ODU业务的第一个128比特,从编号为2的FlexO帧的第一个对应信元中提取数据为ODU业务的第二个128比特,从编号为3的FlexO帧的第一个对应信元中提取数据为ODU业务的第三个128比特,从编号为1的FlexO帧的第二个对应信元中提取数据为ODU业务的第四个128比特,依次类推,完成业务的提取。
场景二:
本应用场景中两个OTN设备通过绑定两个25G的PHY的灵活光网络组传送带宽分别为5G,15G和25G的三个ODU业务,两个PHY中FlexO帧的编号分别为1,2,场景图如图15所示,在该场景中的业务传送过程包括:
将信元大小设置为128比特,一个FlexO帧的净荷区大小为(128*5140-1280)=656640比特,一共可以划分出656640/128=5130个信元,每个信元带宽为FlexO净荷带宽/5130,大约为5M。
在发送端,将两个25GFlexO帧合并成一个FlexO整帧,FlexO整帧带宽为50G,FlexO整帧中每个信元带宽大约为10M。此处合并只为一个逻辑操作,方便计算ODU业务的占用的信元位置,实际并未合并。
25G的ODU业务占用的信元个数为,25*1000/10=2500,即占用2500个信元,15G的ODU业务占用的信元个数为,15*1000/10=1500,即占用1500个信元,5G的ODU业务占用的信元个数为,5*1000/10=500,即占用500个信元。
根据sigma-delta算法分别计算25G ODU业务所占用的2500个信元在FlexO整帧中5130个信元所占的位置,15G ODU业务所占用的1500个信元在FlexO整帧中5130-2500=2630个信元所占的位置,5G ODU业务所占用的500个信元在FlexO整帧中5130-2500-1500=1130个信元所占的位置。
将该25G ODU业务数据依次承载在按照编号从小到大排序的两个FlexO帧对应的信元中,参见图16所示,即25GODU业务第1个128比特放在编号为1的FlexO帧的第一个对应信元上,25GODU业务第2个128比特放在编号为2的FlexO帧的第一个对应信元上,25GODU业务第3个128比特放在编号为1的FlexO帧的第二个对应信元上,25GODU业务第4个128比特放在编号为2的FlexO帧的第二个对应信元上,依次类推。对于15G和5G的ODU业务实现方法相同。完成映射后,ODU业务在两个FlexO帧中的信元位置都是相同的,且每个FlexO帧中1分配了2500,1500,500个信元给25G ODU业务,15G ODU业务和5G ODU业务,仅一套逻辑就能完成整个操作。
将25G ODU业务的编号以及占用的信元个数存储在编号为1的第一个FlexO复帧开销中,将15G ODU业务的编号以及占用的信元个数存储在编号为2的PHY的第一个 FlexO复帧开销中,将10G ODU业务的编号以及占用的信元个数存储在编号为1的PHY的第二个FlexO复帧开销中,编号为2的PHY的第二个FlexO复帧开销对应位置为保留,通过2个25G光模块发送数据。
在接收端,从两个光模块中接收数据,进行对齐等处理,恢复FlexO帧,从编号为1的第一个FlexO复帧中开销中提取25GODU业务的编号和占用信元信息,从编号为2的第一个FlexO复帧中开销中提取15GODU业务的编号和占用信元信息,从编号为1的第二个FlexO复帧中开销中提取5GODU业务的编号和占用信元信息,根据sigma-delta算法计算出桑ODU业务占用的信元在FlexO帧中的位置。
根据获取的位置,按照编号从小到大的顺序依次提取出数据,组成ODU业务,即从编号为1的FlexO帧的第一个对应信元中提取数据为ODU业务的第一个128比特,从编号为2的FlexO帧的第一个对应信元中提取数据为ODU业务的第二个128比特,从编号为1的FlexO帧的第二个对应信元中提取数据位ODU业务的第三个128比特,从编号为2的FlexO帧的第二个对应信元中提取数据位ODU业务的第四个128比特,依次类推,完成业务的提取。
显然,本领域的技术人员应该明白,上述本公开实施例的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在计算机存储介质(ROM/RAM、磁碟、光盘)中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤或者将它们分别制作成各个集成电路模块或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。所以,本公开不限制于任何特定的硬件和软件结合。
以上内容是结合示例性实施方式对本公开实施例所作的进一步详细说明,不能认定本公开的具体实施只局限于这些说明。对于本公开所属技术领域的普通技术人员来说,在不脱离本公开构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本公开的保护范围。
工业实用性
本公开实施例采用一套逻辑将客户业务数据直接映射到灵活光网络传输组的M个PHY链路上的N个FlexO帧中,能够最大程度上降低复杂度和减少需占用的逻辑资源。

Claims (16)

  1. 一种使用灵活光网络的业务传输方法,包括:
    将客户业务数据映射到灵活光网络传输组M个物理层PHY链路的N个灵活光网络FlexO帧中;
    通过所述灵活光网络传输组发送所述N个FlexO帧;
    所述灵活光网络传输组由M个物理层PHY链路组成,所述M大于等于1,所述N大于等于所述M,所述客户业务数据在每个所述PHY链路的FlexO帧中所占用的信元个数和所占用信元的信元位置相同。
  2. 如权利要求1所述的使用灵活光网络的业务传输方法,其中,所述客户业务数据包括光通道数据单元ODU业务数据、以太网业务数据和同步数字体系SDH业务数据中的至少一种。
  3. 如权利要求1或2所述的使用灵活光网络的业务传输方法,其中,所述N个FlexO帧包括的信元的个数和各信元的信元带宽相同;所述将客户业务数据映射到灵活光网络传输组M个PHY链路的N个FlexO帧中包括:
    用所述客户业务数据的业务带宽除以N倍的所述信元带宽,并向上取整得到所述客户业务数据在所述各个FlexO帧中所需占用的信元的个数;
    根据所述客户业务数据在所述各个FlexO帧中所需占用的信元的个数,和所述各FlexO帧中当前剩余的空闲信元的个数,确定出所述客户业务数据所需占用的各信元在所述各FlexO帧中的位置;
    将所述客户业务数据依次映射到所述各FlexO帧中相应位置的信元上。
  4. 如权利要求3所述的使用灵活光网络的业务传输方法,其中,所述将所述客户业务数据依次映射到所述各FlexO帧中相应位置的信元上包括:
    按所述各FlexO帧的帧编号从小到大的顺序将所述客户业务数据依次映射到所述各FlexO帧中相应位置的信元上。
  5. 如权利要求3所述的使用灵活光网络的业务传输方法,其中,在得到所述客户业务数据在所述各个FlexO帧中所需占用的信元的个数之后,还包括:
    将所述客户业务数据在所述各个FlexO帧中所需占用的信元的个数和所述客户业务数据的业务类型设置于至少一个所述FlexO帧的开销中。
  6. 一种使用灵活光网络的业务传输方法,包括:
    接收使用灵活光网络传输组传送的N个FlexO帧;
    从所述N个FlexO帧中按序提取出客户业务数据;
    所述灵活光网络传输组由M个物理层PHY链路组成,所述M大于等于1,所述N个FlexO帧为所述M个PHY链路中的FlexO帧,所述客户业务数据在每个所述PHY链路的FlexO帧中所占用的信元个数和所占用信元的信元位置相同。
  7. 如权利要求6所述的使用灵活光网络的业务传输方法,其中,至少一个所述FlexO帧的开销中包括所述客户业务数据在所述各个FlexO帧中占用的信元的个数和所述客户业务数据的业务类型;
    所述从所述N个FlexO帧中按序提取出客户业务数据包括:
    根据所述客户业务数据在所述各个FlexO帧中占用的信元的个数,确定出所述客户业务数据占用的各信元在所述各FlexO帧中的位置;
    按序从所述各FlexO帧中相应位置的信元上提取出客户业务数据;
    根据所述业务类型确定是否对提取出的所述客户业务数据进行转换处理。
  8. 一种使用灵活光网络的业务传输装置,包括:
    数据处理模块,设置为将客户业务数据映射到灵活光网络传输组M个物理层PHY链路的N个灵活光网络FlexO帧中;
    数据发送模块,设置为通过所述灵活光网络传输组发送所述N个FlexO帧;
    所述灵活光网络传输组由M个物理层PHY链路组成,所述M大于等于1,所述N大于等于所述M,所述客户业务数据在每个所述PHY链路的FlexO帧中所占用的信元个数和所占用信元的信元位置相同。
  9. 如权利要求8所述的使用灵活光网络的业务传输装置,其中,所述M个PHY链路的带宽与各自的FlexO帧的带宽相等。
  10. 如权利要求8或9所述的使用灵活光网络的业务传输装置,其中,所述N个FlexO帧包括的信元的个数和各信元的信元带宽相同,所述数据处理模块设置为用所述客户业务数据的业务带宽除以N倍的所述信元带宽,并向上取整得到所述客户业务数据在所述各个FlexO帧中所需占用的信元的个数,以及设置为根据所述客户业务数据在所述各个FlexO帧中所需占用的信元的个数,和所述各FlexO帧中当前剩余的空闲信元的个数,确定出所述客户业务数据所需占用的各信元在所述各FlexO帧中的位置,并将所述客户业务数据依次映射到所述各FlexO帧中相应位置的信元上。
  11. 如权利要求8或9所述的使用灵活光网络的业务传输装置,其中,所述数据处理模块还设置为在得到所述客户业务数据在所述各个FlexO帧中所需占用的信元的个数之后,将所述客户业务数据在所述各个FlexO帧中所需占用的信元的个数和所述客户业务数据的业务类型设置于至少一个所述FlexO帧的开销中。
  12. 一种使用灵活光网络的业务传输装置,包括:
    接收模块,设置为接收使用灵活光网络传输组传送的N个FlexO帧;
    解析模块,设置为从所述N个FlexO帧中按序提取出客户业务数据;
    所述灵活光网络传输组由M个物理层PHY链路组成,所述M大于等于1,所述N个FlexO帧为所述M个PHY链路中的FlexO帧,所述客户业务数据在每个所述PHY链路的FlexO帧中所占用的信元个数和所占用信元的信元位置相同。
  13. 如权利要求12所述的使用灵活光网络的业务传输装置,其中,至少一个所述FlexO 帧的开销中包括所述客户业务数据在所述各个FlexO帧中所需占用的信元的个数和所述客户业务数据的业务类型;
    所述解析模块设置为根据所述客户业务数据在所述各个FlexO帧中所需占用的信元的个数,确定出所述客户业务数据占用的各信元在所述各FlexO帧中的位置,以及设置为按序从所述各FlexO帧中相应位置的信元上提取出客户业务数据,并根据所述业务类型确定是否对提取出的所述客户业务数据进行转换处理。
  14. 一种发送端设备,包括第一处理器、第一存储器以及第一通信总线;
    所述第一通信总线设置为实现所述第一处理器与所述第一存储器之间的通信连接;
    所述第一处理器设置为执行所述第一存储器中存储的一个或者多个第一程序,以实现如权利要求1-5任一项所述的使用灵活光网络的业务传输方法的步骤。
  15. 一种接收端设备,包括第二处理器、第二存储器以及第二通信总线;
    所述第二通信总线设置为实现所述第二处理器与所述第二存储器之间的通信连接;
    所述第二处理器设置为执行所述第二存储器中存储的一个或者多个第二程序,以实现如权利要求6或7所述的使用灵活光网络的业务传输方法的步骤。
  16. 一种计算机存储介质,所述计算机可读存储介质存储有一个或者多个第一程序,所述一个或者多个第一程序可被一个或者多个处理器执行,以实现如权利要求1-5任一项所述的使用灵活光网络的业务传输的步骤;
    或,
    所述计算机可读存储介质存储有一个或者多个第二程序,所述一个或者多个第二程序可被一个或者多个处理器执行,以实现如权利要求6或7所述的使用灵活光网络的业务传输方法的步骤。
PCT/CN2019/082271 2018-06-26 2019-04-11 使用灵活光网络的业务传输方法、装置、设备及存储介质 WO2020001127A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/252,813 US11329748B2 (en) 2018-06-26 2019-04-11 Service transmission method and device using flexible optical network, equipment and storage medium
EP19825374.2A EP3817311A4 (en) 2018-06-26 2019-04-11 SERVICE TRANSMISSION PROCESS USING A FLEXIBLE OPTICAL NETWORK, AN APPARATUS, A DEVICE, AND A STORAGE MEDIA

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810672981.2A CN110649986B (zh) 2018-06-26 2018-06-26 使用灵活光网络的业务传输方法、装置、设备及存储介质
CN201810672981.2 2018-06-26

Publications (1)

Publication Number Publication Date
WO2020001127A1 true WO2020001127A1 (zh) 2020-01-02

Family

ID=68986018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/082271 WO2020001127A1 (zh) 2018-06-26 2019-04-11 使用灵活光网络的业务传输方法、装置、设备及存储介质

Country Status (4)

Country Link
US (1) US11329748B2 (zh)
EP (1) EP3817311A4 (zh)
CN (1) CN110649986B (zh)
WO (1) WO2020001127A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111713117B (zh) * 2018-02-09 2022-04-12 华为技术有限公司 一种光传送网中业务数据的处理方法及装置
CN112291030A (zh) * 2019-07-24 2021-01-29 深圳市中兴微电子技术有限公司 一种数据接收、数据发送方法和装置
CN112636835A (zh) * 2020-12-16 2021-04-09 中国联合网络通信集团有限公司 一种业务传输方法和装置
CN115225585A (zh) * 2021-04-14 2022-10-21 华为技术有限公司 一种dcn报文处理的方法、网络设备及系统
US11637632B2 (en) 2021-07-29 2023-04-25 Cisco Technology, Inc. Optical transceiver with direct OTU4 mapping

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103891222A (zh) * 2011-10-20 2014-06-25 瑞典爱立信有限公司 对光传输网络中的现有业务流调整大小
WO2014166077A1 (zh) * 2013-04-10 2014-10-16 华为技术有限公司 调整线路接口速率的方法和节点
CN108075903A (zh) * 2016-11-15 2018-05-25 华为技术有限公司 用于建立灵活以太网群组的方法和设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7336680B2 (en) * 2001-09-18 2008-02-26 Scientific-Atlanta, Inc. Multi-carrier frequency-division multiplexing (FDM) architecture for high speed digital service
US7590145B2 (en) * 2002-09-17 2009-09-15 Scientific-Atlanta, Inc. Multiplexing octets from a data flow over MPEG packets
CN1791278B (zh) * 2004-12-14 2010-04-14 华为技术有限公司 光传送网络调度系统及其方法
CN101729940B (zh) * 2008-10-22 2013-06-05 华为技术有限公司 向多路通信通道发送数据的方法及接收数据的方法
CN101800912B (zh) * 2009-02-10 2016-08-10 华为技术有限公司 客户信号映射和解映射的实现方法及装置
US9538264B2 (en) * 2014-08-07 2017-01-03 Ciena Corporation ODUflex resizing systems and methods
WO2019071369A1 (zh) * 2017-10-09 2019-04-18 华为技术有限公司 光网络中数据传输方法及光网络设备
CN115623363A (zh) * 2018-05-25 2023-01-17 华为技术有限公司 传输数据的方法和装置
CN110557217B (zh) * 2018-06-01 2021-08-03 华为技术有限公司 一种业务数据的处理方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103891222A (zh) * 2011-10-20 2014-06-25 瑞典爱立信有限公司 对光传输网络中的现有业务流调整大小
WO2014166077A1 (zh) * 2013-04-10 2014-10-16 华为技术有限公司 调整线路接口速率的方法和节点
CN108075903A (zh) * 2016-11-15 2018-05-25 华为技术有限公司 用于建立灵活以太网群组的方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3817311A4 *

Also Published As

Publication number Publication date
CN110649986A (zh) 2020-01-03
EP3817311A4 (en) 2021-08-25
CN110649986B (zh) 2022-07-19
EP3817311A1 (en) 2021-05-05
US20210281343A1 (en) 2021-09-09
US11329748B2 (en) 2022-05-10

Similar Documents

Publication Publication Date Title
WO2020001127A1 (zh) 使用灵活光网络的业务传输方法、装置、设备及存储介质
US10771177B2 (en) Method for transmitting client signal in optical transport network, and optical transport device
CN109478941B (zh) 一种多路业务传送、接收方法及装置
CN107438028B (zh) 一种客户业务处理的方法和设备
KR102226021B1 (ko) 서비스 송신 방법과 장치, 서비스 수신 방법과 장치, 및 네트워크 시스템
US9071376B2 (en) Bandwidth adjusting method and communication node
CN101945307B (zh) 光网络中标签的分配处理方法、光通信装置及光通信系统
WO2021063197A1 (zh) 一种光传送网中的业务处理的方法、装置和系统
EP2999170B1 (en) Increasing method and decreasing method for variable optical channel bandwidth and device
KR20220107030A (ko) 데이터 전송 방법, 장치, 단말 설비 및 저장 매체
CN108463960B (zh) 一种业务传送方法和第一传送设备
US9641916B2 (en) Optical channel data unit service transmission apparatus and method
WO2016058316A1 (zh) 通过光通道传输单元信号发送、接收信号的方法及装置
CN102480408B (zh) 伪线仿真系统的调度方法及装置
WO2020192533A1 (zh) 一种业务数据的处理方法及装置
US11412508B2 (en) Data transmission method and device
WO2021013025A1 (zh) 数据接收方法及装置、数据发送方法及装置
CN102843293A (zh) 一种处理报文的方法和网元设备
WO2016101555A1 (zh) 一种交叉调度方法及其装置、存储介质
WO2019052539A1 (zh) 信号的处理装置及方法
CN105657583B (zh) 分组业务信号发送方法、装置及接收方法、装置
JP2002176408A (ja) マルチフレーム多重伝送装置
WO2023207605A1 (zh) 一种时延测量方法以及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825374

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019825374

Country of ref document: EP

Effective date: 20210126