WO2019052539A1 - 信号的处理装置及方法 - Google Patents

信号的处理装置及方法 Download PDF

Info

Publication number
WO2019052539A1
WO2019052539A1 PCT/CN2018/105783 CN2018105783W WO2019052539A1 WO 2019052539 A1 WO2019052539 A1 WO 2019052539A1 CN 2018105783 W CN2018105783 W CN 2018105783W WO 2019052539 A1 WO2019052539 A1 WO 2019052539A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
stm
cross
odu
board
Prior art date
Application number
PCT/CN2018/105783
Other languages
English (en)
French (fr)
Inventor
杨刚刚
年庆飞
鹿虹丽
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2019052539A1 publication Critical patent/WO2019052539A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting

Definitions

  • the present application relates to the field of communications, for example, to a signal processing apparatus and method.
  • the telecommunications network operator will fully deploy an optical transport network (OTN) network, including a backbone layer network, a core layer network, an aggregation layer network, and an access layer network. .
  • OTN optical transport network
  • the network carried by the Synchronous Digital Hierarchy/Multi-Service Transfer Platform (SDH/MSTP) will be withdrawn from service.
  • SDH/MSTP Synchronous Digital Hierarchy/Multi-Service Transfer Platform
  • SDH/MSTP Synchronous Digital Hierarchy/Multi-Service Transfer Platform
  • STM-N Synchronous Transport Module level N
  • the smooth upgrade of some services to the OTN network including the implementation of STM-N service channel layer cross-scheduling, is a common situation faced by telecommunication network operators.
  • the OTN network carries the STM-N service.
  • the OTN device re-develops the client-side access board 22, the line-side access board, and the cross-board to support STM-N service access and channel layer cross-scheduling.
  • Figure 1 shows.
  • FIG. 1 is a schematic diagram of carrying an STM-N service by an OTN network according to the related art. As shown in Figure 1, to carry the STM-N service on the OTN network and support the cross-scheduling of the channel layer, you need to add at least three types of boards, including the client-side STM-N service access board and the universal virtual container/light.
  • the virtual data/Optical Channel Data Unit a (VC/ODUa) cross-connected board and the line-side STM/OTN access board are the most expensive boards in the OTN network.
  • VC/ODUa virtual data/Optical Channel Data Unit a
  • replacing the general VC/ODUa cross-board in the existing network will cause the service interruption of the running OTN network, which will bring huge engineering upgrade workload and risk.
  • the embodiment of the present invention provides a device and a method for processing a signal, so as to avoid a situation in which the cost of carrying the STM-N service in the OTN network is high and the service may be interrupted.
  • a signal processing apparatus including: a client side access board, configured to access a first synchronization transmission module N-level STM-N signal, and the first STM- The N signal is processed by the ODU cross-board of the optical channel data unit and then transmitted to the virtual container VC cross-board.
  • the VC cross-board is configured to receive the first STM-N signal that has been processed by the ODU, and to the first STM-N.
  • the virtual container VC signal corresponding to the signal is subjected to VC cross processing, and the second STM-N signal is obtained according to the VC cross-processed VC signal, and the second ODU signal corresponding to the second STM-N signal is transmitted through the ODU cross-board
  • the line side accesses the board, and the line side accesses the board, and is configured to transmit the second ODU signal to the optical transmission network.
  • a signal processing apparatus including: a line side access board, configured to receive an optical transmission network OTN signal transmitted in an optical transmission network, and pass the OTN signal to light
  • the second ODU signal processed by the channel data unit ODU cross-board is transmitted to the virtual container VC cross-board; the VC cross-board is configured to receive the second ODU signal, and obtain the second according to the second ODU signal.
  • An STM-N signal is transmitted to the client-side access board after being processed by the ODU.
  • the client-side access board is configured to transmit the first STM-N signal that has been cross-processed by the ODU to the client device.
  • a signal processing method which is applied to the processing apparatus described in the foregoing embodiment, the method comprising: accessing a first synchronization transmission module N-level STM-N signal, An STM-N signal is used to perform optical channel data unit ODU cross processing; the virtual container VC signal is obtained according to the first STM-N signal processed by the ODU, and the VC signal is subjected to VC cross processing according to the VC cross processing.
  • the VC signal obtains a second STM-N signal; the second ODU signal corresponding to the second STM-N signal is cross-processed by the ODU and transmitted to the optical transmission network.
  • a signal processing method which is applied to the processing device described in the foregoing embodiment, the method comprising: receiving an optical transmission network OTN signal transmitted by an optical transmission network, and using the OTN Obtaining a second ODU signal after the signal is processed by the optical channel data unit ODU; acquiring a second synchronous transmission module N-level STM-N signal according to the second ODU signal, and a virtual container VC corresponding to the second STM-N signal
  • the signal is subjected to VC cross processing, and the first STM-N signal is obtained according to the VC cross-processed VC signal; the first STM-N signal is cross-processed by the ODU and transmitted to the client device.
  • a storage medium comprising a stored program, wherein the program is executed to perform the method described in any of the above embodiments.
  • processor being arranged to run a program, wherein the program is executed to perform the method described in any of the above embodiments.
  • FIG. 1 is a schematic diagram of an OTN network carrying an STM-N service in the related art
  • FIG. 2 is a schematic diagram of a signal processing apparatus according to an embodiment of the present application.
  • FIG. 3 is a flowchart of a method for carrying an STM-N service in an OTN network according to an exemplary embodiment of the present application
  • FIG. 4 is a structural block diagram of an OTN network bearer STM-N service device according to an exemplary embodiment of the present application
  • FIG. 5 is a flowchart of service scheduling of an apparatus and method for carrying an STM-N service in an OTN network according to an exemplary embodiment of the present application
  • FIG. 6 is a hardware block diagram of an apparatus for carrying an STM-N service in an OTN network according to an exemplary embodiment of the present application
  • FIG. 7 is a layered service model diagram of carrying an STM-N service in an OTN network according to an exemplary embodiment of the present application.
  • the scheme in this application can be applied to an optical transmission OTN network.
  • FIG. 2 is a schematic diagram of a signal processing apparatus according to an embodiment of the present application. As shown in FIG. 2, the processing apparatus includes: a client side access board 22, a VC cross board 24, a line side access board 26, and an ODU crossover. Single board 28.
  • the client-side access board 22 is configured to access the N-level STM-N signal of the first synchronous transmission module, and the first STM-N signal is processed by the optical channel data unit ODU cross-board 28 and transmitted to the virtual container VC. Cross the board 24.
  • the VC cross-board 24 is configured to receive the first STM-N signal that has been processed by the ODU, perform VC cross processing on the virtual container VC signal corresponding to the first STM-N signal, and obtain the first according to the VC signal after the VC cross processing.
  • the second STM-N signal transmits the second ODU signal corresponding to the second STM-N signal to the line side access board 26 through the ODU cross board 28.
  • the line side access board 26 is configured to transmit the second ODU signal to the optical transmission network.
  • the VC signal processed by the VC cross-board can increase the transmission rate or reduce the transmission rate.
  • the ODU signal transmission rate processed by the ODU cross-matrix can be increased or decreased.
  • the VC service board is added to the service board in the optical transmission OTN network in the related art, and the STM-N signal received by the client side access board 22 is processed by the ODU cross board 28 in the related art. Then, it is sent to the VC cross-board processing, and finally the STM-N signal is processed by the ODU cross-board, and the converted OTM signal of the STM-N signal is sent to the optical transmission network.
  • the above technical solution is adopted to avoid the situation that the cost of carrying the STM-N service in the OTN network is high, which may cause service interruption.
  • the STM-only needs to be carried in the OTN network of the related technology.
  • the service flow of the N service can be realized by adding a VC cross-board, and the operation is simple, which greatly reduces the transformation cost of implementing the OTN network to support the STM-N service.
  • the client-side access board 22 is further configured to encapsulate the first STM-N signal into a first ODU signal, and process the first ODU signal through the ODU cross-board and transmit the signal to the VC cross-board. twenty four.
  • the VC cross-board 24 is further configured to acquire the first STM-N signal according to the received first ODU signal, and perform VC cross processing on the VC signal obtained by mapping the first STM-N signal. De-mapping the VC-processed VC signal to obtain a second STM-N signal, processing the second ODU signal corresponding to the second STM-N signal through the ODU cross-board 28, and transmitting the ODU cross-board 28
  • the second ODU signal is connected to the line side access board 26 .
  • the VC cross-board 24 includes a client-side VC port and a line-side VC port.
  • the client side access board 22 is further configured to decapsulate the ODU signal sent to the client side VC port, restore the first STM-N signal, and send the first STM-N signal to the client side VC. port.
  • the VC cross-board 24 includes: the client-side VC port, configured to receive the first STM-N signal, map the first STM-N signal into a VC signal, and send the VC cross-processed
  • the VC signal is sent to the line side VC port;
  • the line side VC port is configured to demap the VC signal to obtain the second STM-N signal, and package the second STM-N signal into the second ODU signal, and send the The second ODU signal processed by the ODU cross matrix is connected to the line side access board 26.
  • a signal processing apparatus which is identical in hardware configuration to the previous processing apparatus except that it is arranged to perform a service in the opposite direction.
  • the line-side access board 26 is configured to receive the optical transmission network OTN signal transmitted in the optical transmission network, and transmit the second ODU signal obtained by processing the OTN signal through the optical channel data unit ODU cross-board 28 to the VC cross-single Board 24.
  • the VC cross-board 24 is configured to receive the second ODU signal, obtain a second STM-N signal according to the second ODU signal, and perform VC cross processing on the virtual container VC signal corresponding to the second STM-N signal.
  • the VC signal after the VC cross-processing obtains the first STM-N signal, and the first STM-N signal is processed by the ODU cross-board 28 and transmitted to the client-side access board 22.
  • the client side access board 22 is configured to transmit the first STM-N signal processed by the ODU cross board 28 to the client device.
  • the VC cross-board is further configured to de-encapsulate the second ODU signal to obtain the second STM-N signal.
  • the VC cross-board is further configured to perform VC cross processing on the VC signal obtained by mapping the second STM-N signal, and de-mapping the VC cross-processed VC signal to obtain the first STM-N signal.
  • the ODU cross-board 28 performs the ODU cross-processing on the first ODU signal corresponding to the first STM-N signal, and transmits the first ODU signal after the ODU cross-processing to the client-side access board.
  • the VC cross-board includes a client-side VC port and a line-side VC port.
  • the line-side VC port is configured to receive a second ODU signal that is processed by the ODU, and decapsulate the second ODU signal to obtain a second
  • the STM-N signal performs VC cross processing on the VC signal mapped by the second STM-N signal, and sends the VC cross-processed VC signal to the client side VC port;
  • the client side VC port is configured to demap the VC The signal is obtained by the first STM-N signal, and the first ODU signal corresponding to the first STM-N signal is processed by the ODU and transmitted to the client side access board.
  • the OTN network supports the channel layer cross-scheduling mode to carry the STM-N service technology.
  • the cost of the STM-N service technology is expensive, and the engineering upgrade is difficult.
  • the exemplary embodiment provides an OTN network bearer STM-N with simpler upgrade operation and lower cost. Business methods and devices.
  • both ODUa and ODUk in the present application file are ODU signals, and the ODUk signal may be an OUD signal with a larger data amount.
  • FIG. 3 is a flowchart of a method for carrying an STM-N service by an OTN network according to an exemplary embodiment. As shown in FIG. 3, the method includes steps S301 to S302.
  • the VC cross-processing internal port is divided into two parts. One part of the port is used to establish an ODUa crossover with the client-side service access processing. This is called a client-side VC port, and the other part is used for connection with the line side service.
  • the ODUa crossover is established during the processing, which is referred to herein as the line side VC port.
  • step S301 the STM-N service that is accessed by the client-side service in the OTN network is encapsulated into an ODUa signal, and enters the ODUa cross-matrix for cross-transmission, and is transmitted to the ODUa of the client-side VC port of the VC cross-processing part.
  • the signal is decapsulated to restore the STM-N signal.
  • the following steps may be performed: first, the client side processes the accessed STM-N service in the OTN network, and encapsulates it into an ODUa signal; and establishes an ODUa crossover after the client-side service access and before the VC crossover, and the ODUa signal is used.
  • the ODUa signal received by the client side VC port is decapsulated and restored to the STM-N signal by establishing the ODUa crossover and then transmitting to the VC cross processing.
  • step S302 the STM-N service received by the VC cross processing is mapped into a VC signal, enters the VC cross matrix for cross-transmission, and the VC signal transmitted to the VC port of the VC cross-connect line side is demapped and restored to STM-N signal.
  • the following steps may be performed: firstly, the STM-N service received by the VC cross processing is mapped to the VC signal; the VC crossover is established between the client side VC port and the line side VC port, and the VC signal of the client side VC port is passed. The VC cross-matrix is transmitted to the line-side VC port.
  • the VC11, VC12, VC2, VC3, VC4 and other granularity intersections are supported, and the core scheduling functions such as STM-N service channel layer uplink and downlink selection and service aggregation are implemented;
  • the received VC signal is encapsulated and generated as an STM-N signal.
  • step S303 the STM-N service received on the VC port is encapsulated into an ODUa signal, enters the ODUa cross-matrix for cross-transmission, and encapsulates the ODUa signal transmitted to the line-side service access processing into an OTN signal, in the OTN network. Transfer in.
  • the following steps may be performed: first, the STM-N service received by the VC port is encapsulated into an ODUa signal. An ODUa crossover is established between the VC port and the line side service access module, and the ODUa signal of the VC port is transmitted to the line side service access processing part through the ODUa cross matrix. Then, the ODUa signal received by the line side service access processing part is encapsulated into an OTN signal, and transmitted in the OTN network.
  • FIG. 4 is a structural block diagram of an OTN network bearer STM-N service device, as shown in FIG. 4, including: a client-side service access module 1, which may include, for example, a client-side access card;
  • the module 2 may include, for example, a line side access board;
  • the VC cross scheduling module 3 may include, for example, an ODU cross board; an ODUa cross module 4; a service scheduling management module; and a database module 6.
  • the client-side service access module 1 mainly accesses the STM-N signal of the client side, and maps the STM-N signal to the ODUa signal, and is set up to be established between the client-side service access board and the VC cross-module client-side VC port. ODUa cross.
  • the line side service access module 2 mainly accesses the line side OTN signal, and maps the OTN signal to the ODUa signal, and is set to establish an ODUa cross between the line side service access board and the VC cross module line side VC port.
  • the VC cross module 3 mainly maps the STM-N signal into an ODUa signal, and is used as an ODUa crossover between the customer side service access module and the line side service access module, and demaps the STM-N signal into a VC signal. It is used as a VC crossover between the VC port of the VC crossover module and the VC port of the line side to implement the core cross matrix function such as STM-N service channel layer uplink and downlink selection and service aggregation; VC crossover module supports VC11, VC12, VC2. Crossover of particle sizes such as VC3 and VC4. The module is docked in the ODUa crossover module, and the input and output are ODUa signals.
  • the ODUa cross module 4 is mainly responsible for the ODUa signal crossover, including the ODUa signal crossover between the client side service access module and the VC crossover module client side VC port, and between the VC crossover module line side VC port and the line side service access module.
  • ODUa signal crossover ; support for the intersection of granularity such as ODU0, ODU1, ODU2, ODU3, ODU4, and ODUFlex to implement the ODUa cross-matrix function.
  • the module receives the ODUa signal from the client side service access module, and sends the ODUa signal to the line side transmission module.
  • the module is also connected with the VC cross module, and sends the ODUa signal to the VC cross module for VC crossover, and receives the ODUa signal restored by the VC cross module.
  • the service scheduling management module 5 mainly performs business scheduling management, communication, configuration, and scheduling among multiple modules.
  • the database module 6 mainly stores related configuration information, including but not limited to storage of related configuration information such as ports, service types, mapping modes, intersections, and paths.
  • the client side service access module, the line side service access module, the ODUa cross module, the service scheduling management module, and the database module described in the technical solutions of the exemplary embodiments may utilize the old facilities (using facilities in related technologies)
  • the SVC-N service can be carried in the OTN network, and the core scheduling functions such as STM-N service channel layer uplink and downlink selection and service aggregation are supported.
  • the method and device for carrying the STM-N service in the OTN network according to the embodiment of the present invention reduce the hardware cost, engineering modification risk and workload of carrying the STM-N service in the OTN network compared with the related technologies. Improve the efficiency of operators' OTN network upgrades.
  • FIG. 5 is a flowchart of a device and method service scheduling for carrying an STM-N service in an OTN network according to an exemplary embodiment. As shown in FIG. 5, the process includes the following six steps.
  • Step 1 According to the STM-N service type of the user, configure the STM-N service type on the access port of the service access module of the customer side, and map the STM-N signal to the ODUk signal.
  • Step 2 According to the network path planning data, configure an OTN service type on the access port of the line side service access module, and map the OTN signal to the ODUk signal, which may be ODU0, ODU1, ODU2, or ODUFlex.
  • Step 3 According to the user's STM-N service type and network path planning data, the internal port of the VC cross module is divided into a client side VC port and a line side VC port, and a client side VC port and a line side VC port in the VC cross module.
  • the specific STM-N service types are respectively configured, and the STM-N signals are directly mapped to specific ODUk signals.
  • Step 4 Establish an ODUk crossover between the client side service access module access port and the VC crossover module client side VC port.
  • Step 5 Establish an ODUk cross between the line side service access module access port and the VC cross module line side VC port.
  • Step 6 Establish a VC crossover between the VC port of the VC crossover module and the VC port of the VC crossover module.
  • the specific VC cross granularity is determined according to the service mapping of the VC port on the client side, which may be VC11, VC12, VC2, VC3 or VC4.
  • the technical solution of the present exemplary embodiment fully utilizes the service module resources already existing in the OTN network, and avoids re-developing the client side access module and the line side access module based on the VC cross scheduling.
  • For the customer side make full use of the existing customer-side service access modules in the OTN network to access the STM-1, STM-4, STM-16 or STM-64 services; for the line side, make full use of the existing lines in the OTN network.
  • the side service access module transmits an OTN service carrying STM-1, STM-4, STM-16 or STM-64. All cross-scheduling functions involving STM-N service termination, regeneration processing, uplink and downlink selection, and service aggregation are implemented in the newly developed VC cross-module.
  • the VC cross-module can be installed as a new service card. It can be installed in the service slot of the OTN device. Multiple VC cross-boards can be installed, so that the VC cross-cap capacity can be dynamically expanded.
  • FIG. 6 is a hardware block diagram of a device carrying an STM-N service in an OTN network according to an exemplary embodiment. As shown in FIG. 6, the device includes a client side access module, a cross module, and a line side access module.
  • the client-side access module consists of client-side service access modules that support STM-1, STM-4, STM-16, and STM-64 services.
  • the cross module is composed of an ODUa cross submodule and a VC cross submodule, and respectively implements an ODUa cross matrix and a VC cross matrix function.
  • the line side access module is composed of a line side service access module supporting an optical channel transport unit (OTU) service.
  • OFT optical channel transport unit
  • the technical solution of the present embodiment in the implementation of the STM-N service engineering in the specific OTN network, only the VC cross-board is newly added, and the STM-N service access board and the ODUa cross-board and the line are connected on the customer side.
  • the OTN service access board can use the existing OTN network.
  • the VC cross-board is added, and other boards can utilize the existing ones.
  • this example is implemented.
  • the technical solution of the example has the characteristics of simple operation, low risk and short cycle, which can reduce the risk and workload of engineering renovation and upgrading.
  • the layered service model includes a VC path, a multiplex section path, a regenerator section path, and an ODUk path.
  • ODU4 path optical channel path,
  • VC path A service layer path of an end-to-end STM-N service, which is set to carry the client layer STM-N service and is called a VC path.
  • MS path A service layer path of an end-to-end VC service, which is set to carry VC layer services and is called a multiplex section path.
  • Regenerator Section (RS) path A service layer path of an end-to-end MS service, which is set to carry MS layer services and is called a regenerator section path.
  • ODUk path A service layer path of an end-to-end RS service, which is set to carry the RS layer service and is called a low-order ODU path.
  • ODU4 path A service layer path of an end-to-end ODUk service, which is set to carry ODUk layer services and is called a high-order ODU path.
  • Optical channel (OCH) path A service layer path of an end-to-end ODU4 service, which is set to carry ODU4 layer services and is called an optical channel layer path.
  • OMS Optical Multiplexing Section
  • OTS Optical Transmission Section
  • TMF Telecom Management Forum
  • the method according to the foregoing embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, hardware can be used, but in many cases, the former is selected.
  • the technical solution of the present application which is essential or contributes to the related art, may be embodied in the form of a software product stored in a storage medium such as a read only memory/random access memory. (Read Only Memory/Random Access Memory, ROM/RAM), a disk, and an optical disk, including instructions for causing a terminal device, such as a mobile phone, a computer, a server, or a network device, to perform each implementation of the present application.
  • ROM/RAM Read Only Memory/Random Access Memory
  • Step 1 accessing the N-level STM-N signal of the first synchronous transmission module, and performing ODU cross processing on the first STM-N signal.
  • Step 2 Acquire a virtual container VC signal according to the first STM-N signal processed by the ODU, perform VC cross processing on the VC signal, and obtain a second STM-N signal according to the VC cross processed VC signal.
  • Step 3 The second ODU signal corresponding to the second STM-N signal is cross-processed by the ODU and transmitted to the optical transmission network.
  • Step 1 Receive an OTN signal transmitted by the optical transmission network, and obtain the second ODU signal after the OTN signal is cross-processed by the ODU.
  • Step 2 Acquire a second STM-N signal according to the second ODU signal, perform VC cross processing on the virtual container VC signal corresponding to the second STM-N signal, and acquire the first STM-N according to the VC signal after the VC cross processing. signal.
  • Step 3 The first STM-N signal is cross-processed by the ODU and transmitted to the client device.
  • processor being arranged to run a program, wherein the program is executed to perform the method described in any of the above embodiments.
  • a storage medium comprising a stored program, wherein the program is executed to perform the method described in any of the above embodiments.
  • each of the above-described modules or steps of the present application can be implemented by a general-purpose computing device, which can be centralized on a single computing device or distributed over a network of multiple computing devices. on. They can be implemented with program code executable by the computing device so that they can be stored in the storage device for execution by the computing device. In some cases, the steps shown or described may be performed in an order different than that herein, which may be fabricated as an integrated circuit module, or a plurality of modules or steps thereof as a single integrated circuit module. achieve. Thus, the application is not limited to any particular combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

本申请提供了一种信号的处理装置及方法,其中,在相关技术中的光传输OTN网络中业务单板中增加VC业务单板,将客户侧接入单板接收的STM-N信号先经相关技术中的ODU交叉单板处理,然后发送至VC交叉单板处理,最后再经ODU交叉单板处理STM-N信号,将STM-N信号转换后的ODU信号发送至光传输网络中。

Description

信号的处理装置及方法
本申请要求在2017年09月14日提交中国专利局、申请号为201710829233.6的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,例如涉及一种信号的处理装置及方法。
背景技术
在相关技术中,随着传送网的不断升级,电信网络运营商将全面部署光传输网(Optical Transport Network,OTN)网络,包括骨干层网络、核心层网络、汇聚层网络以及接入层网络等。同步数字体系/多业务传送平台(Synchronous Digital Hierarchy/Multi-Service Transfer Platform,SDH/MSTP))承载的网络将陆续退出服务。在这个SDH/MSTP承载的网络全面升级到OTN承载的网络的过程中,有的客户需要继续使用原有的同步传输模块N级(Synchronous Transport Module level N,STM-N)业务,如何在将这部分业务平滑升级到由OTN网络承载,包括实现STM-N业务通道层交叉调度,是电信网络运营商面临的共同情况。
OTN网络承载STM-N业务通常是在OTN设备上重新开发客户侧接入单板22、线路侧接入单板以及交叉单板,来支持STM-N业务的接入以及通道层交叉调度,如附图1所示。图1是根据相关技术中OTN网络承载STM-N业务的示意图。如图1所示,在OTN网络上要承载STM-N业务,并支持通道层交叉调度,就需要增加至少3种单板,包括客户侧STM-N业务接入单板、通用虚拟容器/光通道数据单元a(Virtual Container/Optical channel Data Unit a,VC/ODUa)交叉单板,以及线路侧STM/OTN接入单板,这三种单板是OTN网络中成本最昂贵的单板。对于电信网络运营商管理的超大规模OTN网络来说,采用这种技术来承载STM-N业务,电信网络运营商将会付出一笔高昂的采购成本。而且在现网中更换通用VC/ODUa交叉单板,将会引起正在运行的OTN网络承载的业务中断,会带来巨大的工程改造升级工作量及风险。
针对相关技术中在OTN网络中承载STM-N业务成本高,可能导致业务中断的情况,目前还提出相应的方案。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供了一种信号的处理装置及方法,以避免相关技术中在OTN网络中承载STM-N业务成本高,可能导致业务中断的情况。
根据本申请的一个实施例,提供了一种信号的处理装置,包括:客户侧接入单板,设置为接入第一同步传输模块N级STM-N信号,并将所述第一STM-N信号经过光通道数据单元ODU交叉单板处理后传输至虚拟容器VC交叉单板;VC交叉单板,设置为接收经过ODU交叉处理的第一STM-N信号,对所述第一STM-N信号对应的虚拟容器VC信号进行VC交叉处理,依据VC交叉处理后的VC信号获得第二STM-N信号,经过所述ODU交叉单板传输所述第二STM-N信号对应的第二ODU信号至线路侧接入单板;所述线路侧接入单板,设置为传输所述第二ODU信号至光传输网。
根据本申请的另一个实施例,还提供了一种信号的处理装置,包括:线路侧接入单板,设置为接收光传输网络中传输的光传输网OTN信号,将所述OTN信号经过光通道数据单元ODU交叉单板处理后的第二ODU信号传输至虚拟容器VC交叉单板;所述VC交叉单板,设置为接收所述第二ODU信号,依据所述第二ODU信号获取第二同步传输模块N级STM-N信号,对所述第二STM-N信号对应的虚拟容器VC信号进行VC交叉处理,依据VC交叉处理后的VC信号获得第一STM-N信号,将所述第一STM-N信号经过ODU交叉处理后传输至客户侧接入单板;所述客户侧接入单板,设置为将经过ODU交叉处理的第一STM-N信号传输至客户端设备。
根据本申请另一个实施例,还提供一种信号的处理方法,应用于上述实施例所述的处理装置,该方法包括:接入第一同步传输模块N级STM-N信号,对所述第一STM-N信号进行光通道数据单元ODU交叉处理;依据经过ODU交叉处理的所述第一STM-N信号获取虚拟容器VC信号,对所述VC信号进行VC交叉处理,依据VC交叉处理后的VC信号获得第二STM-N信号;将所述第二STM-N信号对应的第二ODU信号经过ODU交叉处理,并传输至光传输网。
根据本申请的另一个实施例,还提供了一种信号的处理方法,应用于上述实施例所述的处理装置,该方法包括:接收光传输网络传输的光传输网OTN信号,将所述OTN信号经过光通道数据单元ODU交叉处理后获取第二ODU信号; 依据所述第二ODU信号获取第二同步传输模块N级STM-N信号,对所述第二STM-N信号对应的虚拟容器VC信号进行VC交叉处理,依据VC交叉处理后的VC信号获取第一STM-N信号;将所述第一STM-N信号经过ODU交叉处理后传输至客户端设备。
根据本申请的另一个实施例,还提供一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行上述实施例任一项中所述的方法。
根据本申请的另一个实施例,还提供了一种处理器,所述处理器设置为运行程序,其中,所述程序运行时执行上述实施例任一项中所述的方法。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是相关技术中OTN网络承载STM-N业务的示意图;
图2是本申请一实施例的信号的处理装置示意图;
图3是本申请一示例实施例的OTN网络承载STM-N业务的方法流程图;
图4是本申请一示例实施例的OTN网络承载STM-N业务装置结构框图;
图5是本申请一示例实施例的一种OTN网络中承载STM-N业务的装置与方法业务调度流程图;
图6是本申请一示例实施例的OTN网络中承载STM-N业务的装置硬件模块图;
图7是本申请一示例实施例的OTN网络中承载STM-N业务的分层业务模型图。
具体实施方式
本申请文件中的方案可以应用于光传输OTN网络中。
图2是根据本申请实施例的信号的处理装置示意图,如图2所示,该处理装置包括:客户侧接入单板22,VC交叉单板24,线路侧接入单板26,ODU交叉单板28。
客户侧接入单板22,设置为接入第一同步传输模块N级STM-N信号,并将该第一STM-N信号经过光通道数据单元ODU交叉单板28处理后传输至虚拟容器VC交叉单板24。
VC交叉单板24,设置为接收经过ODU交叉处理的第一STM-N信号,对该第一STM-N信号对应的虚拟容器VC信号进行VC交叉处理,依据VC交叉处理后的VC信号获得第二STM-N信号,经过该ODU交叉单板28传输该第二STM-N信号对应的第二ODU信号至线路侧接入单板26。
该线路侧接入单板26,设置为传输该第二ODU信号至光传输网。
需要补充的是,经过VC交叉单板处理后的VC信号可以增加传输速率,或者降低传输速率。经过ODU交叉矩阵处理的ODU信号传输速率可以增大或者减少。
通过本申请,在相关技术中的光传输OTN网络中业务单板中增加VC业务单板,将客户侧接入单板22接收的STM-N信号先经相关技术中的ODU交叉单板28处理,然后发送至VC交叉单板处理,最后再经ODU交叉单板处理STM-N信号,将STM-N信号转换后的ODU信号发送至光传输网络中。采用上述技术方案,避免了相关技术中在OTN网络中承载STM-N业务成本高,可能导致业务中断的情况,在保证业务稳定运行的前提下,只需在相关技术的OTN网络中承载STM-N业务的业务流程增加VC交叉单板即可实现,操作简单,大幅降低了实现OTN网络支持STM-N业务的改造成本。
在一实施例中,该客户侧接入单板22,还设置为将第一STM-N信号封装为第一ODU信号,经过ODU交叉单板处理该第一ODU信号并传输至VC交叉单板24。
在一实施例中,该VC交叉单板24还设置为依据接收到的第一ODU信号获取该第一STM-N信号,对该第一STM-N信号映射后得到的VC信号进行VC交叉处理,解映射VC交叉处理后的VC信号获得第二STM-N信号,经过该ODU交叉单板28处理该第二STM-N信号对应的第二ODU信号,并发送该ODU交叉单板28处理后的第二ODU信号至该线路侧接入单板26。
在一实施例中,该VC交叉单板24包括客户侧VC端口和线路侧VC端口。该客户侧接入单板22,还设置为将发送至该客户侧VC端口的ODU信号进行解封装,还原出该第一STM-N信号,发送该第一STM-N信号至该客户侧VC端口。
在一实施例中,该VC交叉单板24包括:该客户侧VC端口,设置为接收该第一STM-N信号,将该第一STM-N信号映射成VC信号,发送经VC交叉处理的该VC信号至该线路侧VC端口;该线路侧VC端口,设置为解映射该VC信号获取该第二STM-N信号,将该第二STM-N信号封装成该第二ODU信号,发送经过该ODU交叉矩阵处理的该第二ODU信号至该线路侧接入单板26。
根据本申请的另一个实施例,还提供了一种信号的处理装置,与之前的处理装置的硬件结构是相同的,只是设置为执行相反方向的业务。
线路侧接入单板26,设置为接收光传输网络中传输的光传输网OTN信号,将该OTN信号经过光通道数据单元ODU交叉单板28处理后得到的第二ODU信号传输至VC交叉单板24。
该VC交叉单板24,设置为接收该第二ODU信号,依据该第二ODU信号获取第二STM-N信号,对该第二STM-N信号对应的虚拟容器VC信号进行VC交叉处理,依据VC交叉处理后的VC信号获得第一STM-N信号,该第一STM-N信号经过ODU交叉单板28处理后传输至客户侧接入单板22。
该客户侧接入单板22,设置为将经过ODU交叉单板28处理的第一STM-N信号传输至客户端设备。
在一实施例中,该VC交叉单板,还设置为解封装该第二ODU信号获取该第二STM-N信号。
在一实施例中,该VC交叉单板还设置为对该第二STM-N信号映射后得到的VC信号进行VC交叉处理,解映射VC交叉处理后的VC信号获取该第一STM-N信号,经过该ODU交叉单板28对该第一STM-N信号对应的第一ODU信号进行ODU交叉处理,并传输ODU交叉处理后的第一ODU信号至客户侧接入单板。
在一实施例中,该VC交叉单板包括客户侧VC端口和线路侧VC端口;该线路侧VC端口设置为接收经过ODU交叉处理的第二ODU信号,解封装该第二ODU信号获取第二STM-N信号,对该第二STM-N信号映射得到的VC信号进行VC交叉处理,并将VC交叉处理后的VC信号发送至客户侧VC端口;该客户侧VC端口设置为解映射该VC信号获取该第一STM-N信号,将该第一STM-N信号对应的第一ODU信号经过ODU交叉处理后传输至客户侧接入单板。
下面结合本申请示例实施例进行详细说明。
相关技术中OTN网络支持通道层交叉调度方式承载STM-N业务技术存在的成本昂贵、工程改造升级困难,本示例实施例提供了一种升级操作更加简单、成本更加低廉的OTN网络承载STM-N业务的方法及其装置。
本示例实施例采用以下技术方案:
需要补充的是,本申请文件中的ODUa和ODUk均是ODU信号,ODUk信号可以是数据量更大的OUD信号。
图3是根据示例实施例的OTN网络承载STM-N业务的方法流程图,如图3所示,该方法包括步骤S301至步骤S302。
为了更加容易理解,这里将VC交叉处理内部端口分为两部分,一部分端口用作与客户侧业务接入处理时建立ODUa交叉,这里称为客户侧VC端口,另一部分用作与线路侧业务接入处理时建立ODUa交叉,这里称为线路侧VC端口。
在步骤S301中,在OTN网络中客户侧业务接入时将接入的STM-N业务封装成ODUa信号,进入ODUa交叉矩阵进行交叉传送,对传送到VC交叉处理部分的客户侧VC端口的ODUa信号进行解封装,还原出STM-N信号。例如,可以按照以下步骤进行:先在OTN网络中客户侧处理接入的STM-N业务,并封装成ODUa信号;在客户侧业务接入后和进行VC交叉前进行建立ODUa交叉,将ODUa信号通过先建立ODUa交叉然后再传送到VC交叉处理;对VC交叉处理前对客户侧VC端口接收到的ODUa信号进行解封,还原为STM-N信号。
在步骤S302中,将VC交叉处理接收到的STM-N业务,映射成VC信号,进入VC交叉矩阵进行交叉传送,并对传送到VC交叉模块线路侧VC端口的VC信号进行解映射,还原为STM-N信号。例如,可以按照以下步骤进行:先将VC交叉处理接收到的STM-N业务映射到VC信号;在客户侧VC端口和线路侧VC端口之间建立VC交叉,将客户侧VC端口的VC信号通过VC交叉矩阵传送到线路侧VC端口,这里支持VC11、VC12、VC2、VC3、VC4等颗粒度的交叉,实现了STM-N业务通道层上下路选择、业务汇聚等核心调度功能;再对VC端口接收到的VC信号进行封装,生成为STM-N信号。
在步骤S303中,将VC端口上接收到的STM-N业务封装成ODUa信号,进入ODUa交叉矩阵进行交叉传送,并将传送到线路侧业务接入处理的ODUa 信号封装为OTN信号,在OTN网络中进行传送。
例如,可以按照以下步骤进行:先将VC端口接收到的STM-N业务封装成ODUa信号。在VC端口和线路侧业务接入模块之间建立ODUa交叉,将VC端口的ODUa信号通过ODUa交叉矩阵传送到线路侧业务接入处理部分。再将线路侧业务接入处理部分接收到的ODUa信号封装为OTN信号,在OTN网络中进行传送。
图4是根据示例实施例的OTN网络承载STM-N业务装置结构框图,如图4所示,包括:客户侧业务接入模块1,例如可以包括客户侧接入单板;线路侧业务接入模块2,例如可以包括线路侧接入单板;VC交叉调度模块3,例如可以包括ODU交叉单板;ODUa交叉模块4;业务调度管理模块;以及数据库模块6。
客户侧业务接入模块1,主要接入客户侧STM-N信号,并将STM-N信号映射成ODUa信号,设置为在客户侧业务接入单板与VC交叉模块客户侧VC端口之间建立ODUa交叉。
线路侧业务接入模块2,主要接入线路侧OTN信号,并将OTN信号映射到ODUa信号,设置为在线路侧业务接入单板与VC交叉模块线路侧VC端口之间建立ODUa交叉。
VC交叉模块3,主要将STM-N信号映射成ODUa信号,用作与客户侧业务接入模块、线路侧业务接入模块之间分别建立ODUa交叉;并将STM-N信号解映射成VC信号,用作VC交叉模块客户侧VC端口和线路侧VC端口之间建立VC交叉,实现STM-N业务通道层上下路选择、业务汇聚等核心交叉矩阵功能;VC交叉模块支持VC11、VC12、VC2、VC3、VC4等颗粒度的交叉。本模块的于ODUa交叉模块对接,输入和输出均为ODUa信号。
ODUa交叉模块4,主要负责ODUa信号交叉,包括客户侧业务接入模块与VC交叉模块客户侧VC端口之间的ODUa信号交叉,VC交叉模块线路侧VC端口与线路侧业务接入模块之间的ODUa信号交叉;这里支持ODU0、ODU1、ODU2、ODU3、ODU4以及ODUFlex等粒度的交叉,实现ODUa交叉矩阵功能。本模块从客户侧业务接入模块接收ODUa信号,把ODUa信号发送给线路侧传送模块。同时,本模块还与VC交叉模块对接,将ODUa信号发送给VC交叉模块进行VC交叉,并接收VC交叉模块还原回来的ODUa信号。
业务调度管理模块5,主要进行业务调度管理,多个模块之间通讯、配置和 调度等功能。
数据库模块6,主要存储相关配置信息,包括但不限于端口、业务类型、映射模式、交叉以及路径等相关配置信息的存储。
本示例实施例的技术方案中所述的客户侧业务接入模块、线路侧业务接入模块、ODUa交叉模块、业务调度管理模块和数据库模块都可以利用旧的设施(利用相关技术中的设施),只需要增加独立的VC交叉模块,并进行软件升级即可在OTN网络中承载STM-N业务,并支持STM-N业务通道层上下路选择、业务汇聚等核心调度功能。采用本示例实施例所述在OTN网络中承载STM-N业务的方法及其装置,与相关技术相比,降低了在OTN网络中承载STM-N业务的硬件成本、工程改造风险以及工作量,提高了运营商OTN网络升级的效益。
结合附图对一种OTN网络中承载STM-N业务的装置与方法进行说明。
图5是根据示例实施例的一种OTN网络中承载STM-N业务的装置与方法业务调度流程图,如图5所示,该流程包括以下六个步骤。
步骤一,根据用户的STM-N业务类型,在客户侧业务接入模块接入端口上配置STM-N业务类型,并将STM-N信号映射到ODUk信号。
步骤二,根据网络路径规划数据,在线路侧业务接入模块接入端口上配置OTN业务类型,将OTN信号映射到ODUk信号,可能是ODU0、ODU1、ODU2或者ODUFlex。
步骤三,根据用户的STM-N业务类型以及网络路径规划数据,将VC交叉模块的内部端口划分为客户侧VC端口和线路侧VC端口,在VC交叉模块的客户侧VC端口和线路侧VC端口上分别配置具体的STM-N业务类型,并将STM-N信号直接映射到具体的ODUk信号。
步骤四,在客户侧业务接入模块接入端口和VC交叉模块客户侧VC端口之间建立ODUk交叉。
步骤五,在线路侧业务接入模块接入端口和VC交叉模块线路侧VC端口之间建立ODUk交叉。
步骤六,在VC交叉模块客户侧VC端口和VC交叉模块线路侧VC端口之间建立VC交叉,具体的VC交叉颗粒度根据客户侧VC端口业务映射确定,可能是VC11、VC12、VC2、VC3或者VC4。
到此,一条承载在OTN网络中的STM-N业务配置完成。
如附图5所示,本示例实施例的技术方案充分利用OTN网络中已经存在的 业务模块资源,避免了重新开发基于VC交叉调度的客户侧接入模块和线路侧接入模块。对于客户侧,充分利用OTN网络中已有的客户侧业务接入模块接入STM-1、STM-4、STM-16或者STM-64业务;对于线路侧,充分利用OTN网络中已有的线路侧业务接入模块传送承载STM-1、STM-4、STM-16或者STM-64的OTN业务。所有涉及STM-N业务终结、再生处理、上下路选择以及业务汇聚等交叉调度功能都在新开发的VC交叉模块中实现。
VC交叉模块可以作为一种新业务单板,可安装在OTN设备业务槽位中,可以安装多块VC交叉单板,使得VC交叉容量可以动态扩展。
图6是根据示例实施例的OTN网络中承载STM-N业务的装置硬件模块图,如图6所示,该装置包括客户侧接入模块,交叉模块以及线路侧接入模块。
客户侧接入模块由支持STM-1、STM-4、STM-16和STM-64业务的客户侧业务接入模块组成。
交叉模块由ODUa交叉子模块和VC交叉子模块组成,分别完成ODUa交叉矩阵和VC交叉矩阵功能。
线路侧接入模块由支持光通道传输单元(Optical channel Transport Unit,OTU)业务的线路侧业务接入模块组成。
除了VC交叉子模块需要新增,其他模块都可以利用旧OTN网络中已经存在的模块。
采用本示例实施例的技术方案,在具体的OTN网络中承载STM-N业务工程实施中,只需要新增加VC交叉单板,客户侧STM-N业务接入单板、ODUa交叉单板和线路侧OTN业务接入单板都可以利用旧OTN网络中已有的。和相关技术方案(附图1)相比,从采购成本上来说,本示例实施例只需要新增VC交叉单板,其他单板都可以利用已有的;从工程实施上来说,本示例实施例的技术方案具有操作简单、风险小、周期短等特点,可以降低工程改造升级的风险和工作量。
图7是根据示例实施例的OTN网络中承载STM-N业务的分层业务模型图,如图7所示,该分层业务模型包括VC路径,复用段路径,再生段路径,ODUk路径,ODU4路径,光通道路径,
VC路径:一条端到端STM-N业务的服务层路径,设置为承载客户层STM-N业务,被称为VC路径。
复用段(Multiplex Section,MS)路径:一条端到端VC业务的服务层路径, 设置为承载VC层业务,被称为复用段路径。
再生段(Regenerator Section,RS)路径:一条端到端MS业务的服务层路径,设置为承载MS层业务,被称为再生段路径。
ODUk路径:一条端到端RS业务的服务层路径,设置为承载RS层业务,被称为低阶ODU路径。
ODU4路径:一条端到端ODUk业务的服务层路径,设置为承载ODUk层业务,被称为高阶ODU路径。
光通道(Optical Channel,OCH)路径:一条端到端ODU4业务的服务层路径,设置为承载ODU4层业务,被称为光通道层路径。
从客户侧业务依次往下,OCH路径下还有光复用段(Optical Multiplexing Section,OMS)、光传输段(Optical Transmission Section,OTS)等,这部分属于电信管理论坛(Telecom Management Forum,TMF)标准定义的OTN业务层次,这里不再赘述。
应当理解的是,以上所提供的实施方式只是对本示例实施例的说明,而不应当理解为对本示例实施例的限制,本示例实施例说明的系统和方法不仅仅对一种OTN网络中承载STM-N业务的装置与方法有效,对其他网络的网络中承载STM-N业务的装置与方法都具有同等功能。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下选择前者作为实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质,例如只读存储器/随机存取存储器(Read Only Memory/Random Access Memory,ROM/RAM)、磁碟、光盘中,包括若干指令用以使得一台终端设备,例如可以是手机,计算机,服务器,或者网络设备等执行本申请每个实施例所述的方法。
根据本申请的另一个实施例,还提供了一种信号的处理方法,应用于上述实施例记载的处理装置,该方法包括以下三个步骤。
步骤一,接入第一同步传输模块N级STM-N信号,对该第一STM-N信号进行ODU交叉处理。
步骤二,依据经过ODU交叉处理的第一STM-N信号获取虚拟容器VC信号,对该VC信号进行VC交叉处理,依据VC交叉处理后的VC信号获得第二STM-N信号。
步骤三,将该第二STM-N信号对应的第二ODU信号经过ODU交叉处理,并传输至光传输网。
根据本申请的另一个实施例,还提供了一种信号的处理方法,应用于上述实施例记载的处理装置,该方法包括以下三个步骤。
步骤一,接收光传输网络传输的OTN信号,将该OTN信号经过ODU交叉处理后获取第二ODU信号。
步骤二,依据该第二ODU信号获取第二STM-N信号,对该第二STM-N信号对应的虚拟容器VC信号进行VC交叉处理,依据VC交叉处理后的VC信号获取第一STM-N信号。
步骤三,将该第一STM-N信号经过ODU交叉处理后传输至客户端设备。
根据本申请的另一个实施例,还提供了一种处理器,所述处理器设置为运行程序,其中,所述程序运行时执行上述实施例任一项中所述的方法。
根据本申请的另一个实施例,还提供了一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行上述实施例的任一项中所述的方法。
本领域的技术人员应该明白,上述的本申请的每个模块或每个步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上。它们可以用计算装置可执行的程序代码来实现,从而可以将它们存储在存储装置中由计算装置来执行。在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,可以将它们分别制作成集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本申请不限制于任何特定的硬件和软件结合。

Claims (13)

  1. 一种信号的处理装置,包括:
    客户侧接入单板,设置为接入第一同步传输模块N级STM-N信号,并将所述第一STM-N信号经过光通道数据单元ODU交叉单板处理后传输至虚拟容器VC交叉单板;
    所述VC交叉单板,设置为接收经过ODU交叉单板处理后的第一STM-N信号,对经过ODU交叉单板处理后的所述第一STM-N信号对应的虚拟容器VC信号进行VC交叉处理,依据VC交叉处理后的VC信号获得第二STM-N信号,经过所述ODU交叉单板传输所述第二STM-N信号对应的第二ODU信号至线路侧接入单板;
    所述线路侧接入单板,设置为传输所述第二ODU信号至光传输网。
  2. 根据权利要求1所述的装置,所述客户侧接入单板,还设置为将所述第一STM-N信号封装为第一ODU信号,经过所述ODU交叉单板处理所述第一ODU信号至所述VC交叉单板。
  3. 根据权利要求2所述的装置,所述VC交叉单板还设置为依据接收到的所述第一ODU信号获取所述第一STM-N信号,对所述第一STM-N信号映射后得到的VC信号进行VC交叉处理,解映射VC交叉处理后的VC信号获得所述第二STM-N信号,经过所述ODU交叉单板处理所述第二STM-N信号对应的第二ODU信号,并发送所述ODU交叉单板处理后的所述第二ODU信号至所述线路侧接入单板。
  4. 根据权利要求3所述的装置,其中,所述VC交叉单板包括客户侧VC端口和线路侧VC端口;
    所述客户侧接入单板,还设置为将发送至所述客户侧VC端口的ODU信号进行解封装,还原出所述第一STM-N信号,发送所述第一STM-N信号至所述客户侧VC端口。
  5. 根据权利要求4所述的装置,其中,
    所述客户侧VC端口,设置为接收所述第一STM-N信号,将所述第一STM-N信号映射成VC信号,发送经VC交叉处理的所述VC信号至所述线路侧VC端口;
    所述线路侧VC端口,设置为解映射经VC交叉处理的所述VC信号获取所述第二STM-N信号,将所述第二STM-N信号封装成所述第二ODU信号,发送经过所述ODU交叉矩阵处理的所述第二ODU信号至所述线路侧接入单板。
  6. 一种信号的处理装置,包括:
    线路侧接入单板,设置为接收光传输网络中传输的光传输网OTN信号,将所述OTN信号经过光通道数据单元ODU交叉单板处理后得到的第二ODU信号传输至虚拟容器VC交叉单板;
    所述VC交叉单板,设置为接收所述第二ODU信号,依据所述第二ODU信号获取第二同步传输模块N级STM-N信号,对所述第二STM-N信号对应的虚拟容器VC信号进行VC交叉处理,依据VC交叉处理后的VC信号获得第一STM-N信号,将所述第一STM-N信号经过ODU交叉处理后传输至客户侧接入单板;
    所述客户侧接入单板,设置为将经过ODU交叉处理的第一STM-N信号传输至客户端设备。
  7. 根据权利要求6所述的装置,其中,所述VC交叉单板,还设置为解封装所述第二ODU信号获取所述第二STM-N信号。
  8. 根据权利要求7所述的装置,其中,所述VC交叉单板还设置为对所述第二STM-N信号映射后的VC信号进行VC交叉处理,解映射VC交叉处理后VC信号获取所述第一STM-N信号,经过所述ODU交叉单板处理所述第一STM-N信号对应的第一ODU信号,并传输ODU交叉单板处理后的第一ODU信号至客户侧接入单板。
  9. 根据权利要求6所述的装置,其中,所述VC交叉单板包括客户侧VC端口和线路侧VC端口;
    所述线路侧VC端口,设置为接收经过ODU交叉处理的第二ODU信号,解封装所述第二ODU信号获取第二STM-N信号,对所述第二STM-N信号映射后得到的VC信号进行VC交叉处理,并将VC交叉处理后的VC信号发送至客户侧VC端口;
    所述客户侧VC端口,设置为解映射VC交叉处理后的所述VC信号获取所述第一STM-N信号,将所述第一STM-N信号对应的第一ODU信号经过ODU交叉处理后传输至客户侧接入单板。
  10. 一种信号的处理方法,应用于权利要求1至5任一项所述的处理装置,该方法包括:
    接入第一同步传输模块N级STM-N信号,对所述第一STM-N信号进行光通道数据单元ODU交叉处理;
    依据经过ODU交叉处理的所述第一STM-N信号获取虚拟容器VC信号,对所述VC信号进行VC交叉处理,依据VC交叉处理后的VC信号获得第二STM-N信号;
    将所述第二STM-N信号对应的第二ODU信号经过ODU交叉处理,并传输至光传输网。
  11. 一种信号的处理方法,应用于权利要求6至9任一项所述的处理装置,该方法包括:
    接收光传输网络传输的光传输网OTN信号,将所述OTN信号经过光通道数据单元ODU交叉处理后获取第二ODU信号;
    依据所述第二ODU信号获取第二同步传输模块N级STM-N信号,对所述第二STM-N信号对应的虚拟容器VC信号进行VC交叉处理,依据VC交叉处理后的VC信号获取第一STM-N信号;
    将所述第一STM-N信号经过ODU交叉处理后传输至客户端设备。
  12. 一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行上述权利要求10至11任一项中所述的方法。
  13. 一种处理器,所述处理器设置为运行程序,其中,所述程序运行时执行上述权利要求10至11任一项中所述的方法。
PCT/CN2018/105783 2017-09-14 2018-09-14 信号的处理装置及方法 WO2019052539A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710829233.6A CN109510716B (zh) 2017-09-14 2017-09-14 信号的处理装置及方法
CN201710829233.6 2017-09-14

Publications (1)

Publication Number Publication Date
WO2019052539A1 true WO2019052539A1 (zh) 2019-03-21

Family

ID=65722408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/105783 WO2019052539A1 (zh) 2017-09-14 2018-09-14 信号的处理装置及方法

Country Status (2)

Country Link
CN (1) CN109510716B (zh)
WO (1) WO2019052539A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113037645A (zh) * 2019-12-24 2021-06-25 深圳市中兴微电子技术有限公司 业务传输方法及装置、计算机可读的存储介质、电子装置
CN111162864B (zh) * 2019-12-26 2022-08-23 上海欣诺通信技术股份有限公司 低速率信号的传输方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030120799A1 (en) * 2001-07-06 2003-06-26 Optix Networks Inc. Combined SONET/SDH and OTN architecture
CN1747468A (zh) * 2004-09-06 2006-03-15 华为技术有限公司 Ngn网络传送层业务实现方法和系统
CN1852616A (zh) * 2005-12-07 2006-10-25 华为技术有限公司 一种光传送网节点结构、设备及业务调度方法
CN101137247A (zh) * 2007-10-16 2008-03-05 中兴通讯股份有限公司 一种准同步数字系列支路业务的接入系统及方法
CN108736975A (zh) * 2017-04-17 2018-11-02 中兴通讯股份有限公司 一种光传输系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1791278B (zh) * 2004-12-14 2010-04-14 华为技术有限公司 光传送网络调度系统及其方法
CN106992838B (zh) * 2016-01-21 2020-02-21 华为技术有限公司 一种传输公共无线接口信号的方法和设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030120799A1 (en) * 2001-07-06 2003-06-26 Optix Networks Inc. Combined SONET/SDH and OTN architecture
CN1747468A (zh) * 2004-09-06 2006-03-15 华为技术有限公司 Ngn网络传送层业务实现方法和系统
CN1852616A (zh) * 2005-12-07 2006-10-25 华为技术有限公司 一种光传送网节点结构、设备及业务调度方法
CN101137247A (zh) * 2007-10-16 2008-03-05 中兴通讯股份有限公司 一种准同步数字系列支路业务的接入系统及方法
CN108736975A (zh) * 2017-04-17 2018-11-02 中兴通讯股份有限公司 一种光传输系统

Also Published As

Publication number Publication date
CN109510716B (zh) 2022-04-29
CN109510716A (zh) 2019-03-22

Similar Documents

Publication Publication Date Title
US11234055B2 (en) Service data processing method and apparatus
RU2465732C2 (ru) Способ, устройство и система передачи и приема клиентских сигналов
WO2020221141A1 (zh) 光传送网中的数据传输方法及装置
EP2472748B1 (en) Method and communication node for adjusting bandwidth
US20040258058A1 (en) Multi-rate, multi-protocol, multi-port line interface for a multiservice switching platform
EP4027650A1 (en) Method and device for service processing in optical transport network, and system
WO2008122218A1 (fr) Procédé de multiplexage et de démultiplexage de service de faible débit binaire
JP6784777B2 (ja) サービス伝送方法および第1の伝送デバイス
WO2010121520A1 (zh) 光传送网的信号传送方法、设备及通信系统
WO2018014342A1 (zh) 一种多路业务传送、接收方法及装置
EP2552122A1 (en) Method and system for establishing end-to-end service and optical transport network
US11910135B2 (en) Optical signal transmission method and related apparatus
US20110318001A1 (en) Method and device for sending and receiving service data
EP1971050A1 (en) An optical transport node construction device and service dispatch method
US8166183B2 (en) Method and system for fast virtual concatenation setup in a communication network
CN110266511A (zh) 带宽配置方法和装置
WO2019052539A1 (zh) 信号的处理装置及方法
CN102480408A (zh) 伪线仿真系统的调度方法及装置
CN113115135B (zh) 一种vc-otn高品质政企专线开通方法与装置
WO2014059834A1 (zh) 数据传送方法及装置
KR20130025889A (ko) G.709를 기반으로 하는 서비스 구성의 신호 제어 방법 및 시스템
WO2020001497A1 (zh) 光传送系统设备、转换单元、转换方法及存储介质
EP2579520A1 (en) Bandwidth allocation method and device for realizing bandwidth allocation
WO2021208718A1 (zh) 一种带宽调整的方法以及相关设备
CN111989933B (zh) 光传送网中的数据传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18856219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18856219

Country of ref document: EP

Kind code of ref document: A1