WO2020001118A1 - 一种传输数据的方法和终端设备 - Google Patents

一种传输数据的方法和终端设备 Download PDF

Info

Publication number
WO2020001118A1
WO2020001118A1 PCT/CN2019/081275 CN2019081275W WO2020001118A1 WO 2020001118 A1 WO2020001118 A1 WO 2020001118A1 CN 2019081275 W CN2019081275 W CN 2019081275W WO 2020001118 A1 WO2020001118 A1 WO 2020001118A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
side link
terminal device
time unit
link data
Prior art date
Application number
PCT/CN2019/081275
Other languages
English (en)
French (fr)
Inventor
卢前溪
林晖闵
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CA3100406A priority Critical patent/CA3100406C/en
Priority to EP22187033.0A priority patent/EP4106360B1/en
Priority to ES19827394T priority patent/ES2929321T3/es
Priority to BR112020024169-5A priority patent/BR112020024169A2/pt
Priority to PL19827394.8T priority patent/PL3780673T3/pl
Priority to AU2019295826A priority patent/AU2019295826B2/en
Priority to EP19827394.8A priority patent/EP3780673B1/en
Priority to JP2020570134A priority patent/JP7317870B2/ja
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202011200715.3A priority patent/CN112291746B/zh
Priority to KR1020207036490A priority patent/KR102472382B1/ko
Priority to CN202210164884.9A priority patent/CN114401555A/zh
Priority to CN201980015164.2A priority patent/CN111758268A/zh
Priority to MX2020013999A priority patent/MX2020013999A/es
Priority to TW108122715A priority patent/TWI818042B/zh
Publication of WO2020001118A1 publication Critical patent/WO2020001118A1/zh
Priority to US17/088,332 priority patent/US11102774B2/en
Priority to US17/355,382 priority patent/US11930504B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup

Definitions

  • Embodiments of the present application relate to the field of communications, and in particular, to a method and terminal device for transmitting data.
  • the car-to-vehicle system is a sidelink (SL) transmission technology based on Long-Term Evolution Vehicle-to-Vehicle (Vehicle to Vehicle, LTE V2V) technology. It communicates with traditional LTE systems to receive or send data through base stations Different methods, the Internet of Vehicles system adopts the method of direct terminal-to-terminal communication, so it has higher spectrum efficiency and lower transmission delay.
  • SL sidelink
  • LTE V2V Long-Term Evolution Vehicle-to-Vehicle
  • New Radio (NR) based vehicle to other equipment (V2X) system (referred to as NR-V2X) needs to support autonomous driving and may need to support greater bandwidth, for example, tens of megabytes or even wider Bandwidth, or a more flexible timeslot structure, for example, on the NR-V2X side link, supports multiple subcarrier intervals, and on the LTE-based V2X system (referred to as LTE-V2X) side link, Only one subcarrier interval needs to be supported.
  • the embodiments of the present application provide a method and a terminal device for transmitting data.
  • the terminal device can determine the sending time of the side link data according to the first control information of the network device, thereby realizing the transmission of the side link data.
  • a method for transmitting data including: a terminal device receiving first control information sent by a network device; and the terminal device determining a transmission time of side link data according to the first control information.
  • a terminal device for performing the foregoing first aspect or the method in any possible implementation manner of the first aspect.
  • the terminal device includes a unit for performing the foregoing first aspect or the method in any possible implementation manner of the first aspect.
  • a terminal device in a third aspect, includes: a processor and a memory.
  • the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory, and execute the method in the xxth aspect or the implementations thereof.
  • a chip is provided for implementing the above-mentioned first aspect or a method in each implementation manner thereof.
  • the chip includes a processor for invoking and running a computer program from the memory, so that the device installed with the chip executes the method as in the above-mentioned first aspect or its implementations.
  • a computer-readable storage medium for storing a computer program that causes a computer to execute the method in the above-mentioned first aspect or its implementations.
  • a computer program product including computer program instructions that cause a computer to execute the method in the above-mentioned first aspect or its implementations.
  • a computer program which, when run on a computer, causes the computer to execute the method in the first aspect or its implementations.
  • the terminal device can receive the first control information of the network device, so that before sending the side link data, the terminal device can determine the sending time of the side link data according to the first control information of the network device. Further, it is possible to send the side link data at the transmission time of the side link data, which is beneficial to avoid that when the time unit sizes of the downlink and the side link are inconsistent, the terminal device does not know on which time unit the side row is sent. Problems with link data.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a data transmission method according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of an indication manner of a transmission time of the side link data.
  • FIG. 4A is a schematic diagram of another indication manner of the transmission time of the side link data.
  • FIG. 4B is a schematic diagram of still another indication manner of the transmission time of the side link data.
  • FIG. 5 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of another terminal device according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a chip according to an embodiment of the present application.
  • D2D Device to Device
  • LTE Long Term Evolution
  • the communication system based on the Internet of Vehicles system may be a Global System (GSM) system, a Code Division Multiple Access (CDMA) system, a Wideband Code Division Multiple Access (WCDMA) system, General Packet Radio Service (GPRS), LTE system, LTE Frequency Division Duplex (FDD) system, LTE Time Division Duplex (TDD), General Purpose Mobile communication system (Universal Mobile Telecommunication System, UMTS), Worldwide Interoperability for Microwave Access (WiMAX) communication system, 5G New Radio (NR) system, etc.
  • GSM Global System
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE system LTE Frequency Division Duplex
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS General Purpose Mobile communication system
  • WiMAX Worldwide Interoperability for Microwave Access
  • 5G New Radio (NR) system etc.
  • the terminal device in the embodiment of the present application may be a terminal device capable of implementing D2D communication.
  • the terminal device may be a vehicle-mounted terminal device, a terminal device in a 5G network, or a terminal device in a public land mobile network (PLMN) in the future, which is not limited in the embodiments of the present application.
  • PLMN public land mobile network
  • FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the wireless communication system in the embodiment of the present application may include multiple network devices and the coverage range of each network device may include other numbers.
  • Terminal equipment which is not limited in this embodiment of the present application.
  • the wireless communication system may further include other networks, such as a mobile management entity (MME), a serving gateway (S-GW), a packet data network gateway (P-GW), and other networks. Entity, or the wireless communication system may further include other network entities such as Session Management Function (SMF), Unified Data Management (UDM), Authentication Server Function (AUSF), etc.
  • MME mobile management entity
  • S-GW serving gateway
  • P-GW packet data network gateway
  • Entity or the wireless communication system may further include other network entities such as Session Management Function (SMF), Unified Data Management (UDM), Authentication Server Function (AUSF), etc.
  • SMF Session Management Function
  • UDM Unified Data Management
  • AUSF Authentication Server Function
  • terminal devices can communicate in Mode 3 and Mode 4.
  • the terminal device 121 and the terminal device 122 can communicate through a D2D communication mode.
  • the terminal device 121 and the terminal device 122 directly communicate through a D2D link, that is, a side link (SL).
  • a D2D link that is, a side link (SL).
  • the transmission resources of the terminal equipment are allocated by the base station, and the terminal equipment can send data on the SL according to the resources allocated by the base station.
  • the base station can allocate resources for a single transmission to the terminal device, and can also allocate resources for the terminal to semi-static transmission.
  • the terminal device adopts a sensing and reservation transmission mode, and the terminal device autonomously selects transmission resources on the SL resources. Specifically, the terminal device obtains a set of available transmission resources by listening in a resource pool, and the terminal device randomly selects a resource from the available set of transmission resources for data transmission.
  • D2D communication can refer to Vehicle-to-Vehicle (V2V) communication or Vehicle-to-Everything (V2X) communication.
  • V2X communication X can refer to any device with wireless receiving and transmitting capabilities, such as but not limited to slow-moving wireless devices, fast-moving in-vehicle devices, or network control nodes with wireless transmitting and receiving capabilities. It should be understood that the embodiments of the present invention are mainly applied to the scenario of V2X communication, but can also be applied to any other D2D communication scenario, which is not limited in the embodiment of the present application.
  • the downlink and side links in the IoV system may be based on different communication systems. For example, one LTE-based system and one NR-based system are scheduled based on network scheduling. In the data transmission of the side link, the following situations may exist:
  • Case 1 LTE system based downlink scheduling based on LTE system side link;
  • Case 2 The downlink scheduling based on the LTE system is based on the side link of the NR system;
  • Case 4 The downlink scheduling based on the NR system is based on the side link of the NR system.
  • the time unit of the downlink based on the LTE system is a subframe , That is, 1 ms, and if the time unit of the side link based on the NR system is 0.5 ms (at this time, the subcarrier interval of the side link based on the NR system is 30 kHz), one downlink subframe corresponds to two side rows The time slot of the link.
  • the terminal device receives the scheduling information at time n, it sends side-link data at time n + 4, where time n + 4 is based on the downlink time unit, which corresponds to two side-lines The time slot of the link. Therefore, the terminal device needs to determine the transmission time of the side link data in order to send the side link data.
  • FIG. 2 is a schematic flowchart of a data transmission method according to an embodiment of the present application. This method can be executed by a terminal device in a connected vehicle. As shown in FIG. 2, the method can include the following content:
  • the terminal device receives the first control information sent by the network device.
  • the terminal device determines a sending time of the side link data according to the first control information.
  • the terminal device may receive the first control information sent by the network device.
  • the first control information may be Downlink Control Information (DCI), or may be other downlink information. Examples do not limit this.
  • the first control information may be used by the terminal device to determine the sending time of the side link data.
  • the first control information may directly or indirectly indicate the sending time of the side link data, so that the sending side link data Previously, the terminal device can determine the sending time of the side link data according to the first control information of the network device, and can further send the side link data at the sending time of the side link data, which is beneficial to avoiding the downlink
  • the terminal device does not know on which time unit the side link data is sent.
  • the network device may directly indicate the sending time of the side link data by using the first control information, or may also indicate the side link by using the instruction information carried in the first control information.
  • Sending time of the channel data; or the first control information may also be sent in a specific manner, and the sending time of the side link data is implicitly indicated by the sending method of the first control information, which is not limited in the embodiment of the present application .
  • the first control information may be DCI
  • the first control information may include first indication information
  • the first indication information may be used to indicate a sending time of the side link data. That is, the network device may include indication information in the scheduling information to indicate to the terminal device the sending time of the side link data.
  • the first indication information may be used to indicate an index value of one or more time units, and the index value of the one or more time units may be an index value with respect to a specific boundary. Therefore, the terminal device may The boundary and the index value determine the transmission time of the side link data. Further, the side link data may be transmitted at the transmission time.
  • the first indication information may be used to indicate a time unit offset value, and the time unit offset value may be a time unit offset value relative to a specific boundary. For example, if the time unit of the side link is 0.5 ms The offset value may be 4ms or 4.5ms. Therefore, the terminal device may determine the transmission time of the side link data according to the specific boundary and the time unit offset value. Further, the terminal device may send the transmission time at the transmission time. Sidelink data.
  • the first indication information may be used to indicate the number of time units offset relative to a specific boundary, or may also indicate a length of time offset relative to a specific boundary, that is, how long is the offset relative to a specific boundary. Or, other indication methods may also be used to indicate the sending time of the side link data, which is not limited in this embodiment of the present application.
  • the index value of the first indication information indication relative to a time unit with respect to a specific boundary is introduced as an example, and it should not be construed as any limitation in the embodiment of the present application.
  • a similar determination method may be adopted. For the sake of brevity, it is not described in detail.
  • the side link data includes a side link control channel and / or a side link shared channel.
  • the embodiment of the present application does not specifically limit the time unit of the downlink and the time unit of the side link.
  • the time unit of the downlink may be a time slot, a subframe, or a short transmission time interval (short transmission Time Interval (sTTI), or other quantity that can be used to measure the length of time.
  • the time unit of the side link can be a time slot, a subframe or sTTI, or other quantity that can be used to measure the length of time.
  • Embodiment 4 is mainly described by taking a subframe as an example, but the embodiment of the present application should not be construed in any way.
  • the specific boundary is a radio frame boundary.
  • a radio frame includes N time-link time units.
  • the first indication information is used to indicate an index value of one or more time units in the N time units.
  • N is an integer greater than 1.
  • the terminal device may determine the time unit corresponding to the index value in the N time-link time units as the transmission time of the side-link data.
  • an index value of a time unit indicated by the first indication information may be a subframe index of one or more subframes among N side-link subframes included in a radio frame. For example, if the radio frame of a side link is 10 ms and the side link subframe is 0.5 ms, that is, including 20 side link subframes (with an index value of 0 to 19), the first indication information indicates The sub-frame index may be one or more of 0-19.
  • the time unit indicated by the index value may be unavailable.
  • the time unit indicated by the value is within the processing time (recorded as case 1), the time unit may be considered unavailable; or, if the time unit indicated by the index value may be a downlink subframe or a special subframe (recorded as a case) 2)
  • a paired-spectrum system such as FDD
  • an unpaired-spectrum system such as TDD
  • the terminal device can select a time unit corresponding to the index value available in other radio frames after the current radio frame. For example, the terminal device can select the first The available time units corresponding to the index value are used for side-link data transmission, and the first available time unit corresponding to the index value is located in the k1th radio frame after the current radio frame.
  • the terminal device may perform side-link data transmission on the time unit indicated by the index value in the current radio frame.
  • the terminal device may determine the time unit corresponding to the index value in the current radio frame as the transmission time of the side link data; or If the time unit indicated by the index value is unavailable in the current radio frame, the terminal device may determine the time unit indicated by the index value a1 available after the current radio frame as the transmission time of the side link data, a1 is 1 or other value, or the terminal device may also determine the b1th available side link time unit after the time unit indicated by the index value in the current wireless frame as the transmission time of the side link data , Optionally, b1 is 1 or other value.
  • the network device sends DCI in a downlink subframe p1, where the downlink subframe p1 corresponds to the side-link subframe q1, and the downlink subframe p1 + 4 corresponds to the side-link subframe q1 + 8 and Sidelink subframe q1 + 9, the index value is k1, which is used to indicate the index of a subframe in a radio frame.
  • the sidelink subframe q1 and the sidelink subframe q1 + 8 are considered terminals.
  • the processing time of the device, then the timing of the side-link subframe k1 and the side-link subframe q1 + 8 are as follows:
  • Case 1 The side link subframe k1 is earlier than the side link subframe q1 + 8;
  • the terminal device can be extended to the radio frame.
  • P1 + a1 sends side-link data on the side-link subframe k1, otherwise, it continues to postpone; or, the terminal device may also copy the side-link subframe q1 + 8 in the current radio frame or its
  • the subsequent b1th available side link subframe is determined as the transmission time of the side link data, where a1 is 1 or other value, and b1 is 1 or other value.
  • the side-link subframe k1 is a side-link subframe q1 + 8, or later than the side-link subframe q1 + 8;
  • the terminal device can send the side-link data on the side-link subframe k1 in the current radio frame P1.
  • the radio frame in this embodiment is a radio frame on a side link.
  • the specific boundary is a radio frame period boundary.
  • a radio frame period includes L time-link time units. L is an integer greater than 1.
  • the first indication information is used to indicate one or more of the L time units.
  • the index value of the time unit then the terminal device may determine that the time unit indicated by the index value in the L time units is the transmission time of the side link data.
  • an index value of a time unit indicated by the first indication information may be a subframe index of one or more subframes among L side-link subframes included in a radio frame period.
  • the first indication information may indicate one of the index values 0 to 10239.
  • a secondary index (such as a radio frame index value and a subframe index value) may also be used to indicate one or more subframes in a radio frame period.
  • the time unit indicated by the index value may also be unavailable, for example, for the foregoing case 1 or case 2. Since each radio frame period has a time unit with the same index value, the terminal device can select a time unit corresponding to the index value available in other radio frame periods after the current radio frame period. For example, the terminal device can Select the first available time unit corresponding to the index value to transmit the number of side links. The first available time unit corresponding to the index value is located in the k2th radio frame period after the current radio frame period. k2 is 1 or other value.
  • the terminal device may perform side-link data transmission on the time unit indicated by the index value in the current radio frame period.
  • the terminal device may determine the time unit corresponding to the index value in the current radio frame period as the transmission time of the side link data ; If the time unit indicated by the index value is unavailable within the current radio frame period, the terminal device may determine the a2 available time unit indicated by the index value after the current radio frame period as the side link data At the sending time, a2 is 1 or other value, or the terminal device may also determine the b2th available side link time unit after the time unit indicated by the index value in the current wireless frame period as the side link The sending time of the data, optionally, b2 is 1 or other value.
  • the network device sends DCI in a downlink subframe p2, which corresponds to the side-link subframe q2, and the downlink subframe p2 + 4 corresponds to the side-link subframe q2 + 8.
  • the index value is k2, which is used to indicate the subframe index in a radio frame period.
  • the side-link subframe q2 and the side-link subframe q2 + 8 are considered Is the processing time of the terminal device, then the timing of the side-link subframe k2 and the side-link subframe q2 + 8 have the following two cases:
  • Case 1 The side link subframe k2 is earlier than the side link subframe q2 + 8;
  • the terminal device can be extended to The side link data is transmitted on the side link sub-frame k2 in the radio frame period C1 + a2, otherwise, it will be postponed; or the terminal device may also send the side link sub-frame q2 in the current radio frame period.
  • the +2 or b2th available side link subframe is determined as the transmission time of the side link data.
  • the side-link subframe k2 is a side-link subframe q2 + 8, or later than the side-link subframe q2 + 8;
  • a side-link subframe k2 is available, and the terminal device can send side-link data on the side-link subframe k2 in the current radio frame period C1.
  • the specific boundary is a first side link time unit, the first side link time unit is determined according to a second side link time unit, and the second side link time unit is the terminal device
  • the time unit on the side link receiving the first control information, and the first indication information is used to indicate an index value of one or more time units relative to the time unit of the first side link.
  • determining the first side link time unit according to the second side link time unit may include: determining the second side link time unit as the first side The link time unit, or the K1th side link time unit after the second side link time unit may also be determined as the first side link time unit, and K1 is greater than or equal to 1. Integer, optionally, K1 may be 2, 4, 8, or the like.
  • the terminal device may use the side link time unit receiving the scheduling information or a certain side link time unit as a boundary, and determine the sending time of the side link data by using the index value.
  • the terminal device may send side link data on the a3th available side link time unit after the first side link time unit , A3 can be 1 or other values.
  • the specific boundary may be a first side link subframe
  • the terminal device determines the second side link subframe that receives the first control information as the first side link subframe.
  • Frame or the terminal device determines the K1 side link subframe after the second side link subframe receiving the first control information as the first side link subframe
  • K1 may be a pre-frame
  • the optional K1 can be 2, 4, 8 and so on. This embodiment is applicable to a scenario in which one downlink subframe corresponds to multiple side-link subframes (scenario 1), and it is also applicable to a scenario in which one side-link subframe corresponds to multiple downlink subframes (scenario 2). The following uses two scenarios to illustrate the specific implementation.
  • One downlink subframe corresponds to two side-link subframes
  • the terminal device receives DCI on the side-link subframe q3 (corresponding to the downlink subframe p3)
  • the downlink subframe p3 + 4 corresponds to the side-link subframe Frame q3 + 8 and side-link subframe q3 + 9.
  • the downlink sub-frame p3 and the downlink sub-frame p3 + 4 are considered as the processing time of the terminal device. As shown in Figure 3.
  • Case 1 the specific boundary is a side-link subframe q3;
  • the terminal device can determine that the side link subframe q3 + 8 is the transmission time of the side link data, and can further determine the side link data.
  • the link subframe q3 + 8 sends the side link data.
  • Case 2 The specific boundary is a side-link subframe q3 + 8;
  • the index value can be 0 or 1, which is relative to the side-link subframe q3 + 8, and is used to indicate the side-link subframe q3 + 8 and the side-link subframe corresponding to the downlink subframe p3 + 4, respectively.
  • Frame q3 + 9 so that the terminal device determines which side-link subframe corresponding to the downlink sub-frame p3 + 4 to transmit side-link data according to the index value.
  • Scenario 2 One side-line subframe corresponds to two downlink subframes, and the terminal device receives DCI on the side-link subframe q3 (corresponding to the downlink subframe p3), then the side-link subframe q3 + 2 corresponds to the downlink Sub-frame p3 + 4, as shown in FIGS. 4A and 4B.
  • the difference between FIGS. 4A and 4B is that the downlink sub-frame p3 and the side-link sub-frame q3 may be aligned or may have a certain offset.
  • Case 1 The specific boundary is a side-link subframe q3.
  • the terminal device can send the side-link data in the side-link subframe q3 + 2.
  • Case 2 The specific boundary may also be a side-link subframe q3 + 2.
  • the index value may be 0, which is used to indicate a side-link subframe q3 + 2 corresponding to the downlink sub-frame p3 + 4, and the terminal device may send side-link data on the side-link subframe q3 + 2.
  • the specific boundary is a first downlink time unit, and the first downlink time unit is determined according to a second downlink time unit, and the second downlink time unit is received by the terminal device.
  • the time unit on the downlink of the first control information, and the first indication information is used to indicate an index value of a time unit relative to the first downlink time unit.
  • determining the first downlink time unit according to the second downlink time unit may include: determining the second downlink time unit as the first downlink Channel time unit, or the K2th downlink time unit after the second downlink time unit may also be determined as the first downlink time unit, and K2 is an integer greater than 1, optionally, The K2 may be 2, 4, 8, or the like.
  • the terminal device may use the downlink time unit in which the terminal device receives scheduling information, or a subsequent downlink time unit as a boundary, and determine the sending time of the side-link data in conjunction with the index value.
  • the terminal device can send side-link data on the a4th available side-link time unit after the first downlink time unit , A4 can be 1 or other values.
  • the specific boundary may be a first downlink subframe
  • the terminal device may determine the second downlink subframe receiving the first control information as the first downlink subframe, or the terminal device
  • the K2th downlink subframe after the second downlink subframe receiving the first control information is determined as the first side link subframe
  • K2 may be pre-configured or network-configured
  • the optional K2 may be 2, 4, 8 and so on.
  • Scenario 1 one downlink subframe corresponds to two side-link subframes, and the terminal device receives DCI on the downlink subframe p4 (corresponding to the side-link subframe q4), then the downlink subframe p4 + 4 corresponds to the side-link
  • the sub-frame q4 + 8 and the side-link sub-frame q4 + 9, and the downlink sub-frame p4 and the downlink sub-frame p4 + 4 are considered as the processing time of the terminal device.
  • Figure 3 the processing time of the terminal device.
  • the terminal device may be on the eighth side-link subframe after the side-link subframe q4 corresponding to the downlink subframe p4. Send the side link data.
  • the index value can be 0 or 1.
  • the index value is relative to the downlink subframe p4 + 4, and indicates the side-link subframe q4 + 8 and the side-link subframe corresponding to the downlink subframe p4 + 4, respectively.
  • Frame q4 + 9, the terminal device can determine, according to the index value, whether to transmit side-link data on the side-link subframe q4 + 8 or the side-link subframe q4 + 9 corresponding to the downlink subframe p4 + 4 .
  • Scenario 2 One side-line subframe corresponds to two downlink subframes.
  • the terminal device receives DCI on the downlink subframe p4 (corresponding to the side-link subframe q4), and the downlink subframe p4 + 4 corresponds to the side-link subframe.
  • Frame q4 + 2 as shown in FIG. 4A or 4B.
  • the specific boundary may be downlink subframe p4;
  • the terminal device can send side-link data on the side-link sub-frame corresponding to the fourth downlink sub-frame after the downlink sub-frame p4. That is, the side-link data is transmitted on the side-link subframe q4 + 2.
  • the terminal device can send the side-link data on the side-link sub-frame q4 + 2 corresponding to the downlink sub-frame p4 + 4.
  • processing time of the terminal in the foregoing embodiment is only an exemplary description, and the size of the specific processing time depends on the processing capability of the terminal.
  • the determining, by the terminal device, the sending time of the side link data according to the first control information includes:
  • the first subcarrier interval is a subcarrier interval of a carrier or a bandwidth part (BWP) where the first control information is located, and the second subcarrier interval is where the side link data is located.
  • BWP bandwidth part
  • the first indication information may be used to indicate parameters such as an index or an offset.
  • the first indication information may be indicated according to a granularity of a time unit on a side link.
  • the first indication information Parameters such as index or offset that can be used for indication can also be indicated according to the granularity of the time unit on the downlink. In this case, the granularity of the time unit on the downlink and the time unit of the side link needs to be specified. The relationship between them further determines the index or offset on the side link, that is, the sending time of the side link data.
  • the terminal device may determine the sending time of the side link data according to the first control information in combination with the first subcarrier interval and the second subcarrier interval, where the first subcarrier interval and the second subcarrier are transmitted.
  • the interval is used to determine the number of lateral time units corresponding to one downlink time unit. For example, if one downlink time unit corresponds to two lateral time units, the index or offset indicated by the first instruction information is 2. It is determined that the index or offset on the side link is 4, that is, the sending time of the side link data is a time domain position with an offset of 4 relative to a specific boundary.
  • the method 200 may further include:
  • the terminal device acquires second configuration information, and determines the second subcarrier interval according to the second configuration information.
  • the first configuration information may be used to indicate the first subcarrier interval
  • the second configuration information may be used to indicate the second subcarrier interval
  • the first configuration information is information pre-configured or configured by a network device.
  • the network device may send the terminal device to the terminal device through high-level signaling such as radio resource control (RRC) signaling.
  • RRC radio resource control
  • the second configuration information is pre-configured or network device configuration information.
  • the network device may send the second configuration information to the terminal device through high-level signaling, for example, RRC signaling.
  • the first configuration information and the second configuration information may be the same configuration information or different configuration information, which is not limited in this embodiment of the present application.
  • a sending manner of the control information determines the index value indicated by the first indication information, and further, the sending time of the side link data may be determined according to the determining manner of the foregoing embodiment.
  • the sending manner of the first control information may refer to at least one of the following:
  • PDCCH Physical Downlink Control Channel
  • MCS modulation coding scheme
  • DMRS demodulation reference signal
  • RNTI radio network temporary identifier
  • the sending manner of the first control information may have a first correspondence relationship with the transmission time of the side-link data, so that the terminal device may according to the sending manner of the first control information, With reference to the first correspondence relationship, the sending time of the side link data is determined.
  • different mask sequences may correspond to different transmission times of the side link data, and the network device may mask the first control information through different mask sequences to indicate different side rows to the terminal device.
  • the terminal device may process the first control information by using different mask sequences, determine the mask sequence used by the network device, and further combine the first correspondence relationship to determine the Transmission time of the side link data. For example, if the mask sequence 1 corresponds to the index value 0 and the mask sequence 2 corresponds to the index value 1, the network device may use the mask sequence 2 to mask the first control information, and the terminal device may use the mask sequence.
  • mask sequence 1 process the first control information, determine that the network device is using mask sequence 1, and then determine the corresponding index value 1, further, the terminal device may set the time indicated by the index value 1
  • the unit is determined as the transmission time of the side link data, and the specific execution process may adopt the related description of the foregoing embodiment, which is not repeated here.
  • different search spaces may correspond to different transmission times of side link data
  • a network device may send the first control information through different search spaces to indicate to the terminal device different transmission times of side link data.
  • the terminal device may determine the sending time of the side link data indicated by the network device according to the search space receiving the first control information and the first correspondence. For example, if search space 1 corresponds to index value 0 and search space 2 corresponds to index value 1, the network device sends the first control information using search space 1.
  • the terminal device may determine the corresponding index value according to the search space that receives the first control information. It is 0. Further, the terminal device may determine the time unit indicated by the index value 1 as the transmission time of the side-link data, and the specific execution process may adopt the relevant description of the foregoing embodiment, which will not be repeated here.
  • the network device may also use different information or parameters such as RNTI or PDCCH resources to implicitly indicate different sending times of the side link data.
  • RNTI Radio Network Identifier
  • PDCCH Physical Downlink Control Channel
  • the terminal device may determine a side line scheduled by the network device according to the instruction information carried in the first control information of the network device, or by sending the first control information.
  • the transmission time of the link data so that the terminal device can transmit the side link data at the transmission time.
  • FIG. 5 is a schematic structural diagram of a terminal device according to an embodiment of the present application. As shown in FIG. 5, the terminal device 300 includes:
  • a communication module 310 configured to receive first control information sent by a network device
  • the determining module 320 is configured to determine a sending time of the side link data according to the first control information.
  • the first control information is downlink control information DCI
  • the determining module is specifically configured to:
  • the first indication information is used to indicate an index value or an offset of a time unit relative to a specific boundary
  • the determining module is further configured to:
  • the specific boundary is a radio frame boundary
  • a radio frame includes N timelink time units
  • the first indication information is used to indicate the time units in the N time units.
  • the index value of one or more time units, N is an integer greater than 1.
  • the determining module is further configured to:
  • the time unit indicated by the index value in the time units of the N side-links is determined as the sending time of the side-link data.
  • the specific boundary is a radio frame period boundary, and a radio frame period includes L time-link time units, and the first indication information is used to indicate the L time units
  • the index value of one or more time units, L is an integer greater than 1.
  • the determining module is further configured to:
  • the time unit indicated by the index value in the time units of the L side links is determined as the sending time of the side link data.
  • the specific boundary is a first side link time unit
  • the first side link time unit is determined according to a second side link time unit
  • the second side The link time unit is a time unit on a side link where the terminal device receives the first control information
  • the first indication information is used to indicate a time relative to the first side link time unit.
  • the determining module is further configured to:
  • m is the index value
  • the specific boundary is a first downlink time unit
  • the first downlink time unit is determined according to a second downlink time unit
  • the second downlink The time unit is a time unit on a downlink where the terminal device receives the first control information
  • the first indication information is used to indicate an index of a time unit relative to the first downlink time unit. value.
  • the determining module is further configured to:
  • n is the index value
  • the determining module is further configured to: according to at least one of sequence information corresponding to the first control information, a wireless network temporary identifier RNTI, a search space, an aggregation level, and a transmission resource Item to determine the sending time of the side link data.
  • the determining module is further configured to:
  • the first correspondence relationship is a correspondence relationship between at least one of sequence information, a wireless network temporary identifier RNTI, a search space, an aggregation level, a resource, and a time unit index.
  • the sequence information is at least one of the following: a mask sequence, a scrambling code sequence, and a demodulation reference signal DMRS sequence.
  • the determining module 320 is further configured to:
  • the first subcarrier interval is a subcarrier interval of a carrier or a bandwidth part (BWP) where the first control information is located, and the second subcarrier interval is where the side link data is located.
  • BWP bandwidth part
  • the communication module 310 is further configured to: obtain first configuration information
  • the determining module 320 is further configured to determine the first subcarrier interval according to the first configuration information
  • the communication module 310 is further configured to: obtain second configuration information
  • the determining module 320 is further configured to determine the second subcarrier interval according to the second configuration information.
  • the first configuration information is pre-configuration or network configuration information; or the second configuration information is pre-configuration or network configuration information.
  • the time unit is a subframe or a time slot.
  • FIG. 6 is a schematic structural diagram of a communication device 600 according to an embodiment of the present application.
  • the communication device 600 shown in FIG. 6 includes a processor 610, and the processor 610 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620.
  • the processor 610 may call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other information. Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of antennas may be one or more.
  • the communication device 600 may specifically be a mobile terminal / terminal device in the embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the mobile terminal / terminal device in each method in the embodiments of the present application, for the sake of simplicity , Will not repeat them here.
  • FIG. 7 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 700 shown in FIG. 7 includes a processor 710, and the processor 710 may call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720.
  • the processor 710 may call and run a computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710, or may be integrated in the processor 710.
  • the chip 700 may further include an input interface 730.
  • the processor 710 may control the input interface 730 to communicate with other devices or chips. Specifically, the processor 710 may obtain information or data sent by other devices or chips.
  • the chip 700 may further include an output interface 740.
  • the processor 710 may control the output interface 740 to communicate with other devices or chips. Specifically, the processor 710 may output information or data to the other devices or chips.
  • the chip can be applied to the mobile terminal / terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the mobile terminal / terminal device in each method of the embodiment of the present application. For simplicity, here No longer.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-level chip, a system chip, a chip system or a system-on-chip.
  • the processor in the embodiment of the present application may be an integrated circuit chip and has a signal processing capability.
  • each step of the foregoing method embodiment may be completed by using an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA), or other Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • Various methods, steps, and logical block diagrams disclosed in the embodiments of the present application may be implemented or executed.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly implemented by a hardware decoding processor, or may be performed by using a combination of hardware and software modules in the decoding processor.
  • a software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), and an electronic memory. Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchronous DRAM Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM Enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory Synchrobus RAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (SDRAM), double data rate Synchronous dynamic random access memory (Double SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM), direct memory bus random access memory (Direct RAMbus RAM, DR RAM) and so on. That is, the memories in the embodiments of the present application are intended to include, but not limited to, these and any other suitable types of memories.
  • An embodiment of the present application further provides a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium can be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method in the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method in the embodiment of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal / terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the mobile terminal / terminal device in each method in the embodiment of the present application For the sake of brevity, I won't repeat them here.
  • An embodiment of the present application further provides a computer program product, including computer program instructions.
  • the computer program product can be applied to a network device in the embodiment of the present application, and the computer program instruction causes a computer to execute a corresponding process implemented by the network device in each method in the embodiment of the present application. More details.
  • the computer program product may be applied to a mobile terminal / terminal device in the embodiments of the present application, and the computer program instructions cause a computer to execute a corresponding process implemented by the mobile terminal / terminal device in each method of the embodiments of the present application, For brevity, I will not repeat them here.
  • the embodiment of the present application also provides a computer program.
  • the computer program may be applied to a network device in the embodiment of the present application.
  • the computer program When the computer program is run on a computer, the computer is caused to execute a corresponding process implemented by the network device in each method in the embodiment of the present application. , Will not repeat them here.
  • the computer program can be applied to a mobile terminal / terminal device in the embodiment of the present application, and when the computer program is run on a computer, the computer executes each method in the embodiment of the application by the mobile terminal / terminal device.
  • the corresponding processes are not repeated here for brevity.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially a part that contributes to the existing technology or a part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the foregoing storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory) ROM, random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes .

Abstract

一种传输数据的方法和终端设备,能够解决下行链路的时间单元和侧行链路的时间单元大小不一致的情况下的侧行链路的数据传输问题。该方法包括:终端设备接收网络设备发送的第一控制信息;所述终端设备根据所述第一控制信息确定侧行链路数据的发送时刻。

Description

一种传输数据的方法和终端设备
本申请要求于2018年6月29日提交中国专利局、申请号为201810713184.4、申请名称为“一种车联网中传输数据的方法和终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,具体地,涉及一种传输数据的方法和终端设备。
背景技术
车联网系统是基于长期演进车辆到车辆(Long Term Evaluation Vehicle to Vehicle,LTE V2V)的一种侧行链路(Sidelink,SL)传输技术,与传统的LTE系统中通信数据通过基站接收或者发送的方式不同,车联网系统采用终端到终端直接通信的方式,因此,具有更高的频谱效率以及更低的传输时延。
基于新无线(New Radio,NR)的车辆到其他设备(Vehicle to Everything,V2X)系统(简称NR-V2X),需要支持自动驾驶,可能需要支持更大的带宽,例如,几十兆甚至更宽的带宽,或者更灵活的时隙结构,例如,在NR-V2X的侧行链路上,支持多种子载波间隔,而在基于LTE的V2X系统(简称LTE-V2X)的侧行链路上,只需要支持一种子载波间隔。
在未来的车联网系统中,在侧行链路上可能同时存在LTE-V2X系统和NR-V2X系统,这样,对于车载终端而言,需要同时支持这两种侧行链路结构,那么,在基于网络调度的侧行链路传输中,可能存在下行链路的时间单元和侧行链路的时间单元大小不一致的情况,这种情况下,如何确定侧行链路的传输时刻以进行数据传输是一项亟需解决的问题。
发明内容
本申请实施例提供一种传输数据的方法和终端设备,终端设备能够根据网络设备的第一控制信息,确定侧行链路数据的发送时刻,从而实现侧行链路的数据的传输。
第一方面,提供了一种传输数据的方法,包括:终端设备接收网络设备发送的第一控制信息;所述终端设备根据所述第一控制信息确定侧行链路数据的发送时刻。
第二方面,提供了一种终端设备,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该终端设备包括用于执行上述第一方面或第一方面的任一可能的实现方式中的方法的单元。
第三方面,提供了一种终端设备,该中终端包括:包括处理器和存储器。该存储器用于存储计算 机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第xx方面或其各实现方式中的方法。
第四方面,提供了一种芯片,用于实现上述第一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面或其各实现方式中的方法。
第五方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面或其各实现方式中的方法。
第七方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面或其各实现方式中的方法。
基于上述技术方案,终端设备可以接收网络设备的第一控制信息,从而在发送侧行链路数据之前,终端设备可以根据网络设备的第一控制信息,确定该侧行链路数据的发送时刻,进一步可以在该侧行链路数据的发送时刻发送侧行链路数据,有利于避免在下行链路和侧行链路的时间单元大小不一致时,终端设备不知道在哪个时间单元上发送侧行链路数据的问题。
附图说明
图1是本申请实施例提供的一种通信系统架构的示意性图。
图2是本申请实施例提供的一种传输数据的方法的示意性图。
图3是侧行链路数据的发送时刻的一种指示方式的示意性图。
图4A是侧行链路数据的发送时刻的另一种指示方式的示意性图。
图4B是侧行链路数据的发送时刻的再一种指示方式的示意性图。
图5是本申请实施例提供的一种终端设备的示意性框图。
图6是本申请实施例提供的另一种终端设备的示意性框图。
图7是本申请实施例提供的一种芯片的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应理解,本申请实施例的技术方案可以应用于端到端(Device to Device,D2D)通信系统,例如, 基于长期演进(Long Term Evolution,LTE)进行D2D通信的车联网系统。与传统的LTE系统中终端之间的通信数据通过网络设备(例如,基站)接收或者发送的方式不同,车联网系统采用终端到终端直接通信的方式,因此具有更高的频谱效率以及更低的传输时延。
可选地,车联网系统基于的通信系统可以是全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、LTE系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、5G新无线(New Radio,NR)系统等。
本申请实施例中的终端设备可以是能够实现D2D通信的终端设备。例如,可以是车载终端设备,也可以是5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本申请实施例并不限定。
图1是本申请实施例的一个应用场景的示意图。图1示例性地示出了一个网络设备和两个终端设备,可选地,本申请实施例中的无线通信系统可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该无线通信系统还可以包括移动管理实体(Mobile Management Entity,MME)、服务网关(Serving Gateway,S-GW)、分组数据网络网关(Packet Data Network Gateway,P-GW)等其他网络实体,或者,该无线通信系统还可以包括会话管理功能(Session Management Function,SMF)、统一数据管理(Unified Data Management,UDM),认证服务器功能(Authentication Server Function,AUSF)等其他网络实体,本申请实施例对此不作限定。
在该车联网系统中,终端设备可以采用模式3和模式4进行通信。
具体地,终端设备121和终端设备122可以通过D2D通信模式进行通信,在进行D2D通信时,终端设备121和终端设备122通过D2D链路即侧行链路(Sidelink上,SL)直接进行通信。其中,在模式3中,终端设备的传输资源是由基站分配的,终端设备可以根据基站分配的资源在SL上进行数据的发送。基站可以为终端设备分配单次传输的资源,也可以为终端分配半静态传输的资源。在模式4中,终端设备采用侦听(sensing)加预留(reservation)的传输方式,终端设备在SL资源上自主选取传输资源。具体的,终端设备在资源池中通过侦听的方式获取可用的传输资源集合,终端设备从该可用的传输资源集合中随机选取一个资源进行数据的传输。
D2D通信可以指车对车(Vehicle to Vehicle,简称“V2V”)通信或车辆到其他设备(Vehicle to Everything,V2X)通信。在V2X通信中,X可以泛指任何具有无线接收和发送能力的设备,例如但 不限于慢速移动的无线装置,快速移动的车载设备,或是具有无线发射接收能力的网络控制节点等。应理解,本发明实施例主要应用于V2X通信的场景,但也可以应用于任意其它D2D通信场景,本申请实施例对此不做任何限定。
由于多种通信系统共存,这样,车联网系统中的下行链路和侧行链路可能存在基于不同的通信系统的情况,例如,一个基于LTE系统,一个基于NR系统,则在基于网络调度的侧行链路的数据传输中,可能存在如下情况:
情况1:基于LTE系统的下行链路调度基于LTE系统的侧行链路;
情况2:基于LTE系统的下行链路调度基于NR系统的侧行链路;
情况3:基于NR系统的下行链路调度基于LTE系统的侧行链路;
情况4:基于NR系统的下行链路调度基于NR系统的侧行链路。
那么,在后三种情况下中,可能存在下行链路的时间单元和侧行链路的时间单元大小不一致的情况,例如,对于情况2,基于LTE系统的下行链路的时间单元为子帧,即1ms,而若基于NR系统的侧行链路的时间单元为0.5ms(此时,基于NR系统的侧行链路的子载波间隔为30kHz),则一个下行子帧对应两个侧行链路的时隙。这种情况下,若终端设备在时刻n接收到调度信息,在时刻n+4发送侧行链路数据,其中,时刻n+4是基于下行链路的时间单元的,其对应两个侧行链路的时隙,因此,终端设备需要确定侧行链路数据的发送时刻,才能进行侧行链路数据的发送。
图2为本申请实施例提供的一种传输数据的方法的示意性流程图。该方法可以由车联网中的终端设备执行,如图2所示,该方法可以包括如下内容:
S210,终端设备接收网络设备发送的第一控制信息;
S220,所述终端设备根据所述第一控制信息确定侧行链路数据的发送时刻。
具体而言,终端设备可以接收网络设备发送的第一控制信息,可选地,该第一控制信息可以为下行控制信息(Downlink Control Information,DCI),或者也可以为其他下行信息,本申请实施例对此不作限定。该第一控制信息可以用于终端设备确定侧行链路数据的发送时刻,例如,该第一控制信息可以直接或间接指示侧行链路数据的发送时刻,从而,在发送侧行链路数据之前,终端设备可以根据网络设备的第一控制信息,确定该侧行链路数据的发送时刻,进一步可以在该侧行链路数据的发送时刻发送侧行链路数据,有利于避免在下行链路和侧行链路的时间单元大小不一致时,终端设备不知道在哪个时间单元上发送侧行链路数据的问题。
可选地,在一些实施例中,网络设备可以通过该第一控制信息直接指示该侧行链路数据的发送时刻,或者也可以通过该第一控制信息中携带的指示信息指示该侧行链路数据的发送时刻;或者也可以通过特定的方式发送该第一控制信息,通过该第一控制信息的发送方式隐式指示该侧行链路数据的发送时刻,本申请实施例对此不作限定。
在一些具体实施例中,该第一控制信息可以为DCI,该第一控制信息中可以包括第一指示信息,该第一指示信息可以用于指示该侧行链路数据的发送时刻。也就是说,该网络设备可以在调度信息中包括指示信息,以向终端设备指示侧行链路数据的发送时刻。
例如,该第一指示信息可以用于指示一个或多个时间单元的索引值,该一个或多个时间单元的索引值可以为相对于特定边界的索引值,从而,该终端设备可以根据该特定边界和该索引值,确定侧行链路数据的发送时刻,进一步地,可以在该发送时刻发送侧行链路数据。或者,该第一指示信息可以用于指示一个时间单元偏移值,该时间单元偏移值可以为相对于特定边界的时间单元偏移值,例如,若侧行链路的时间单元为0.5ms,该偏移值可以为4ms或4.5ms等,从而,该终端设备可以根据该特定边界和该时间单元偏移值,确定侧行链路数据的发送时刻,进一步地,可以在该发送时刻发送侧行链路数据。
也就是说,该第一指示信息可以用于指示相对于特定边界偏移的时间单元的个数,或者也可以指示相对于特定边界偏移的时间长度,即相对于特定边界偏移多长时间,或者也可以采用其他指示方式指示该侧行链路数据的发送时刻,本申请实施例对此不作限定。需要说明的是,以下,主要是该第一指示信息指示相对于特定边界的时间单元的索引值为例进行介绍,而不应对本申请实施例构成任何限定,当该第一指示信息指示相对于特定边界的偏移量时,可以采用类似的确定方式,为了简洁,不作赘述。
应理解,本实施例中侧行链路数据包括侧行链路控制信道和/或侧行链路共享信道。
还应理解,本申请实施例对于下行链路的时间单元和侧行链路的时间单元不作具体限定,例如,下行链路的时间单元可以为时隙、子帧或短传输时间间隔(short Transmission Time Interval,sTTI)、或其他可以用于度量时间长度的量,侧行链路的时间单元可以为时隙、子帧或sTTI、或其他可以用于度量时间长度的量,下文结合实施例1~实施例4,主要以子帧为例进行介绍,但不应对本申请实施例构成任何限定。
实施例1:
该特定边界为无线帧边界,一个无线帧包括N个侧行链路的时间单元,所述第一指示信息用于指示所述N个时间单元中的一个或多个时间单元的索引值,N为大于1的整数。则,该终端设备可以将该N个侧行链路的时间单元中该索引值对应的时间单元确定为侧行链路数据的发送时刻。
在一种具体的实现方式中,该第一指示信息所指示的时间单元的索引值可以为无线帧所包括的N个侧行链路子帧中的一个或多个子帧的子帧索引。例如,若一个侧行链路的无线帧为10ms,侧行链路子帧为0.5ms,即包括20个侧行链路子帧(索引值为0~19),该第一指示信息所指示的子帧索引可以为0~19中的一个或多个。
应理解,在一些情况下,该索引值所指示的时间单元可能不可用,例如,当终端设备接收到调度 信息后,需要一定的处理时间,才能进行侧行链路数据的发送,如果该索引值所指示的时间单元在该处理时间内(记为情况1),可以认为该时间单元不可用;或者,若该索引值所指示的时间单元可能为下行子帧或特殊子帧(记为情况2),例如,对于成对频谱系统(例如FDD),或非成对频谱系统(例如,TDD),此情况也可以认为该时间单元也不可用。由于每个无线帧内都有相同索引值的时间单元,则该终端设备可以选择当前无线帧后的其他无线帧内的可用的该索引值对应的时间单元,例如,该终端设备可以选择第一个可用的该索引值对应的时间单元进行侧行链路数据的传输,该第一个可用的该索引值对应的时间单元位于当前无线帧后的第k1个无线帧内,可选地,k1为1或其他值。
可选地,在另一些情况下,若该索引值所指示的时间单元可用,该终端设备可以在当前无线帧内的该索引值所指示的时间单元上进行侧行链路数据的传输。
总的来说,若当前无线帧内,该索引值所指示的时间单元可用,该终端设备可以将当前无线帧内的该索引值对应的时间单元确定为侧行链路数据的发送时刻;或者若当前无线帧内,该索引值所指示的时间单元不可用,该终端设备可以将当前无线帧后的第a1个可用的该索引值指示的时间单元确定为侧行链路数据的发送时刻,a1为1或其他值,或者该终端设备也可以将当前无线帧内的该索引值所指示的时间单元后的第b1个可用的侧行链路时间单元确定为侧行链路数据的发送时刻,可选地,b1为1或其他值。
例如,在一个无线帧P1内,网络设备在下行子帧p1发送DCI,该下行子帧p1对应侧行链路子帧q1,下行子帧p1+4对应侧行链路子帧q1+8和侧行链路子帧q1+9,该索引值为k1,用于表示一个无线帧内的子帧索引,侧行链路子帧q1和侧行链路子帧q1+8之间认为是终端设备的处理时间,那么侧行链路子帧k1和侧行链路子帧q1+8的时序存在如下两种情况:
情况1:该侧行链路子帧k1早于侧行链路子帧q1+8;
此情况可以认为侧行链路子帧k1不可用,若无线帧P1的之后的无线帧,即无线帧P1+a1中的该侧行链路子帧k1可用,该终端设备可以顺延到无线帧P1+a1中的该侧行链路子帧k1上发送侧行链路数据,否则,继续顺延;或者,该终端设备也可以将当前无线帧内的侧行链路子帧q1+8或其后的第b1个可用的侧行链路子帧确定为侧行链路数据的发送时刻,其中,a1为1或其他值,b1为1或其他值。
情况2:该侧行链路子帧k1为侧行链路子帧q1+8,或晚于侧行链路子帧q1+8;
此情况可以认为侧行链路子帧k1可用,则该终端设备可以在该当前无线帧P1中的侧行链路子帧k1上发送侧行链路数据。
应理解,本实施例中的无线帧为侧行链路上的无线帧。
实施例2:
该特定边界为无线帧周期边界,一个无线帧周期包括L个侧行链路的时间单元,L为大于1的整 数,该第一指示信息用于指示该L个时间单元中的一个或多个时间单元的索引值,则该终端设备可以确定该L个时间单元中该索引值所指示的时间单元为侧行链路数据的发送时刻。
在一种具体的实现方式中,该第一指示信息所指示的时间单元的索引值可以为无线帧周期所包括的L个侧行链路子帧中的一个或多个子帧的子帧索引。例如,若无线帧周期包括P(例如,1024)个无线帧,每个无线帧包括Q(例如10)个侧行链路子帧,该第一指示信息可以指示索引值0~10239中的一个或多个子帧,当然,也可以采用二级索引(例如无线帧索引值和子帧索引值)指示一个无线帧周期中的一个或多个子帧。
与实施例1类似,在一些情况下,该索引值所指示的时间单元也可能存在不可用的情况,例如,对于前述的情况1或情况2。由于每个无线帧周期内都有相同索引值的时间单元,则该终端设备可以选择当前无线帧周期后的其他无线帧周期内的可用的该索引值对应的时间单元,例如,该终端设备可以选择第一个可用的该索引值对应的时间单元进行侧行链路数的传输,该第一个可用的该索引值对应的时间单元位于当前无线帧周期后的第k2个无线帧周期内,k2为1或其他值。
可选地,在另一些情况下,若该索引值所指示的时间单元可用,该终端设备可以在当前无线帧周期内的该索引值所指示的时间单元上进行侧行链路数据的传输。
总的来说,若当前无线帧周期内,该索引值所指示的时间单元可用,该终端设备可以将当前无线帧周期内的该索引值对应的时间单元确定为侧行链路数据的发送时刻;若当前无线帧周期内,该索引值所指示的时间单元不可用,该终端设备可以将当前无线帧周期后的第a2个可用的该索引值指示的时间单元确定为侧行链路数据的发送时刻,a2为1或其他值,或者该终端设备也可以将当前无线帧周期内的该索引值所指示的时间单元后的第b2个可用的侧行链路时间单元确定为侧行链路数据的发送时刻,可选地,b2为1或其他值。
例如,在一个无线帧周期C1内,网络设备在下行子帧p2发送DCI,该下行子帧p2对应侧行链路子帧q2,下行子帧p2+4对应侧行链路子帧q2+8和侧行链路子帧q2+9,该索引值为k2,用于表示一个无线帧周期内的子帧索引,侧行链路子帧q2和侧行链路子帧q2+8之间认为是终端设备的处理时间,那么侧行链路子帧k2和侧行链路子帧q2+8的时序存在如下两种情况:
情况1:该侧行链路子帧k2早于侧行链路子帧q2+8;
此情况可以认为侧行链路子帧k2不可用,若无线帧周期C1的之后无线帧周期,即无线帧周期C1+a2中的该侧行链路子帧k2可用,该终端设备可以顺延到无线帧周期C1+a2中的该侧行链路子帧k2上发送侧行链路数据,否则,继续顺延;或者,该终端设备也可以将当前无线帧周期内的侧行链路子帧q2+8或其后的第b2个可用的侧行链路子帧确定为侧行链路数据的发送时刻。
情况2:该侧行链路子帧k2为侧行链路子帧q2+8,或晚于侧行链路子帧q2+8;
此情况可以认为侧行链路子帧k2可用,该终端设备可以在该当前无线帧周期C1中的侧行链路子 帧k2上发送侧行链路数据。
实施例3:
所述特定边界为第一侧行链路时间单元,所述第一侧行链路时间单元根据第二侧行链路时间单元确定,所述第二侧行链路时间单元为所述终端设备接收所述第一控制信息的侧行链路上的时间单元,所述第一指示信息用于指示相对于所述第一侧行链路时间单元的一个或多个时间单元的索引值。
因此,根据该第一指示信息,该终端设备可以将该第一侧行链路时间单元后的第m个侧行链路时间单元确定为侧行链路数据的发送时刻,或者,若该第m个侧行链路时间单元不可用(例如对于情况1或情况2),该终端设备也可以将该第m个侧行链路时间单元后的第a3个可用的侧行链路时间单元确定为侧行链路数据的发送时刻,例如a3=1或其他值,其中,该m为第一指示信息所指示的索引值。
可选地,在一些实施例中,所述第一侧行链路时间单元根据第二侧行链路时间单元确定,可以包括:将该第二侧行链路时间单元确定为该第一侧行链路时间单元,或者也可以将该第二侧行链路时间单元后的第K1个侧行链路时间单元,确定为该第一侧行链路时间单元,K1为大于或等于1的整数,可选地,该K1可以为2、4、8等。
也就是说,终端设备可以以接收调度信息的侧行链路时间单元,或者其后的某一侧行链路时间单元作为边界,结合该索引值确定该侧行链路数据的发送时刻。
与前述实施例类似,若索引值所指示的时间单元不可用,该终端设备可以在第一侧行链路时间单元后的第a3个可用的侧行链路时间单元上发送侧行链路数据,a3可以为1或其他值。
在一些具体实施例中,该特定边界可以为第一侧行链路子帧,终端设备将接收到该第一控制信息的第二侧行链路子帧确定为该第一侧行链路子帧,或者,终端设备将接收到该第一控制信息的第二侧行链路子帧后的第K1个侧行链路子帧确定为该第一侧行链路子帧,K1可以是预配置或者网络配置的,可选的K1可以为2、4、8等。该实施例适用于一个下行子帧对应多个侧行链路子帧的场景(场景1),同样适用于一个侧行链路子帧对应于多个下行子帧的场景(场景2)。以下结合两种场景,举例说明具体实现方式。
场景1:一个下行子帧对应两个侧行链路子帧,终端设备在侧行链路子帧q3(对应下行子帧p3)上接收DCI,下行子帧p3+4对应侧行链路子帧q3+8和侧行链路子帧q3+9。下行子帧p3和下行子帧p3+4之间认为是终端设备的处理时间。如图3所示。
情况1:该特定边界为侧行链路子帧q3;
若索引值为8,该索引值是相对于侧行链路子帧q3的,则终端设备可以确定侧行链路子帧q3+8为侧行链路数据的发送时刻,进一步可以在侧行链路子帧q3+8发送侧行链路数据。
情况2:该特定边界为侧行链路子帧q3+8;
该索引值可以为0或1,是相对于侧行链路子帧q3+8的,分别用于指示下行子帧p3+4对应的侧行链路子帧q3+8和侧行链路子帧q3+9,从而该终端设备根据索引值确定是在该下行子帧p3+4对应的哪个侧行链路子帧上传输侧行链路数据。
场景2:一个侧行子帧对应两个下行链路子帧,终端设备在侧行链路子帧q3(对应下行子帧p3)上接收DCI,则侧行链路子帧q3+2对应下行子帧p3+4,如图4A和图4B所示,图4A和图4B的区别在于,下行子帧p3和侧行链路子帧q3可以对齐,也可以具有一定的偏移量。
情况1:该特定边界为侧行链路子帧q3。
若索引值为2,该索引值是相对于侧行链路子帧q3的,则终端设备可以在侧行链路子帧q3+2发送侧行链路数据。
情况2:该特定边界也可以为侧行链路子帧q3+2。
该索引值可以为0,用于指示下行子帧p3+4对应的侧行链路子帧q3+2,则终端设备可以在侧行链路子帧q3+2上发送侧行链路数据。
实施例4:
所述特定边界为第一下行链路时间单元,所述第一下行链路时间单元根据第二下行链路时间单元确定,所述第二下行链路时间单元为所述终端设备接收所述第一控制信息的下行链路上的时间单元,所述第一指示信息用于指示相对于所述第一下行链路时间单元的时间单元的索引值。
因此,根据第一指示信息,该终端设备可以将该第一下行链路时间单元后的第n个侧行链路时间单元确定为侧行链路数据的发送时刻,或者,若该第n个侧行链路时间单元不可用,该终端设备也可以将该第n个侧行链路时间单元后的第a4个可用的侧行链路时间单元确定为侧行链路数据的发送时刻,可选的,a4=1或其他值,n为第一指示信息所指示的索引值。
可选地,在一些实施例中,所述第一下行链路时间单元根据第二下行链路时间单元确定,可以包括:将该第二下行链路时间单元确定为该第一下行链路时间单元,或者也可以将该第二下行链路时间单元后的第K2个下行链路时间单元,确定为该第一下行链路时间单元,K2为大于1的整数,可选地,该K2可以为2、4、8等。
也就是说,终端设备可以以终端设备接收调度信息的下行链路时间单元,或者其后的某一下行链路时间单元作为边界,结合该索引值确定该侧行链路数据的发送时刻。
跟前述实施例类似,若索引值所指示的时间单元不可用,该终端设备可以在第一下行链路时间单元后的第a4个可用的侧行链路时间单元上发送侧行链路数据,a4可以为1或其他值。
在一些具体实施例中,该特定边界可以为第一下行子帧,终端设备可以将接收到该第一控制信息的第二下行子帧确定为该第一下行子帧,或者,终端设备将接收到该第一控制信息的第二下行子帧后的第K2个下行子帧确定为该第一侧行链路子帧,K2可以是预配置或者网络配置的,可选的K2可以 为2、4、8等。该实施例同样适用于上述的场景1和场景2。以下,结合两种场景,举例说明具体的实现方式。
场景1:一个下行子帧对应两个侧行链路子帧,终端设备在下行子帧p4(对应侧行链路子帧q4)上接收DCI,则下行子帧p4+4对应侧行链路子帧q4+8和侧行链路子帧q4+9,下行子帧p4和下行子帧p4+4之间认为是终端设备的处理时间。如图3所示。
情况1:该特定边界为下行子帧p4;
若索引值为8,该索引值是相对于下行链路子帧p4的,则终端设备可以在下行子帧p4对应的侧行链路子帧q4后的第8个侧行链路子帧上发送侧行链路数据。
情况2:该特定边界为下行子帧p4+4;
该索引值可以为0或1,该索引值是相对于下行链路子帧p4+4的,分别指示下行子帧p4+4对应的侧行链路子帧q4+8和侧行链路子帧q4+9,则该终端设备根据该索引值可以确定在下行子帧p4+4对应的侧行链路子帧q4+8还是侧行链路子帧q4+9上发送侧行链路数据。
场景2:一个侧行子帧对应两个下行链路子帧,终端设备在下行子帧p4(对应侧行链路子帧q4)上接收DCI,下行子帧p4+4对应侧行链路子帧q4+2,如图4A或图4B所示。
情况1:该特定边界可以为下行子帧p4;
若索引值为4,该索引值是相对于下行子帧p4的,则终端设备可以在下行子帧p4后的第4个下行子帧对应的侧行链路子帧上发送侧行链路数据,即在侧行链路子帧q4+2上发送侧行链路数据。
情况2:该特定边界为下行子帧p4+4;
若索引值为0,该索引值是相对于下行子帧p4+4的,则终端设备可以在下行子帧p4+4对应的侧行链路子帧q4+2上发送侧行链路数据。
应理解,上述实施例中终端的处理时间只是示例性的说明,具体处理时间的大小取决于终端的处理能力。
可选地,在一些实施例中,所述终端设备根据所述第一控制信息确定侧行链路数据的发送时刻,包括:
所述终端设备根据所述第一控制信息、第一子载波间隔和第二子载波间隔确定侧行链路数据的发送时刻;
其中,所述第一子载波间隔是所述第一控制信息所在的载波或带宽部分(Bandwidth Part,BWP)的子载波间隔,所述第二子载波间隔是所述侧行链路数据所在的载波、BWP或资源池的子载波间隔。
在前述实施例中,该第一指示信息可以用于指示的索引或偏移量等参数可以按照侧行链路上的时间单元的粒度去指示,在另一些实施例中,该第一指示信息可以用于指示的索引或偏移量等参数也可以按照下行链路上的时间单元的粒度去指示,此情况下,需要将下行链路上的时间单元和侧行链路的 时间单元的粒度之间的关系,进一步确定在侧行链路上的索引或偏移量,即该侧行链路数据的发送时刻。
具体地,该终端设备可以根据该第一控制信息,结合第一子载波间隔和第二子载波间隔,确定侧行链路数据的发送时刻,其中,该第一子载波间隔和第二子载波间隔用于确定一个下行时间单元对应的侧行时间单元的个数,例如,若一个下行时间单元对应两个侧行时间单元,根据第一指示信息指示的索引或偏移量为2,则可以确定侧行链路上的索引或偏移量为4,即该侧行链路数据的发送时刻为相对于特定边界偏移量为4的时域位置。
可选地,在一些实施例中,所述方法200还可以包括:
所述终端设备获取第一配置信息,根据所述第一配置信息确定所述第一子载波间隔;
所述终端设备获取第二配置信息,根据所述第二配置信息确定所述第二子载波间隔。
可选地,所述第一配置信息可以用于指示该第一子载波间隔,该第二配置信息可以用于指示该第二子载波间隔。
可选地,所述第一配置信息是预配置的或网络设备配置的信息,例如,网络设备可以通过高层信令例如,无线资源控制(Radio Resource Control,RRC)信令给所述终端设备发送该第一配置信息。
可选地,所述第二配置信息是预配置的或网络设备配置的信息,例如,网络设备可以通过高层信令,例如,RRC信令给所述终端设备发送该第二配置信息。
可选地,所述第一配置信息和所述第二配置信息可以为同一配置信息,或不同的配置信息,本申请实施例对此不作限定。
应理解,以上侧行链路数据的发送时刻的指示方式仅为示例,上述实施例可以单独使用也可以结合使用,或者也可以结合该第一控制信息的发送方式使用,例如,可以先根据第一控制信息的发送方式确定该第一指示信息所指示的索引值,进一步可以根据上述实施例的确定方式,确定侧行链路数据的发送时刻。
作为示例而非限定,该第一控制信息的发送方式可以指以下中的至少一种:
发送该第一控制信息所使用的物理下行控制信道(Physical Downlink Control Channel,PDCCH)资源,搜索空间、聚合等级、波束、天线端口、预编码矩阵、调制编码方案(Modulation and Coding Scheme,MCS)、处理该第一控制信息所采用的掩码序列、扰码序列、解调参考信号(Demodulation Reference Signal,DMRS)序列等序列信息、无线网络临时标识符(Radio Network Temporary Identity,RNTI)等。
可选地,在一些实施例中,该第一控制信息的发送方式可以与侧行链路数据的发送时刻具有第一对应关系,这样,该终端设备可以根据该第一控制信息的发送方式,结合该第一对应关系,确定侧行链路数据的发送时刻。
例如,不同的掩码序列可以对应不同的侧行链路数据的发送时刻,网络设备可以通过不同的掩码序列对该第一控制信息进行加掩码处理,以向终端设备指示不同的侧行链路数据的发送时刻,那么该终端设备可以使用不同的掩码序列对该第一控制信息进行处理,判断网络设备所使用的掩码序列,进一步结合该第一对应关系,确定网络设备指示的侧行链路数据的发送时刻。例如,若掩码序列1对应索引值0,掩码序列2对应索引值1,该网络设备可以使用掩码序列2对该第一控制信息进行加掩码处理,而终端设备可以使用掩码序列0和掩码序列1对该第一控制信息进行处理,确定该网络设备使用的是掩码序列1,进而可以确定对应索引值1,进一步地,该终端设备可以将索引值1所指示的时间单元确定为侧行链路数据的发送时刻,具体的执行过程可以采用前述实施例的相关描述,这里不再赘述。
再如,不同的搜索空间可以对应不同的侧行链路数据的发送时刻,网络设备可以通过不同的搜索空间发送该第一控制信息,以向终端设备指示不同的侧行链路数据的发送时刻,那么该终端设备可以根据接收该第一控制信息的搜索空间,结合该第一对应关系,确定网络设备指示的侧行链路数据的发送时刻。例如,若搜索空间1对应索引值0,搜索空间2对应索引值1,网络设备使用搜索空间1发送该第一控制信息,终端设备可以根据接收该第一控制信息的搜索空间确定对应的索引值为0,进一步地,该终端设备可以将索引值1所指示的时间单元确定为侧行链路数据的发送时刻,具体的执行过程可以采用前述实施例的相关描述,这里不再赘述。
可选地,网络设备也可以使用不同的RNTI或PDCCH资源等信息或参数,隐式指示侧行链路数据的不同的发送时刻,为了简洁,这里不再赘述。
因此,根据本申请实施例的传输数据的方法,终端设备可以根据网络设备的第一控制信息中携带的指示信息,或者通过该第一控制信息的发送方式等方式,确定网络设备调度的侧行链路数据的发送时刻,从而终端设备可以在该发送时刻发送侧行链路数据。
上文结合图2至图4,详细描述了本申请的方法实施例,下文结合图5至图7,描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图5是根据本申请实施例的终端设备的示意性结构图,如图5所示,该终端设备300包括:
通信模块310,用于接收网络设备发送的第一控制信息;
确定模块320,用于根据所述第一控制信息确定侧行链路数据的发送时刻。
可选地,在一些实施例中,所述第一控制信息为下行控制信息DCI,所述确定模块具体用于:
根据所述第一控制信息中携带的第一指示信息,确定侧行链路数据的发送时刻。
可选地,在一些实施例中,所述第一指示信息用于指示相对于特定边界的时间单元的索引值或偏移量,所述确定模块还用于:
根据所述特定边界和所述索引值,确定所述侧行链路数据的发送时刻。
可选地,在一些实施例中,所述特定边界为无线帧边界,一个无线帧包括N个侧行链路的时间单元,所述第一指示信息用于指示所述N个时间单元中的一个或多个时间单元的索引值,N为大于1的整数。
可选地,在一些实施例中,所述确定模块还用于:
将所述N个侧行链路的时间单元中所述索引值指示的时间单元,确定为所述侧行链路数据的发送时刻。
可选地,在一些实施例中,所述特定边界为无线帧周期边界,一个无线帧周期包括L个侧行链路的时间单元,所述第一指示信息用于指示所述L个时间单元中的一个或多个时间单元的索引值,L为大于1的整数。
可选地,在一些实施例中,所述确定模块还用于:
将所述L个侧行链路的时间单元中所述索引值指示的时间单元,确定为所述侧行链路数据的发送时刻。
可选地,在一些实施例中,所述特定边界为第一侧行链路时间单元,所述第一侧行链路时间单元根据第二侧行链路时间单元确定,所述第二侧行链路时间单元为所述终端设备接收所述第一控制信息的侧行链路上的时间单元,所述第一指示信息用于指示相对于所述第一侧行链路时间单元的时间单元的索引值。
可选地,在一些实施例中,所述确定模块还用于:
将所述第一侧行链路时间单元后的第m侧行链路个时间单元,确定为所述侧行链路数据的发送时刻;或者,
将所述第一侧行链路时间单元加上m个侧行链路时间单元后的第一个可用的侧行链路时间单元,确定为所述侧行链路数据的发送时刻,
其中,所述m为所述索引值。
可选地,在一些实施例中,所述特定边界为第一下行链路时间单元,所述第一下行链路时间单元根据第二下行链路时间单元确定,所述第二下行链路时间单元为所述终端设备接收所述第一控制信息的下行链路上的时间单元,所述第一指示信息用于指示相对于所述第一下行链路时间单元的时间单元的索引值。
可选地,在一些实施例中,所述确定模块还用于:
将所述第一下行链路时间单元后的第n个侧行链路时间单元,确定为所述侧行链路数据的发送时刻,或者,
将所述第一下行链路时间单元加上n个侧行链路时间单元后的第一个可用的侧行链路时间单元,确定为所述侧行链路数据的发送时刻,
其中,所述n为所述索引值。
可选地,在一些实施例中,所述确定模块还用于:根据所述第一控制信息所对应的序列信息、无线网络临时标识符RNTI、搜索空间、聚合等级、发送资源中的至少一项,确定所述侧行链路数据的发送时刻。
可选地,在一些实施例中,所述确定模块还用于:
根据所述第一控制信息所对应的序列信息、无线网络临时标识符RNTI、搜索空间、聚合等级、资源中的至少一项,以及第一对应关系,确定所述侧行链路数据的发送时刻,
其中,所述第一对应关系为序列信息、无线网络临时标识符RNTI、搜索空间、聚合等级、资源中的至少一项和时间单元索引的对应关系。
可选地,在一些实施例中,所述序列信息为以下中的至少一种:掩码序列、扰码序列、解调参考信号DMRS序列。
可选地,在一些实施例中,所述确定模块320还用于:
根据所述第一控制信息、第一子载波间隔和第二子载波间隔确定侧行链路数据的发送时刻;
其中,所述第一子载波间隔是所述第一控制信息所在的载波或带宽部分(Bandwidth Part,BWP)的子载波间隔,所述第二子载波间隔是所述侧行链路数据所在的载波、BWP或资源池的子载波间隔。
可选地,在一些实施例中,所述通信模块310还用于:获取第一配置信息;
所述确定模块320还用于:根据所述第一配置信息确定所述第一子载波间隔;
所述通信模块310还用于:获取第二配置信息;
所述确定模块320还用于:根据所述第二配置信息确定所述第二子载波间隔。
可选地,在一些实施例中,所述第一配置信息是预配置或网络配置的信息;或者,所述第二配置信息是预配置或网络配置的信息。
可选地,在一些实施例中,所述时间单元为子帧或时隙。
图6是本申请实施例提供的一种通信设备600示意性结构图。图6所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图6所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图5所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的移动终端/终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图7是本申请实施例的芯片的示意性结构图。图7所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图7所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器 (Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤, 能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (41)

  1. 一种传输数据的方法,其特征在于,包括:
    终端设备接收网络设备发送的第一控制信息;
    所述终端设备根据所述第一控制信息确定侧行链路数据的发送时刻。
  2. 根据权利要求1所述的方法,其特征在于,所述第一控制信息为下行控制信息DCI,所述终端设备根据所述第一控制信息确定侧行链路数据的发送时刻,包括:
    所述终端设备根据所述第一控制信息中携带的第一指示信息,确定侧行链路数据的发送时刻。
  3. 根据权利要求2所述的方法,其特征在于,所述第一指示信息用于指示相对于特定边界的时间单元的索引值或偏移量,所述终端设备根据所述第一控制信息中携带的所述第一指示信息,确定侧行链路数据的发送时刻,包括:
    所述终端设备根据所述特定边界和所述索引值,确定所述侧行链路数据的发送时刻。
  4. 根据权利要求3所述的方法,其特征在于,所述特定边界为无线帧边界,一个无线帧包括N个侧行链路的时间单元,所述第一指示信息用于指示所述N个时间单元中的一个或多个时间单元的索引值,N为大于1的整数。
  5. 根据权利要求4所述的方法,其特征在于,所述终端设备根据所述特定边界和所述索引值,确定所述侧行链路数据的发送时刻,包括:
    所述终端设备将所述N个侧行链路的时间单元中所述索引值指示的时间单元,确定为所述侧行链路数据的发送时刻。
  6. 根据权利要求3所述的方法,其特征在于,所述特定边界为无线帧周期边界,一个无线帧周期包括L个侧行链路的时间单元,所述第一指示信息用于指示所述L个时间单元中的一个或多个时间单元的索引值,L为大于1的整数。
  7. 根据权利要求6所述的方法,其特征在于,所述终端设备根据所述特定边界和所述索引值,确定所述侧行链路数据的发送时刻,包括:
    所述终端设备将所述L个侧行链路的时间单元中所述索引值指示的时间单元,确定为所述侧行链路数据的发送时刻。
  8. 根据权利要求3所述的方法,其特征在于,所述特定边界为第一侧行链路时间单元,所述第一侧行链路时间单元根据第二侧行链路时间单元确定,所述第二侧行链路时间单元为所述终端设备接收所述第一控制信息的侧行链路上的时间单元,所述第一指示信息用于指示相对于所述第一侧行链路时间单元的时间单元的索引值。
  9. 根据权利要求8所述的方法,其特征在于,所述终端设备根据所述特定边界和所述索引值,确定所述侧行链路数据的发送时刻,包括:
    所述终端设备将所述第一侧行链路时间单元后的第m个侧行链路时间单元,确定为所述侧行链路数据的发送时刻;或者,
    所述终端设备将所述第一侧行链路时间单元加上m个侧行链路时间单元后的第一个可用的侧行链路时间单元,确定为所述侧行链路数据的发送时刻,
    其中,所述m为所述索引值。
  10. 根据权利要求3所述的方法,其特征在于,所述特定边界为第一下行链路时间单元,所述第一下行链路时间单元根据第二下行链路时间单元确定,所述第二下行链路时间单元为所述终端设备接收所述第一控制信息的下行链路上的时间单元,所述第一指示信息用于指示相对于所述第一下行链路时间单元的时间单元的索引值。
  11. 根据权利要求10所述的方法,其特征在于,所述终端设备根据所述特定边界和所述索引值,确定所述侧行链路数据的发送时刻,包括:
    所述终端设备将所述第一下行链路时间单元后的第n个侧行链路时间单元,确定为所述侧行链路数据的发送时刻,或者,
    所述终端设备将所述第一下行链路时间单元加上n个侧行链路时间单元后的第一个可用的侧行链路时间单元,确定为所述侧行链路数据的发送时刻,
    其中,所述n为所述索引值。
  12. 根据权利要求1所述的方法,其特征在于,所述终端设备根据所述第一控制信息确定侧行链路数据的发送时刻,包括:
    所述终端设备根据所述第一控制信息所对应的序列信息、无线网络临时标识符RNTI、搜索空间、聚合等级、发送资源中的至少一项,确定所述侧行链路数据的发送时刻。
  13. 根据权利要求12所述的方法,其特征在于,所述终端设备根据所述第一控制信息所对应的序列信息、无线网络临时标识符RNTI、搜索空间、聚合等级、发送资源中的至少一项,确定所述侧行链路数据的发送时刻,包括:
    所述终端设备根据所述第一控制信息所对应的序列信息、无线网络临时标识符RNTI、搜索空间、聚合等级、资源中的至少一项,以及第一对应关系,确定所述侧行链路数据的发送时刻,
    其中,所述第一对应关系为序列信息、无线网络临时标识符RNTI、搜索空间、聚合等级、资源中的至少一项和时间单元索引的对应关系。
  14. 根据权利要求12或13所述的方法,其特征在于,所述序列信息为以下中的至少一种:掩码序列、扰码序列、解调参考信号DMRS序列。
  15. 根据权利要求1至14中任一项所述的方法,其特征在于,所述终端设备根据所述第一控制信息确定侧行链路数据的发送时刻,包括:
    所述终端设备根据所述第一控制信息、第一子载波间隔和第二子载波间隔确定侧行链路数据的发送时刻;
    其中,所述第一子载波间隔是所述第一控制信息所在的载波或带宽部分BWP的子载波间隔,所述第二子载波间隔是所述侧行链路数据所在的载波、BWP或资源池的子载波间隔。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    所述终端设备获取第一配置信息,根据所述第一配置信息确定所述第一子载波间隔;
    所述终端设备获取第二配置信息,根据所述第二配置信息确定所述第二子载波间隔。
  17. 根据权利要求16所述的方法,其特征在于,所述第一配置信息是预配置或网络配置的信息;或者,所述第二配置信息是预配置或网络配置的信息。
  18. 根据权利要求3至14中任一项所述的方法,其特征在于,所述时间单元为子帧或时隙。
  19. 一种终端设备,其特征在于,包括:
    通信模块,用于接收网络设备发送的第一控制信息;
    确定模块,用于根据所述第一控制信息确定侧行链路数据的发送时刻。
  20. 根据权利要求19所述的终端设备,其特征在于,所述第一控制信息为下行控制信息DCI,所述确定模块具体用于:
    根据所述第一控制信息中携带的第一指示信息,确定侧行链路数据的发送时刻。
  21. 根据权利要求20所述的终端设备,其特征在于,所述第一指示信息用于指示相对于特定边界的时间单元的索引值或偏移量,所述确定模块还用于:
    根据所述特定边界和所述索引值,确定所述侧行链路数据的发送时刻。
  22. 根据权利要求21所述的终端设备,其特征在于,所述特定边界为无线帧边界,一个无线帧包括N个侧行链路的时间单元,所述第一指示信息用于指示所述N个时间单元中的一个或多个时间单元的索引值,N为大于1的整数。
  23. 根据权利要求22所述的终端设备,其特征在于,所述确定模块还用于:
    将所述N个侧行链路的时间单元中所述索引值指示的时间单元,确定为所述侧行链路数据的发送时刻。
  24. 根据权利要求21所述的终端设备,其特征在于,所述特定边界为无线帧周期边界,一个无线帧周期包括L个侧行链路的时间单元,所述第一指示信息用于指示所述L个时间单元中的一个或多个时间单元的索引值,L为大于1的整数。
  25. 根据权利要求24所述的终端设备,其特征在于,所述确定模块还用于:
    将所述L个侧行链路的时间单元中所述索引值指示的时间单元,确定为所述侧行链路数据的发送时刻。
  26. 根据权利要求21所述的终端设备,其特征在于,所述特定边界为第一侧行链路时间单元,所述第一侧行链路时间单元根据第二侧行链路时间单元确定,所述第二侧行链路时间单元为所述终端设备接收所述第一控制信息的侧行链路上的时间单元,所述第一指示信息用于指示相对于所述第一侧行链路时间单元的时间单元的索引值。
  27. 根据权利要求26所述的终端设备,其特征在于,所述确定模块还用于:
    将所述第一侧行链路时间单元后的第m个侧行链路时间单元,确定为所述侧行链路数据的发送时刻;或者,
    将所述第一侧行链路时间单元加上m个侧行链路时间单元后的第一个可用的侧行链路时间单元,确定为所述侧行链路数据的发送时刻,
    其中,所述m为所述索引值。
  28. 根据权利要求21所述的终端设备,其特征在于,所述特定边界为第一下行链路时间单元,所述第一下行链路时间单元根据第二下行链路时间单元确定,所述第二下行链路时间单元为所述终端设备接收所述第一控制信息的下行链路上的时间单元,所述第一指示信息用于指示相对于所述第一下行链路时间单元的时间单元的索引值。
  29. 根据权利要求28所述的终端设备,其特征在于,所述确定模块还用于:
    将所述第一下行链路时间单元后的第n个侧行链路时间单元,确定为所述侧行链路数据的发送时刻,或者,
    将所述第一下行链路时间单元加上n个侧行链路时间单元后的第一个可用的侧行链路时间单元,确定为所述侧行链路数据的发送时刻,
    其中,所述n为所述索引值。
  30. 根据权利要求19所述的终端设备,其特征在于,所述确定模块还用于:根据所述第一控制信息所对应的序列信息、无线网络临时标识符RNTI、搜索空间、聚合等级、发送资源中的至少一项,确定所述侧行链路数据的发送时刻。
  31. 根据权利要求30所述的终端设备,其特征在于,所述确定模块还用于:
    根据所述第一控制信息所对应的序列信息、无线网络临时标识符RNTI、搜索空间、聚合等级、资源中的至少一项,以及第一对应关系,确定所述侧行链路数据的发送时刻,
    其中,所述第一对应关系为序列信息、无线网络临时标识符RNTI、搜索空间、聚合等级、资源中的至少一项和时间单元索引的对应关系。
  32. 根据权利要求30或31所述的终端设备,其特征在于,所述序列信息为以下中的至少一种:掩码序列、扰码序列、解调参考信号DMRS序列。
  33. 根据权利要求19至32中任一项所述的终端设备,其特征在于,所述确定模块还用于:
    根据所述第一控制信息、第一子载波间隔和第二子载波间隔确定侧行链路数据的发送时刻;
    其中,所述第一子载波间隔是所述第一控制信息所在的载波或带宽部分BWP的子载波间隔,所述第二子载波间隔是所述侧行链路数据所在的载波、BWP或资源池的子载波间隔。
  34. 根据权利要求33所述的终端设备,其特征在于,
    所述通信模块还用于:获取第一配置信息;
    所述确定模块还用于:根据所述第一配置信息确定所述第一子载波间隔;
    所述通信模块还用于:获取第二配置信息;
    所述确定模块还用于:根据所述第二配置信息确定所述第二子载波间隔。
  35. 根据权利要求34所述的终端设备,其特征在于,所述第一配置信息是预配置或网络配置的信息;或者,所述第二配置信息是预配置或网络配置的信息。
  36. 根据权利要求31至32中任一项所述的终端设备,其特征在于,所述时间单元为子帧或时隙。
  37. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至18中任一项所述的方法。
  38. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至18中任一项所述的方法。
  39. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至18中任一项所述的方法。
  40. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至18中任一项所述的方法。
  41. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至18中任一项所述的方法。
PCT/CN2019/081275 2018-06-29 2019-04-03 一种传输数据的方法和终端设备 WO2020001118A1 (zh)

Priority Applications (16)

Application Number Priority Date Filing Date Title
CN202011200715.3A CN112291746B (zh) 2018-06-29 2019-04-03 一种传输数据的方法和终端设备
EP22187033.0A EP4106360B1 (en) 2018-06-29 2019-04-03 Data transmission method and terminal device to determine sidelink data transmission time
KR1020207036490A KR102472382B1 (ko) 2018-06-29 2019-04-03 데이터를 전송하는 방법과 단말 장치
PL19827394.8T PL3780673T3 (pl) 2018-06-29 2019-04-03 Sposób transmisji danych i urządzenie terminala
AU2019295826A AU2019295826B2 (en) 2018-06-29 2019-04-03 Data transmission method and terminal device
EP19827394.8A EP3780673B1 (en) 2018-06-29 2019-04-03 Data transmission method and terminal device
JP2020570134A JP7317870B2 (ja) 2018-06-29 2019-04-03 データを伝送する方法及び端末装置
CA3100406A CA3100406C (en) 2018-06-29 2019-04-03 Data transmission method and terminal device
ES19827394T ES2929321T3 (es) 2018-06-29 2019-04-03 Método de transmisión de datos y dispositivo terminal
BR112020024169-5A BR112020024169A2 (pt) 2018-06-29 2019-04-03 método para transmissão de dados, dispositivo terminal, chip e mídia de armazenamento legível por computador
CN202210164884.9A CN114401555A (zh) 2018-06-29 2019-04-03 一种传输数据的方法和终端设备
CN201980015164.2A CN111758268A (zh) 2018-06-29 2019-04-03 一种传输数据的方法和终端设备
MX2020013999A MX2020013999A (es) 2018-06-29 2019-04-03 Metodo de transmision de datos y dispositivo de terminal.
TW108122715A TWI818042B (zh) 2018-06-29 2019-06-27 一種傳輸資料的方法和終端設備
US17/088,332 US11102774B2 (en) 2018-06-29 2020-11-03 Data transmission method and terminal device
US17/355,382 US11930504B2 (en) 2018-06-29 2021-06-23 Data transmission method and terminal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810713184.4 2018-06-29
CN201810713184 2018-06-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/088,332 Continuation US11102774B2 (en) 2018-06-29 2020-11-03 Data transmission method and terminal device

Publications (1)

Publication Number Publication Date
WO2020001118A1 true WO2020001118A1 (zh) 2020-01-02

Family

ID=68985343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081275 WO2020001118A1 (zh) 2018-06-29 2019-04-03 一种传输数据的方法和终端设备

Country Status (13)

Country Link
US (2) US11102774B2 (zh)
EP (2) EP4106360B1 (zh)
JP (1) JP7317870B2 (zh)
KR (1) KR102472382B1 (zh)
CN (3) CN111758268A (zh)
AU (1) AU2019295826B2 (zh)
BR (1) BR112020024169A2 (zh)
CA (1) CA3100406C (zh)
ES (1) ES2929321T3 (zh)
MX (1) MX2020013999A (zh)
PL (1) PL3780673T3 (zh)
TW (1) TWI818042B (zh)
WO (1) WO2020001118A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220150937A1 (en) * 2019-03-13 2022-05-12 Lg Electronics Inc. Method for controlling plurality of antenna remote units in sidelink-supporting wireless communication system, and device therefor
US11363602B2 (en) * 2019-06-27 2022-06-14 Qualcomm Incorporated Triggering resource allocation configuration switching for sidelink communications
CN115053582B (zh) * 2021-01-08 2023-10-03 北京小米移动软件有限公司 信息处理方法及装置、通信设备及存储介质
CN114765840A (zh) * 2021-01-14 2022-07-19 华为技术有限公司 一种通信方法及装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107041002A (zh) * 2016-02-04 2017-08-11 中兴通讯股份有限公司 数据信道子帧的指示方法及装置

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102651908B (zh) * 2011-02-28 2015-01-21 华为技术有限公司 一种传输数据的方法及设备
EP2533582A1 (en) * 2011-06-09 2012-12-12 Alcatel Lucent A method for transmission of reference signals, a base station and a user terminal therefor
US8971275B2 (en) * 2011-12-31 2015-03-03 Ofinno Technologies, Llc Almost blank subframe indication in wireless networks
TWI620459B (zh) * 2012-05-31 2018-04-01 內數位專利控股公司 在蜂巢式通訊系統中賦能直鏈通訊排程及控制方法
US9451570B2 (en) * 2012-08-29 2016-09-20 Alcatel Lucent Device discovery for device-to-device communication
CN105122910B (zh) * 2013-03-14 2018-10-12 Lg 电子株式会社 在无线通信系统中通过使用设备对设备通信接收信号的方法
CN104144501B (zh) * 2013-05-09 2019-06-18 中兴通讯股份有限公司 D2d发现信号资源配置方法、系统及相关装置
US9923690B2 (en) * 2013-08-06 2018-03-20 Texas Instruments Incorporated Dynamic signaling of the downlink and uplink subframe allocation for a TDD wireless communication system
CN104469926B (zh) * 2013-09-16 2019-03-12 上海朗帛通信技术有限公司 一种d2d系统中的传输方法和装置
US9693271B2 (en) * 2013-12-13 2017-06-27 Intel Corporation Adaptive cell range expansion mechanisms for LTE cells
CN104812058A (zh) * 2014-01-24 2015-07-29 北京三星通信技术研究有限公司 一种d2d终端之间实现同步的方法和d2d终端设备
EP3101823B1 (en) * 2014-01-28 2021-10-27 LG Electronics Inc. Method and apparatus for device-to-device terminal for tranceiving signal in wireless communication system
CN105101458B (zh) * 2014-05-08 2021-05-07 夏普株式会社 D2d通信中的不同cp长度共存的配置
KR20160018244A (ko) * 2014-08-08 2016-02-17 주식회사 아이티엘 D2d 통신을 위한 d2d 데이터 자원을 결정하는 방법 및 장치
CN106211026B (zh) * 2014-12-22 2019-05-24 中兴通讯股份有限公司 一种实现设备直通中继选择的方法、网络控制节点及用户设备
EP3249870B1 (en) * 2015-01-23 2020-10-07 LG Electronics Inc. Method and apparatus for generating signal by device-to-device communication terminal in wireless communication system
WO2016136171A1 (en) 2015-02-26 2016-09-01 Nec Corporation System and method for data communication
CN114615669A (zh) * 2015-09-04 2022-06-10 索尼公司 终端设备、系统、操作基站的方法及存储介质
US10869288B2 (en) * 2016-03-30 2020-12-15 Lg Electronics Inc. Method for determining transmission timing in V2X UE
JP7006586B2 (ja) 2016-05-12 2022-01-24 ソニーグループ株式会社 基地局装置、端末装置、方法及び記憶媒体
JPWO2017208286A1 (ja) 2016-06-03 2019-04-04 富士通株式会社 無線通信装置、および無線通信方法
WO2018004322A1 (ko) * 2016-07-01 2018-01-04 엘지전자(주) 무선 통신 시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치
EP3282633B1 (en) * 2016-08-12 2020-08-05 ASUSTek Computer Inc. Method and apparatus for determining numerology bandwidth in a wireless communication system
US11159928B2 (en) * 2016-08-12 2021-10-26 Apple Inc. Support of SC-PTM based multicasting for BL/CE and NB-IoT UEs
US10798726B2 (en) * 2016-08-12 2020-10-06 Lg Electronics Inc. Method and apparatus for transmitting SPS assistance information in wireless communication system
EP3484191A1 (en) 2016-08-12 2019-05-15 Kyocera Corporation Communications device
CN106413078A (zh) * 2016-09-12 2017-02-15 厦门大学 一种d2d通信的同步方法及d2d通信装置
US10743303B2 (en) 2016-09-29 2020-08-11 Panasonic Intellectual Property Corporation Of America Wireless communication method, apparatus and system
JP6533345B2 (ja) 2016-09-30 2019-06-19 京セラ株式会社 無線端末及び基地局
CN108024338B (zh) 2016-11-03 2022-12-02 中兴通讯股份有限公司 子帧配置方法及装置
CN108024379B (zh) 2016-11-04 2019-08-30 电信科学技术研究院 一种跨载波调度方法及装置
WO2018088951A1 (en) 2016-11-11 2018-05-17 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for synchronization
WO2018175813A1 (en) * 2017-03-24 2018-09-27 Intel IP Corporation Tracking reference signals for new radio
US11122527B2 (en) * 2017-03-24 2021-09-14 Samsung Electronics Co., Ltd. Method and apparatus for performing data transmission based on multiple transmission time intervals, for transmitting control information, and for transmitting data by employing multiple ports
US11134492B2 (en) * 2017-04-12 2021-09-28 Samsung Electronics Co., Ltd. Method and apparatus for beam recovery in next generation wireless systems
CN110603880A (zh) * 2017-05-05 2019-12-20 华为技术有限公司 半持续调度方法、用户设备和网络设备
US11832264B2 (en) * 2017-06-13 2023-11-28 Apple Inc. Enhancement on scheduling and HARQ-ACK feedback for URLLC, multiplexing scheme for control/data channel and DM-RS for NR, and activation mechanism, scheduling aspects, and synchronization signal (SS) blocks for new radio (NR) system with multiple bandwidth parts (BWPs)
ES2962126T3 (es) * 2017-08-11 2024-03-15 Ericsson Telefon Ab L M Tasa de código para información de control
US11310786B2 (en) * 2017-09-11 2022-04-19 Telefonaktiebolaget Lm Ericsson (Publ) Control information on data channel in radio access network
WO2019084731A1 (en) * 2017-10-30 2019-05-09 Telefonaktiebolaget Lm Ericsson (Publ) Link adaption in beam-forming radio access networks
US20200374031A1 (en) * 2018-01-12 2020-11-26 Telefonaktiebolaget Lm Ericsson (Publ) Control signaling for radio access networks
EP3753325A1 (en) * 2018-02-16 2020-12-23 Telefonaktiebolaget LM Ericsson (publ) Time resource allocation for radio access networks
EP3753158A1 (en) * 2018-02-16 2020-12-23 Telefonaktiebolaget LM Ericsson (publ) Harq codebook structure
US20200404686A1 (en) * 2018-02-17 2020-12-24 Telefonaktiebolaget Lm Ericsson (Publ) Resource mapping based on bandwidth part
WO2019194712A1 (en) * 2018-04-06 2019-10-10 Telefonaktiebolaget Lm Ericsson (Publ) Power control for feedback signaling
CN112106400A (zh) * 2018-05-17 2020-12-18 瑞典爱立信有限公司 无线电接入网络的测量报告
US20210219314A1 (en) * 2018-06-07 2021-07-15 Ntt Docomo, Inc. User apparatus and base station apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107041002A (zh) * 2016-02-04 2017-08-11 中兴通讯股份有限公司 数据信道子帧的指示方法及装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PANASONIC: "Introducing sTTI to V2X Mode 3", 3GPP TSG RAN WG1 MEETING #92 RI-1802444, 2 March 2018 (2018-03-02), XP051396877 *
PANASONIC: "Introducing sTTI to V2X Mode 3", 3GPP TSG RAN WGI MEETING #92BIS RI-1804627, 20 April 2018 (2018-04-20), XP051412882 *
PANASONIC: "Introducing sTTI to V2X Mode 3", 3GPP TSG RAN WGI MEETING #93 R1-1806950, 25 May 2018 (2018-05-25), XP051442149 *
See also references of EP3780673A4

Also Published As

Publication number Publication date
MX2020013999A (es) 2021-03-25
CA3100406C (en) 2023-08-01
CA3100406A1 (en) 2020-01-02
JP2021527997A (ja) 2021-10-14
EP3780673A1 (en) 2021-02-17
JP7317870B2 (ja) 2023-07-31
US11102774B2 (en) 2021-08-24
EP3780673A4 (en) 2021-07-28
EP4106360B1 (en) 2024-03-13
PL3780673T3 (pl) 2022-11-28
US20210321376A1 (en) 2021-10-14
TWI818042B (zh) 2023-10-11
CN114401555A (zh) 2022-04-26
US20210051638A1 (en) 2021-02-18
KR20210008874A (ko) 2021-01-25
CN112291746A (zh) 2021-01-29
CN111758268A (zh) 2020-10-09
EP3780673B1 (en) 2022-09-14
ES2929321T3 (es) 2022-11-28
AU2019295826A1 (en) 2020-12-03
TW202007193A (zh) 2020-02-01
EP4106360A1 (en) 2022-12-21
BR112020024169A2 (pt) 2021-03-02
AU2019295826B2 (en) 2021-12-16
US11930504B2 (en) 2024-03-12
CN112291746B (zh) 2022-03-08
KR102472382B1 (ko) 2022-11-29

Similar Documents

Publication Publication Date Title
TWI805641B (zh) D2d通訊中資源配置的方法、終端設備和網路設備
WO2020001118A1 (zh) 一种传输数据的方法和终端设备
WO2020047856A1 (zh) 配置信息的传输方法和终端设备
WO2019091143A1 (zh) D2d通信中资源配置的方法、终端设备和网络设备
WO2020056608A1 (zh) 用于侧行链路的通信方法和设备
TWI805797B (zh) 一種車聯網中傳輸資料的方法和終端設備
WO2020056696A1 (zh) 一种资源分配方法及装置、终端
WO2020034223A1 (zh) Harq信息的传输方法、网络设备和终端设备
JP7213341B2 (ja) 無線通信方法、ネットワークデバイス、コンピュータ可読記憶媒体及びコンピュータプログラム
US20210314923A1 (en) Methods and Devices for Data Transmission
WO2020056660A1 (zh) 一种信号传输方法及装置、终端
WO2020006736A1 (zh) 一种车联网中传输数据的方法和终端设备
WO2019213951A1 (zh) 下行信道的接收方法和终端设备
JP2023159308A (ja) フィードバック情報の伝送方法及び端末デバイス
WO2020051767A1 (zh) 传输信息、接收信息的方法和通信设备
WO2020087541A1 (zh) 下行控制信息的传输方法和设备
WO2022036696A1 (zh) 无线通信方法、终端设备和网络设备
WO2021026928A1 (zh) 无线通信的方法和设备
CN118044291A (zh) 通信方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19827394

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019827394

Country of ref document: EP

Effective date: 20201105

ENP Entry into the national phase

Ref document number: 3100406

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2019295826

Country of ref document: AU

Date of ref document: 20190403

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020024169

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020570134

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207036490

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112020024169

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20201126