WO2020000951A1 - 延长PMC芯片寿命的供电电路及Expander背板 - Google Patents

延长PMC芯片寿命的供电电路及Expander背板 Download PDF

Info

Publication number
WO2020000951A1
WO2020000951A1 PCT/CN2018/123478 CN2018123478W WO2020000951A1 WO 2020000951 A1 WO2020000951 A1 WO 2020000951A1 CN 2018123478 W CN2018123478 W CN 2018123478W WO 2020000951 A1 WO2020000951 A1 WO 2020000951A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
circuit
power
terminal
control circuit
Prior art date
Application number
PCT/CN2018/123478
Other languages
English (en)
French (fr)
Inventor
王连香
Original Assignee
郑州云海信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郑州云海信息技术有限公司 filed Critical 郑州云海信息技术有限公司
Publication of WO2020000951A1 publication Critical patent/WO2020000951A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads

Definitions

  • the invention relates to the field of timing control, in particular to a power supply circuit and an Expander backplane that extend the life of a PMC chip.
  • FIG. 1 is a schematic structural diagram of a PMC chip power supply circuit in the prior art.
  • the power supply of a PMC chip includes a main power supply (main circuit power supply) and a secondary power supply (for auxiliary power supply). Circuit power supply), the main power supply is obtained from the selected DC power supply through voltage conversion, and the secondary power supply is obtained from the main power supply through voltage conversion.
  • the main power supply immediately supplies power to the main circuit of the PMC chip.
  • the power supply of the secondary power supply has not yet been completed, the voltage of the power supply circuit is not stable, and the power supply voltage of the PMC chip may even appear.
  • the excessive transient condition causes damage to the PMC chip, which reduces the service life of the PMC chip, reduces the reliability and stability of the PMC chip, and further reduces the reliability and stability of the Expander backplane and the server as a whole.
  • the purpose of the present invention is to provide a power supply circuit and an Expander backboard that extend the life of a PMC chip.
  • the PMC chip is prevented from being damaged, the life of the PMC chip is extended, and the reliability and stability of the PMC chip are improved. , which in turn improves the reliability and stability of the Expander backplane and the server as a whole.
  • the present invention provides a power supply circuit for extending the life of a PMC chip, which is applied to the Expander backplane, and includes a main power supply, a power-on sequence control circuit, and a method for converting the main power supply into a secondary power supply.
  • a first voltage conversion circuit wherein:
  • the output terminal of the main power supply is connected to the power supply terminal of the power-on sequence control circuit and the input terminal of the first voltage conversion circuit, respectively, and the output terminal of the first voltage conversion circuit is respectively connected to the power-on sequence.
  • the detection end of the control circuit is connected to the power supply end of the auxiliary circuit in the PMC chip, and the output end of the power-up sequence control circuit is connected to the power supply end of the main circuit in the PMC chip;
  • the power-on sequence control circuit is configured to control the main power supply to transmit power to the main circuit when the completion of the secondary power supply conversion is detected.
  • the power-on sequence control circuit includes an N-level switch tube and a plurality of DC power sources, N ⁇ 3 and N is an odd number, wherein:
  • the control terminal of the first-stage switching transistor is used as the detection terminal of the power-on sequencing control circuit
  • the first terminal of the N-stage switching transistor is used as the power-supply terminal of the power-on sequencing control circuit
  • Two terminals are used as output terminals of the power-on sequence control circuit
  • the first terminal of the n-th stage switching tube is respectively connected to the one-to-one corresponding DC power source and the control terminal of the n + 1th stage switching tube.
  • the second end of the tube and the second end of the (n + 1) th switching tube are grounded, where 1 ⁇ n ⁇ N-1;
  • the power-on sequence control circuit is specifically configured to, after receiving the secondary power supply signal output by the first voltage conversion circuit, turn on or off the internal switch tube in order to sequentially turn on and off in order to control The main power supply supplies power to the main circuit.
  • the switching tube of each stage is specifically an NMOS tube
  • the gate of the NMOS tube is used as the control terminal of the switching tube of each stage
  • the drain of the NMOS tube is used as the first of the switching tube of each stage.
  • Terminal, the source of the NMOS tube is used as the second terminal of the switching tube in each stage.
  • the power-on sequence control circuit includes a three-stage switch.
  • the main power supply includes a DC power supply and a second voltage conversion circuit for converting the DC power supply to a main power supply.
  • the DC power supply is a rechargeable battery.
  • the power-on sequence control circuit includes a switch tube, a control end of the switch tube serves as a detection end of the power-up sequence control circuit, and a first end of the switch tube serves as a power-on sequence control circuit.
  • a power supply terminal, and a second terminal of the switch tube is used as an output terminal of the power-on sequence control circuit;
  • the switch tube is configured to be turned on after receiving a secondary power supply signal output by the first voltage conversion circuit, so as to control the main power supply to transmit power to the main circuit.
  • the switching tube is an NMOS tube
  • the gate of the NMOS tube is used as the control terminal of the switching tube
  • the drain of the NMOS tube is used as the first end of the switching tube
  • the The source is used as the second end of the switching tube.
  • the present invention also provides an Expander backplane, which includes a PMC chip, and further includes any of the power supply circuits that extend the life of the PMC chip.
  • the invention provides a power supply circuit for extending the life of a PMC chip.
  • the power supply circuit includes a main power supply, a power-on sequence control circuit, and a first voltage conversion circuit for converting the main power supply into a secondary power supply. Terminals are respectively connected to the power supply terminal of the power-on timing control circuit and the input terminal of the first voltage conversion circuit, and the output terminals of the first voltage conversion circuit are respectively connected to the detection terminal of the power-on timing control circuit and the power supply terminal of the auxiliary circuit in the PMC chip.
  • the output end of the power-up sequence control circuit is connected to the power supply end of the main circuit in the PMC chip; the power-up sequence control circuit is used to control the main power supply to supply power to the main circuit when the completion of the secondary power supply conversion is detected.
  • the application adds a power-on sequence control circuit on the basis of the main power supply and the first voltage conversion circuit.
  • the power-on sequence control circuit only controls the main power supply to transmit power to the main circuit when it detects that the secondary power supply is converted. That is to say, after all the electricity in the power supply circuit of the PMC chip is converted (that is, after the voltage of the power supply circuit is stabilized), the power supply circuit transmits power to the PMC chip, thereby preventing damage to the PMC chip by strictly controlling the power-on sequence. , Extend the life of PMC chip, improve the reliability and stability of PMC chip, and then improve the reliability and stability of the Expander backplane and the server as a whole.
  • the invention provides an Expander backplane, which has the same beneficial effects as the power supply circuit described above.
  • FIG. 1 is a schematic structural diagram of a PMC chip power supply circuit in the prior art
  • FIG. 2 is a schematic structural diagram of a first power supply circuit for extending the life of a PMC chip provided by the present invention
  • FIG. 3 is a schematic structural diagram of a second power supply circuit for extending the life of a PMC chip provided by the present invention
  • FIG. 4 is a schematic structural diagram of a third power supply circuit for extending the life of a PMC chip provided by the present invention.
  • the core of the present invention is to provide a power supply circuit and an Expander backboard that extend the life of a PMC chip.
  • the PMC chip is prevented from being damaged, the life of the PMC chip is extended, and the reliability and stability of the PMC chip are improved , which in turn improves the reliability and stability of the Expander backplane and the server as a whole.
  • FIG. 2 is a schematic structural diagram of a first power supply circuit for extending the life of a PMC chip provided by the present invention.
  • the power supply circuit is applied to the Expander backplane, and includes a main power supply 1, a power-on sequence control circuit 2 and a first voltage conversion circuit 3 for converting the main power supply 1 into a secondary power supply, wherein:
  • the output terminals of the main power supply 1 are respectively connected to the power supply terminal of the power-on timing control circuit 2 and the input terminal of the first voltage conversion circuit 3, and the output terminals of the first voltage conversion circuit 3 are respectively connected to the detection terminals of the power-on timing control circuit 2.
  • the power supply end of the auxiliary circuit in the PMC chip, and the output end of the power-on sequence control circuit 2 is connected to the power supply end of the main circuit in the PMC chip;
  • the power-on sequence control circuit 2 is configured to control the main power supply 1 to transmit power to the main circuit when the completion of the secondary power supply conversion is detected.
  • the power supply principle of the power supply circuit for powering the PMC chip is: the circuit structure of the PMC chip includes a main circuit and an auxiliary circuit for assisting the main circuit operation, wherein the main circuit is powered by the main power supply 1 in the power supply circuit (PMC
  • the model of the chip is generally PMC8043, and the main circuit power supply voltage is about 3.3V);
  • the auxiliary circuit is powered by the secondary power supply in the power supply circuit, and the secondary power supply is powered by the main power supply 1 through the first voltage conversion circuit 3 Get it.
  • the PMC8043 chip mainly contains two auxiliary circuits whose power supply voltages are about 1.8V and 1.5V, respectively.
  • the first voltage conversion circuit 3 includes two A voltage conversion circuit converts the 3.3V primary supply voltage into 1.8V and 1.5V secondary supply voltages, respectively.
  • the power supply circuit of this application adds the power-on sequence on the basis of the main power supply 1 and the first voltage conversion circuit 3.
  • the control circuit 2 and the power-on sequence control circuit 2 are used to detect whether the conversion of the secondary power supply is completed.
  • the main power supply 1 is controlled as the main circuit Power supply to prevent damage to the PMC chip by strictly controlling the power-on sequence, extending the life of the PMC chip, and improving the reliability and stability of the PMC chip.
  • the invention provides a power supply circuit for extending the life of a PMC chip, which is applied to the Expander backplane, and includes a main power supply, a power-on sequence control circuit, and a first voltage conversion circuit for converting the main power supply into a secondary power supply.
  • the output end of the main power supply is connected to the power supply end of the power-up sequence control circuit and the input end of the first voltage conversion circuit, and the output end of the first voltage conversion circuit is respectively connected to the detection end of the power-up sequence control circuit and the PMC chip.
  • the power supply end of the auxiliary circuit is connected, and the output end of the power-up sequence control circuit is connected to the power supply end of the main circuit in the PMC chip; the power-up sequence control circuit is used to control the main power supply as the main circuit when the completion of the secondary power supply conversion is detected Power transmission.
  • the application adds a power-on sequence control circuit on the basis of the main power supply and the first voltage conversion circuit.
  • the power-on sequence control circuit only controls the main power supply to transmit power to the main circuit when it detects that the secondary power supply is converted. That is to say, after all the electricity in the power supply circuit of the PMC chip is converted (that is, after the voltage of the power supply circuit is stabilized), the power supply circuit transmits power to the PMC chip, thereby preventing damage to the PMC chip by strictly controlling the power-on sequence. , Extend the life of PMC chip, improve the reliability and stability of PMC chip, and then improve the reliability and stability of the Expander backplane and the server as a whole.
  • the power-on sequence control circuit 2 includes an N-level switch tube and a plurality of DC power sources, where N ⁇ 3 and N is an odd number, where:
  • the control terminal of the first-stage switching transistor is used as the detection terminal of the power-on sequencing control circuit 2.
  • the first terminal of the N-stage switching transistor is used as the power-supply terminal of the power-on sequencing control circuit 2.
  • the second terminal of the N-stage switching transistor is used as the upper terminal.
  • the output end of the electrical timing control circuit 2 the first end of the n-th level switching tube is connected to the one-to-one corresponding DC power source and the control end of the n + 1th level switching tube, and the second end of the nth level switching tube is connected to the first
  • the second ends of the n + 1-level switching tubes are all grounded, where 1 ⁇ n ⁇ N-1;
  • the power-on sequence control circuit 2 is specifically configured to turn on or off the internal switching tube in order to control the main power supply after receiving the secondary power supply signal output from the first voltage conversion circuit 3 in a turn-on and turn-off sequence.
  • Power supply 1 supplies power to the main circuit.
  • the power-up sequence control circuit 2 in the present application includes a multi-stage switching tube (the number of which is odd, and each switching tube is turned on when the control terminal inputs a high level and is turned off when a low level is input) and a plurality of DC power sources. , Which works as follows:
  • the control terminal of the first-stage switch tube is input with a low level, and the first-stage switch tube is in the off state, then the first terminal voltage of the first-stage switch tube is high-level ( Output voltage of the corresponding DC power supply); since the control terminal of the second-stage switch tube is connected to the first terminal of the first-stage switch tube, the control terminal of the second-stage switch tube inputs a high level, and the second-stage switch tube is at In the on state, the first terminal voltage of the second-stage switch tube is pulled down to a low level, and so on, and the on-state of the multi-stage switch tube is sequentially turned off and on in a cyclic sequence (off, on ON, OFF, ON, OFF ...) changes. Because the number of switching tubes is odd, the last switching tube is in the off state, and the main power supply 1 cannot supply power to the main circuit.
  • each stage of the switching tube is specifically an NMOS tube
  • the gate of the NMOS tube is used as the control terminal of each stage of the switching tube
  • the drain of the NMOS tube is used as the first end of each stage of the switching tube
  • the source serves as the second end of each stage of the switch.
  • each of the multi-stage switch tubes in the present application can be selected, but not limited to NMOS tubes, which is not particularly limited herein.
  • FIG. 3 is a schematic structural diagram of a second power supply circuit for extending the life of a PMC chip provided by the present invention.
  • NMOS tubes which is not particularly limited herein.
  • FIG. 3 is a schematic structural diagram of a second power supply circuit for extending the life of a PMC chip provided by the present invention.
  • a three-level NMOS tube is used as an example to control the power-on sequence and prevent damage to the PMC chip.
  • the power-on sequence control circuit 2 includes a three-stage switch.
  • three switch tubes can be selected in the power-up sequence control circuit 2 of the present application, which not only saves the cost of the power supply circuit, but also reliably controls the power-up sequence and prevents damage to the PMC chip.
  • the main power supply 1 includes a DC power supply and a second voltage conversion circuit for converting the DC power supply to the main power supply 1.
  • the main power supply 1 of the present application is obtained by performing a voltage conversion on a selected DC power supply through a second voltage conversion circuit, wherein the voltage conversion value of the second voltage conversion circuit is a required power supply voltage of the main circuit of the PMC chip. determine.
  • the DC power supply is a rechargeable battery.
  • the DC power supply of the present application may use a rechargeable battery.
  • the rechargeable battery has the advantages of economy, environmental protection, and sufficient power. As for the specific selection of the DC power supply, this application is not specifically limited here.
  • the power-up sequence control circuit 2 includes a switch tube, a control end of the switch tube is used as a detection end of the power-up sequence control circuit 2, and a first end of the switch tube is used as a power supply end of the power-up sequence control circuit 2. , The second end of the switching tube is used as the output end of the power-up sequence control circuit 2;
  • the switch tube is used to be turned on after receiving the secondary power supply signal output from the first voltage conversion circuit 3 to control the main power supply 1 to transmit power to the main circuit.
  • the power-up sequence control circuit 2 of the present application may include the above-mentioned multi-stage switch tube, or may include only one switch tube, and its working principle is: 1) When the secondary power supply is not converted: control of the switch tube The low-level input is in the disconnected state, and the main power supply 1 cannot supply power to the main circuit. 2) When the secondary power supply has been converted: the input of the control terminal of the switch tube changes from low to high. In other words, the on-state of the switch tube is on-state at this time, and the main power supply 1 immediately transmits power to the main circuit. It can be seen that a switch can also control the power-on sequence, which saves the cost of the power supply circuit.
  • the switching tube is specifically an NMOS tube
  • the gate of the NMOS tube is used as the control end of the switching tube
  • the drain of the NMOS tube is used as the first end of the switching tube
  • the source of the NMOS tube is used as the first end of the switching tube. Both ends.
  • FIG. 4 is a schematic structural diagram of a third power supply circuit for extending the life of a PMC chip provided by the present invention.
  • an NMOS tube is used as an example to control the power-on sequence and prevent the PMC chip from being damaged.
  • the invention also provides an Expander backplane, which includes a PMC chip, and also includes any of the power supply circuits that extend the life of the PMC chip.

Abstract

一种延长PMC芯片寿命的供电电路及Expander背板,包括主供电电源、上电时序控制电路及用于将主供电电源转换为次供电电源的第一电压转换电路,其中:主供电电源的输出端分别与上电时序控制电路的供电端及第一电压转换电路的输入端连接,第一电压转换电路的输出端分别与上电时序控制电路的检测端及PMC芯片中辅电路的供电端连接,上电时序控制电路的输出端与PMC芯片中主电路的供电端连接;上电时序控制电路用于当检测到次供电电源转换完成时,控制主供电电源为主电路送电。可见,本申请延长了PMC芯片的使用寿命,提高了PMC芯片的可靠性及稳定性,进而提高了Expander背板及服务器整体的可靠性及稳定性。

Description

延长PMC芯片寿命的供电电路及Expander背板
本申请要求于2018年06月25日提交至中国专利局、申请号为201810660877.1、发明名称为“延长PMC芯片寿命的供电电路及Expander背板”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及时序控制领域,特别是涉及一种延长PMC芯片寿命的供电电路及Expander背板。
背景技术
随着大数据的发展,每个服务器所需的硬盘数量逐渐增多,用于实现硬盘供电及数据传输的Expander背板也应用广泛。Expander背板的使用寿命直接影响到硬盘及服务器的使用情况,而Expander背板的使用寿命主要取决于其包含的PMC芯片(主芯片)的使用寿命。请参照图1,图1为现有技术中的一种PMC芯片供电电路的结构示意图,现有技术中,PMC芯片的供电电源包括主供电电源(为主电路供电)及次供电电源(为辅电路供电),主供电电源由选取的直流电源经电压转换得到,次供电电源由主供电电源经电压转换得到。
但是,主供电电源在直流电源转换完成后,便立即为PMC芯片的主电路送电,此时次供电电源还未转换完成,供电电路的电压并不稳定,甚至可能会出现PMC芯片的供电电压瞬时过大的情况,导致PMC芯片受损,从而减少了PMC芯片的使用寿命,降低了PMC芯片的可靠性及稳定性,进而降低了Expander背板及服务器整体的可靠性及稳定性。
因此,如何提供一种解决上述技术问题的方案是本领域的技术人员目前需要解决的问题。
发明内容
本发明的目的是提供一种延长PMC芯片寿命的供电电路及Expander背板,通过严格控制上电时序防止PMC芯片受损,延长了PMC芯片的使 用寿命,提高了PMC芯片的可靠性及稳定性,进而提高了Expander背板及服务器整体的可靠性及稳定性。
为解决上述技术问题,本发明提供了一种延长PMC芯片寿命的供电电路,应用于Expander背板,包括主供电电源、上电时序控制电路及用于将所述主供电电源转换为次供电电源的第一电压转换电路,其中:
所述主供电电源的输出端分别与所述上电时序控制电路的供电端及所述第一电压转换电路的输入端连接,所述第一电压转换电路的输出端分别与所述上电时序控制电路的检测端及PMC芯片中辅电路的供电端连接,所述上电时序控制电路的输出端与所述PMC芯片中主电路的供电端连接;
所述上电时序控制电路用于当检测到所述次供电电源转换完成时,控制所述主供电电源为所述主电路送电。
优选地,所述上电时序控制电路包括N级开关管及多个直流电源,N≥3且N为奇数,其中:
第一级开关管的控制端作为所述上电时序控制电路的检测端,第N级开关管的第一端作为所述上电时序控制电路的供电端,所述第N级开关管的第二端作为所述上电时序控制电路的输出端,第n级开关管的第一端分别与所述一一对应的直流电源及第n+1级开关管的控制端连接,第n级开关管的第二端与第n+1级开关管的第二端均接地,其中,1≤n<N-1;
所述上电时序控制电路具体用于在接收到所述第一电压转换电路输出的次供电电源信号后,按照依次导通、断开的循环顺序对应导通或断开内部开关管,以控制所述主供电电源为所述主电路送电。
优选地,每级所述开关管均具体为NMOS管,所述NMOS管的栅极作为每级所述开关管的控制端,所述NMOS管的漏极作为每级所述开关管的第一端,所述NMOS管的源极作为每级所述开关管的第二端。
优选地,所述上电时序控制电路包括三级开关管。
优选地,所述主供电电源包括直流供电电源和用于将所述直流供电电源转换为主供电电源的第二电压转换电路。
优选地,所述直流供电电源具体为可充电电池。
优选地,所述上电时序控制电路包括开关管,所述开关管的控制端作 为所述上电时序控制电路的检测端,所述开关管的第一端作为所述上电时序控制电路的供电端,所述开关管的第二端作为所述上电时序控制电路的输出端;
所述开关管用于在接收到所述第一电压转换电路输出的次供电电源信号后导通,以控制所述主供电电源为所述主电路送电。
优选地,所述开关管具体为NMOS管,所述NMOS管的栅极作为所述开关管的控制端,所述NMOS管的漏极作为所述开关管的第一端,所述NMOS管的源极作为所述开关管的第二端。
为解决上述技术问题,本发明还提供了一种Expander背板,包括PMC芯片,还包括上述任一种延长PMC芯片寿命的供电电路。
本发明提供了一种延长PMC芯片寿命的供电电路,包括主供电电源、上电时序控制电路及用于将主供电电源转换为次供电电源的第一电压转换电路,其中:主供电电源的输出端分别与上电时序控制电路的供电端及第一电压转换电路的输入端连接,第一电压转换电路的输出端分别与上电时序控制电路的检测端及PMC芯片中辅电路的供电端连接,上电时序控制电路的输出端与PMC芯片中主电路的供电端连接;上电时序控制电路用于当检测到次供电电源转换完成时,控制主供电电源为主电路送电。
可见,本申请在主供电电源和第一电压转换电路的基础上,加入上电时序控制电路,上电时序控制电路当检测到次供电电源转换完成时,才控制主供电电源为主电路送电,也就是说,在PMC芯片的供电电路中所有电均转换完成后(即供电电路的电压稳定后),供电电路才对PMC芯片进行送电,从而通过严格控制上电时序防止PMC芯片受损,延长了PMC芯片的使用寿命,提高了PMC芯片的可靠性及稳定性,进而提高了Expander背板及服务器整体的可靠性及稳定性。
本发明提供了一种Expander背板,与上述供电电路具有相同的有益效果。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对现有技术和 实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中的一种PMC芯片供电电路的结构示意图;
图2为本发明提供的第一种延长PMC芯片寿命的供电电路的结构示意图;
图3为本发明提供的第二种延长PMC芯片寿命的供电电路的结构示意图;
图4为本发明提供的第三种延长PMC芯片寿命的供电电路的结构示意图。
具体实施方式
本发明的核心是提供一种延长PMC芯片寿命的供电电路及Expander背板,通过严格控制上电时序防止PMC芯片受损,延长了PMC芯片的使用寿命,提高了PMC芯片的可靠性及稳定性,进而提高了Expander背板及服务器整体的可靠性及稳定性。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参照图2,图2为本发明提供的第一种延长PMC芯片寿命的供电电路的结构示意图。
该供电电路应用于Expander背板,包括主供电电源1、上电时序控制电路2及用于将主供电电源1转换为次供电电源的第一电压转换电路3,其中:
主供电电源1的输出端分别与上电时序控制电路2的供电端及第一电压转换电路3的输入端连接,第一电压转换电路3的输出端分别与上电时序控制电路2的检测端及PMC芯片中辅电路的供电端连接,上电时序控制电路2 的输出端与PMC芯片中主电路的供电端连接;
上电时序控制电路2用于当检测到次供电电源转换完成时,控制主供电电源1为主电路送电。
具体地,为PMC芯片供电的供电电路的供电原理为:PMC芯片的电路结构包括主电路和用于辅助主电路工作的辅电路,其中,主电路由供电电路中的主供电电源1供电(PMC芯片的型号一般选用PMC8043,其主电路的供电电压约为3.3V);辅电路由供电电路中的次供电电源供电,而次供电电源是由主供电电源1经第一电压转换电路3做电压转换得到。
需要说明的是,需要供电的辅电路可能不止一个,比如PMC8043芯片中主要包含两个辅电路,其供电电压分别约为1.8V和1.5V,此时相应地,第一电压转换电路3包括两个电压转化电路,分别将3.3V的主供电电压转换为1.8V和1.5V的次供电电压。
基于此,考虑到供电电路中次供电电源还未转换完成时,供电电路的电压并不稳定,甚至可能会出现PMC芯片的供电电压瞬时过大的情况,若主供电电源1在次供电电源还未转换完成时,便为PMC芯片的主电路送电,可能会导致PMC芯片受损,所以,本申请的供电电路在主供电电源1及第一电压转换电路3的基础上,加入上电时序控制电路2,上电时序控制电路2用来检测次供电电源的转换是否完成,当检测到次供电电源转换完成时,说明供电电路的电压此时已稳定,则控制主供电电源1为主电路送电,从而通过严格控制上电时序防止PMC芯片受损,延长了PMC芯片的使用寿命,提高了PMC芯片的可靠性及稳定性。
本发明提供了一种延长PMC芯片寿命的供电电路,应用于Expander背板,包括主供电电源、上电时序控制电路及用于将主供电电源转换为次供电电源的第一电压转换电路,其中:主供电电源的输出端分别与上电时序控制电路的供电端及第一电压转换电路的输入端连接,第一电压转换电路的输出端分别与上电时序控制电路的检测端及PMC芯片中辅电路的供电端连接,上电时序控制电路的输出端与PMC芯片中主电路的供电端连接;上电时序控制电路用于当检测到次供电电源转换完成时,控制主供电电源为主电路送电。
可见,本申请在主供电电源和第一电压转换电路的基础上,加入上电时序控制电路,上电时序控制电路当检测到次供电电源转换完成时,才控制主供电电源为主电路送电,也就是说,在PMC芯片的供电电路中所有电均转换完成后(即供电电路的电压稳定后),供电电路才对PMC芯片进行送电,从而通过严格控制上电时序防止PMC芯片受损,延长了PMC芯片的使用寿命,提高了PMC芯片的可靠性及稳定性,进而提高了Expander背板及服务器整体的可靠性及稳定性。
在上述实施例的基础上:
作为一种优选地实施例,上电时序控制电路2包括N级开关管及多个直流电源,N≥3且N为奇数,其中:
第一级开关管的控制端作为上电时序控制电路2的检测端,第N级开关管的第一端作为上电时序控制电路2的供电端,第N级开关管的第二端作为上电时序控制电路2的输出端,第n级开关管的第一端分别与一一对应的直流电源及第n+1级开关管的控制端连接,第n级开关管的第二端与第n+1级开关管的第二端均接地,其中,1≤n<N-1;
上电时序控制电路2具体用于在接收到第一电压转换电路3输出的次供电电源信号后,按照依次导通、断开的循环顺序对应导通或断开内部开关管,以控制主供电电源1为主电路送电。
具体地,本申请中的上电时序控制电路2包括多级开关管(个数为奇数,且每个开关管在控制端输入高电平时导通、低电平时断开)及多个直流电源,其工作原理为:
1)当次供电电源未转换完成时:第一级开关管的控制端输入低电平,第一级开关管处于断开状态,则第一级开关管的第一端电压为高电平(对应的直流电源的输出电压);由于第二级开关管的控制端与第一级开关管的第一端连接,则第二级开关管的控制端输入高电平,第二级开关管处于导通状态,则第二级开关管的第一端电压被拉低,为低电平,以此类推,多级开关管的开通状态按照依次断开、导通的循环顺序(断开、导通、断开、导通、断开…)变化。由于开关管的个数为奇数,所以最后一级开关管处 于断开状态,主供电电源1无法为主电路送电。
2)当次供电电源已转换完成时:第一级开关管的控制端的输入由低电平转为高电平,第一级开关管导通,则第一级开关管的第一端电压被拉低,为低电平;由于第二级开关管的控制端与第一级开关管的第一端连接,则第二级开关管的控制端的输入由高电平转为低电平,第二级开关管断开,以此类推,多级开关管的开通状态均发生转换,即按照依次导通、断开的循环顺序(导通、断开、导通、断开、导通…)变化,所以最后一级开关管导通,主供电电源1立即为主电路送电。
作为一种优选地实施例,每级开关管均具体为NMOS管,NMOS管的栅极作为每级开关管的控制端,NMOS管的漏极作为每级开关管的第一端,NMOS管的源极作为每级开关管的第二端。
进一步地,本申请的多级开关管中每级开关管均可以选用但不仅限于NMOS管,本申请在此不做特别的限定。请参照图3,图3为本发明提供的第二种延长PMC芯片寿命的供电电路的结构示意图。图3中,以三级NMOS管为例,实现控制上电时序,防止PMC芯片受损。
作为一种优选地实施例,上电时序控制电路2包括三级开关管。
具体地,本申请的上电时序控制电路2中开关管可选用三个,不仅节约了供电电路成本,而且可靠地控制上电时序,防止PMC芯片受损。
作为一种优选地实施例,主供电电源1包括直流供电电源和用于将直流供电电源转换为主供电电源1的第二电压转换电路。
具体地,本申请的主供电电源1是由选定的直流供电电源经第二电压转换电路做电压转换得到,其中,第二电压转换电路的电压转换值由PMC芯片的主电路的需求供电电压确定。
作为一种优选地实施例,直流供电电源具体为可充电电池。
进一步地,本申请的直流供电电源可以选用可充电电池,可充电电池具有经济、环保、电量足等优点。至于直流供电电源的具体选用,本申请在此不做特别的限定。
作为一种优选地实施例,上电时序控制电路2包括开关管,开关管的控制端作为上电时序控制电路2的检测端,开关管的第一端作为上电时序控制 电路2的供电端,开关管的第二端作为上电时序控制电路2的输出端;
开关管用于在接收到第一电压转换电路3输出的次供电电源信号后导通,以控制主供电电源1为主电路送电。
具体地,本申请的上电时序控制电路2可以包括上述的多级开关管,也可以只包括一个开关管,其工作原理为:1)当次供电电源未转换完成时:该开关管的控制端输入低电平,处于断开状态,主供电电源1无法为主电路送电;2)当次供电电源已转换完成时:该开关管的控制端的输入由低电平转为高电平,也就是说,该开关管的开通状态此时为导通状态,主供电电源1立即为主电路送电。可见,一个开关管同样可以实现控制上电时序,更加节约供电电路成本。
作为一种优选地实施例,开关管具体为NMOS管,NMOS管的栅极作为开关管的控制端,NMOS管的漏极作为开关管的第一端,NMOS管的源极作为开关管的第二端。
同样地,本申请中上电时序控制电路2只包括的一个开关管也可以选用但不仅限于NMOS管,本申请在此不做特别的限定。请参照图4,图4为本发明提供的第三种延长PMC芯片寿命的供电电路的结构示意图。图4中,以一个NMOS管为例,实现控制上电时序,防止PMC芯片受损。
本发明还提供了一种Expander背板,包括PMC芯片,还包括上述任一种延长PMC芯片寿命的供电电路。
本申请对于Expander背板的介绍请参考上述供电电路实施例,本申请在此不再赘述。
还需要说明的是,在本说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、 物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其他实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (9)

  1. 一种延长PMC芯片寿命的供电电路,其特征在于,应用于Expander背板,包括主供电电源、上电时序控制电路及用于将所述主供电电源转换为次供电电源的第一电压转换电路,其中:
    所述主供电电源的输出端分别与所述上电时序控制电路的供电端及所述第一电压转换电路的输入端连接,所述第一电压转换电路的输出端分别与所述上电时序控制电路的检测端及PMC芯片中辅电路的供电端连接,所述上电时序控制电路的输出端与所述PMC芯片中主电路的供电端连接;
    所述上电时序控制电路用于当检测到所述次供电电源转换完成时,控制所述主供电电源为所述主电路送电。
  2. 如权利要求1所述的延长PMC芯片寿命的供电电路,其特征在于,所述上电时序控制电路包括N级开关管及多个直流电源,N≥3且N为奇数,其中:
    第一级开关管的控制端作为所述上电时序控制电路的检测端,第N级开关管的第一端作为所述上电时序控制电路的供电端,所述第N级开关管的第二端作为所述上电时序控制电路的输出端,第n级开关管的第一端分别与一一对应的直流电源及第n+1级开关管的控制端连接,第n级开关管的第二端与第n+1级开关管的第二端均接地,其中,1≤n<N-1;
    所述上电时序控制电路具体用于在接收到所述第一电压转换电路输出的次供电电源信号后,按照依次导通、断开的循环顺序对应导通或断开内部开关管,以控制所述主供电电源为所述主电路送电。
  3. 如权利要求2所述的延长PMC芯片寿命的供电电路,其特征在于,每级所述开关管均具体为NMOS管,所述NMOS管的栅极作为每级所述开关管的控制端,所述NMOS管的漏极作为每级所述开关管的第一端,所述NMOS管的源极作为每级所述开关管的第二端。
  4. 如权利要求2所述的延长PMC芯片寿命的供电电路,其特征在于,所述上电时序控制电路包括三级开关管。
  5. 如权利要求4所述的延长PMC芯片寿命的供电电路,其特征在于,所述主供电电源包括直流供电电源和用于将所述直流供电电源转换为主供 电电源的第二电压转换电路。
  6. 如权利要求5所述的延长PMC芯片寿命的供电电路,其特征在于,所述直流供电电源具体为可充电电池。
  7. 如权利要求1所述的延长PMC芯片寿命的供电电路,其特征在于,所述上电时序控制电路包括开关管,所述开关管的控制端作为所述上电时序控制电路的检测端,所述开关管的第一端作为所述上电时序控制电路的供电端,所述开关管的第二端作为所述上电时序控制电路的输出端;
    所述开关管用于在接收到所述第一电压转换电路输出的次供电电源信号后导通,以控制所述主供电电源为所述主电路送电。
  8. 如权利要求7所述的延长PMC芯片寿命的供电电路,其特征在于,所述开关管具体为NMOS管,所述NMOS管的栅极作为所述开关管的控制端,所述NMOS管的漏极作为所述开关管的第一端,所述NMOS管的源极作为所述开关管的第二端。
  9. 一种Expander背板,其特征在于,包括PMC芯片,还包括如权利要求1-8任一项所述的延长PMC芯片寿命的供电电路。
PCT/CN2018/123478 2018-06-25 2018-12-25 延长PMC芯片寿命的供电电路及Expander背板 WO2020000951A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810660877.1A CN108847771A (zh) 2018-06-25 2018-06-25 延长PMC芯片寿命的供电电路及Expander背板
CN201810660877.1 2018-06-25

Publications (1)

Publication Number Publication Date
WO2020000951A1 true WO2020000951A1 (zh) 2020-01-02

Family

ID=64202195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123478 WO2020000951A1 (zh) 2018-06-25 2018-12-25 延长PMC芯片寿命的供电电路及Expander背板

Country Status (2)

Country Link
CN (1) CN108847771A (zh)
WO (1) WO2020000951A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108847771A (zh) * 2018-06-25 2018-11-20 郑州云海信息技术有限公司 延长PMC芯片寿命的供电电路及Expander背板
CN112785985B (zh) * 2019-11-04 2022-03-11 海信视像科技股份有限公司 显示设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07334275A (ja) * 1994-06-08 1995-12-22 Oki Electric Ind Co Ltd 無停電電源装置
CN2565203Y (zh) * 2002-03-12 2003-08-06 华为技术有限公司 一种控制多路电源上电时序的电路
CN200976642Y (zh) * 2006-12-06 2007-11-14 深圳创维-Rgb电子有限公司 一种lcd tv电源
CN202455452U (zh) * 2012-02-20 2012-09-26 青岛海信电器股份有限公司 一种时序控制电路及电视机
CN107861422A (zh) * 2017-11-03 2018-03-30 山东超越数控电子股份有限公司 一种提高服务器主板电源稳定性的系统
CN108847771A (zh) * 2018-06-25 2018-11-20 郑州云海信息技术有限公司 延长PMC芯片寿命的供电电路及Expander背板

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9509301B2 (en) * 2013-06-28 2016-11-29 Taiwan Semiconductor Manufacturing Co., Ltd. Voltage control of semiconductor integrated circuits

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07334275A (ja) * 1994-06-08 1995-12-22 Oki Electric Ind Co Ltd 無停電電源装置
CN2565203Y (zh) * 2002-03-12 2003-08-06 华为技术有限公司 一种控制多路电源上电时序的电路
CN200976642Y (zh) * 2006-12-06 2007-11-14 深圳创维-Rgb电子有限公司 一种lcd tv电源
CN202455452U (zh) * 2012-02-20 2012-09-26 青岛海信电器股份有限公司 一种时序控制电路及电视机
CN107861422A (zh) * 2017-11-03 2018-03-30 山东超越数控电子股份有限公司 一种提高服务器主板电源稳定性的系统
CN108847771A (zh) * 2018-06-25 2018-11-20 郑州云海信息技术有限公司 延长PMC芯片寿命的供电电路及Expander背板

Also Published As

Publication number Publication date
CN108847771A (zh) 2018-11-20

Similar Documents

Publication Publication Date Title
KR102379554B1 (ko) 보호 회로
US9052728B2 (en) Start-up circuit and method thereof
US9811139B2 (en) Apparatus and method for power supply
WO2020000951A1 (zh) 延长PMC芯片寿命的供电电路及Expander背板
CN112925246B (zh) 一种开机控制电路及其相关装置
US9294081B2 (en) System and method for breakdown protection for switching output driver
KR20210007719A (ko) 배터리 관리 시스템의 전원 제어 방법 및 장치
US10298119B2 (en) Scalable protection voltage generation
JP5902136B2 (ja) 電池監視装置および電池監視システム
TWI480779B (zh) 觸控系統之電源管理裝置
CN112599107A (zh) 电源放电电路、显示模组和显示装置
CN114285152B (zh) 一种多电源供电的芯片电源切换电路
JP2009106072A (ja) 過電圧保護回路およびそれを用いた電子機器
CN112133238B (zh) 驱动电路与电子设备
CN112260370B (zh) 一种电池保护电路板
CN201918891U (zh) 高压mosfet驱动电路
US10025749B2 (en) Tracking circuit and method
JP2000201475A (ja) 電源装置
US7274115B2 (en) Method and apparatus for powering electronic circuits
US20120256604A1 (en) Power regulation circuit and electronic device with the same
US20040070999A1 (en) Charge pump drive signal recovery circuit
CN215956097U (zh) 一种电源切换电路
CN112187028A (zh) 一种多路电源电压快速放电电路
CN117392951B (zh) 电源检测电路、硅基显示面板和显示装置
CN112332649B (zh) 电源切换电路及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924450

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924450

Country of ref document: EP

Kind code of ref document: A1