WO2020000934A1 - 硅橡胶的表面处理方法 - Google Patents

硅橡胶的表面处理方法 Download PDF

Info

Publication number
WO2020000934A1
WO2020000934A1 PCT/CN2018/121794 CN2018121794W WO2020000934A1 WO 2020000934 A1 WO2020000934 A1 WO 2020000934A1 CN 2018121794 W CN2018121794 W CN 2018121794W WO 2020000934 A1 WO2020000934 A1 WO 2020000934A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicone rubber
surface treatment
acrylate
surfactant
rubber according
Prior art date
Application number
PCT/CN2018/121794
Other languages
English (en)
French (fr)
Inventor
张成裕
Original Assignee
浙江清华柔性电子技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810689407.8A external-priority patent/CN108864460B/zh
Priority claimed from CN201810688201.3A external-priority patent/CN109232951A/zh
Priority claimed from CN201810686792.0A external-priority patent/CN108929453A/zh
Application filed by 浙江清华柔性电子技术研究院 filed Critical 浙江清华柔性电子技术研究院
Priority to EP18924955.0A priority Critical patent/EP3816215A4/en
Publication of WO2020000934A1 publication Critical patent/WO2020000934A1/zh
Priority to US17/035,684 priority patent/US11713380B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • C08G18/348Hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/6692Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/34
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/794Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aromatic isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8003Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen
    • C08G18/8006Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32
    • C08G18/8009Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203
    • C08G18/8022Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203 with polyols having at least three hydroxy groups
    • C08G18/8029Masked aromatic polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • C08J7/065Low-molecular-weight organic substances, e.g. absorption of additives in the surface of the article
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/16Chemical modification with polymerisable compounds
    • C08J7/18Chemical modification with polymerisable compounds using wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/19Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3445Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09D175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • C08J2383/05Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • C08J2383/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • C08J2383/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical

Definitions

  • the present invention relates to the technical field of rubber, and in particular, to a surface treatment method for silicone rubber.
  • Silicone rubber can maintain elasticity for a long time at -60 °C ⁇ 200 °C. It does not absorb heat or heat during curing. It has a small shrinkage ratio after curing. It has excellent electrical and chemical stability, water resistance, ozone resistance, weather resistance, and biological resistance. Good compatibility and good performance.
  • the surface of silicone rubber is mainly non-polar organic groups such as Si-O bond, Si-C bond, and CH bond, which exhibits low cohesive energy. Therefore, silicone rubber has obvious incompatibility with other materials. Low interaction force and poor adhesion to other materials. Therefore, it is difficult to perform post-processing such as adhesion and printing on the surface of the silicone rubber.
  • a surface treatment method for silicone rubber including:
  • a polyfunctional compound is coated on the surface of the silicone rubber with a polar group, and the polyfunctional compound reacts with the polar group to form a coating.
  • the polar group includes a hydroxyl group.
  • the polyfunctional compound includes at least one of a silane coupling agent, a polyisocyanate, and a polyfunctional epoxy compound.
  • the silane coupling agent is a cationic silane coupling agent.
  • the structural formula of the cationic silane coupling agent is shown by the following formula (1) or (2) or (3):
  • R 1 is one of methyl, ethyl, propyl, and isopropyl
  • R 2 , R 3 , and R 4 are each one of an alkyl group, an aromatic hydrocarbon, an ⁇ -olefin, and a hydrocarbon (meth) acryloyloxy group having a carbon number of 1 to 16,
  • X - is one of halogen ion, carboxylate ion, nitrate ion, boron tetrafluoride ion, phosphorus hexafluoride ion, sulfate ion, bis (trifluoromethanesulfonyl) imide ion,
  • n is an integer from 0 to 3.
  • the method further includes coating the hydrophilic compound on the surface of the silicone rubber with a polar group, so that The cationic silane coupling agent reacts with the polar group and the hydrophilic compound at the same time.
  • the hydrophilic compound includes at least one of a hydrophilic monomer and a hydrophilic polymer.
  • the hydrophilic monomer includes acrylic acid and its salts, methacrylic acid and its salts, acrylamide, methacrylamide, hydroxyethyl acrylate, hydroxyethyl methacrylate, and maleic acid. And at least one of a salt thereof, fumaric acid and a salt thereof, and a vinyl end-group-containing polyethylene glycol homopolymer or copolymer.
  • the hydrophilic polymer is a hydroxyl-containing hydrophilic polymer, including polyvinyl alcohol, polyethylene glycol homopolymer or copolymer, polyhydroxyethyl acrylate, polyhydroxypropyl acrylate Ester, polyhydroxyethyl acrylate-acrylic copolymer, polyhydroxyethyl acrylate-acrylamide copolymer, polyhydroxyethyl acrylate-maleic anhydride copolymer, polyhydroxyethyl acrylate-dimethylaminoethyl (meth) acrylate Ester copolymer, polyhydroxyethyl acrylate-acryloyloxyethyltrimethylammonium chloride, polyhydroxypropyl acrylate-acrylic copolymer, polyhydroxypropyl acrylate-acrylamide copolymer, polyhydroxypropyl acrylate-horse Maleic anhydride copolymer, polyhydroxypropyl acrylate-dimethylaminoethyl
  • a mass ratio of the cationic silane coupling agent and the hydrophilic compound is 5: 1 to 1: 5.
  • the silane coupling agent includes 3-aminopropyltriethoxysilane, ⁇ -glycidyletheroxypropyltrimethoxysilane, and ⁇ - (methacryloyloxy) propyltrimethylsilane.
  • the polyisocyanate includes a compound containing three or more isocyanate groups.
  • the polyfunctional epoxy compound includes a compound containing three or more epoxy groups.
  • the temperature is maintained at 20 ° C. to 150 ° C. for 1 minute to 60 minutes.
  • the method further includes covering a surface of the coating layer with an adhesive, and reacting the adhesive with the polyfunctional compound to form a second coating layer;
  • the binder includes a polymer or a monomer that synthesizes the polymer.
  • the polymer includes at least one of polyurethane, epoxy, and polyacrylate.
  • an antistatic agent is also applied to the surface of the coating layer, so that the second coating layer includes an antistatic agent.
  • the antistatic agent includes at least one of a surfactant and a hydrophilic polymer.
  • the surfactant includes at least one of a cationic surfactant, an anionic surfactant, an amphoteric surfactant, and a nonionic surfactant; wherein,
  • the cationic surfactant includes at least one of a quaternary ammonium salt surfactant, a morpholine hydrochloride surfactant, or an imidazoline salt surfactant;
  • the anionic surfactant includes at least one of a sulfonate surfactant, a phosphate surfactant, or a carboxylate surfactant;
  • the non-ionic surfactant includes at least one of a surfactant containing a polyoxyethylene segment or a polyhydric alcohol.
  • the hydrophilic polymer includes polyvinyl alcohol, polyethylene glycol homopolymer or copolymer, polyacrylamide, polyhydroxyethyl acrylate, polyhydroxypropyl acrylate, polyacrylic acid and the like Salt, polyacryloxyethyltrimethylammonium chloride, dimethylaminoethyl (meth) acrylate, maleic anhydride copolymer, maleic acid copolymer, fumaric acid copolymer, starch, gelatin, hydroxy At least one of ethyl cellulose.
  • the silicone rubber is subjected to a surface treatment so that the silicone rubber has a polar group.
  • the surface treatment method includes an ultraviolet light irradiation treatment method or a plasma surface treatment method; wherein,
  • the ultraviolet light treatment method is performed in an ozone atmosphere
  • the plasma surface treatment method is performed in an oxygen atmosphere.
  • the wavelength of the ultraviolet light in the ultraviolet light irradiation treatment method is 100 nm to 300 nm; and / or
  • the temperature of the ultraviolet irradiation treatment method is 20 ° C to 200 ° C, and the time is 1 minute to 120 minutes.
  • the temperature of the plasma surface treatment method is 20 ° C to 200 ° C, and the time is 1 minute to 120 minutes.
  • the surface of the silicone rubber has a polar group, and a polyfunctional compound is coated on the surface of the silicone rubber with a polar group to form a continuous and tight coating. Almost migrate to the surface of silicone rubber, which can maintain the performance of silicone rubber surface.
  • the polyfunctional compound can chemically react with the polar hydroxyl groups on the surface of the silicone rubber to form a stable chemical bond, and improve the adhesion between the coating formed by the polyfunctional compound and the surface of the silicone rubber.
  • polyfunctional compounds can chemically react with groups or other compounds on other substrates, thereby improving the bonding strength of silicone rubber with other substrates or by grafting other compounds on the surface of the coating.
  • Mixing antistatic agents, conductive agents, antioxidants, plasticizers, inorganic fillers, pigments and other auxiliaries to achieve efficient, convenient, and wide-range adhesion modification of silicone rubber surfaces, and to impart the required properties to silicone rubber .
  • the coating formed by the polyfunctional compound is formed on the surface of the silicone rubber, which is advantageous for industrial applications without affecting the performance of the silicone rubber.
  • the surface treatment method of the silicone rubber provided by the present invention includes:
  • S1 provide silicone rubber with polar groups on the surface
  • a polyfunctional compound is coated on the surface of the silicone rubber with a polar group, and the polyfunctional compound reacts with the polar group to form a coating.
  • the polar group mainly includes a hydroxyl group.
  • Polar groups such as hydroxyl groups can chemically react with the compound, which can enhance the binding force on the surface of the silicone rubber.
  • the silicone rubber may be subjected to a surface treatment so that the silicone rubber has a polar group.
  • the surface treatment of silicone rubber using only an ultraviolet light irradiation treatment method is inefficient. Therefore, in the present invention, it is preferable to perform the ultraviolet irradiation treatment method in an ozone atmosphere.
  • the concentration of the ozone is 1 ppm to 200 ppm.
  • Ozone will photodecompose under the irradiation of ultraviolet light with a wavelength of 200 nm to 300 nm (preferably ultraviolet light with a wavelength of 254 nm) to generate molecular oxygen, atomic oxygen, and hydroxyl radicals.
  • Atomic oxygen or hydroxyl radicals have strong oxidizing properties, can oxidize Si-CH 3 on silicone rubber, form unstable intermediates, and further react to form carbon dioxide, water and other volatile organic compounds.
  • the silicon-methyl (Si-CH 3 ) on the organodimethylsiloxane can be oxidized to form a silicon-hydroxyl (Si-OH) to form a layer of inorganic silicon dioxide, so that
  • the surface of silicone rubber bears a large number of reactive polar groups such as hydroxyl groups.
  • Ultraviolet light has a wavelength range of 10nm to 400nm, and the ozone can be generated in situ by stimulating oxygen molecules with ultraviolet light with a wavelength of 100nm to 200nm (preferably 185nm wavelength), or by adding ozone through external equipment, Pure oxygen is introduced into the silicone rubber environment to increase the oxygen concentration in the environment, and high-concentration ozone is generated in situ under the irradiation of ultraviolet light with a wavelength of 100nm to 200nm. Therefore, the wavelength of the ultraviolet light in the ultraviolet light irradiation treatment method is preferably 100 nm to 300 nm.
  • the temperature of the ultraviolet light irradiation treatment method is 20 ° C to 200 ° C, and the time is 1 minute to 120 minutes, so that the surface of the silicone rubber is sufficiently treated.
  • the plasma surface treatment method is performed in an oxygen atmosphere to improve processing efficiency.
  • the temperature of the plasma surface treatment method is 20 ° C to 200 ° C, and the time is 1 minute to 120 minutes.
  • Plasma is a non-condensing system produced by partially ionizing a gas (vapor) under certain conditions. It consists of neutral atoms or molecules, excited atoms or molecules, free radicals, electrons or negative ions, positive ions, and radiant photons. .
  • a gas vapor
  • plasma surface treatment process when the plasma hits the surface of the silicone rubber, in addition to transferring its own energy to the molecules of the surface of the silicone rubber, it can also cause the surface to be etched, so that the molecules of gas or other substances adsorbed on the surface can be resolved. Surface reactions are performed using plasma of non-polymeric inorganic gases (Ar, N 2 , H 2 , O 2, etc.).
  • Excited molecules, free radicals, and electron ions are involved in the surface reaction, as well as ultraviolet light generated by the plasma. Radiation effect. Through surface reaction, specific functional groups are introduced on the surface, resulting in surface erosion, forming a cross-linked structure layer, or generating polar groups such as -COOH, -OH.
  • the equipment of the ultraviolet light irradiation treatment method is relatively simple, cheap, and suitable for large-area treatment, and has high efficiency. Therefore, it is preferable to perform surface treatment on the silicone rubber by an ultraviolet light irradiation treatment method, and the ultraviolet light irradiation treatment method is performed in an ozone atmosphere.
  • the surface not only contains hydroxyl groups, but also includes a large number of other polar groups that are hydrophilic and easy to react with other groups, such as carbonyl groups and carboxyl groups.
  • the inorganic silica layer formed on the surface of the silicone rubber after surface treatment is not continuous, but a mixture of inorganic silica and organosiloxane having a sea-island structure.
  • the inorganic silica layer on the surface of the treated silicone rubber is relatively thin, with a thickness of only a few nanometers to several tens of nanometers. Therefore, the low-molecular-weight silicone oil inside the silicone rubber easily migrates to the surface of the silicone rubber, covering this inorganic silicon dioxide layer, so that the surface of the silicone rubber loses polar groups and becomes a hydrophobic layer again.
  • a polyfunctional compound is coated on the surface of the silicone rubber with a polar group to form a coating layer in step S2.
  • the polyfunctional compound can be directly formed on the surface of the silicone rubber with a polar group by spraying, coating, etc., or it can be dissolved in water or an organic solvent to form a polyfunctional compound solution, and then sprayed or coated. Forms are formed on the surface of silicone rubber with polar groups.
  • the low-molecular-weight silicone oil inside the silicone rubber cannot easily migrate to the surface of the silicone rubber, and the surface of the silicone rubber can be maintained. performance.
  • the polyfunctional compound in the coating can chemically react with the hydroxyl groups on the surface of the silicone rubber to form a stable chemical bond, thereby improving the adhesion between the coating formed by the polyfunctional compound and the surface of the silicone rubber.
  • the polyfunctional compound can also chemically react with groups or other compounds on other substrates, thereby improving the adhesion strength of the silicone rubber to other substrates or grafting other compounds on the surface of the coating.
  • the silicone rubber surface can be efficiently, conveniently, and widely used in adhesion modification to impart silicone rubber. Desired performance.
  • the coating of the polyfunctional compound is formed, it is held at 20 ° C to 150 ° C for 1 minute to 60 minutes, so that the multifunctional compound in the coating can react fully and rapidly with the polar group, and the coating can also be made.
  • the solvent in the volatilization is not limited to 20 ° C to 150 ° C for 1 minute to 60 minutes.
  • the polyfunctional compound includes at least one of a silane coupling agent, a polyisocyanate, and a polyfunctional epoxy compound.
  • the silane coupling agent may be a cationic silane coupling agent, and the structural formula of the cationic silane coupling agent is shown by the following formula (1) or formula (2) or formula (3):
  • R 1 is one of methyl, ethyl, propyl, and isopropyl
  • R 2 , R 3 , and R 4 are all alkyl groups having 1 to 16 carbon atoms, aromatic hydrocarbons, ⁇ -olefins, and hydrocarbon groups ( meth) acryloyloxy group in
  • X - is a halogen ion, a carboxylate ion, nitrate ion, boron tetrafluoride ion, a hexafluorophosphate ion, a sulfate ion, a bis (trifluoromethanesulfonyl )
  • n is an integer from 0 to 3.
  • the cationic silane coupling agent is obtained through the following preparation process:
  • R 1 OH represents an alcohol whose alkyl group is R 1 .
  • a trialkoxysilane halide having a structural formula as shown in formula (4) and an amine having a structural formula as shown in formula (5) are heated under reflux in an alcohol solvent to generate a structural formula as shown in formula (1).
  • Cationic silane coupling agent In the reaction formula, a trialkoxysilane halide having a structural formula as shown in formula (4) and an amine having a structural formula as shown in formula (5) are heated under reflux in an alcohol solvent to generate a structural formula as shown in formula (1).
  • the trialkoxysilane halide having the structural formula as shown in Formula (4) includes chloromethyltrimethoxysilane, 2-chloroethyltrimethoxysilane, 3-chloropropyltrimethoxysilane, and 4-chloro Butyltrimethoxysilane, chloromethyltriethoxysilane, 2-chloroethyltriethoxysilane, 3-chloropropyltriethoxysilane, 4-chlorobutyltriethoxysilane, chlorine Methyltripropoxysilane, 2-chloroethyltripropoxysilane, 3-chloropropyltripropoxysilane, 4-chlorobutyltripropoxysilane, chloromethyltriisopropoxysilane , 2-chloroethyltriisopropoxysilane, 3-chloropropyltriisopropoxysilane, 4-chlorobutyltriisopropoxysilane, 4-
  • the amine represented by the formula (5) includes trimethylamine, triethylamine, tripropylamine, tributylamine, tripentylamine, trihexylamine, triheptylamine, trioctylamine, tridecylamine, trilaurylamine, triamine Vinylamine, triallylamine, triphenylamine, tris (acryloyloxyethyl) amine, tris (methacryloyloxyethyl) amine, tris (acryloyloxypropyl) amine, tris ( One of methacryloxypropyl) amines.
  • the N-alkylimidazole includes one of N-methylimidazole, N-ethylimidazole, N-propylimidazole, N-isopropylimidazole, and N-butylimidazole.
  • the cation Type silane coupling agent is obtained by the following preparation process:
  • Z is halogen
  • M is alkali metal
  • X - is carboxylate ion, nitrate ion, boron tetrafluoride ion, phosphorus hexafluoride ion, sulfate ion, bis (trifluoromethanesulfonyl) imide
  • R 1 OH represents an alcohol whose alkyl group is R 1 .
  • a cationic silane coupling agent whose X ⁇ is a halogen ion an ion exchange reaction is performed with the alkali metal salt (7) to generate X ⁇ which is a carboxylate ion, a nitrate ion, a boron tetrafluoride ion, A cationic silane coupling agent of one of phosphorus fluoride ion, sulfate ion, and bis (trifluoromethanesulfonyl) imide ion.
  • the alkali metal salt includes lithium carboxylate, lithium nitrate, lithium boron tetrafluoride, lithium phosphorus hexafluoride, lithium sulfate, lithium bis (trifluoromethanesulfonyl) imide, sodium carboxylate, sodium nitrate, tetrafluoro Sodium boride, sodium hexafluoride, sodium sulfate, sodium bis (trifluoromethanesulfonyl) imide, potassium carboxylate, potassium nitrate, potassium tetrafluoride, potassium hexafluoride, lithium sulfate, disulfide One of (trifluoromethanesulfonyl) imide potassium.
  • the molar ratio of the alkali metal salt to the cationic silane coupling agent represented by the formula (6) is 1 to 1.2: 1.
  • the solvent used in the ion exchange reaction includes alcohol, acetone, ethyl acetate, tetrahydrofuran, diethyl ether, etc.
  • the reaction temperature is from 10 ° C to 30 ° C, and the reaction time is from 0.5 hours to 2 hours.
  • the solvent and the produced inorganic salt were removed from the reaction solution to obtain a cationic silane coupling agent.
  • the reaction solution is filtered to remove the precipitated inorganic salt, and then unit operations such as concentration, filtration, and extraction are appropriately combined to separate the cationic A silane coupling agent.
  • the reaction solution is concentrated to precipitate the inorganic salt, and then the inorganic salt is removed by filtration. Next, unit operations such as concentration, filtration, and extraction are appropriately combined to isolate the cationic type. Silane coupling agent.
  • the method further includes coating the hydrophilic compound on the surface of the silicone rubber with a polar group to make the cationic silane coupling agent
  • the crosslinker reacts with the polar group and the hydrophilic compound simultaneously.
  • the cationic silane coupling agent with polar groups such as hydroxyl groups on the surface of the silicone rubber and the polymerization reaction with hydrophilic compounds, a continuous and tight coating is formed on the surface of the silicone rubber.
  • the coating not only makes the low-molecular-weight silicone oil inside the silicone rubber not easily migrate to the surface of the silicone rubber and maintains the performance of the surface of the silicone rubber.
  • the cationic silane coupling agent and the hydrophilic compound both have antistatic effects, the antistatic effect on the surface of the silicone rubber can be achieved.
  • the hydrophilic compound is also formed by the polymerization reaction with the cationic silane coupling agent. Stable chemical bonds. Therefore, the coating formed by the mixture of the cationic silane coupling agent and the hydrophilic compound is connected to the surface of the silicone rubber through chemical bonds, and the adhesive strength is high, which can make the surface of the silicone rubber have a permanent antistatic effect. Moreover, the thickness of the coating is several micrometers or tens of micrometers, so the performance of the silicone rubber is not reduced while achieving the antistatic effect.
  • the hydrophilic compound includes at least one of a hydrophilic monomer and a hydrophilic polymer.
  • the silyl hydroxyl group generated after the cationic silane coupling agent is hydrolyzed can react with the hydrophilic polymer to form a hydrophilic coating on the surface of the silicone rubber.
  • the double bond group contained on the cationic silane coupling agent can be contacted with the hydrophilic
  • the aqueous monomer is polymerized under free radical initiation to form a hydrophilic coating.
  • the hydrophilic monomer includes acrylic acid and its salts, methacrylic acid and its salts, acrylamide, methacrylamide, hydroxyethyl acrylate, hydroxyethyl methacrylate, maleic acid and its salts, rich At least one of maleic acid and a salt thereof, and a vinyl end-group-containing polyethylene glycol homopolymer or copolymer. It can be understood that a polyethylene glycol homopolymer or copolymer having a vinyl group at the end group is a polymerizable macromonomer.
  • the hydrophilic polymer is a hydroxyl-containing hydrophilic polymer, including polyvinyl alcohol, polyethylene glycol homopolymer or copolymer, polyhydroxyethyl acrylate, polyhydroxypropyl acrylate, polyhydroxyethyl acrylate -Acrylic acid copolymer, polyhydroxyethyl acrylate-acrylamide copolymer, polyhydroxyethyl acrylate-maleic anhydride copolymer, polyhydroxyethyl acrylate-dimethylaminoethyl (meth) acrylate copolymer, polyhydroxy acrylate Ethyl-acryloyloxyethyltrimethylammonium chloride, polyhydroxypropyl acrylate-acrylic acid copolymer, polyhydroxypropyl acrylate-acrylamide copolymer, polyhydroxypropyl acrylate-maleic anhydride copolymer, polyacrylic acid At least one of hydroxypropyl ester-dimethylaminoethy
  • the mass ratio of the cationic silane coupling agent and the hydrophilic compound is 5: 1 to 1: 5.
  • the chemical formula of the silane coupling agent may also be YR-SiX 3 , where Y is a non-hydrolyzable group, including an alkenyl group (mainly a vinyl group) and a chlorine group (-Cl) at the end, Amino (-NH 2 ), mercapto (-SH), epoxy Functional groups such as azide (-N 3 ), isocyanate (-NCO), and cationic groups; R is a saturated or unsaturated hydrocarbon group; X is a hydrolyzable group, including -Cl, -OMe, -OEt, -OC 2 H 4 OCH 3 , -OSiMe 3 and the like.
  • the silane coupling agent includes 3-aminopropyltriethoxysilane (KH-550), ⁇ -glycidyl ether oxypropyltrimethoxysilane (KH-560), ⁇ - (methacrylic acid) Acyloxy) propyltrimethoxysilane (KH-570), 3- (2-aminoethyl) -aminopropyltrimethoxysilane (KH-792), N-aminoethyl-3-aminopropylmethyl Trimethoxysilane (KH-602), 3-mercaptopropyltrimethoxysilane, and 3-isocyanatopropyltrimethoxysilane.
  • KH-550 3-aminopropyltriethoxysilane
  • KH-560 ⁇ -glycidyl ether oxypropyltrimethoxysilane
  • KH-570 ⁇ - (methacrylic acid) Acyloxy) propyl
  • the polyisocyanate includes a compound containing three or more isocyanate groups. Specifically, the polyisocyanate includes triphenylmethane triisocyanate, thiophosphoric acid tri (4-phenylisocyanate), and toluene diisocyanate di. At least one of a polymer, a toluene diisocyanate trimer, a diphenylmethane-4,4-diisocyanate, a polyphenyl polymethylene polyisocyanate, and a toluene diisocyanate-trimethylolpropane adduct.
  • the polyfunctional epoxy compound includes a compound containing three or more epoxy groups. Specifically, the polyfunctional epoxy compound includes trimethylolpropane triglycidyl ether, trimethylolethane. Triglycidyl ether, polyglycerol triglycidyl ether, propoxyglycerol triglycidyl ether, glycerol triglycidyl ether, tetraglycidyl ether tetraphenylethane, triglycidyl ether triphenylmethane, tetrakis At least one of glycidyl diaminodiphenylmethane, triglycidyl p-aminophenol, and tetraglycidyl-m-xylylenediamine.
  • the method further includes step S3 covering the surface of the coating layer with an adhesive, and reacting the adhesive with the polyfunctional compound to form a second coating layer.
  • the method further includes a step S4 of curing a coating layer and a second coating layer which are sequentially covered on the surface of the silicone rubber.
  • step S3 the adhesive is coated on the surface of the coating, so that the adhesive reacts with the polyfunctional compound in the coating, so that an adhesive layer can be formed on the surface of the coating, thereby achieving high efficiency, convenience, and Wide range of bonding, improve the bonding performance of silicone rubber.
  • the binder is not limited as long as it can react with a polyfunctional compound to form a chemical bond, including a polymer or a monomer forming the polymer.
  • the polymer includes at least one of polyurethane, epoxy resin, and polyacrylate.
  • polyurethane or polyurethane-forming monomers contain hydroxyl (-OH), isocyanate (-NCO) and other groups, which can chemically react with functional groups on the polyfunctional coating on the surface of silicone rubber to form stable chemical bonds.
  • the epoxy resin contains epoxy groups and hydroxyl groups, and can chemically react with the functional groups on the multifunctional coating.
  • the double bond contained in the polyacrylate can be copolymerized with a group such as a double bond on a polyfunctional group.
  • polyfunctional coatings containing epoxy groups can react with hydroxyl, amino, isocyanate, and carboxyl groups on the adhesive layer; amino functional groups on polyfunctional coatings can react with epoxy groups, Isocyanate, double bond, carboxyl and other groups undergo chemical reactions; double bonds contained on the polyfunctional coating can chemically react with groups such as amino and double bonds on the adhesive layer; The mercapto group can chemically react with the double bond, isocyanate, carboxyl, epoxy and other groups on the adhesive layer.
  • a mixture of isocyanate, polyol, chain extender, cross-linking agent, catalyst, auxiliary agent and other raw materials of synthetic polyurethane or polyurethane is used as a binder to coat or spray on the surface of the first coating.
  • the polyfunctional compound contains at least one of an epoxy group, an amino group, a mercapto group, and an isocyanate group. The binder and the polyfunctional compound react to form a stable chemical bond.
  • a mixture of epoxy resin monomer, curing agent and auxiliary agent or epoxy resin is used as a binder to coat or spray on the surface of the first coating layer, and the polyfunctional compound of the first coating layer contains epoxy groups At least one of an amino group, a mercapto group, an isocyanate group, a binder and a polyfunctional compound react to form a stable chemical bond.
  • the first coating layer is coated or sprayed with a mixture of acrylate monomer, initiator, cross-linking agent and auxiliary agent or a polyacrylate resin as a binder.
  • the polyfunctional compound of the first coating layer contains Containing at least one of a double bond, a mercapto group, an epoxy group, and an isocyanate group, the binder and the polyfunctional compound react to form a stable chemical bond.
  • the polyfunctional compound of the first coating layer contains a double bond. Under heat or ultraviolet light, the binder reacts with the multifunctional compound to form a stable chemical bond.
  • the method further includes coating an antistatic agent on the surface of the coating layer, so that the second coating layer includes an antistatic agent.
  • the antistatic agent is not limited, as long as it has good compatibility with the binder. Including surfactants, hydrophilic polymers, inorganic salts, ionic liquids, carbon black, metals, metal oxides, etc.
  • the antistatic agent is at least one of a surfactant or a hydrophilic polymer.
  • the molecules of the antistatic agent will migrate outward to form an antistatic layer.
  • the lipophilic groups of the antistatic molecules are implanted inside the adhesive, and the hydrophilic groups are aligned on the air side.
  • the former allows the antistatic agent and the binder to maintain a certain compatibility, while the latter adsorbs water molecules in the air to form a uniformly distributed conductive solution on the surface of the second coating layer, or self-ionizes and conducts surface charges to achieve antistatic effects. .
  • the internal antistatic agent molecules can continue to migrate outward to supplement, so it has a continuous antistatic effect.
  • the surfactant includes at least one of a cationic surfactant, an anionic surfactant, an amphoteric surfactant, and a nonionic surfactant; wherein the cationic surfactant includes a quaternary ammonium salt surfactant.
  • the anionic surfactant includes a sulfonate surfactant, a phosphate surfactant, or a carboxylate surfactant.
  • the non-ionic surfactant includes at least one of a polyoxyethylene segment-containing or a polyol-containing surfactant.
  • the surfactant is a nonionic surfactant, and the nonionic surfactant includes at least one of a surfactant containing a polyoxyethylene segment or a polyhydric alcohol.
  • hydrophilic polymer When a hydrophilic polymer is used as an antistatic agent, it can form an alloy with a binder to permanently maintain the antistatic effect.
  • the hydrophilic polymer is polyvinyl alcohol, polyethylene glycol homopolymer or copolymer, polyacrylamide, polyhydroxyethyl acrylate, polyhydroxypropyl acrylate, polyacrylic acid and its salt, polypropylene Acyloxyethyltrimethylammonium chloride, dimethylaminoethyl poly (meth) acrylate, maleic anhydride copolymer, maleic acid copolymer, fumaric acid copolymer, starch, gelatin, hydroxyethyl cellulose Or polymers containing these polymer segments.
  • a colorless and transparent antistatic agent and a colorless and transparent adhesive with good compatibility, a colorless and transparent antistatic coating can be formed on the surface of the silicone rubber, and a colorless and transparent antistatic silicone rubber can be obtained.
  • the surface-treated silicone rubber of the present invention can be applied to seal protection of electrical appliances, electronic products, automobiles, precision instruments, etc., improve the adhesion of the silicone rubber to the substrate, and prevent moisture from entering the product through the gap between the silicone rubber and the substrate. Internal causes corrosion and insulation failure. And, it can be used to prepare antistatic silicone shoes, mobile phone shells, seal rings, rubber rollers, keys, etc.
  • the silicon rubber sample was placed in an ultraviolet ozone cleaner, the temperature of the ultraviolet ozone cleaner was 25 ° C, and the wavelength of the ultraviolet light during the irradiation of ultraviolet light was 100 nm to 300 nm. Ozone was generated under the excitation of ultraviolet light and irradiated for 30 minutes to obtain Surface treated silicone rubber sample A1.
  • the epoxy resin A glue and the B glue are mixed at a ratio of 3: 1, and they are evenly mixed, coated on the silicone rubber B1, and tested after curing. The results are shown in Table 1.
  • the silicone rubber sample was placed in an ultraviolet ozone cleaner, the temperature of the ultraviolet ozone cleaner was 20 ° C, and the wavelength of the ultraviolet light during the irradiation of ultraviolet light was 100 nm to 300 nm. Ozone was generated under the excitation of ultraviolet light and irradiated for 60 minutes to obtain Surface treated silicone rubber sample A2.
  • the epoxy resin A glue and the B glue are mixed at a ratio of 3: 1, and the mixture is evenly mixed, coated on the silicone rubber B2, and tested after being cured at 120 ° C for 1 minute. The results are shown in Table 1.
  • the silicon rubber sample was placed in an ultraviolet ozone cleaner, the temperature of the ultraviolet ozone cleaner was 20 ° C, and the wavelength of the ultraviolet light during the irradiation of ultraviolet light was 100 nm to 300 nm.
  • the ozone ozone cleaner was charged with a concentration of 1 ppm ozone After irradiation for 60 minutes, a surface-treated silicone rubber sample A3 was obtained.
  • the silicon rubber sample was placed in an ultraviolet ozone cleaner, the temperature of the ultraviolet ozone cleaner was 20 ° C, and the wavelength of the ultraviolet light during the ultraviolet irradiation was 100 nm to 300 nm.
  • the ultraviolet ozone cleaner was charged with ozone at a concentration of 100 ppm. And irradiated for 120 minutes to obtain a surface-treated silicone rubber sample A4.
  • Triphenylmethane triisocyanate was spray-coated on the surface of the treated silicone rubber sample A4, and heated at 70 ° C. for 3 minutes to obtain a surface-grafted silicone rubber B4.
  • the silicon rubber sample was placed in a UV-ozone cleaning machine, the temperature of the UV-ozone cleaning machine was 20 ° C, and pure oxygen was charged into the UV-ozone cleaning machine. During the ultraviolet irradiation, the wavelength of the ultraviolet light was 100 nm to 300 nm. Ozone was generated under light excitation and irradiated for 60 minutes to obtain a surface-treated silicone rubber sample A5.
  • the blocked toluene diisocyanate-trimethylolpropane emulsion was spray-coated on the surface of the treated silicone rubber sample A5 and heated at 70 ° C. for 3 minutes to obtain a silicone rubber B5 having a surface grafted with an isocyanate group.
  • a leveling agent and a thickening agent are added to the water-based polyurethane pre-emulsion, and they are mixed uniformly, coated on the surface of silicone rubber B5, and tested after being cured at 120 ° C for 3 minutes. The results are shown in Table 1.
  • the silicone rubber sample was placed in a UV-ozone cleaning machine, the temperature of the UV-ozone cleaning machine was 50 ° C, and the oxygen-ozone cleaning machine was filled with pure oxygen.
  • the wavelength of the ultraviolet light during the ultraviolet irradiation was 100 nm to 300 nm.
  • Ozone was generated under light excitation and irradiated for 10 minutes to obtain a surface-treated silicone rubber sample A6.
  • the silicon rubber sample was placed in a UV ozone cleaning machine, the temperature of the UV ozone cleaning machine was 50 ° C, and the wavelength of the ultraviolet light during the irradiation of the ultraviolet light was 100 nm to 300 nm. At the same time, the ozone ozone cleaning machine was charged with ozone at a concentration of 200 ppm. After 10 minutes of irradiation, a silicone rubber sample A7 after surface treatment was obtained.
  • the silicon rubber sample was placed in an ultraviolet ozone cleaner, the temperature of the ultraviolet ozone cleaner was 200 ° C, and the wavelength of the ultraviolet light during the irradiation of ultraviolet light was 100 nm to 300 nm. At the same time, the ultraviolet ozone cleaner was charged with ozone at a concentration of 100 ppm. After irradiation for 1 minute, a silicone rubber sample A8 after surface treatment was obtained.
  • the epoxy resin A glue and the B glue were mixed at a ratio of 3: 1, and the catalyst was added to mix evenly, and then coated on the silicone rubber B8, and tested after being cured at 20 ° C for 60 minutes.
  • the results are shown in Table 1.
  • the silicon rubber sample was placed in a plasma processing machine, and pure oxygen was passed in.
  • the processing temperature was 20 ° C. and the processing was performed for 120 minutes to obtain a surface-treated silicon rubber sample A9.
  • the epoxy resin A glue and the B glue were mixed at a ratio of 3: 1, and the mixture was uniformly coated on the silicone rubber B9.
  • the test was performed after curing at 20 ° C for 60 minutes. The results are shown in Table 1.
  • the silicon rubber sample was placed in a plasma processing machine, and pure oxygen was passed in.
  • the processing temperature was 60 ° C. for 60 minutes to obtain a surface-treated silicon rubber sample A10.
  • the toluene diisocyanate trimer solution was spray-coated on the surface of the treated silicone rubber sample A10 with a spray amount of 0.1g / cm 2 solution and heated at 70 ° C. for 3 minutes to obtain a surface-grafted silicone rubber B10.
  • the polyurethane prepolymer was coated on silicone rubber B10 and tested after curing at 20 ° C for 60 minutes. The results are shown in Table 1.
  • the silicon rubber sample was placed in a plasma processing machine, and pure oxygen was passed in.
  • the processing temperature was 120 ° C. and the treatment was performed for 1 minute to obtain a surface-treated silicon rubber sample A11.
  • the urethane resin containing the acrylate group at the end group and the photoinitiator were mixed, coated on the surface of the silicone rubber B11, and tested after being cured by ultraviolet light. The results are shown in Table 1.
  • the silicon rubber sample was placed in an ultraviolet ozone cleaner, the temperature of the ultraviolet ozone cleaner was 20 ° C, and the wavelength of the ultraviolet light during the ultraviolet irradiation was 100 nm to 300 nm. At the same time, the ultraviolet ozone cleaner was charged with ozone at a concentration of 100 ppm. After irradiation for 60 minutes, a surface-treated silicone rubber sample A12 was obtained.
  • the epoxy resin A glue and the B glue are mixed at a ratio of 3: 1, and coated on the silicone rubber A12, and then tested after curing. The results are shown in Table 1.
  • the epoxy resin A glue and the B glue were mixed at a ratio of 3: 1, and coated on the silicone rubber B13, and then tested after curing. The results are shown in Table 1.
  • the silicon rubber sample was placed in an ultraviolet ozone cleaner, the temperature of the ultraviolet ozone cleaner was 20 ° C, and the wavelength of the ultraviolet light during the irradiation of ultraviolet light was 100 nm to 300 nm. Ozone was generated under the excitation of ultraviolet light and irradiated for 10 minutes to obtain Surface treated silicone rubber sample A14.
  • the silicone rubber sample was placed in an ultraviolet ozone cleaner, the temperature of the ultraviolet ozone cleaner was 20 ° C, and the wavelength of the ultraviolet light during the irradiation of ultraviolet light was 100 nm to 300 nm. Ozone was generated under the excitation of ultraviolet light and irradiated for 30 minutes to obtain Surface treated silicone rubber sample A15.
  • the silicone rubber sample was placed in an ultraviolet ozone cleaner, the temperature of the ultraviolet ozone cleaner was 20 ° C, and the wavelength of the ultraviolet light during the irradiation of ultraviolet light was 100 nm to 300 nm. Ozone was generated under the excitation of ultraviolet light and irradiated for 60 minutes to obtain Surface treated silicone rubber sample A16.
  • the silicon rubber sample was placed in an ultraviolet ozone cleaner, the temperature of the ultraviolet ozone cleaner was 20 ° C, and the wavelength of the ultraviolet light during the irradiation of ultraviolet light was 100 nm to 300 nm. Ozone was generated under the excitation of ultraviolet light and irradiated for 120 minutes to obtain Surface treated silicone rubber sample A17.
  • Embodiment 16 is a diagrammatic representation of Embodiment 16:
  • the silicon rubber sample was placed in an ultraviolet ozone cleaner, the temperature of the ultraviolet ozone cleaner was 20 ° C, and the wavelength of the ultraviolet light during the irradiation of ultraviolet light was 100 nm to 300 nm. At the same time, the ultraviolet ozone cleaner was charged with ozone at a concentration of 1 ppm. After irradiation for 60 minutes, a surface-treated silicone rubber sample A18 was obtained.
  • the silicon rubber sample was placed in an ultraviolet ozone cleaner, the temperature of the ultraviolet ozone cleaner was 50 ° C, and the wavelength of the ultraviolet light during the ultraviolet irradiation was 100 nm to 300 nm. At the same time, the ultraviolet ozone cleaner was charged with ozone at a concentration of 100 ppm. After irradiation for 10 minutes, a silicone rubber sample A19 after surface treatment was obtained.
  • Embodiment 18 is a diagrammatic representation of Embodiment 18:
  • the silicon rubber sample was placed in a UV ozone cleaner, the temperature of the UV ozone cleaner was 100 ° C, and the wavelength of the ultraviolet light during the irradiation of the ultraviolet light was 100 nm to 300 nm.
  • the ultraviolet ozone cleaner was charged with ozone at a concentration of 200 ppm. After irradiation for 10 minutes, a silicone rubber sample A20 after surface treatment was obtained.
  • the silicon rubber sample was placed in an ultraviolet ozone cleaner, the temperature of the ultraviolet ozone cleaner was 200 ° C, and the wavelength of the ultraviolet light during the irradiation of ultraviolet light was 100 nm to 300 nm.
  • the ultraviolet ozone cleaner was charged with ozone at a concentration of 100 ppm. And irradiate for 1 minute to obtain a silicone rubber sample A21 after surface treatment.
  • the silicone rubber sample was placed in a UV-ozone cleaning machine, the temperature of the UV-ozone cleaning machine was 50 ° C, and the oxygen-ozone cleaning machine was filled with pure oxygen.
  • the wavelength of the ultraviolet light during the ultraviolet irradiation was 100 nm to 300 nm.
  • Ozone was generated under light excitation and irradiated for 30 minutes to obtain a surface-treated silicone rubber sample A22.
  • the temperature of the UV ozone cleaning machine is 50 ° C, and the wavelength of the ultraviolet light during the irradiation of ultraviolet light is 100 nm to 300 nm. Ozone is generated under the excitation of ultraviolet light, and the irradiation is performed for 30 minutes. A surface-treated silicone rubber sample A23 was obtained.
  • the silicon rubber sample was placed in a plasma processing machine, and pure oxygen was passed in.
  • the processing temperature was 20 ° C. and the processing was performed for 120 minutes to obtain a surface-treated silicon rubber sample A24.
  • the silicon rubber sample was placed in a plasma processing machine, and pure oxygen was passed in.
  • the processing temperature was 60 ° C. for 60 minutes to obtain a surface-treated silicon rubber sample A25.
  • the silicon rubber sample was placed in a plasma processing machine, and pure oxygen was passed in.
  • the processing temperature was 120 ° C. and the treatment was performed for 1 minute to obtain a surface-treated silicon rubber sample A26.
  • the silicone rubber sample was placed in an ultraviolet ozone cleaner, the temperature of the ultraviolet ozone cleaner was 20 ° C, and the wavelength of the ultraviolet light during the irradiation of ultraviolet light was 100 nm to 300 nm. Ozone was generated under the excitation of ultraviolet light and irradiated for 60 minutes to obtain Surface treated silicone rubber sample sheet 14.
  • the silicone rubber sample was placed in an ultraviolet ozone cleaner, the temperature of the ultraviolet ozone cleaner was 20 ° C, and the wavelength of the ultraviolet light during the irradiation of ultraviolet light was 100 nm to 300 nm. Ozone was generated under the excitation of ultraviolet light and irradiated for 60 minutes to obtain Surface treated silicone rubber sample B14.
  • the silicone rubber sample was placed in an ultraviolet ozone cleaner, the temperature of the ultraviolet ozone cleaner was 20 ° C, and the wavelength of the ultraviolet light during the irradiation of ultraviolet light was 100 nm to 300 nm. Ozone was generated under the excitation of ultraviolet light and irradiated for 60 minutes to obtain Surface treated silicone rubber sample B15.
  • the silicone rubber sample was placed in an ultraviolet ozone cleaner, the temperature of the ultraviolet ozone cleaner was 20 ° C, and the wavelength of the ultraviolet light during the irradiation of ultraviolet light was 100 nm to 300 nm, and the irradiation was performed for 10 minutes to obtain a surface-treated silicone rubber sample A27.
  • the epoxy resin A glue and the B glue are mixed in a ratio of 3: 1, and 2% by weight of octadecyldimethylhydroxyethyl quaternary ammonium nitrate is added, mixed uniformly, coated on the silicone rubber B16, and cured to obtain resistance.
  • the silicone rubber sample was placed in an ultraviolet ozone cleaner, the temperature of the ultraviolet ozone cleaner was 20 ° C., and the wavelength of the ultraviolet light during the ultraviolet irradiation was 100 nm to 300 nm, and the irradiation was performed for 60 minutes to obtain a surface-treated silicone rubber sample A28.
  • the epoxy resin A glue and the B glue are mixed at a ratio of 3: 1, and 2% by weight of N-hexadecylpyridine nitrate is added, mixed uniformly, coated on the silicone rubber B17, and the antistatic silicone rubber 18 is obtained after curing.
  • the silicone rubber sample was placed in an ultraviolet ozone cleaner, the temperature of the ultraviolet ozone cleaner was 20 ° C, and the wavelength of the ultraviolet light during the ultraviolet irradiation process was 100 nm to 300 nm. The irradiation was performed for 60 minutes to obtain a surface-treated silicone rubber sample A29.
  • the silicone rubber sample was placed in an ultraviolet ozone cleaner, the temperature of the ultraviolet ozone cleaner was 20 ° C., and the wavelength of the ultraviolet light during the ultraviolet irradiation was 100 nm to 300 nm, and the irradiation was performed for 60 minutes to obtain a surface-treated silicone rubber sample A30.
  • Triphenylmethane triisocyanate was spray-coated on the surface of the treated silicone rubber sample A30 and heated at 70 ° C. for 3 minutes to obtain a surface-grafted silicone rubber B19.
  • the silicone rubber sample was placed in a UV ozone cleaning machine, the temperature of the UV ozone cleaning machine was 20 ° C, and pure oxygen was charged into the UV ozone cleaning machine.
  • the wavelength of the ultraviolet light was 100 nm to 300 nm, and the irradiation was 60 Minutes, the surface-treated silicone rubber sample A31 was obtained.
  • the blocked toluene diisocyanate-trimethylolpropane emulsion was spray-coated on the surface of the treated silicone rubber sample A31, and heated at 70 ° C. for 3 minutes to obtain a silicone rubber B20 with an isocyanate group grafted on the surface.
  • the silicone rubber sample was placed in a UV ozone cleaning machine, the temperature of the UV ozone cleaning machine was 50 ° C, and the oxygen ozone cleaning machine was filled with pure oxygen.
  • the wavelength of the ultraviolet light during the ultraviolet irradiation was 100 nm to 300 nm, and the irradiation was 10 Minutes to obtain a surface-treated silicone rubber sample A32.
  • a mixed solution of a polyurethane containing a acrylate group at an end group and a photoinitiator was coated on the surface of the silicone rubber B21, and cured by ultraviolet light irradiation to obtain an antistatic silicone rubber 22.
  • the silicone rubber sample was placed in a UV ozone cleaning machine, the temperature of the UV ozone cleaning machine was 50 ° C, and the oxygen ozone cleaning machine was filled with pure oxygen.
  • the wavelength of the ultraviolet light during the ultraviolet irradiation was 100 nm to 300 nm, and the irradiation was 10 Minutes, a silicone rubber sample A33 after surface treatment was obtained.
  • a mixed solution of acrylic acid, acrylate, crosslinking agent, initiator azobisisobutyronitrile, and antistatic agent trimethylhexadecylacetate ammonium salt was coated on the surface of silicone rubber B22, and cured by heating at 70 ° C to obtain Antistatic silicone rubber 23.
  • Embodiment 32 is a diagrammatic representation of Embodiment 32.
  • the temperature of the UV ozone cleaner is 20 ° C.
  • the ozone concentration in the UV ozone cleaner is 1 ppm.
  • the wavelength of the ultraviolet light during the ultraviolet irradiation is 100-300 nm. Irradiation was performed for 120 minutes to obtain a surface-treated silicone rubber sample A34.
  • the epoxy resin A glue and the B glue are mixed in a ratio of 3: 1, and 2% by weight of N-hexadecylpyridine nitrate is added, and the mixture is uniformly coated on the silicone rubber B23. After curing, the antistatic silicone rubber 24 is obtained.
  • the temperature of the UV ozone cleaner is 120 ° C.
  • the ozone concentration of the ozone ozone cleaner is 200 ppm.
  • the wavelength of the ultraviolet light during the ultraviolet irradiation is 100-300 nm. Irradiation was performed for 1 minute to obtain a surface-treated silicone rubber sample A35.
  • the silicon rubber sample was placed in a plasma processing machine, and pure oxygen was passed in.
  • the processing temperature was 20 ° C. and the processing was performed for 120 minutes to obtain a surface-treated silicon rubber sample A36.
  • the epoxy resin A glue and the B glue are mixed in a ratio of 3: 1, and 5 wt% of a water-soluble polyoxyethylene ether alcohol modified silicone oil is added, mixed uniformly, coated on the silicone rubber B25, and an antistatic silicone rubber 26 is obtained after curing. .
  • the silicon rubber sample was placed in a plasma processing machine, and pure oxygen was passed in.
  • the processing temperature was 50 ° C. for 60 minutes to obtain a surface-treated silicon rubber sample A37.
  • the toluene diisocyanate trimer solution was spray-coated on the surface of the treated silicone rubber sample A37 with a spraying amount of 0.1 g / cm 2 solution and heated at 70 ° C. for 3 minutes to obtain a surface-grafted silicone rubber B26.
  • the silicon rubber sample was placed in a plasma processing machine, and pure oxygen was passed in.
  • the processing temperature was 120 ° C. and the treatment was performed for 1 minute to obtain a surface-treated silicon rubber sample A38.
  • a polyurethane resin having a terminal group containing an acrylate group, a photoinitiator, and a 2 wt% octadecyldimethylhydroxyethyl quaternary ammonium nitrate mixed solution were coated on the surface of the silicone rubber B27, and cured by ultraviolet light to obtain antistatic Silicone rubber 28.
  • the silicon rubber sample was placed in an ultraviolet ozone cleaner, the temperature of the ultraviolet ozone cleaner was 20 ° C., and the wavelength of the ultraviolet light during the irradiation of ultraviolet light was 100 nm to 300 nm, and the irradiation was performed for 60 minutes to obtain a surface-treated silicone rubber sample 29.
  • the silicone rubber sample was placed in an ultraviolet ozone cleaner, the temperature of the ultraviolet ozone cleaner was 20 ° C, and the wavelength of the ultraviolet light during the irradiation of ultraviolet light was 100 nm to 300 nm, and the irradiation was performed for 60 minutes to obtain a surface-treated silicone rubber sample A39.
  • the silicone rubber sample was placed in an ultraviolet ozone cleaner, the temperature of the ultraviolet ozone cleaner was 20 ° C., and the wavelength of the ultraviolet light during the ultraviolet irradiation was 100 nm to 300 nm, and the irradiation was performed for 60 minutes to obtain a surface-treated silicone rubber sample A40.
  • the epoxy resin A glue and the B glue are mixed at a ratio of 3: 1, and coated on the silicone rubber B28, and the silicone rubber 31 is obtained after curing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Laminated Bodies (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

硅橡胶的表面处理方法,包括:提供表面带有极性基团的硅橡胶;将多官能团化合物覆于所述带有极性基团的硅橡胶的表面,使所述多官能团化合物与所述极性基团发生反应而形成涂层。

Description

硅橡胶的表面处理方法
相关申请
本申请要求2018年6月28日申请的,申请号为201810688201.3,名称为“硅橡胶的表面处理方法”;2018年6月28日申请的,申请号为201810689407.8,名称为“抗静电硅橡胶的制备方法”;以及2018年6月28日申请的,申请号为201810686792.0,名称为“抗静电硅橡胶的制备方法”的中国专利申请的优先权,在此将三篇全文引入作为参考。
技术领域
本发明涉及橡胶技术领域,特别是涉及硅橡胶的表面处理方法。
背景技术
硅橡胶可以在-60℃~200℃长期保持弹性,固化时不吸热、不放热,固化后收缩比例小,并具有优良的电性能和化学稳定性能,能耐水、耐臭氧、耐候,生物相容性好,具有良好的性能。但是,硅橡胶表面主要为Si-O键、Si-C键、C-H键等非极性的有机基团,表现出低的内聚能,因而硅橡胶具有明显的不相容性,与其它材料相互作用力较低,对其它材料的粘结性差。因此,硅橡胶表面难以进行粘结、印刷等后加工。
发明内容
基于此,有必要针对硅橡胶表面粘结性差的问题,提供一种硅橡胶的表面处理方法。
一种硅橡胶的表面处理方法,包括:
提供表面带有极性基团的硅橡胶;
将多官能团化合物覆于所述带有极性基团的硅橡胶的表面,使所述多官能团化合物与所述极性基团发生反应而形成涂层。
在其中一个实施例中,所述极性基团包括羟基。
在其中一个实施例中,所述多官能团化合物包括硅烷偶联剂、多异氰酸酯、多官能环氧化合物中的至少一种。
在其中一个实施例中,所述硅烷偶联剂为阳离子型的硅烷偶联剂。
在其中一个实施例中,所述阳离子型的硅烷偶联剂的结构式如下式(1)或式(2)或式(3)所示:
Figure PCTCN2018121794-appb-000001
其中,R 1为甲基、乙基、丙基、异丙基中的一种,
R 2、R 3、R 4均为碳数为1~16的烷基、芳烃、α-烯烃、烃基(甲基)丙烯酰氧基中的一种,
X -为卤素离子、羧酸根离子、硝酸根离子、四氟化硼离子、六氟化磷离子、硫酸酯根离子、二(三氟甲磺酰)亚胺根离子中的一种,
n为0~3的整数。
在其中一个实施例中,当所述硅烷偶联剂为阳离子型的硅烷偶联剂,还包括将所述亲水性化合物覆于所述带有极性基团的硅橡胶的表面,以使所述阳离子型的硅烷偶联剂同时与所述极性基团以及所述亲水性化合物反应。
在其中一个实施例中,所述亲水性化合物包括亲水性单体、亲水性聚合物中的至少一种。
在其中一个实施例中,所述亲水性单体包括丙烯酸及其盐、甲基丙烯酸及其盐、丙烯酰胺、甲基丙烯酰胺、丙烯酸羟乙酯、甲基丙烯酸羟乙酯、马来酸及其盐、富马酸及其盐、端基含乙烯基的聚乙二醇均聚物或共聚物中的至少一种。
在其中一个实施例中,所述亲水性聚合物为含羟基的亲水性聚合物,包括聚乙烯醇、聚乙二醇均聚物或共聚物、聚丙烯酸羟乙酯、聚丙烯酸羟丙酯、聚丙烯酸羟乙酯-丙烯酸共聚物、聚丙烯酸羟乙酯-丙烯酰胺共聚物、聚丙烯酸羟乙酯-马来酸酐共聚物、聚丙烯酸羟乙酯-(甲基)丙烯酸二甲氨基乙酯共聚物、聚丙烯酸羟乙酯-丙烯酰氧乙基三甲基氯化铵、聚丙烯酸羟丙酯-丙烯酸共聚物、聚丙烯酸羟丙酯-丙烯酰胺共聚物、聚丙烯酸羟丙酯-马来酸酐共聚物、聚丙烯酸羟丙酯-(甲基)丙烯酸二甲氨基乙酯共聚物、聚丙烯酸羟丙酯-丙烯酰氧乙基三甲基氯化铵、淀粉、明胶、羟乙基纤维素中的至少一种。
在其中一个实施例中,所述阳离子型的硅烷偶联剂和所述亲水性化合物的质量比为5:1~1:5。
在其中一个实施例中,所述硅烷偶联剂包括3-氨基丙基三乙氧基硅烷、γ-缩水甘油醚氧丙基三甲氧基硅烷、γ-(甲基丙烯酰氧)丙基三甲氧基硅烷、3-(2-氨乙基)-氨丙基三甲氧基硅烷、N-氨乙基-3-氨丙基甲基三甲氧基硅烷、3-巯基丙基三甲氧基硅烷、3-异氰酸丙基三甲氧基硅烷中的至少一种。
在其中一个实施例中,所述多异氰酸酯包括含有三个或三个以上的异氰酸酯基团的化合物。
在其中一个实施例中,所述多官能环氧化合物包括含有三个或三个以上的环氧基团的化合物。
在其中一个实施例中,形成所述涂层后,于20℃~150℃保温1分钟~60分钟。
在其中一个实施例中,形成所述涂层后,还包括将粘结剂覆于所述涂层的表面,使所述粘结剂与所述多官能团化合物反应而形成第二涂层;
以及,固化依次覆于硅橡胶表面的涂层和第二涂层。
在其中一个实施例中,所述粘结剂包括聚合物或合成所述聚合物的单体。
在其中一个实施例中,所述聚合物包括聚氨酯、环氧树脂、聚丙烯酸酯中的至少一种。
在其中一个实施例中,将粘结剂覆于所述涂层的表面时,还包括将抗静电剂覆于所述涂层的表面,以使所述第二涂层中包括抗静电剂。
在其中一个实施例中,所述抗静电剂包括表面活性剂、亲水性高分子中的至少一种。
在其中一个实施例中,所述表面活性剂包括阳离子表面活性剂、阴离子表面活性剂、两性表面活性剂、非离子表面活性剂中的至少一种;其中,
所述阳离子表面活性剂包括季铵盐表面活性剂、吗啉盐酸盐表面活性剂或咪唑啉盐表面活性剂中的至少一种;
所述阴离子表面活性剂包括磺酸盐表面活性剂、磷酸盐表面活性剂或羧酸盐表面活性剂中的至少一种;
所述非离子表面活性剂包括含聚氧乙烯链段或多元醇的表面活性剂中的至少一种。
在其中一个实施例中,所述亲水性高分子包括聚乙烯醇、聚乙二醇均聚物或共聚物、聚丙烯酰胺、聚丙烯酸羟乙酯、聚丙烯酸羟丙酯、聚丙烯酸及其盐、聚丙烯酰氧乙基三甲基氯化铵、聚(甲基)丙烯酸二甲氨基乙酯、马来酸酐共聚物、马来酸共聚物、富马酸共聚物、淀粉、明胶、羟乙基纤维素中的至少一种。
在其中一个实施例中,对所述硅橡胶进行表面处理而使所述硅橡胶带有极性基团。
在其中一个实施例中,所述表面处理的方法包括紫外光照射处理法或等离子体表面处理法;其中,
所述紫外光照射处理法在臭氧气氛中进行;
所述等离子体表面处理法在氧气气氛中进行。
在其中一个实施例中,所述紫外光照射处理法中紫外光的波长为100nm~300nm;及/或
所述紫外光照射处理法的温度为20℃~200℃,时间为1分钟~120分钟。
在其中一个实施例中,所述等离子体表面处理法的温度为20℃~200℃,时间为1分钟~120分钟。
本发明具有以下有益效果:
第一、硅橡胶表面带有极性基团,将多官能团化合物覆于所述带有极性基团的硅橡胶的表面而形成连续、紧密的涂层后,硅橡胶内部的低分子硅油不容易迁移至硅橡胶表面,可以保持硅橡胶表面的性能。
第二、多官能团化合物可以与硅橡胶表面的极性基团羟基发生化学反应,形成稳定的化学键,提升多官能团化合物形成的涂层与硅橡胶表面的附着力。
第三、多官能团化合物可以与其它基材上的基团或者其它化合物进行化学反应,从而提升硅橡胶与其它基材的粘结强度或者可以在该涂层表面接枝其它化合物,通过在其它化合物中混合抗静电剂、导电剂、抗氧剂、增塑剂、无机填料、颜料等助剂,实现硅橡胶表面的高效、方便、适用范围广的粘结改性,赋予硅橡胶所需要的性能。
第四、多官能团化合物形成的涂层形成于硅橡胶表面,利于工业化应用,且不会影响硅橡胶的性能。
具体实施方式
以下将对本申请提供的硅橡胶的表面处理方法作进一步说明。
本发明提供的硅橡胶的表面处理方法包括:
S1,提供表面带有极性基团的硅橡胶;
S2,将多官能团化合物覆于所述带有极性基团的硅橡胶的表面,使所述多官能团化合物与所述极性基团发生反应而形成涂层。
步骤S1中,所述极性基团主要包括羟基。羟基等极性基团可以与化合物发生化学反应,从而可以增强硅橡胶表面的结合力。
具体的,可对所述硅橡胶进行表面处理而使所述硅橡胶带有极性基团。
对硅橡胶进行表面处理的方法有很多,包括溶剂处理法、偶联剂处理法、火焰处理法、紫外光照射处理法、等离子体表面处理法等。在选择表面处理方法时,同时需要考虑硅橡胶的物化性质,以及实际生产情况。因此,优选采用紫外光照射处理法或等离子体表面处理法对硅橡胶进行表面处理。
但是,单纯使用紫外光照射处理法对硅橡胶进行表面处理的效率较低。因此,本发明优选紫外光照射处理法在臭氧气氛中进行。优选的,所述臭氧的浓度为1ppm~200ppm。臭氧在200nm~300nm波长的紫外光(优选254nm波长的紫外光)照射下会发生光解,产生分子氧、原子氧以及羟基自由基等。原子氧或羟基自由基具有强氧化性,能够氧化硅橡胶上的Si-CH 3,形成不稳定的中间体,进一步反应形成二氧化碳、水以及其它可挥发性有机物。因此,通过这种方式处理后,可以将有机二甲基硅氧烷上的硅-甲基(Si-CH 3)氧化成硅-羟基(Si-OH),形成无机二氧化硅的层,使得硅橡胶表面带有羟基等大量可反应的极性基团。
紫外光的波长范围为10nm~400nm,而所述臭氧可以由100nm~200nm波长的紫外光(优选185nm波长的紫外光)激发氧气分子原位产生,也可以通过外加设备通入臭氧,还可以在硅橡胶环境中通入纯氧气,提高环境中的氧气浓度,在100nm~200nm波长的紫外光照射下原位产生高浓度的臭氧。因此,所述紫外光照射处理法中紫外光的波长优选为100nm~300nm。
优选的,所述紫外光照射处理法的温度为20℃~200℃,时间为1分钟~120分钟,使硅橡胶表面被处理充分。
同理,所述等离子体表面处理法在氧气气氛中进行,以提高处理效率。且所述等离子体表面处理法的温度为20℃~200℃,时间为1分钟~120分钟。
等离子体是在特定条件下使气(汽)体部分电离而产生的非凝聚体系,由中性的原子或分子,激发态的原子或分子、自由基、电子或负离子、正离子以及辐射光子组成。在等离子体表面处理过程中,等离子体撞击硅橡胶表面时,除了将自身的能量传递给硅橡胶表层分子外,还可引起表面刻蚀,使表面吸附的气体或其它物质的分子发生解析。利用非聚合性无机气体(Ar、N 2、H 2、O 2等)的等离子体进行表面反应,参与表面反应的有激发态分子、自由基和电子离子,也包括等离子体产生的紫外光的辐射作用。通过表面反应在表面引入特定的官能团,产生表面侵蚀,形成交联结构层或生成-COOH、-OH等极性基团。
进一步的,所述紫外光照射处理法的设备相对简单、便宜,且适合大面积处理,效率 较高。因此,优选采用紫外光照射处理法对硅橡胶进行表面处理,且所述紫外光照射处理法在臭氧气氛中进行。
所以,硅橡胶经过表面处理后,表面不仅含有羟基,还包括其它大量亲水性且容易与其它基团进行反应的极性基团,如羰基、羧基等。
实际上,表面处理后的硅橡胶表面形成的无机二氧化硅层并不是连续的,而是具有海-岛结构的无机二氧化硅与有机硅氧烷的混合物。而且,处理后的硅橡胶表面的无机二氧化硅层较薄,厚度仅为几纳米到几十纳米。因此,硅橡胶内部的低分子硅油容易迁移至硅橡胶表面,覆盖掉这层无机二氧化硅层,使得硅橡胶表面失去极性基团,重新变成疏水层。
因此,通过步骤S2将多官能团化合物覆于所述带有极性基团的硅橡胶的表面而形成涂层。
其中,多官能团化合物可以直接通过喷涂、涂覆等形式形成于带有极性基团的硅橡胶表面,也可以先溶于水或有机溶剂中形成多官能团化合物溶液后,通过喷涂、涂覆等形式形成于带有极性基团的硅橡胶表面。
将多官能团化合物覆于所述带有极性基团的硅橡胶的表面而形成连续、紧密的涂层后,硅橡胶内部的低分子硅油不容易迁移至硅橡胶表面,可以保持硅橡胶表面的性能。另外,涂层中的多官能团化合物可以与硅橡胶表面的羟基发生化学反应,形成稳定的化学键,从而可以提升多官能团化合物形成的涂层与硅橡胶表面的附着力。
同时,多官能团化合物还可以与其它基材上的基团或者其它化合物进行化学反应,从而提升硅橡胶与其它基材的粘结强度或者可以在该涂层表面接枝其它化合物。通过在其它化合物中混合抗静电剂、导电剂、抗氧剂、增塑剂、无机填料、颜料等助剂,实现硅橡胶表面的高效、方便、适用范围广的粘结改性,赋予硅橡胶所需要的性能。
优选的,形成多官能团化合物的涂层后,于20℃~150℃保温1分钟~60分钟,使涂层中的多功能团化合物与极性基团充分、快速反应,也可以使该涂层中的溶剂挥发。
具体的,所述多官能团化合物包括硅烷偶联剂、多异氰酸酯、多官能环氧化合物中的至少一种。
其中,所述硅烷偶联剂可以为阳离子型的硅烷偶联剂,所述阳离子型的硅烷偶联剂的结构式如下式(1)或式(2)或式(3)所示:
Figure PCTCN2018121794-appb-000002
其中,R 1为甲基、乙基、丙基、异丙基中的一种,R 2、R 3、R 4均为碳数为1~16的烷基、芳烃、α-烯烃、烃基(甲基)丙烯酰氧基中的一种,X -为卤素离子、羧酸根离子、硝酸根离子、四氟化硼离子、六氟化磷离子、硫酸酯根离子、二(三氟甲磺酰)亚胺根离子中的一种,n为0~3的整数。
优选的,当X -为卤素离子时,所述阳离子型的硅烷偶联剂通过以下制备过程得到:
Figure PCTCN2018121794-appb-000003
其中,R 1OH表示烷基为R 1的醇。
反应式中,结构式如式(4)所示的三烷氧基硅烷卤化物与结构式如式(5)所示的胺在醇溶剂下,加热回流反应,生成结构式如式(1)所示的阳离子型的硅烷偶联剂。
其中,结构式如式(4)所示的三烷氧基硅烷卤化物包括氯甲基三甲氧基硅烷、2-氯乙基三甲氧基硅烷、3-氯丙基三甲氧基硅烷、4-氯丁基三甲氧基硅烷、氯甲基三乙氧基硅烷、2-氯乙基三乙氧基硅烷、3-氯丙基三乙氧基硅烷、4-氯丁基三乙氧基硅烷、氯甲基三丙氧基硅烷、2-氯乙基三丙氧基硅烷、3-氯丙基三丙氧基硅烷、4-氯丁基三丙氧基硅烷、氯甲基三异丙氧基硅烷、2-氯乙基三异丙氧基硅烷、3-氯丙基三异丙氧基硅烷、4-氯丁基三异丙氧基硅烷、溴甲基三甲氧基硅烷、2-溴乙基三甲氧基硅烷、3-溴丙基三甲氧基硅烷、4-溴丁基三甲氧基硅烷、溴甲基三乙氧基硅烷、2-溴乙基三乙氧基硅烷、3-溴丙基三乙氧基硅烷、4-溴丁基三乙氧基硅烷、溴甲基三丙氧基硅烷、2-溴乙基三丙氧基硅烷、3-溴丙基三丙氧基硅烷、4-溴丁基三丙氧基硅烷、溴甲基三异丙氧基硅烷、2-溴乙基三异丙氧基硅烷、3-溴丙基三异丙氧基硅烷、4-溴丁基三异丙氧基硅烷中的一种。
结构式如式(5)所示的胺包括三甲胺、三乙胺、三丙胺、三丁胺、三戊胺、三己胺、三庚胺、三辛胺、三癸胺、三月桂胺、三乙烯基胺、三烯丙基胺、三苯胺、三(丙烯酰氧基乙基)胺、三(甲基丙烯酰氧基乙基)胺、三(丙烯酰氧基丙基)胺、三(甲基丙烯酰氧基丙基)胺中的一种。
可以理解,当胺为吡啶时,得到的阳离子型的硅烷偶联剂的结构式如式(2)所示。
当胺为N-烷基咪唑时,得到的阳离子型的硅烷偶联剂的结构式如式(3)所示。其中,N-烷基咪唑包括N-甲基咪唑、N-乙基咪唑、N-丙基咪唑、N-异丙基咪唑、N-丁基咪唑中的一种。
当X -为羧酸根离子、硝酸根离子、四氟化硼离子、六氟化磷离子、硫酸酯根离子、二(三氟甲磺酰)亚胺根离子中的一种时,所述阳离子型的硅烷偶联剂通过以下制备过程得到:
Figure PCTCN2018121794-appb-000004
Figure PCTCN2018121794-appb-000005
其中,Z为卤素,M为碱金属,X -为羧酸根离子、硝酸根离子、四氟化硼离子、六氟 化磷离子、硫酸酯根离子、二(三氟甲磺酰)亚胺根离子中的一种,R 1OH表示烷基为R 1的醇。
即,得到X -为卤素离子的阳离子型的硅烷偶联剂后,再与碱金属盐(7)发生离子交换反应,生成X -为羧酸根离子、硝酸根离子、四氟化硼离子、六氟化磷离子、硫酸酯根离子、二(三氟甲磺酰)亚胺根离子中的一种的阳离子型的硅烷偶联剂。
其中,碱金属盐包括羧酸锂、硝酸锂、四氟化硼锂、六氟化磷锂、硫酸酯锂、二(三氟甲磺酰)亚胺锂、羧酸钠、硝酸钠、四氟化硼钠、六氟化磷钠、硫酸酯钠、二(三氟甲磺酰)亚胺钠、羧酸钾、硝酸钾、四氟化硼钾、六氟化磷钾、硫酸酯锂、二(三氟甲磺酰)亚胺钾中的一种。
碱金属盐与结构式如式(6)所示的阳离子型的硅烷偶联剂的摩尔比为1~1.2:1。
离子交换反应所用溶剂包括醇、丙酮、乙酸乙酯、四氢呋喃、乙醚等,反应的温度为10℃~30℃,反应的时间为0.5小时~2小时。
反应结束后,将溶剂及生成的无机盐从反应液中除去,得到阳离子型的硅烷偶联剂。具体的,如果在得到的反应液中有无机盐析出,则将反应液过滤,将析出的无机盐除去,接下来,将浓缩、过滤、抽出等的单元操作适当地组合,分离出阳离子型的硅烷偶联剂。如果在得到的反应液中无机盐没有析出,则将反应液浓缩而使无机盐析出,再通过过滤将无机盐除去,接下来,将浓缩、过滤、抽出等单元操作适当组合,分离出阳离子型的硅烷偶联剂。
当所述硅烷偶联剂为阳离子型的硅烷偶联剂,还包括将所述亲水性化合物覆于所述带有极性基团的硅橡胶的表面,以使所述阳离子型的硅烷偶联剂同时与所述极性基团以及所述亲水性化合物反应。
因此,通过阳离子型的硅烷偶联剂与硅橡胶表面的羟基等极性基团反应,以及与亲水性化合物的聚合反应,使得在硅橡胶的表面形成连续、紧密的涂层。该涂层不仅可使硅橡胶内部的低分子硅油不容易迁移至硅橡胶表面,保持硅橡胶表面的性能。而且,阳离子型的硅烷偶联剂和亲水性化合物均具有抗静电效果,所以可实现硅橡胶表面的抗静电效果。
同时,由于阳离子型的硅烷偶联剂与硅橡胶表面的羟基等极性基团发生化学反应形成了稳定的化学键,而亲水性化合物也是通过与阳离子型的硅烷偶联剂通过聚合反应形成了稳定的化学键。因此,阳离子型的硅烷偶联剂和亲水性化合物的混合物形成的涂层与硅橡胶表面通过化学键连接,粘结强度高,可使硅橡胶表面具有永久性的抗静电效果。而且,该涂层的厚度为几微米或者几十微米,所以在达到抗静电效果的同时不会降低硅橡胶的性能。
具体的,所述亲水性化合物包括亲水性单体、亲水性聚合物中的至少一种。阳离子型的硅烷偶联剂水解后产生的硅羟基可以与亲水性聚合物反应在硅橡胶表面形成亲水性的涂层,阳离子型的硅烷偶联剂上含有的双键基团可以与亲水性单体在自由基引发下发生聚合,形成亲水性涂层。
其中,所述亲水性单体包括丙烯酸及其盐、甲基丙烯酸及其盐、丙烯酰胺、甲基丙烯酰胺、丙烯酸羟乙酯、甲基丙烯酸羟乙酯、马来酸及其盐、富马酸及其盐、端基含乙烯基的聚乙二醇均聚物或共聚物中的至少一种。可以理解,端基含乙烯基的聚乙二醇均聚物或共聚物属于可聚合的大分子单体。
所述亲水性聚合物为含羟基的亲水性聚合物,包括聚乙烯醇、聚乙二醇均聚物或共聚物、聚丙烯酸羟乙酯、聚丙烯酸羟丙酯、聚丙烯酸羟乙酯-丙烯酸共聚物、聚丙烯酸羟乙酯-丙烯酰胺共聚物、聚丙烯酸羟乙酯-马来酸酐共聚物、聚丙烯酸羟乙酯-(甲基)丙烯酸二甲氨基乙酯共聚物、聚丙烯酸羟乙酯-丙烯酰氧乙基三甲基氯化铵、聚丙烯酸羟丙酯-丙烯酸共聚物、聚丙烯酸羟丙酯-丙烯酰胺共聚物、聚丙烯酸羟丙酯-马来酸酐共聚物、聚丙烯酸羟丙酯-(甲基)丙烯酸二甲氨基乙酯共聚物、聚丙烯酸羟丙酯-丙烯酰氧乙基三甲基氯化铵、淀粉、明胶、羟乙基纤维素中的至少一种。
具体的,所述阳离子型的硅烷偶联剂和所述亲水性化合物的质量比为5:1~1:5。
具体的,所述硅烷偶联剂的化学式还可以为Y-R-SiX 3,式中,Y为非水解基团,包括链烯基(主要为乙烯基)以及末端带有氯基(-Cl)、氨基(-NH 2)、巯基(-SH)、环氧基
Figure PCTCN2018121794-appb-000006
叠氮基(-N 3)、异氰酸基(-NCO)、阳离子基团等官能团;R为饱和或不饱和的烃基;X为可水解基团,包括-Cl、-OMe、-OEt、-OC 2H 4OCH 3、-OSiMe 3等。优选的,所述硅烷偶联剂包括3-氨基丙基三乙氧基硅烷(KH-550)、γ-缩水甘油醚氧丙基三甲氧基硅烷(KH-560)、γ-(甲基丙烯酰氧)丙基三甲氧基硅烷(KH-570)、3-(2-氨乙基)-氨丙基三甲氧基硅烷(KH-792)、N-氨乙基-3-氨丙基甲基三甲氧基硅烷(KH-602)、3-巯基丙基三甲氧基硅烷、3-异氰酸丙基三甲氧基硅烷中的至少一种。
所述多异氰酸酯包括含有三个或三个以上的异氰酸酯基团的化合物,具体的,所述多异氰酸酯包括三苯基甲烷三异氰酸酯、硫代磷酸三(4-苯基异氰酸酯)、甲苯二异氰酸酯二聚体、甲苯二异氰酸酯三聚体、二苯基甲烷-4,4-二异氰酸酯、多苯基多亚甲基多异氰酸酯、甲苯二异氰酸酯-三羟甲基丙烷加成物中的至少一种。
所述多官能环氧化合物包括含有三个或三个以上的环氧基团的化合物,具体的,所述多官能环氧化合物包括三羟甲基丙烷三缩水甘油醚、三羟甲基乙烷三缩水甘油醚、聚丙三醇三缩水甘油醚、丙氧基甘油三缩水甘油醚、丙三醇三缩水甘油醚、四缩水甘油醚四苯基乙烷、三缩水甘油醚三苯基甲烷、四缩水甘油基二氨基二苯基甲烷、三缩水甘油基对氨基苯酚、四缩水甘油基间二甲苯二胺中的至少一种。
步骤S2形成所述涂层后,还包括步骤S3将粘结剂覆于所述涂层的表面,使所述粘结剂与所述多官能团化合物反应而形成第二涂层。
以及,还包括步骤S4固化依次覆于硅橡胶表面的涂层和第二涂层。
步骤S3中,将粘结剂覆于涂层表面,使粘结剂与涂层中的多官能团化合物发生化学反应,从而可在涂层表面形成粘结层,实现硅橡胶表面的高效、方便、适用范围广的粘结,改善硅橡胶的粘结性能。
具体的,所述粘结剂不限,只要能与多官能团化合物发生反应形成化学键即可,包括聚合物或形成所述聚合物的单体。优选的,所述聚合物包括聚氨酯、环氧树脂、聚丙烯酸酯中的至少一种。
其中,聚氨酯或者形成聚氨酯的单体上含有羟基(-OH),异氰酸基(-NCO)等基团,可以与硅橡胶表面的多官能团涂层上的官能团发生化学反应,形成稳定的化学键。环氧树脂 上含有环氧基团和羟基,可以与多官能涂层上的官能团发生化学反应。聚丙烯酸酯上含有的双键,可以与多官能团上的双键等基团共聚。例如,多官能团涂层上含有环氧基团可以与粘结层上的羟基、氨基、异氰酸基、羧基反应;多官能团涂层上含有的氨基可以与粘结层上的环氧基、异氰酸基、双键、羧基等基团发生化学反应;多官能团涂层上含有的双键可以与粘结层上的氨基、双键等基团发生化学反应;多官能团涂层上含有的巯基可以与粘结层上的双键、异氰酸基、羧基、环氧基等基团发生化学反应。
优选的,将合成聚氨酯的原料异氰酸酯、多元醇、扩链剂、交联剂、催化剂以及助剂等混合物或者聚氨酯作为粘结剂,涂覆或喷涂在第一涂层表面,第一涂层的多官能团化合物含有环氧基团、氨基、巯基、异氰酸基团中的至少一种基团,粘结剂和多官能团化合物反应形成稳定的化学键。
优选的,将环氧树脂单体、固化剂以及助剂等混合物或者环氧树脂作为粘结剂,涂覆或喷涂在第一涂层表面,第一涂层的多官能团化合物含有环氧基团、氨基、巯基、异氰酸基团中的至少一种基团,粘结剂和多官能团化合物反应形成稳定的化学键。
优选的,将丙烯酸酯单体、引发剂、交联剂以及助剂等混合物或者聚丙烯酸酯树脂作为粘结剂,涂覆或喷涂在第一涂层表面,第一涂层的多官能团化合物含有含有双键、巯基、环氧基团、异氰酸基团中的至少一种基团,粘结剂和多官能团化合物反应形成稳定的化学键。
当采用端基为双键的聚酯、聚丙烯酸酯、聚氨酯等聚合物以及自由基引发剂或光引发剂作为粘结剂时,第一涂层的多官能团化合物含有双键。在加热或者紫外光照射下,粘结剂和多官能团化合物反应形成稳定的化学键。
具体的,将粘结剂覆于所述涂层的表面时,还包括将抗静电剂覆于所述涂层的表面,以使所述第二涂层中包括抗静电剂。
其中,所述抗静电剂不限,与粘结剂具有较好的相容性即可。包括表面活性剂、亲水性高分子、无机盐、离子液体、炭黑、金属、金属氧化物等。优选的,所述抗静电剂为表面活性剂或亲水性高分子中的至少一种。
表面活性剂作为抗静电剂使用时,与粘结性混合并形成第二涂层后,抗静电剂分子会向外迁移,形成抗静电层。抗静电分子的亲油性基团植于粘结剂内部,亲水性基团则在空气一侧取向排列。前者使抗静电剂和粘结剂保持一定的相容性,后者吸附空气中的水分子在第二涂层表面形成一层均匀分布的导电溶液,或自身离子化传导表面电荷达到抗静电效果。当表面的抗静电层缺失或损坏时,内部的抗静电剂分子可以继续向外迁移补充,所以具有持续的抗静电效果。
优选的,所述表面活性剂包括阳离子表面活性剂、阴离子表面活性剂、两性表面活性剂、非离子表面活性剂中的至少一种;其中,所述阳离子表面活性剂包括季铵盐表面活性剂、吗啉盐酸盐表面活性剂或咪唑啉盐表面活性剂中的至少一种;所述阴离子表面活性剂包括磺酸盐表面活性剂、磷酸盐表面活性剂或羧酸盐表面活性剂中的至少一种;所述非离子表面活性剂包括含聚氧乙烯链段或多元醇的表面活性剂中的至少一种。
进一步的,所述表面活性剂为非离子表面活性剂,所述非离子表面活性剂包括含聚氧 乙烯链段或者多元醇的表面活性剂中的至少一种。
亲水性高分子作为抗静电剂使用时,可以与粘结剂形成合金可永久保持抗静电效果。
优选的,所述亲水性高分子为聚乙烯醇、聚乙二醇均聚物或共聚物、聚丙烯酰胺、聚丙烯酸羟乙酯、聚丙烯酸羟丙酯、聚丙烯酸及其盐、聚丙烯酰氧乙基三甲基氯化铵、聚(甲基)丙烯酸二甲氨基乙酯、马来酸酐共聚物、马来酸共聚物、富马酸共聚物、淀粉、明胶、羟乙基纤维素或者是含有这些聚合物链段的高分子。
从而,通过选择无色透明的抗静电剂以及相容性良好的无色透明的粘结剂混合,可在硅橡胶表面形成无色透明的抗静电涂层,得到无色透明的抗静电硅橡胶。
因此,本发明表面处理后的硅橡胶可应用于电器、电子产品、汽车、精密仪器等的密封保护,改善硅橡胶与基材的粘结性,防止水分通过硅橡胶与基材的空隙进入产品内部导致腐蚀和绝缘失效。以及,可用于制备抗静电硅胶鞋、手机外壳、密封圈、胶辊、按键等。
以下,将通过以下具体实施例对所述硅橡胶的表面处理方法做进一步的说明。
实施例1:
将硅橡胶样片置于紫外臭氧清洗机中,紫外臭氧清洗机的温度为25℃,紫外光照射过程中紫外光的波长为100nm~300nm,在紫外光的激发下产生臭氧,照射30分钟,得到表面处理后的硅橡胶样片A1。
配制1份3-氨基丙基三乙氧基硅烷、5份水、94份乙醇溶液,将该溶液喷涂在处理后的硅橡胶样片A1表面,喷涂量为0.1g/cm 2溶液,70℃下加热3分钟,得到表面接枝可反应基团的硅橡胶B1。
将环氧树脂A胶和B胶按3:1比例混合,混合均匀,涂覆在硅橡胶B1上,固化后进行测试,结果如表1所示。
实施例2:
将硅橡胶样片置于紫外臭氧清洗机中,紫外臭氧清洗机的温度为20℃,紫外光照射过程中紫外光的波长为100nm~300nm,在紫外光的激发下产生臭氧,照射60分钟,得到表面处理后的硅橡胶样片A2。
配制1份γ-缩水甘油醚氧丙基三甲氧基硅烷、5份水、94份乙醇溶液,将该溶液喷涂在处理后的硅橡胶样片A2表面,70℃下加热3分钟,得到表面接枝可反应基团的硅橡胶B2。
将环氧树脂A胶和B胶按3:1比例混合,混合均匀,涂覆在硅橡胶B2上,120℃固化1分钟后进行测试,结果如表1所示。
实施例3:
将硅橡胶样片置于紫外臭氧清洗机中,紫外臭氧清洗机的温度为20℃,紫外光照射过程中紫外光的波长为100nm~300nm,同时向紫外臭氧清洗机中充入浓度为1ppm的臭氧,照射60分钟,得到表面处理后的硅橡胶样片A3。
配制1份N-氨乙基-3-氨丙基甲基三甲氧基硅烷、5份水、94份乙醇溶液,将该溶液喷涂在处理后的硅橡胶样片A3表面,70℃下加热3分钟,得到表面接枝可反应基团的硅橡 胶B3。
在硅橡胶B3上,涂覆一层二异氰酸酯、聚醚多元醇、催化剂混合溶液,固化后进行测试,结果如表1所示。
实施例4:
将硅橡胶样片置于紫外臭氧清洗机中,紫外臭氧清洗机的温度为20℃,紫外光照射过程中紫外光的波长为100nm~300nm,同时向紫外臭氧清洗机中充入浓度为100ppm的臭氧,照射120分钟,得到表面处理后的硅橡胶样片A4。
将三苯基甲烷三异氰酸酯喷涂在处理后的硅橡胶样片A4表面,70℃下加热3分钟,得到表面接枝可反应基团的硅橡胶B4。
在硅橡胶B4上,涂覆一层二异氰酸酯、聚醚多元醇、催化剂混合溶液,60℃固化30分钟后进行测试,结果如表1所示。
实施例5:
将硅橡胶样片置于紫外臭氧清洗机中,紫外臭氧清洗机的温度为20℃,同时向紫外臭氧清洗机中充入纯氧气,紫外光照射过程中紫外光的波长为100nm~300nm,在紫外光的激发下产生臭氧,照射60分钟,得到表面处理后的硅橡胶样片A5。
将封闭性甲苯二异氰酸酯-三羟甲基丙烷乳液喷涂在处理后的硅橡胶样片A5表面,70℃下加热3分钟,得到表面接枝异氰酸基团的硅橡胶B5。
水性聚氨酯预乳液中加入流平剂、增稠剂,混合均匀,涂覆在硅橡胶B5表面上,120℃固化3分钟后进行测试,结果如表1所示。
实施例6:
将硅橡胶样片置于紫外臭氧清洗机中,紫外臭氧清洗机的温度为50℃,同时向紫外臭氧清洗机中充入纯氧气,紫外光照射过程中紫外光的波长为100nm~300nm,在紫外光的激发下产生臭氧,照射10分钟,得到表面处理后的硅橡胶样片A6。
配制1份γ-(甲基丙烯酰氧)丙基三甲氧基硅烷、5份水、94份乙醇溶液,加入少量乙酸调节pH=3~4,将该溶液喷涂在处理后的硅橡胶样片A6表面,喷涂量为0.2g/cm 2溶液,得到表面接枝异氰酸基团的硅橡胶B6。
将端基含有丙烯酸酯基的聚氨酯、光引发剂混合溶液涂覆在硅橡胶B6表面,20℃下紫外光照射10分钟固化后进行测试,结果如表1所示。
实施例7:
将硅橡胶样片置于紫外臭氧清洗机中,紫外臭氧清洗机的温度为50℃,紫外光照射过程中紫外光的波长为100nm~300nm,同时向紫外臭氧清洗机中充入浓度为200ppm的臭氧,照射10分钟,得到表面处理后的硅橡胶样片A7。
配制1份γ-(甲基丙烯酰氧)丙基三甲氧基硅烷、5份水、94份乙醇溶液,加入少量乙酸调节pH=3~4,将该溶液喷涂在处理后的硅橡胶样片A7表面,喷涂量为0.2g/cm 2溶液,得到表面接枝异氰酸基团的硅橡胶B7。
将丙烯酸、丙烯酸酯、交联剂、以及引发剂偶氮二异丁腈的混合溶液涂覆在硅橡胶 B7表面,70℃下加热固化后进行测试,结果如表1所示。
实施例8:
将硅橡胶样片置于紫外臭氧清洗机中,紫外臭氧清洗机的温度为200℃,紫外光照射过程中紫外光的波长为100nm~300nm,同时向紫外臭氧清洗机中充入浓度为100ppm的臭氧,照射1分钟,得到表面处理后的硅橡胶样片A8。
配制1份3-氨基丙基三乙氧基硅烷、5份水、94份乙醇溶液,将该溶液喷涂在处理后的硅橡胶样片A8表面,喷涂量为0.1g/cm 2溶液,150℃下加热1分钟,得到表面接枝可反应基团的硅橡胶B8。
将环氧树脂A胶和B胶按3:1比例混合,加入催化剂混合均匀,涂覆在硅橡胶B8上,20℃固化60分钟后进行测试,结果如表1所示。
实施例9:
将硅橡胶样片置于等离子处理机中,通入纯氧气,处理温度为20℃,处理120分钟,得到表面处理后的硅橡胶样片A9。
配制1份3-(2-氨乙基)-氨丙基三甲氧基硅烷(KH-792)、5份水、94份乙醇溶液,将该溶液喷涂在处理后的硅橡胶样片A9表面,喷涂量为0.1g/cm 2溶液,70℃下加热3分钟,得到表面接枝可反应基团的硅橡胶B9。
将环氧树脂A胶和B胶按3:1比例混合,混合均匀,涂覆在硅橡胶B9上,20℃固化60分钟后进行测试,结果如表1所示。
实施例10:
将硅橡胶样片置于等离子处理机中,通入纯氧气,处理温度为60℃,处理60分钟,得到表面处理后的硅橡胶样片A10。
将甲苯二异氰酸酯三聚体溶液喷涂在处理后的硅橡胶样片A10表面,喷涂量为0.1g/cm 2溶液,70℃下加热3分钟,得到表面接枝可反应基团的硅橡胶B10。
聚氨酯预聚体涂覆在硅橡胶B10上,20℃固化60分钟后进行测试,结果如表1所示。
实施例11:
将硅橡胶样片置于等离子处理机中,通入纯氧气,处理温度为120℃,处理1分钟,得到表面处理后的硅橡胶样片A11。
配制1份γ-(甲基丙烯酰氧)丙基三甲氧基硅烷、5份水、94份乙醇溶液,加入少量乙酸调节pH=3~4,将该溶液喷涂在处理后的硅橡胶样片A11表面,喷涂量为0.2g/cm 2溶液,得到表面接枝异氰酸基团的硅橡胶B11。
将端基含有丙烯酸酯基的聚氨酯树脂、光引发剂混合,涂覆在硅橡胶B11表面,紫外光照射固化后进行测试,结果如表1所示。
对比例1:
将硅橡胶样片置于紫外臭氧清洗机中,紫外臭氧清洗机的温度为20℃,紫外光照射过程中紫外光的波长为100nm~300nm,同时向紫外臭氧清洗机中充入浓度为100ppm的臭氧,照射60分钟,得到表面处理后的硅橡胶样片A12。
将环氧树脂A胶和B胶按3:1比例混合,涂覆在硅橡胶A12上,固化后进行测试,结果如表1所示。
对比例2:
配制1份3-氨基丙基三乙氧基硅烷、5份水、94份乙醇溶液,将该溶液喷涂未处理的硅橡胶样片A10表面,喷涂量为0.1g/cm 2溶液,70℃下加热3分钟,得到硅橡胶B13。
将环氧树脂A胶和B胶按3:1比例混合,涂覆在硅橡胶B13上,固化后进行测试,结果如表1所示。
表1
Figure PCTCN2018121794-appb-000007
由表1可知,实施例1~11制得的硅橡胶的粘结性明显高于对比例1~2制得的硅橡胶的粘结性。
实施例12:
将硅橡胶样片置于紫外臭氧清洗机中,紫外臭氧清洗机的温度为20℃,紫外光照射过程中紫外光的波长为100nm~300nm,在紫外光的激发下产生臭氧,照射10分钟,得到表面处理后的硅橡胶样片A14。
配制1份1,1,1-三甲基-1-[(三甲氧基硅烷)甲基]氯化铵、1份聚乙二醇(聚合物分子量2000g/mol)、5份水、93份乙醇溶液,加入少量乙酸调节pH=3~4,将该溶液喷涂在处理后的硅橡胶样片A14表面,喷涂量为0.1g/cm 2溶液,70℃下加热3分钟,得到表面涂覆抗静电涂层的硅橡胶1。
实施例13:
将硅橡胶样片置于紫外臭氧清洗机中,紫外臭氧清洗机的温度为20℃,紫外光照射过程中紫外光的波长为100nm~300nm,在紫外光的激发下产生臭氧,照射30分钟,得到表 面处理后的硅橡胶样片A15。
配制5份1,1,1-三甲基-1-[(三甲氧基硅烷)甲基]氯化铵、1份聚乙二醇(聚合物分子量2000g/mol)、4份水、90份乙醇溶液,加入少量乙酸调节pH=3~4,将该溶液喷涂在处理后的硅橡胶样片A15表面,喷涂量为0.1g/cm 2溶液,70℃下加热3分钟,得到表面涂覆抗静电涂层的硅橡胶2。
实施例14:
将硅橡胶样片置于紫外臭氧清洗机中,紫外臭氧清洗机的温度为20℃,紫外光照射过程中紫外光的波长为100nm~300nm,在紫外光的激发下产生臭氧,照射60分钟,得到表面处理后的硅橡胶样片A16。
配制1份1,1,1-三甲基-1-[(三甲氧基硅烷)甲基]氯化铵、1份聚乙二醇(聚合物分子量2000g/mol)、5份水、93份乙醇溶液,加入少量乙酸调节pH=3~4,将该溶液喷涂在处理后的硅橡胶样片A16表面,喷涂量为0.1g/cm 2溶液,70℃下加热3分钟,得到表面涂覆抗静电涂层的硅橡胶3。
实施例15:
将硅橡胶样片置于紫外臭氧清洗机中,紫外臭氧清洗机的温度为20℃,紫外光照射过程中紫外光的波长为100nm~300nm,在紫外光的激发下产生臭氧,照射120分钟,得到表面处理后的硅橡胶样片A17。
配制1份1,1,1-三甲基-1-[(三甲氧基硅烷)甲基]铵六氟化磷盐、1份聚乙二醇(聚合物分子量2000g/mol)、5份水、93份乙醇溶液,加入少量乙酸调节pH=3~4,将该溶液喷涂在处理后的硅橡胶样片A17表面,喷涂量为0.1g/cm 2溶液,70℃下加热3分钟,得到表面涂覆抗静电涂层的硅橡胶4。
实施例16:
将硅橡胶样片置于紫外臭氧清洗机中,紫外臭氧清洗机的温度为20℃,紫外光照射过程中紫外光的波长为100nm~300nm,同时向紫外臭氧清洗机中充入浓度为1ppm的臭氧,照射60分钟,得到表面处理后的硅橡胶样片A18。
配制2份1,1,1-三甲基-1-[(三甲氧基硅烷)乙基]铵四氟化硼盐、1份聚丙烯酸羟乙酯(数均分子量3000mol/L)、5份水、92份乙醇溶液,加入少量乙酸调节pH=3~4,将该溶液喷涂在处理后的硅橡胶样片A18表面,喷涂量为0.2g/cm 2溶液,70℃下加热3分钟,得到表面涂覆抗静电涂层的硅橡胶5。
实施例17:
将硅橡胶样片置于紫外臭氧清洗机中,紫外臭氧清洗机的温度为50℃,紫外光照射过程中紫外光的波长为100nm~300nm,同时向紫外臭氧清洗机中充入浓度为100ppm的臭氧,照射10分钟,得到表面处理后的硅橡胶样片A19。
配制1份1,1,1-三辛基-1-[(三甲氧基硅烷)乙基]乙酸铵、0.5份淀粉、3.5份水、95份乙醇溶液,加入少量乙酸调节pH=3~4,将该溶液喷涂在处理后的硅橡胶样片A19表面,喷涂量为0.2g/cm 2溶液,20℃反应60分钟,表面溶液风干,得到表面涂覆抗静电涂层的硅橡胶 6。
实施例18:
将硅橡胶样片置于紫外臭氧清洗机中,紫外臭氧清洗机的温度为100℃,紫外光照射过程中紫外光的波长为100nm~300nm,同时向紫外臭氧清洗机中充入浓度为200ppm的臭氧,照射10分钟,得到表面处理后的硅橡胶样片A20。
配制1份1,1,1-三乙基-1-[(三甲氧基硅烷)丙基]硝酸铵、0.5份羟乙基纤维素、3.5份水、95份乙醇溶液,加入少量乙酸调节pH=3~4,将该溶液喷涂在处理后的硅橡胶样片A20表面,喷涂量为0.05g/cm 2溶液,150℃反应1分钟,得到表面涂覆抗静电涂层的硅橡胶7。
实施例19:
将硅橡胶样片置于紫外臭氧清洗机中,紫外臭氧清洗机的温度为200℃,紫外光照射过程中紫外光的波长为100nm~300nm,同时向紫外臭氧清洗机中充入浓度为100ppm的臭氧,照射1分钟,得到表面处理后的硅橡胶样片A21。
配制1份1-[(三甲氧基硅烷)丙基]吡啶硫酸乙酯盐、0.5份聚乙二醇4000、3.5份水、95份乙醇溶液,加入少量乙酸调节pH=3~4,将该溶液喷涂在处理后的硅橡胶样片A21表面,喷涂量为0.05g/cm 2溶液,60℃反应30分钟,得到表面涂覆抗静电涂层的硅橡胶8。
实施例20:
将硅橡胶样片置于紫外臭氧清洗机中,紫外臭氧清洗机的温度为50℃,同时向紫外臭氧清洗机中充入纯氧气,紫外光照射过程中紫外光的波长为100nm~300nm,在紫外光的激发下产生臭氧,照射30分钟,得到表面处理后的硅橡胶样片A22。
配制1份1-[(三甲氧基硅烷)丙基]铵二(三氟甲磺酰)亚胺、2份聚乙二醇(聚合物分子量4000g/mol)、3份水、94份乙醇溶液,加入少量乙酸调节pH=3~4,将该溶液喷涂在处理后的硅橡胶样片A22表面,喷涂量为0.05g/cm 2溶液,60℃反应30分钟,得到表面涂覆抗静电涂层的硅橡胶9。
实施例21:
将硅橡胶样片置于紫外臭氧清洗机中,紫外臭氧清洗机的温度为50℃,紫外光照射过程中紫外光的波长为100nm~300nm,,在紫外光的激发下产生臭氧,照射30分钟,得到表面处理后的硅橡胶样片A23。
配制1份1,1,1-三烯丙基-1-[(三甲氧基硅烷)丙基]硝酸铵、0.5份丙烯酸钠、3.5份水、95份乙醇溶液,0.005份热引发剂偶氮二异丁脒盐酸盐,加入少量乙酸调节pH=3~4,将该溶液喷涂在处理后的硅橡胶样片A23表面,喷涂量为0.05g/cm 2溶液,60℃反应30分钟,得到表面涂覆抗静电涂层的硅橡胶10。
实施例22:
将硅橡胶样片置于等离子处理机中,通入纯氧气,处理温度为20℃,处理120分钟,得到表面处理后的硅橡胶样片A24。
配制1份1-[(三甲氧基硅烷)丙基]-3-甲基咪唑六氟磷酸锂、5份聚乙二醇-聚丙二醇共聚物、4份水、90份乙醇溶液,加入少量乙酸调节pH=3~4,将该溶液喷涂在处理后的硅橡胶 样片A24表面,喷涂量为0.05g/cm 2溶液,60℃反应30分钟,得到表面涂覆抗静电涂层的硅橡胶11。
实施例23:
将硅橡胶样片置于等离子处理机中,通入纯氧气,处理温度为60℃,处理60分钟,得到表面处理后的硅橡胶样片A25。
配制1份1,1,1-三丙基-1-[(三甲氧基硅烷)丙基]乙酸铵、1份甲基烯丙基聚氧乙烯醚、4份水、94份乙醇溶液,0.05份热引发剂偶氮二异丁脒盐酸盐,加入少量乙酸调节pH=3~4,将该溶液喷涂在处理后的硅橡胶样片A25表面,喷涂量为0.1g/cm 2溶液,60℃反应30分钟,得到表面涂覆抗静电涂层的硅橡胶12。
实施例24:
将硅橡胶样片置于等离子处理机中,通入纯氧气,处理温度为120℃,处理1分钟,得到表面处理后的硅橡胶样片A26。
配制1份1,1,1-三甲基-1-[(三甲氧基硅烷)丁基]氯化铵、0.5份聚丙烯酸羟乙酯-丙烯酰氧乙基三甲基氯化铵、3.5份水、95份乙醇溶液,加入少量乙酸调节pH=3~4,将该溶液喷涂在处理后的硅橡胶样片A26表面,60℃反应30分钟,得到表面涂覆抗静电涂层的硅橡胶13。
对比例3:
将硅橡胶样片置于紫外臭氧清洗机中,紫外臭氧清洗机的温度为20℃,紫外光照射过程中紫外光的波长为100nm~300nm,在紫外光的激发下产生臭氧,照射60分钟,得到表面处理后的硅橡胶样片14。
对比例4:
将硅橡胶样片置于紫外臭氧清洗机中,紫外臭氧清洗机的温度为20℃,紫外光照射过程中紫外光的波长为100nm~300nm,在紫外光的激发下产生臭氧,照射60分钟,得到表面处理后的硅橡胶样片B14。
配制1份1,1,1-三甲基-1-[(三甲氧基硅烷)甲基]氯化铵、5份水、94份乙醇溶液,加入少量乙酸调节pH=3~4,将该溶液喷涂在处理后的硅橡胶样片B14表面,喷涂量为0.1g/cm 2溶液,70℃下加热3分钟,得到表面涂覆抗静电涂层的硅橡胶15。
对比例5:
将硅橡胶样片置于紫外臭氧清洗机中,紫外臭氧清洗机的温度为20℃,紫外光照射过程中紫外光的波长为100nm~300nm,在紫外光的激发下产生臭氧,照射60分钟,得到表面处理后的硅橡胶样片B15。
配制1份聚乙二醇(聚合物分子量2000g/mol)、5份水、94份乙醇溶液,加入少量乙酸调节pH=3~4,将该溶液喷涂在处理后的硅橡胶样片B15表面,喷涂量为0.1g/cm 2溶液,70℃下加热3分钟,得到表面涂覆抗静电涂层的硅橡胶16。
将实施例12~24和对比例3~5的硅橡胶进行性能测试,测试结果如表2所示。
表2
Figure PCTCN2018121794-appb-000008
由表2可知,实施例12~24制得的硅橡胶均为抗静电橡胶,而对比例3~5制得的硅橡胶抗静电性能差。
实施例25:
将硅橡胶样片置于紫外臭氧清洗机中,紫外臭氧清洗机的温度为20℃,紫外光照射过程中紫外光的波长为100nm~300nm,照射10分钟,得到表面处理后的硅橡胶样片A27。
配制1份3-氨基丙基三乙氧基硅烷、5份水、94份乙醇溶液,将该溶液喷涂在处理后的硅橡胶样片A27表面,喷涂量为0.1g/cm 2溶液,70℃下加热3分钟,得到表面接枝可反应基团的硅橡胶B16。
将环氧树脂A胶和B胶按3:1比例混合,加入2wt%的十八烷基二甲基羟乙基季铵硝酸盐,混合均匀,涂覆在硅橡胶B16上,固化后得到抗静电硅橡胶17。
实施例26:
将硅橡胶样片置于紫外臭氧清洗机中,紫外臭氧清洗机的温度为20℃,紫外光照射过程中紫外光的波长为100nm~300nm,照射60分钟,得到表面处理后的硅橡胶样片A28。
配制1份γ-缩水甘油醚氧丙基三甲氧基硅烷、5份水、94份乙醇溶液,将该溶液喷涂在处理后的硅橡胶样片A28表面,70℃下加热3分钟,得到表面接枝可反应基团的硅橡胶B17。
将环氧树脂A胶和B胶按3:1比例混合,加入2wt%的N-十六烷基吡啶硝酸盐,混合均匀,涂覆在硅橡胶B17上,固化后得到抗静电硅橡胶18。
实施例27:
将硅橡胶样片置于紫外臭氧清洗机中,紫外臭氧清洗机的温度为20℃,紫外光照射过程中紫外光的波长为100nm~300nm,照射60分钟,得到表面处理后的硅橡胶样片A29。
配制1份N-氨乙基-3-氨丙基甲基三甲氧基硅烷、5份水、94份乙醇溶液,将该溶液喷涂在处理后的硅橡胶样片A29表面,70℃下加热3分钟,得到表面接枝可反应基团的硅橡胶B18。
聚氨酯预聚体中加入2wt%的十二烷基三甲基氯化铵,混合均匀,涂覆在硅橡胶B18上,固化后得到抗静电硅橡胶19。
实施例28:
将硅橡胶样片置于紫外臭氧清洗机中,紫外臭氧清洗机的温度为20℃,紫外光照射过程中紫外光的波长为100nm~300nm,照射60分钟,得到表面处理后的硅橡胶样片A30。
将三苯基甲烷三异氰酸酯喷涂在处理后的硅橡胶样片A30表面,70℃下加热3分钟,得到表面接枝可反应基团的硅橡胶B19。
聚氨酯预聚体中加入2wt%的二月桂酸基磷酸酯钠,混合均匀,涂覆在硅橡胶B19上,固化后得到抗静电硅橡胶20。
实施例29:
将硅橡胶样片置于紫外臭氧清洗机中,紫外臭氧清洗机的温度为20℃,同时向紫外臭氧清洗机中充入纯氧气,紫外光照射过程中紫外光的波长为100nm~300nm,照射60分钟,得到表面处理后的硅橡胶样片A31。
将封闭性甲苯二异氰酸酯-三羟甲基丙烷乳液喷涂在处理后的硅橡胶样片A31表面,70℃下加热3分钟,得到表面接枝异氰酸基团的硅橡胶B20。
水性聚氨酯预乳液中加入2wt%的聚乙二醇4000,混合均匀,涂覆在硅橡胶B20上,固化后得到抗静电硅橡胶21。
实施例30:
将硅橡胶样片置于紫外臭氧清洗机中,紫外臭氧清洗机的温度为50℃,同时向紫外臭氧清洗机中充入纯氧气,紫外光照射过程中紫外光的波长为100nm~300nm,照射10分钟,得到表面处理后的硅橡胶样片A32。
配制1份γ-(甲基丙烯酰氧)丙基三甲氧基硅烷、5份水、94份乙醇溶液,加入少量乙酸调节pH=3~4,将该溶液喷涂在处理后的硅橡胶样片A32表面,喷涂量为0.2g/cm 2溶液,得到表面接枝异氰酸基团的硅橡胶B21。
将端基含有丙烯酸酯基的聚氨酯、光引发剂混合溶液涂覆在硅橡胶B21表面,紫外光照射固化,得到抗静电硅橡胶22。
实施例31:
将硅橡胶样片置于紫外臭氧清洗机中,紫外臭氧清洗机的温度为50℃,同时向紫外臭氧清洗机中充入纯氧气,紫外光照射过程中紫外光的波长为100nm~300nm,照射10分钟,得到表面处理后的硅橡胶样片A33。
配制1份γ-(甲基丙烯酰氧)丙基三甲氧基硅烷、5份水、94份乙醇溶液,加入少量 乙酸调节pH=3~4,将该溶液喷涂在处理后的硅橡胶样片A33表面,喷涂量为0.2g/cm 2溶液,得到表面接枝异氰酸基团的硅橡胶B22。
将丙烯酸、丙烯酸酯、交联剂、引发剂偶氮二异丁腈以及抗静电剂三甲基十六烷基乙酸铵盐的混合溶液涂覆在硅橡胶B22表面,70℃下加热固化,得到抗静电硅橡胶23。
实施例32:
将硅橡胶样片置于紫外臭氧清洗机中,紫外臭氧清洗机的温度为20℃,同时向紫外臭氧清洗机中充入臭氧浓度为1ppm,紫外光照射过程中紫外光的波长为100-300nm,照射120分钟,得到表面处理后的硅橡胶样片A34。
配制1份四缩水甘油基二氨基二苯基甲烷、5份水、94份乙醇溶液,将该溶液喷涂在处理后的硅橡胶样片A34表面,喷涂量为0.2g/cm 2溶液,得到表面接枝环氧基团的硅橡胶B23。
将环氧树脂A胶和B胶按3:1比例混合,加入2wt%的N-十六烷基吡啶硝酸盐,混合均匀,涂覆在硅橡胶B23上,固化后得到抗静电硅橡胶24。
实施例33:
将硅橡胶样片置于紫外臭氧清洗机中,紫外臭氧清洗机的温度为120℃,同时向紫外臭氧清洗机中充入臭氧浓度为200ppm,紫外光照射过程中紫外光的波长为100-300nm,照射1分钟,得到表面处理后的硅橡胶样片A35。
配制2份3-巯基丙基三甲氧基硅烷、5份水、93份乙醇溶液,将该溶液喷涂在处理后的硅橡胶样片A35表面,喷涂量为0.2g/cm 2溶液,得到表面接枝环氧基团的硅橡胶B24。
配制二苯基甲烷二异氰酸酯(MDI),聚醚多元醇、催化剂、二羟甲基丙酸粘结剂,加入1wt%的二辛基二硫代磷酸酯钾,混合均匀,涂覆在硅橡胶B24上,固化后得到抗静电硅橡胶25。
实施例34:
将硅橡胶样片置于等离子处理机中,通入纯氧气,处理温度为20℃,处理120分钟,得到表面处理后的硅橡胶样片A36。
配制1份3-(2-氨乙基)-氨丙基三甲氧基硅烷(KH-792)、5份水、94份乙醇溶液,将该溶液喷涂在处理后的硅橡胶样片A36表面,喷涂量为0.1g/cm 2溶液,70℃下加热3分钟,得到表面接枝可反应基团的硅橡胶B25。
将环氧树脂A胶和B胶按3:1比例混合,加入5wt%的水溶性聚氧乙烯醚醇改性硅油,混合均匀,涂覆在硅橡胶B25上,固化后得到抗静电硅橡胶26。
实施例35:
将硅橡胶样片置于等离子处理机中,通入纯氧气,处理温度为50℃,处理60分钟,得到表面处理后的硅橡胶样片A37。
将甲苯二异氰酸酯三聚体溶液喷涂在处理后的硅橡胶样片A37表面,喷涂量为0.1g/cm 2溶液,70℃下加热3分钟,得到表面接枝可反应基团的硅橡胶B26。
聚氨酯预聚体中2wt%的水溶性聚氧乙烯醚醇改性硅油,混合均匀,涂覆在硅橡胶B26上,固化后得到抗静电硅橡胶27。
实施例36:
将硅橡胶样片置于等离子处理机中,通入纯氧气,处理温度为120℃,处理1分钟,得到表面处理后的硅橡胶样片A38。
配制1份γ-(甲基丙烯酰氧)丙基三甲氧基硅烷、5份水、94份乙醇溶液,加入少量乙酸调节pH=3~4,将该溶液喷涂在处理后的硅橡胶样片A38表面,喷涂量为0.2g/cm 2溶液,得到表面接枝异氰酸基团的硅橡胶B27。
将端基含有丙烯酸酯基的聚氨酯树脂、光引发剂、2wt%的十八烷基二甲基羟乙基季铵硝酸盐混合溶液涂覆在硅橡胶B27表面,紫外光照射固化,得到抗静电硅橡胶28。
对比例6:
将硅橡胶样片置于紫外臭氧清洗机中,紫外臭氧清洗机的温度为20℃,紫外光照射过程中紫外光的波长为100nm~300nm,照射60分钟,得到表面处理后的硅橡胶样片29。
对比例7:
将硅橡胶样片置于紫外臭氧清洗机中,紫外臭氧清洗机的温度为20℃,紫外光照射过程中紫外光的波长为100nm~300nm,照射60分钟,得到表面处理后的硅橡胶样片A39。
配制1份γ-(甲基丙烯酰氧)丙基三甲氧基硅烷、5份水、94份乙醇溶液,加入少量乙酸调节pH=3~4,将该溶液喷涂在处理后的硅橡胶样片A39表面,喷涂量为0.1g/cm 2溶液,70℃下加热3分钟,得到表面涂覆的硅橡胶30。
对比例8:
将硅橡胶样片置于紫外臭氧清洗机中,紫外臭氧清洗机的温度为20℃,紫外光照射过程中紫外光的波长为100nm~300nm,照射60分钟,得到表面处理后的硅橡胶样片A40。
配制1份3-氨基丙基三乙氧基硅烷、5份水、94份乙醇溶液,将该溶液喷涂在处理后的硅橡胶样片A40表面,喷涂量为0.1g/cm 2溶液,70℃下加热3分钟,得到表面接枝可反应基团的硅橡胶B28。
将环氧树脂A胶和B胶按3:1比例混合,涂覆在硅橡胶B28上,固化后得到硅橡胶31。
将实施例25~36和对比例6~8的硅橡胶进行性能测试,测试结果如表3所示。
表3
Figure PCTCN2018121794-appb-000009
Figure PCTCN2018121794-appb-000010
由表3可知,实施例25~36制得的硅橡胶均为抗静电橡胶,而对比例6~8制得的硅橡胶抗静电性能差。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (25)

  1. 一种硅橡胶的表面处理方法,其特征在于,包括:
    提供表面带有极性基团的硅橡胶;
    将多官能团化合物覆于所述带有极性基团的硅橡胶的表面,使所述多官能团化合物与所述极性基团发生反应而形成涂层。
  2. 根据权利要求1所述的硅橡胶的表面处理方法,其特征在于,所述极性基团包括羟基。
  3. 根据权利要求1所述的硅橡胶的表面处理方法,其特征在于,所述多官能团化合物包括硅烷偶联剂、多异氰酸酯、多官能环氧化合物中的至少一种。
  4. 根据权利要求3所述的硅橡胶的表面处理方法,其特征在于,所述硅烷偶联剂为阳离子型的硅烷偶联剂。
  5. 根据权利要求4所述的硅橡胶的表面处理方法,其特征在于,所述阳离子型的硅烷偶联剂的结构式如下式(1)或式(2)或式(3)所示:
    Figure PCTCN2018121794-appb-100001
    其中,R 1为甲基、乙基、丙基、异丙基中的一种,
    R 2、R 3、R 4均为碳数为1~16的烷基、芳烃、α-烯烃、烃基(甲基)丙烯酰氧基中的一种,
    X -为卤素离子、羧酸根离子、硝酸根离子、四氟化硼离子、六氟化磷离子、硫酸酯根离子、二(三氟甲磺酰)亚胺根离子中的一种,
    n为0~3的整数。
  6. 根据权利要求4所述的硅橡胶的表面处理方法,其特征在于,当所述硅烷偶联剂为阳离子型的硅烷偶联剂,还包括将所述亲水性化合物覆于所述带有极性基团的硅橡胶的表面,以使所述阳离子型的硅烷偶联剂同时与所述极性基团以及所述亲水性化合物反应。
  7. 根据权利要求6所述的硅橡胶的表面处理方法,其特征在于,所述亲水性化合物包括亲水性单体、亲水性聚合物中的至少一种。
  8. 根据权利要求7所述的硅橡胶的表面处理方法,其特征在于,所述亲水性单体包括丙烯酸及其盐、甲基丙烯酸及其盐、丙烯酰胺、甲基丙烯酰胺、丙烯酸羟乙酯、甲基丙烯酸羟乙酯、马来酸及其盐、富马酸及其盐、端基含乙烯基的聚乙二醇均聚物或共聚物中的至少一种。
  9. 根据权利要求7所述的硅橡胶的表面处理方法,其特征在于,所述亲水性聚合物为含羟基的亲水性聚合物,包括聚乙烯醇、聚乙二醇均聚物或共聚物、聚丙烯酸羟乙酯、聚丙烯酸羟丙酯、聚丙烯酸羟乙酯-丙烯酸共聚物、聚丙烯酸羟乙酯-丙烯酰胺共聚物、聚丙烯酸羟乙酯-马来酸酐共聚物、聚丙烯酸羟乙酯-(甲基)丙烯酸二甲氨基乙酯共聚物、聚丙烯酸羟乙酯-丙烯酰氧乙基三甲基氯化铵、聚丙烯酸羟丙酯-丙烯酸共聚物、聚丙烯酸羟丙酯-丙烯酰胺共聚物、聚丙烯酸羟丙酯-马来酸酐共聚物、聚丙烯酸羟丙酯-(甲基)丙烯酸二甲氨基乙 酯共聚物、聚丙烯酸羟丙酯-丙烯酰氧乙基三甲基氯化铵、淀粉、明胶、羟乙基纤维素中的至少一种。
  10. 根据权利要求6所述的硅橡胶的表面处理方法,其特征在于,所述阳离子型的硅烷偶联剂和所述亲水性化合物的质量比为5:1~1:5。
  11. 根据权利要求3所述的硅橡胶的表面处理方法,其特征在于,所述硅烷偶联剂包括3-氨基丙基三乙氧基硅烷、γ-缩水甘油醚氧丙基三甲氧基硅烷、γ-(甲基丙烯酰氧)丙基三甲氧基硅烷、3-(2-氨乙基)-氨丙基三甲氧基硅烷、N-氨乙基-3-氨丙基甲基三甲氧基硅烷、3-巯基丙基三甲氧基硅烷、3-异氰酸丙基三甲氧基硅烷中的至少一种。
  12. 根据权利要求3所述的硅橡胶的表面处理方法,其特征在于,所述多异氰酸酯包括含有三个或三个以上的异氰酸酯基团的化合物。
  13. 根据权利要求3所述的硅橡胶的表面处理方法,其特征在于,所述多官能环氧化合物包括含有三个或三个以上的环氧基团的化合物。
  14. 根据权利要求1所述的硅橡胶的表面处理方法,其特征在于,形成所述涂层后,于20℃~150℃保温1分钟~60分钟。
  15. 根据权利要求1所述的硅橡胶的表面处理方法,其特征在于,形成所述涂层后,还包括将粘结剂覆于所述涂层的表面,使所述粘结剂与所述多官能团化合物反应而形成第二涂层;
    以及,固化依次覆于硅橡胶表面的涂层和第二涂层。
  16. 根据权利要求15所述的硅橡胶的表面处理方法,其特征在于,所述粘结剂包括聚合物或合成所述聚合物的单体。
  17. 根据权利要求16所述的硅橡胶的表面处理方法,其特征在于,所述聚合物包括聚氨酯、环氧树脂、聚丙烯酸酯中的至少一种。
  18. 根据权利要求15所述的硅橡胶的表面处理方法,其特征在于,将粘结剂覆于所述涂层的表面时,还包括将抗静电剂覆于所述涂层的表面,以使所述第二涂层中包括抗静电剂。
  19. 根据权利要求18所述的硅橡胶的表面处理方法,其特征在于,所述抗静电剂包括表面活性剂、亲水性高分子中的至少一种。
  20. 根据权利要求19所述的硅橡胶的表面处理方法,其特征在于,所述表面活性剂包括阳离子表面活性剂、阴离子表面活性剂、两性表面活性剂、非离子表面活性剂中的至少一种;其中,
    所述阳离子表面活性剂包括季铵盐表面活性剂、吗啉盐酸盐表面活性剂或咪唑啉盐表面活性剂中的至少一种;
    所述阴离子表面活性剂包括磺酸盐表面活性剂、磷酸盐表面活性剂或羧酸盐表面活性剂中的至少一种;
    所述非离子表面活性剂包括含聚氧乙烯链段或多元醇的表面活性剂中的至少一种。
  21. 根据权利要求19所述的硅橡胶的表面处理方法,其特征在于,所述亲水性高分子包括聚乙烯醇、聚乙二醇均聚物或共聚物、聚丙烯酰胺、聚丙烯酸羟乙酯、聚丙烯酸羟丙酯、 聚丙烯酸及其盐、聚丙烯酰氧乙基三甲基氯化铵、聚(甲基)丙烯酸二甲氨基乙酯、马来酸酐共聚物、马来酸共聚物、富马酸共聚物、淀粉、明胶、羟乙基纤维素中的至少一种。
  22. 根据权利要求1所述的硅橡胶的表面处理方法,其特征在于,对所述硅橡胶进行表面处理而使所述硅橡胶带有极性基团。
  23. 根据权利要求22所述的硅橡胶的表面处理方法,其特征在于,所述表面处理的方法包括紫外光照射处理法或等离子体表面处理法;其中,
    所述紫外光照射处理法在臭氧气氛中进行;
    所述等离子体表面处理法在氧气气氛中进行。
  24. 根据权利要求23所述的硅橡胶的表面处理方法,其特征在于,所述紫外光照射处理法中紫外光的波长为100nm~300nm;及/或
    所述紫外光照射处理法的温度为20℃~200℃,时间为1分钟~120分钟。
  25. 根据权利要求23所述的硅橡胶的表面处理方法,其特征在于,所述等离子体表面处理法的温度为20℃~200℃,时间为1分钟~120分钟。
PCT/CN2018/121794 2018-06-28 2018-12-18 硅橡胶的表面处理方法 WO2020000934A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18924955.0A EP3816215A4 (en) 2018-06-28 2018-12-18 PROCESS FOR SURFACE TREATMENT OF SILICONE RUBBER
US17/035,684 US11713380B2 (en) 2018-06-28 2020-09-29 Method for surface treatment of silicone rubber

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201810686792.0 2018-06-28
CN201810689407.8 2018-06-28
CN201810688201.3 2018-06-28
CN201810689407.8A CN108864460B (zh) 2018-06-28 2018-06-28 抗静电硅橡胶的制备方法
CN201810688201.3A CN109232951A (zh) 2018-06-28 2018-06-28 硅橡胶的表面处理方法
CN201810686792.0A CN108929453A (zh) 2018-06-28 2018-06-28 抗静电硅橡胶的制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/035,684 Continuation US11713380B2 (en) 2018-06-28 2020-09-29 Method for surface treatment of silicone rubber

Publications (1)

Publication Number Publication Date
WO2020000934A1 true WO2020000934A1 (zh) 2020-01-02

Family

ID=68985981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121794 WO2020000934A1 (zh) 2018-06-28 2018-12-18 硅橡胶的表面处理方法

Country Status (3)

Country Link
US (1) US11713380B2 (zh)
EP (1) EP3816215A4 (zh)
WO (1) WO2020000934A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114163677B (zh) * 2021-12-30 2023-02-17 哈尔滨工业大学 一种硅橡胶及其复合材料紫外防护方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1633459A (zh) * 2002-02-18 2005-06-29 南农股份公司 处理聚合物基材的方法
CN102775762A (zh) * 2012-08-22 2012-11-14 江苏亚宝绝缘材料股份有限公司 一种防静电树脂组合物
CN108864460A (zh) * 2018-06-28 2018-11-23 浙江清华柔性电子技术研究院 抗静电硅橡胶的制备方法
CN108929453A (zh) * 2018-06-28 2018-12-04 浙江清华柔性电子技术研究院 抗静电硅橡胶的制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0575798B1 (en) * 1992-06-19 1997-11-05 Fuji Polymertech Co., Ltd Process for producing a finger-touch key for a manipulation switch
JP2883880B2 (ja) 1994-04-26 1999-04-19 信越ポリマー株式会社 コート層付きシリコーンゴム製押釦スイッチ用カバー部材の製造方法
US6013855A (en) * 1996-08-06 2000-01-11 United States Surgical Grafting of biocompatible hydrophilic polymers onto inorganic and metal surfaces
US6099852A (en) * 1998-09-23 2000-08-08 Johnson & Johnson Vision Products, Inc. Wettable silicone-based lenses
US20070048349A1 (en) * 2005-08-29 2007-03-01 Bausch & Lomb Incorporated Surface-modified medical devices and methods of making
JP2008238711A (ja) * 2007-03-28 2008-10-09 Fujifilm Corp 親水性部材及び下塗り組成物
CN101463138B (zh) 2009-01-09 2011-04-06 武汉工程大学 一种硅橡胶与塑料粘合用表面处理剂及其制备和使用方法
US8163358B2 (en) * 2009-02-18 2012-04-24 Synergeyes, Inc. Surface modification of contact lenses

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1633459A (zh) * 2002-02-18 2005-06-29 南农股份公司 处理聚合物基材的方法
CN102775762A (zh) * 2012-08-22 2012-11-14 江苏亚宝绝缘材料股份有限公司 一种防静电树脂组合物
CN108864460A (zh) * 2018-06-28 2018-11-23 浙江清华柔性电子技术研究院 抗静电硅橡胶的制备方法
CN108929453A (zh) * 2018-06-28 2018-12-04 浙江清华柔性电子技术研究院 抗静电硅橡胶的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3816215A4 *

Also Published As

Publication number Publication date
US20210017349A1 (en) 2021-01-21
US11713380B2 (en) 2023-08-01
EP3816215A4 (en) 2022-03-30
EP3816215A1 (en) 2021-05-05

Similar Documents

Publication Publication Date Title
US11130849B2 (en) Moisture resistant coating for barrier films
EP3431561B1 (en) Highly durable antifogging coating film and coating composition
CN101506308B (zh) 可固化有机硅组合物
JP2009527603A5 (zh)
JP4135761B2 (ja) 水性塗料組成物、有機無機複合塗膜及びその製造方法
CN109485894A (zh) 硅橡胶的表面处理方法
JP6128285B2 (ja) 水性ウレタン樹脂組成物、コーティング剤及び物品
JP4285730B2 (ja) 表面処理組成物およびゴムの表面処理方法
JP2009235238A (ja) 水性塗料組成物、有機無機複合塗膜及び金属アルコキシド縮合物分散体及びその製造方法
WO2020000934A1 (zh) 硅橡胶的表面处理方法
CN108929453A (zh) 抗静电硅橡胶的制备方法
TWI749213B (zh) 活性能量線硬化性組成物、及硬塗膜
JP2008296434A (ja) 水素ガスバリアフィルム
JP2008303291A (ja) 木材用水性塗料組成物、及びこれを用いた防汚処理木材
CN109438740B (zh) 抗静电硅橡胶的制备方法
JPWO2002088268A1 (ja) ハードコート組成物およびハードコートを備えた樹脂製品
JP2008274242A (ja) 水性塗料組成物、有機無機複合塗膜、シラン縮合物分散体及びその製造方法
TW200523334A (en) Barrier coating composition containing an inorganic flake material as well as a device containing this barrier coating composition
JP2000044806A (ja) 水性樹脂分散体の製造方法、水性硬化性樹脂組成物、水性塗料、および、塗装方法
JP2012126819A (ja) ウレタン樹脂組成物、コーティング剤、プラスチック基材用コーティング剤及びそれらを用いて得られる硬化物ならびに硬化物の製造方法
WO2008001665A1 (fr) Film anti-salissures et son procédé de production
CN113943510A (zh) 一种膜层涂料及其制备方法、玻璃制品
JP2016084374A (ja) 光学塗膜及び反射防止膜
JP2008007727A (ja) 帯電防止フィルム及びその製造方法
JPH05247125A (ja) 電極へのpvc被覆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924955

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018924955

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018924955

Country of ref document: EP

Effective date: 20210128