WO2020000852A1 - 一种多级分压的磁性流体密封装置 - Google Patents

一种多级分压的磁性流体密封装置 Download PDF

Info

Publication number
WO2020000852A1
WO2020000852A1 PCT/CN2018/114119 CN2018114119W WO2020000852A1 WO 2020000852 A1 WO2020000852 A1 WO 2020000852A1 CN 2018114119 W CN2018114119 W CN 2018114119W WO 2020000852 A1 WO2020000852 A1 WO 2020000852A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
pressure side
magnetic fluid
low
sealing device
Prior art date
Application number
PCT/CN2018/114119
Other languages
English (en)
French (fr)
Inventor
王子羲
李德才
贾晓红
黄伟峰
郭飞
索双富
李永健
刘向锋
刘莹
郭越红
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2020000852A1 publication Critical patent/WO2020000852A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/40Sealings between relatively-moving surfaces by means of fluid
    • F16J15/43Sealings between relatively-moving surfaces by means of fluid kept in sealing position by magnetic force

Definitions

  • the invention relates to the field of sealing, in particular to a multi-stage partial pressure magnetic fluid sealing device.
  • the magnetic fluid sealing technology is developed based on the magnetic fluid.
  • the magnetic fluid When the magnetic fluid is injected into the gap of the magnetic field, it can fill the entire gap and form a liquid O-ring seal.
  • the function of the magnetic fluid sealing device is to transmit the rotary motion into the sealed container, which is often used for vacuum sealing.
  • the current magnetic fluid sealing device is prone to air leakage.
  • the pressure acts on the magnetic liquid. If the magnetic liquid is blown, the seal will fail.
  • Magnetic liquid seal The seal formed by the pole teeth on the magnetic shoe is a series seal. If the pressure between the pole teeth is equal to the normal pressure, then the first stage pole teeth bear all the sealing pressure. If it cannot be tolerated, the magnetic liquid on the first stage pole teeth is blown out, and the pressure drops to the second stage pole teeth. This will cause the pole teeth at all levels to be broken. Therefore, the magnetic liquid-sealing pressure-resistant capability is limited.
  • a gradient air pressure is introduced into a space 12 between two magnetic fluid sealing structures 11 and 13 to form a magnetic fluid sealing device.
  • the gradient pressure between the low-pressure side and the high-pressure side of the side improves the pressure resistance of the magnetic fluid seal to a certain extent.
  • the invention aims to propose a magnetic fluid sealing device to improve the pressure resistance of the magnetic liquid seal and improve the working efficiency.
  • the invention provides a multi-stage partial pressure magnetic fluid sealing device, which is arranged between a housing and a rotating shaft and seals a low-pressure side and a high-pressure side, and includes: a housing; a rotating shaft rotatably supported on the housing; A housing; a magnetic shoe having at least one pole tooth, the at least one pole tooth forming a gap around the rotation shaft, and confining a magnetic fluid in the gap by a magnetic field applied by the magnet to achieve a low-pressure side and a high-pressure side
  • the cavity has a pressure, and the pressure is set from the low pressure
  • An increasing pressure gradient is formed from the side to the high-pressure side.
  • a pressure distributor is included, and the pressure distributor distributes pressure to each cavity through a thin tube communicating with the inside of the cavity, so that when the pressure difference between the low-pressure side and the high-pressure side changes, all The pressure in the at least one chamber can be adjusted dynamically.
  • a pressure sensor which monitors the pressure in the cavity in real time, and calculates the pressures of the chambers at each level after classification, so that when the pressure difference between the low-pressure side and the high-pressure side changes, the pressure in the at least one chamber Pressure can be adjusted dynamically.
  • the multi-stage partial pressure magnetic fluid sealing device of the present invention forms a multi-stage pressure gradient between the high pressure and low pressure sides by the magnetic shoes in the magnetic fluid sealing device, so that the pressure difference is distributed on the multi-stage gradient, thereby The pressure resistance of the magnetic fluid sealing device is improved, and the working efficiency is improved.
  • FIG. 1 is a sectional view of a magnetic fluid sealing device in the prior art.
  • FIG. 2 is a longitudinal sectional view of a specific embodiment of a multi-stage partial pressure magnetic fluid sealing device according to the present invention.
  • FIG 3 is a partial enlarged view of a magnetic shoe in a specific embodiment of a multi-stage partial pressure magnetic fluid sealing device according to the present invention, wherein the magnetic shoe has more than one pole tooth.
  • FIG. 4 is a schematic diagram of a voltage divider in a specific embodiment of a multi-stage partial pressure magnetic fluid sealing device according to the present invention.
  • FIG. 2 is a longitudinal sectional view showing an embodiment of a sealing device for a multi-stage partial pressure magnetic fluid according to the present invention.
  • the left side is the low-pressure side, in this embodiment, the vacuum or other gas side
  • the right side is the high-pressure side, and in this embodiment, the atmospheric side.
  • a sealing device using a magnetic fluid is installed between the housing 1 and the rotating shaft 2 to seal the vacuum side and the atmospheric side.
  • a magnetic fluid seal is disposed inside the housing 1, and a rolling bearing 3 is disposed on one side of the magnetic fluid seal.
  • a guard (not shown) may be provided on the vacuum side of the rolling bearing 3 disposed on the vacuum side, and a guard may also be provided on the atmospheric side of the rolling bearing 3 disposed on the atmospheric side.
  • a magnetic fluid is used for the rolling bearing on the atmospheric side, it is not necessary to provide a guard.
  • the magnetic fluid sealing body is composed of a magnet 5 and pole shoes 4 arranged on both sides of the magnet 5.
  • a plurality of pole teeth 8 are formed on the outer peripheral surface of the rotation shaft 2 facing the pole shoe 4.
  • an O-ring 9 is attached to the outer peripheral surface of the pole shoe 4 to seal the outer peripheral surface of the pole shoe 4 and the inner peripheral surface of the housing 1.
  • the rolling bearing 3 is a rolling bearing using a rolling element such as a ball bearing or a roller bearing.
  • the outer ring is fixed to the housing 1 and the inner ring is fixed to the rotating shaft 2.
  • a rolling body is embedded between the outer ring and the inner ring.
  • the lubricating portion of the high-pressure side rolling bearing 3 is filled with a magnetic fluid, and the lubricating portion of the rolling bearing 3 on the atmospheric side is also filled with a common lubricant such as magnetic fluid or grease. Long life.
  • a magnetic fluid seal is provided outside the side surface of the outer ring of the rolling bearing 3 on the atmospheric side.
  • the magnetic fluid seal includes two pole shoes 4 and a magnet 5 located between the two pole shoes 4.
  • the rotating shaft 2 is formed of a magnetically permeable magnet
  • the outer ring, the inner ring, and the ball of the rolling bearing 3 are also generally used metallic magnetic permeable magnets.
  • the magnetic fluid 6 is thereby captured between the plurality of pole teeth 8 of the magnetic shoe 4 and the rotation shaft 2.
  • the resulting magnetic flux distribution is extremely intensely concentrated on the surface of the rotating shaft 1. By such a magnetic field distribution, the magnetic fluid 6 is strongly held between the pole teeth 8 and the rotation shaft 2.
  • a magnetic fluid sealed unit for holding a strong magnetic field of the magnetic fluid 6 can maintain the aforementioned sealing function even if a certain external magnetic field is applied to the sealed unit.
  • the external magnetic field directly interferes with the direction of the magnetic circuit of the sealed unit.
  • the magnetic fluid there are three types of water-based magnetic fluids, hydrocarbon oil-based magnetic fluids and fluorine oil-based magnetic fluids, but preferred are hydrocarbon oil-based magnetic fluids with low vapor pressure and which are not easily evaporated at high temperatures and high vacuum, and Fluorine oil-based magnetic fluid.
  • the present invention is not limited to this, and any magnetic fluid may be used as long as it is a magnetic fluid having lubricity. Therefore, in the present invention, it is not limited to the hydrocarbon oil-based magnetic fluid and the fluorine oil-based magnetic fluid, and a magnetic fluid having lubricity is simply referred to as a magnetic fluid.
  • the magnet 5 for example, a permanent magnet made of an organic material or the like filled with metal or magnetic powder is used, but it is not limited to this, as long as it is a permanent magnet.
  • the permanent magnets 5 are arranged in such a manner that the permanent magnets 5 and the magnetic shoes 4 are alternately arranged, and a plurality of magnetic shoes 4 are alternately arranged so that each permanent magnet 5 is placed in the relevant A set of magnetic boots 4.
  • the pole teeth, the magnetic fluid and the end face of the rotation shaft 2 form a plurality of cavities P1, P2, P3, P4, P5.
  • the gas pressure in the space is the ambient pressure during installation. When there is a pressure difference across the seal, the pressure acts on the magnetic fluid.
  • the seal formed by the pole teeth on the magnetic liquid-sealed pole shoe is a series seal. If the pressure between the magnetic teeth is equal to the normal pressure, then the first-stage magnetic teeth will bear all the sealing pressure. If they cannot be tolerated, the magnetic liquid on the first-stage pole teeth will be blown out, and the pressure will all fall to the second-stage magnetic teeth. On, and so on, was broken by each. Therefore, the magnetic liquid-sealing pressure-resistant capability is limited.
  • the pressure in each chamber PH is the high-pressure side pressure
  • PL is the low-pressure side pressure
  • i 1, 2, ..., N-1
  • N is the number of pole teeth
  • N-1 is equal to the total number of chambers.
  • the pressures in the various chambers from the vacuum side to the high pressure side are 1/6 standard atmospheric pressure, 1/3 standard atmospheric pressure, and 1/2 standard atmospheric pressure, respectively. , 2/3 standard atmospheric pressure, 1 standard atmospheric pressure. Therefore, the pressure in each cavity forms a pressure gradient, and the pressure difference between adjacent cavities is not large, so that the pressure transition between the vacuum side and the atmospheric side is smooth, and the probability of progressive failure of the magnetic liquid on the pole teeth of each level is reduced. Improved durability of magnetic fluid seal.
  • the first way is to use pressure sensors to monitor the pressure in the chambers at all levels in real time, and dynamically calculate the pressure at each level after classification by using a pressure adjustment method.
  • the required pressure is injected into the cavity.
  • the pressure distribution is accurate, and it can respond to external dynamic pressure changes in a timely manner.
  • a pressure sensor needs to be set for each cavity, and the pressure is redistributed after calculation, so the cost is relatively high.
  • the second method is also a dynamic adjustment method, using a pressure distributor for dynamic pressure distribution, as shown in Figure 4.
  • a series of resistance thin tubes T1-T6 of the same size are connected in series, when the gas or liquid in the pressure distributor cavity passes through the series of thin tubes T1-T6 in sequence from the high pressure side, the resistance thin tubes T1-T6 are connected in series.
  • the flow rate is the same, so that the same pressure drop is generated on each pass of the first-stage thin tube, so there are several pressure drops that can generate several pressure drops.
  • a pressure buffer C1-C5 is set between each stage of thin tubes. On each buffer, the grading pressure after each level of thin tubes T1-T6 is drawn to the middle of the magnetic fluid seal by ignoring the pressure drop. Cavity, thereby distributing the required staging pressure between the fluid-tight intermediate cavities of each stage.
  • the pressure drop is 1/6 Ph
  • the pressure in the buffer C1 is 5 / 6Ph
  • this pressure is introduced into the first-stage magnetic fluid sealed cavity by ignoring the pressure drop. P1, so as to achieve pressure distribution.
  • the pressure distribution of other stages is similar, and the principle expression is not repeated.
  • the pressure medium flowing out of the final-stage thin tube is re-injected into the sealed cavity by the diaphragm pump P.
  • a dynamically adjusted pressure distribution method is used, for example, when at least one of the external Ph and Pl changes, the pressure entering the diaphragm pump P and the pressure out of the diaphragm pump P are respectively different from Pl and Ph is kept consistent dynamically. In this way, no matter how the external pressure changes, the changed pressure will always be redistributed between the above-mentioned resistance thin tubes T1-T6, thereby ensuring that the pressure inside the chambers of the magnetic fluid seal is dynamically distributed. .
  • the pressure calculation and distribution are re-performed through the pressure distribution mechanism to continue to ensure the stability of the magnetic fluid in the remaining stages.
  • first mode or the second mode they are set so that when the pressure difference between the low-pressure side and the high-pressure side changes, the pressure in the at least one chamber can be dynamically adjusted automatically, that is, The pressure gradient in each chamber is automatically redistributed as the external pressure difference changes.
  • the pressure fluctuation under the condition realizes the dynamic allocation of the pressure difference, thereby greatly improving the application scenario of the device.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)

Abstract

公开了一种多级分压的磁性流体密封装置,其设于壳体(1)与旋转轴(2)之间并对低压侧与高压侧进行密封,包括:壳体(1);旋转轴(2),其可旋转地支承于壳体(1);具有至少一个极齿(8)的极靴(4),该至少一个极齿(8)在旋转轴(2)周围形成间隙,通过磁体施加的磁场在间隙中约束磁性流体(6),以实现低压侧与高压侧之间的密封;极齿(8)和磁性流体(6)与旋转轴(2)之间形成至少一个与高压侧和低压侧都不联通的腔室(P1、P2、P3、P4、P5);腔室(P1、P2、P3、P4、P5)中具有压力,压力被设置为自低压侧至高压侧形成递增的压力梯度。通过在磁性流体密封装置中的极靴(4)在高压和低压侧之间形成递增的压力梯度,从而提高了磁性流体密封装置的耐压能力,提高工作效率。

Description

一种多级分压的磁性流体密封装置 技术领域
本发明涉及密封领域,特别是一种多级分压的磁性流体密封装置。
背景技术
磁流体密封技术是在磁性流体的基础上发展而来的,当磁流体注入磁场的间隙时,它可以充满整个间隙,形成一种液体的O型密封圈。磁流体密封装置的功能是把旋转运动传递到密封容器内,常用于真空密封。
但目前的磁流体密封装置容易出现漏气的问题。密封两端存在压差时,压力作用到磁性液体上,如果吹破磁性液体,将使密封失效。磁性液体密封磁靴上的极齿形成的密封是串联的密封。如果极齿之间的压力等于常压,那么,第一级极齿承受全部密封压力,如果不能耐受,第一级极齿上的磁性液体被吹破,压力全部落到第二级极齿上,从而会导致各级极齿被各个击破。因此,磁性液体密封耐压能力受到限制。
为了提高耐压能力,现有技术中公开了一种方案,如图1所示,通过在两个磁性流体密封结构11和13之间的空间12内导入梯度气压,以形成磁性流体密封装置两侧的低压侧和高压侧之间的梯度气压,从而一定程度上改善磁性流体密封的耐压能力。
然而,该结构虽然导入了梯度气压,然而,如果气压差仍然较大时,各级极齿上的磁性流体仍然承受的是相同的压力,例如第一级极齿承受全部密封压力差,如果不能耐受,第一级极齿上的磁性液体被吹破,压力全部落到第二级极齿上。以此类推,仍然存在各磁性液体依次被吹破的风险。
发明内容
本发明旨在提出磁性流体密封装置,以提高磁性液体密封的耐压能力,提高工作效率。
本发明提供一种多级分压的磁性流体密封装置,设于壳体与旋转轴之间并对低压侧与高压侧进行密封,包括:壳体;旋转轴,其可旋转地支承于所述壳体;具有至少一个极齿的磁靴,所述至少一个极齿在所述旋转轴周围形成间隙,通过磁体施加的磁场在所述间隙中约束磁性流体,以实现低压侧与高压侧之间的密封;所述极齿和磁性流体与所述轴之间形成至少一个与高压侧和低压侧都不联通的腔室;所述腔室中具有压力,所述压力被设置为自所述低压侧至所述高压侧形成递增的压力梯度。
进一步地,所述压力梯度如下设置,Pi=PH-i×(PH-PL)/N,其中,Pi为自高压侧至低压侧第i个腔室中的压强,PL为低压侧压强,PH为高压侧压强,i=1,2,…,N-1,N为极齿数量,N-1等于腔室总数。
进一步地,包括压力分配器,所述压力分配器通过与所述腔室内部联通的细管对各腔体分配压力,使得当所述低压侧和高压侧之间的压力差发生变化时,所述至少一个腔室中的压力能动态调整。
进一步地,包括压力传感器,实时监测腔内压力,计算出分级后各级腔室的压力,使得当所述低压侧和高压侧之间的压力差发生变化时,所述至少一个腔室中的压力能动态调整。
本发明的一种多级分压的磁性流体密封装置,通过在磁性流体密封装置的中的磁靴在高压和低压侧之间形成多级压力梯度,使得压力差在多级梯度上分配,从而提高了磁性流体密封装置的耐压能力,提高工作效率。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为现有技术中一种磁性流体密封装置的剖面图。
图2为根据本发明的多级分压的磁性流体密封装置的一个具体实施例的纵剖面图。
图3为根据本发明的多级分压的磁性流体密封装置的一个具体实施例中的磁靴的局部放大图,其中该磁靴具有一个以上的极齿。
图4位根据本发明的的多级分压的磁性流体密封装置的一个具体实施例中的分压器的示意图。
具体实施方式
下面结合附图,对本发明的技术方案做进一步的详细描述。
图2是示出本发明的多级分压的磁性流体的密封装置的一个实施例的纵剖视图。
在图2中,左侧为低压侧,在本实施例中,为真空或其他气体侧,右侧为高压侧,在本实施例中,为大气侧。
在图2中,采用磁性流体的密封装置安装在壳体1和旋转轴2之间,用于对真空侧和大气侧进行密封。在壳体1内部配置有磁性流体密封体,并且在所述磁性流体密封体的一侧配置滚动轴承3。在图2中,在配置于真空侧的滚动轴承3的真空侧可设有防护件(未示出),在此基础上,也可以在配置于大气侧的滚动轴承3的大气侧设置防护件。不过,在大气侧的滚动轴承使用磁性流体的情况下,则不必设置防护件。
磁性流体密封体由磁铁5和配置于所述磁铁5的两侧的极靴4构成。在旋转轴2的与极靴4对置的外周面形成有多个极齿8。而且,在极靴4的外周面安装有O型圈9,从而对所述极靴4的外周面与壳体1的内周面之间进行密封。
在图2中,本发明的实施方式1的滚动轴承3是球轴承或滚柱轴承等利用滚动体的滚动的轴承,外圈固定于壳体1,内圈固定于旋转轴2。在外圈与内圈之间嵌入有滚动体。可选地,在滚动轴承3中,在高压侧的滚动轴承3的润滑部填充有磁性流体,在大气侧的滚动轴承3的润滑部也填充有磁性流体或者润滑脂等通常的润滑剂,这样的话滚动轴承的使用寿命较长。
而且,在图2中,在大气侧的滚动轴承3的外圈的侧面外,设有磁性流体密封体,磁性流体密封体包括两个极靴4和位于两个极靴4之间的磁铁5。为了形成磁路,在本实施方式中,旋转轴2由导磁体形成,滚动轴承3的外圈、内圈和滚珠也为一般使用的金属制的导磁体。从而在磁靴4的多个极齿8和旋转轴2之间捕获磁性流体6。形成的磁通分布极其剧烈地集中在旋转轴1的表面上。通过这样的磁场分布,磁性流体6被强有力地保持在极齿8和旋转轴2之间。如上所述,确认了用于保持磁性流体6的磁场较强的磁性流体密封单元,即使对密封单元施加一定的外部磁场,也能够保持上述密封功能外部磁场直接干扰密封单元磁路的方向。
作为磁性流体,存在水基磁性流体、碳化氢油基磁性流体和氟油基磁性流体这三种,不过优选的是蒸汽压力低且在高温和高真空中不易蒸发的碳化氢油基磁性流体和氟油基磁性流体。然而,本发明并不限定于此,只要是具有润滑性的磁性流体,也可以使用任意的磁性流体。因此,在本发明中,并不限于碳化氢油基磁性流体和氟油基磁性流体,将具有润滑性的磁性流体仅称作磁性流体。而且,作为磁铁5,例如采用填充有金属或磁粉的由有机材料等构成的永久磁铁,不过并不限定于此,只要是永久磁铁即可。
如图2和图3所示,永磁体5以这样的方式排列,即永磁体5和磁靴4之间交替布置,并且多个磁靴4交替排列,使得每个永磁体5放置在相关的一组磁靴4之间。相关的一组磁靴4的极齿8与旋转轴2的端面之间具有磁性流体8,极齿、磁性流体和旋转轴2的端面形成多个腔P1、P2、P3、P4、P5。通常现有技术中,空间内的气体压力,是安装时候的环境压力。密封两端存在压差时,压力作用到磁性液体上。磁性液体密封极靴上的极齿形成的密封是串联的密封。如果磁齿之间的压力等于常压,那么,第一级磁齿承受全部密封压力,如果不能耐受,第一级极齿上的磁性液体被吹破,压力全部落到第二级磁齿上,以此类推,从而被各个击破。因此,磁性液体密封耐压能力受到限制。
而在本发明的实施例中,旨在将上述空间内施加一定梯度的压力,使每一级极齿下的此类型液体密封环只承受部分压力差,从而提高整个密封的耐压等级。例如,在一个具体实施例中,自高压侧到低压侧的腔室采取如下压力分配策略:Pi=PH- i×(PH-PL)/N,其中,Pi为自高压侧至低压侧第i个腔室中的压强,PH为高压侧压强,PL为低压侧压强,i=1,2,…,N-1,N为极齿数量,N-1等于腔室总数。以图3中所示为例,当N为6时,自真空侧到高压侧的各级腔体内的压力分别为1/6个标准大气压、1/3个标准大气压、1/2个标准大气压、2/3个标准大气压、1个标准大气压。因此,各个腔体内的压力形成压力梯度,相邻腔体的压差不大,从而使得真空侧和大气侧之间的压力平滑过渡,降低各级极齿上的磁性液体逐级失效的概率,提高了磁性流体密封装置的耐用性。
可采用两种方式来施加压力:第一种方式是通过采用压力传感器实时监测各级腔内压力,以动态调整的方式,计算出分级后各级的压力,用压力控制器,向各个密封中间腔内注入需要的压力。这种方式压力分配精确,能够及时响应外界动态压力变化,通常需要为每个腔体设置压力传感器,并且经过运算进行压力的重新分配,因此成本相对较高。
第二种方式也是一种动态调整的方式,采用压力分配器进行压力的动态分配,如图4所示。将一系列的尺寸相同的阻力细管T1-T6串联,压力分配器腔内气体或者液体从高压侧依次通过这些串联的细管T1-T6时,阻力细管T1-T6之间是串联的,流量相同,因此在每经过一级细管上产生相同的压降,因此有几个阻力细管就能产生几次压降。在每一级细管之间设置压力缓冲器C1-C5,在每个缓冲器上,用过忽略压降的方式,引出经各级细管T1-T6后的分级压力至磁流体密封的中间腔,从而在各级次流体密封中间腔之间分配所需要的分级压力。
例如,压力经过第一级阻力细管T1后,压降1/6的Ph,缓冲器C1内的压力为5/6Ph,然后通过忽略压降的方式将此压力导入第一级磁流体密封腔P1,从而实现压力的分配。其他级的压力分配类似,不再重复原理性的表述。而从末级细管内流出的压力介质,利用隔膜泵P在重新注入密封腔体内。
在此,采用动态调整的压力分配方式,例如当外界的Ph和Pl中的至少一个发生变化时,通过本领域常用的压力调节手段使得进入隔膜泵P和流出隔膜泵P的压力分别与Pl和Ph动态地保持一致,这样,不管外界压力如何变化,变化后的压力始终会保持在上述阻力细管T1-T6之间重新分配,从而确保了磁性流体密封各级腔体内的压力动态地进行分配。
另外,即便在第一级磁性流体失效时,通过压力分配机制重新进行压力计算和分配,继续确保剩余各级的磁性流体稳定性。
无论是上述第一种方式还是第二种方式,均设置为使得当所述低压侧和高压侧之间的压力差发生变化时,所述至少一个腔室中的压力能自动地动态调整,即,各腔室 中的压力梯度随外界压力差变化而自动重新分配,这样,不仅能确保磁性流体密封的稳定,而且,面对具体工况下的压力波动,本装置也能较为良好地适应工况下的压力波动,实现压力差的动态分配,从而极大地提高了本装置的应用场景。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制;尽管参照较佳实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本发明技术方案的精神,其均应涵盖在本发明请求保护的技术方案范围当中。

Claims (4)

  1. 一种多级分压的磁性流体密封装置,设于壳体与旋转轴之间并对低压侧与高压侧进行密封,其特征在于,包括:
    壳体;
    旋转轴,其可旋转地支承于所述壳体;
    具有至少一个极齿的磁靴,所述至少一个极齿在所述旋转轴周围形成间隙,通过磁体施加的磁场在所述间隙中约束磁性流体,以实现低压侧与高压侧之间的密封;
    所述极齿和磁性流体与所述轴之间形成至少一个与高压侧和低压侧都不联通的腔室;
    所述腔室中具有压力,所述压力被设置为自所述低压侧至所述高压侧形成递增的压力梯度。
  2. 如权利要求1所述的磁性流体密封装置,其特征在于,所述压力梯度如下设置,Pi=PH-i×(PH-PL)/N,其中,Pi为自高压侧至低压侧第i个腔室中的压强,PL为低压侧压强,PH为高压侧压强,i=1,2,…,N-1,N为极齿数量,N-1等于腔室总数。
  3. 如权利要求1所述的磁性流体密封装置,其特征在于,包括压力分配器,所述压力分配器通过与所述腔室内部联通的细管对各腔体分配压力,使得当所述低压侧和高压侧之间的压力差发生变化时,所述至少一个腔室中的压力能动态调整。
  4. 如权利要求1所述的磁性流体密封装置,其特征在于,包括压力传感器,实时监测腔内压力,计算出分级后各级腔室的压力,使得当所述低压侧和高压侧之间的压力差发生变化时,所述至少一个腔室中的压力能动态调整。
PCT/CN2018/114119 2018-06-26 2018-11-06 一种多级分压的磁性流体密封装置 WO2020000852A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810673894.9A CN108692032B (zh) 2018-06-26 2018-06-26 一种多级分压的磁性流体密封装置
CN201810673894.9 2018-06-26

Publications (1)

Publication Number Publication Date
WO2020000852A1 true WO2020000852A1 (zh) 2020-01-02

Family

ID=63849085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114119 WO2020000852A1 (zh) 2018-06-26 2018-11-06 一种多级分压的磁性流体密封装置

Country Status (2)

Country Link
CN (1) CN108692032B (zh)
WO (1) WO2020000852A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112431926A (zh) * 2020-11-23 2021-03-02 清华大学 磁性液体密封装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108692032B (zh) * 2018-06-26 2020-07-28 清华大学 一种多级分压的磁性流体密封装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070138747A1 (en) * 2005-12-15 2007-06-21 General Electric Company Multi-stage ferrofluidic seal having one or more space-occupying annulus assemblies situated within its interstage spaces for reducing the gas load therein
CN102606745A (zh) * 2012-04-06 2012-07-25 哈尔滨工业大学 基于齿槽结构的磁性流体多极多级密封装置
CN107725785A (zh) * 2017-10-30 2018-02-23 广西科技大学 一种新型的阶梯式磁流体密封装置
CN108692032A (zh) * 2018-06-26 2018-10-23 清华大学 一种多级分压的磁性流体密封装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57167566A (en) * 1981-04-10 1982-10-15 Hitachi Ltd Vacuum seal for turning shaft
JPS62177367A (ja) * 1986-01-30 1987-08-04 Tech Res Assoc Highly Reliab Marine Propul Plant 液体用磁性流体軸シ−ル装置
CN2837563Y (zh) * 2005-12-13 2006-11-15 株洲硬质合金集团有限公司 一种磁流体密封装置
CN104633128B (zh) * 2015-01-29 2016-12-07 北京交通大学 一种提高磁性液体密封耐压能力的装置
CN205578739U (zh) * 2016-04-26 2016-09-14 吴哲 一种水泵用磁流体密封装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070138747A1 (en) * 2005-12-15 2007-06-21 General Electric Company Multi-stage ferrofluidic seal having one or more space-occupying annulus assemblies situated within its interstage spaces for reducing the gas load therein
CN102606745A (zh) * 2012-04-06 2012-07-25 哈尔滨工业大学 基于齿槽结构的磁性流体多极多级密封装置
CN107725785A (zh) * 2017-10-30 2018-02-23 广西科技大学 一种新型的阶梯式磁流体密封装置
CN108692032A (zh) * 2018-06-26 2018-10-23 清华大学 一种多级分压的磁性流体密封装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZOU JIBIN ET AL.: "Numerical computations for seal pressure differential of magnetic fluid seals", TRIBOLOGY, vol. 20, no. 1, 29 February 2000 (2000-02-29), ISSN: 1004-0595 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112431926A (zh) * 2020-11-23 2021-03-02 清华大学 磁性液体密封装置
CN112431926B (zh) * 2020-11-23 2022-03-25 清华大学 磁性液体密封装置

Also Published As

Publication number Publication date
CN108692032A (zh) 2018-10-23
CN108692032B (zh) 2020-07-28

Similar Documents

Publication Publication Date Title
WO2020000852A1 (zh) 一种多级分压的磁性流体密封装置
US9334863B2 (en) Pump
US10883504B2 (en) Compression device
CN105422863B (zh) 一种液氧泵用组合式密封装置
CN108397550B (zh) 一种磁流体密封结构
CN104126072B (zh) 高压密封通气孔
CN106090237B (zh) 一种缓冲式磁流体密封装置
CN103148220A (zh) 一种磁性液体旋转密封装置
Martsynkovskyy et al. Analysis of buffer impulse seal
US20110210520A1 (en) Reciprocating shaft's sealing device with both magnetic fluid seal and c-type slip ring seal
GB760781A (en) Improvements in or relating to gland seals for gas-filled electric machines
US11333251B2 (en) Hydraulically controllable mechanical seal
CN107906209A (zh) 一种用于同心双轴的磁流体密封结构
Yang et al. Experimental study on pressure transfer mechanism of magnetic fluid seal in the vacuum environment
CN103759016B (zh) 用于密封液体的上游泵送磁性液体密封装置
CN103603954A (zh) 真空低温环境下大口径旋转动密封系统
TWI636190B (zh) 無油螺桿壓縮機及其設計方法
WO2019246090A1 (en) Double seal lubricated packing gland and rotating sleeve
CN104633201A (zh) 低噪音高压差调节阀
US3544116A (en) Fluid sealing arrangement
CN209083565U (zh) 排气侧内置氮气密封的螺杆真空泵
US11415226B1 (en) Magnetic fluid sealing device for sealing fluid medium
CN110242593A (zh) 离心压缩机
AU2011245401A1 (en) Bellows backup chamber
JPS62177367A (ja) 液体用磁性流体軸シ−ル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924278

Country of ref document: EP

Kind code of ref document: A1