WO2020000775A1 - 一种紧凑型Tap PD - Google Patents

一种紧凑型Tap PD Download PDF

Info

Publication number
WO2020000775A1
WO2020000775A1 PCT/CN2018/110048 CN2018110048W WO2020000775A1 WO 2020000775 A1 WO2020000775 A1 WO 2020000775A1 CN 2018110048 W CN2018110048 W CN 2018110048W WO 2020000775 A1 WO2020000775 A1 WO 2020000775A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
jumper
photodiode chip
glass pipe
light
Prior art date
Application number
PCT/CN2018/110048
Other languages
English (en)
French (fr)
Inventor
廖亮
Original Assignee
昂纳信息技术(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昂纳信息技术(深圳)有限公司 filed Critical 昂纳信息技术(深圳)有限公司
Publication of WO2020000775A1 publication Critical patent/WO2020000775A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/4244Mounting of the optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/4245Mounting of the opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources

Definitions

  • the present invention belongs to the field of optical communication technology, and particularly relates to a compact Tap PD.
  • One-way spectroscopic detector (Tap-PD) is used to measure the intensity of optical signals in the field of optical communications, and has a one-way light detection function, that is, light entering from the output end will be greatly attenuated and only a very small amount of signal will be detected. It is mainly used in optoelectronic module products such as erbium-doped fiber amplifier (EDFA), which can avoid the interference of reverse stray light on optical power detection.
  • EDFA erbium-doped fiber amplifier
  • the technical problem to be solved by the present invention is to provide a compact Tap PD in response to the above-mentioned shortcomings of the prior art, which overcomes the lack of directivity of the existing unidirectional spectroscopic detector and the overall length and The outer diameter is relatively large.
  • the technical solution adopted by the present invention to solve its technical problem is to provide a compact Tap PD, which includes: a double-fiber pitch jumper, a Green lens, a spherical lens, and a photodiode chip, which are arranged in order.
  • the film is characterized in that the compact Tap PD further includes at least three glass pipes connected in sequence, the double-fiber pitch jumper is arranged in the glass pipe at the head end, and the Green lens and spherical lens are arranged in the middle glass pipe.
  • the photodiode chip is arranged in a glass pipe at the tail end.
  • the compact Tap PD includes three glass pipes, the double-fiber pitch jumper is disposed in the first glass pipe, and the Green lens and spherical lens are respectively disposed in the second glass pipe. The two ends of the photodiode chip are arranged in a third glass pipe.
  • a still further preferred solution of the present invention is that the glass pipes are pasted together by epoxy resin glue.
  • the compact Tap PD further includes a diaphragm provided with a through hole, and the diaphragm is disposed at an end of the third glass pipe near the second glass pipe.
  • the dual-fiber pitch jumper includes a jumper input end and a jumper output end; the light output from the jumper input end is collimated by a Green lens, and when passing through the beam splitting film, the input end Part of the light is reflected by the beam splitting film and converges to the jumper output end; the second part of the input end passes through the beam splitting film, converges through a spherical lens, and then enters the photodiode chip through the aperture of the diaphragm; the output of the jumper output The light is collimated by the Green lens. When passing through the beam splitting film, the first part of the light at the output end is reflected by the beam splitting film and converges to the input of the jumper. , Do not enter the photodiode chip.
  • a further preferred solution of the present invention is that the diameter of the through hole on the diaphragm is slightly larger than the spot diameter of the light passing through the second part of the input end of the spherical lens.
  • a still further preferred solution of the present invention is that the diaphragm is provided with an inclined surface for reflecting the second part of the light passing through the output end of the spherical lens.
  • the compact Tap PD further includes a pin disposed on one side of the photodiode chip, and the photodiode chip is connected to the pin through a patch.
  • the beneficial effect of the present invention is that the green fiber lens and the spherical lens are arranged in the middle glass pipe by setting a double-fiber pitch jumper in the glass pipe at the head end, and then the photodiode chip is set in the glass at the tail end.
  • a single-layer glass pipe can be used to connect the two-fiber pitch jumper, the Green lens, the spherical lens, and the photodiode chip coated with the light-splitting film in order; through such optical path setting and pipe structure setting, the structure is more compact , Can effectively reduce the overall diameter and length.
  • FIG. 1 is a sectional view of a compact Tap PD according to the present invention
  • FIG. 2 is a sectional view with an optical path of the compact Tap PD of the present invention.
  • a compact Tap PD of this embodiment includes: a dual-fiber-pitch patch cord (Dual Pigtail) 1, a green lens (G-Lens) 2, and a spherical lens (C-Lens) 3) Photodiode chip (PD Chip) 4, the Green lens 2 is plated with a spectroscopic film, the compact Tap PD also includes at least three glass tubes (Glass tube) connected in sequence, and the double fiber pitch jumper 1 is arranged in a glass pipe at the end, the Green lens 2 and the spherical lens 3 are arranged in a glass pipe in the middle, and the photodiode chip 4 is arranged in a glass pipe at the tail.
  • a dual-fiber-pitch patch cord Dual Pigtail
  • G-Lens green lens
  • C-Lens spherical lens
  • Photodiode chip 4 is arranged in a glass pipe at the tail.
  • the compact Tap PD includes three glass pipes, the double-fiber pitch jumper 1 is disposed in the first glass pipe 51, and the Green lens 2 and the spherical lens 3 are respectively disposed in the second The two ends in the glass tube 52 and the photodiode chip 4 are disposed in a third glass tube 53.
  • a double-fiber pitch jumper 1 a Green lens 2, a spherical lens 3, and a photodiode chip 4 plated with a spectroscopic film can be connected in this order.
  • Double-fiber pitch jumper 1, Green lens with spectroscopic coating 2, spherical lens 3, and photodiode chip 4 are also more convenient to install in the glass pipe, which can accurately control the distance between each component.
  • the glass pipes here can also be set to four, and the double-fiber pitch jumper 1, the Green lens 2, the spherical lens 3, and the photodiode chip 4 plated with a spectroscopic film are respectively arranged in a glass pipe, and pass through the glass.
  • the pipe connection can also achieve the effect of the single-layer glass pipe connection, effectively reducing the diameter and length of the compact Tap PD.
  • the glass pipes are pasted together by epoxy resin glue. After the glass pipes are connected together by epoxy resin, and then cured by high temperature treatment, the connection effect is good, the service life is long, and the production cost is low.
  • the compact Tap PD further includes an aperture 6 provided with a through hole 61, and the aperture 6 is disposed at an end of the third glass pipe 53 near the second glass pipe 52.
  • the double-fiber-pitch patch cord 1 includes a patch cord input end 11 and a patch cord output end 12, and the patch cord input end 11 and the patch cord output end 12 are spaced apart; the light output by the patch cord input end 11 is a Green lens 2 collimation, when passing through the spectroscopic film on the Green lens 2, the first part of the light at the input end is reflected by the spectroscopic film and converged to the jumper output end 12; the second part of the input end passes through the spectroscopic film and converges through the spherical lens 3, and then Go through the through hole 61 of the diaphragm 6 and enter the photodiode chip 4 to detect the optical power; the light output from the jumper output end 12 is collimated by the Green lens 2 and passes through the light splitting film on the Green lens 2 and the output end
  • the through hole 61 can accommodate the second part of the light at the input end to enter the photodiode chip 4 for optical power detection; the diaphragm 6 can light the second part of the output end Blocking the inability to enter the photodiode chip 4 can effectively reduce the effect of the second part of the light at the output on the test result, improve the directionality of the compact Tap PD, and improve the accuracy of the test result.
  • the diameter of the through hole 61 on the diaphragm 6 is slightly larger than the spot diameter of the light passing through the second part of the input end of the spherical lens 3.
  • the diameter of the through hole 61 is slightly larger than the spot diameter of the second part of the light at the input end, the second part of the light at the input end can be prevented from entering the photodiode chip without affecting the second part of the light at the input end through the diaphragm 6. 4. Improve the accuracy of test results.
  • the diaphragm 6 is provided with an inclined surface 62 for reflecting the second part of the light passing through the output end of the spherical lens 3.
  • an inclined surface 62 it can be used to reflect the second part of the light at the output end, and minimize the second part of the light at the output end to enter the photodiode chip 4 after multiple reflections, affecting the test result and improving the accuracy of the test result.
  • the compact Tap PD further includes a pin 7 disposed on a side of the photodiode chip 4, and the photodiode chip 4 is connected to the pin 7 through a patch.
  • the photodiode chip 4 and the pin 7 are connected together through a patch and connected to the outside world, and the test results are displayed.
  • the structure is compact and easy to use.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Light Receiving Elements (AREA)

Abstract

一种紧凑型Tap PD,用于光通信。紧凑型Tap PD包括依次设置的双纤间距跳线、格林透镜、球面透镜、光电二极管芯片,格林透镜上镀有分光膜,紧凑型Tap PD还包括至少三条依次连接的玻璃管道。通过将双纤间距跳线设置在首端的玻璃管道内,将格林透镜、球面透镜设置在中间的玻璃管道内,再将光电二极管芯片设置在尾端的玻璃管道内,只需单层玻璃管道就可以将双纤间距跳线、镀有分光膜的格林透镜、球面透镜、光电二极管芯片依次连接在一起;通过光路设置以及管道结构设置,结构更加紧凑,可有效的缩小整体的直径以及长度。

Description

一种紧凑型Tap PD 技术领域
本发明属于光通信技术领域,尤其涉及一种紧凑型Tap PD。
背景技术
单向分光检测器(Tap-PD)在光通信领域中用于测量光信号强度,且具备单向的光探测功能,即光从输出端进入将被大幅衰减而仅探测到极微量信号。其主要应用于像掺铒光纤放大器(EDFA)等光电模块产品中,可避免反向杂散光对光功率探测的干扰。
现有的单向分光检测器因为需要使用 Filter对光束进行校正,Filter与后续C-Lens之间也需要保持较长的间隙才能保证方向性,同时因为套管型的结构方案(普通的需要两层管道叠加连接),整体长度和外径都比较大,且方向性不够好。
技术问题
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种紧凑型Tap PD,克服现有的单向分光检测器方向性不够好以及由于套管型的结构方案导致整体长度和外径都比较大等问题。
技术解决方案
本发明解决其技术问题所采用的技术方案是:提供一种紧凑型Tap PD,包括:依次设置的双纤间距跳线,格林透镜,球面透镜、光电二极管芯片,所述格林透镜上镀有分光膜,其特征在于,所述紧凑型Tap PD还包括至少三条依次连接的玻璃管道,所述双纤间距跳线设置在首端的玻璃管道内,所述格林透镜、球面透镜设置在中间的玻璃管道内,所述光电二极管芯片设置在尾端的玻璃管道内。
本发明的更进一步优选方案是:所述紧凑型Tap PD包括三条玻璃管道,所述双纤间距跳线设置在第一玻璃管道内,所述格林透镜、球面透镜分别设置在第二玻璃管道内的两端、所述光电二极管芯片设置在第三玻璃管道内。
本发明的更进一步优选方案是:所述玻璃管道之间通过环氧树脂胶粘贴在一起。
本发明的更进一步优选方案是:所述紧凑型Tap PD还包括设有通孔的光阑,所述光阑设置在第三玻璃管道靠近第二玻璃管道的一端。
本发明的更进一步优选方案是:所述双纤间距跳线包括跳线输入端和跳线输出端;所述跳线输入端输出的光被格林透镜准直,经过分光膜时,输入端第一部分光由分光膜反射后会聚到跳线输出端;输入端第二部分光穿过分光膜,通过球面透镜会聚,然后穿过光阑的通孔进入光电二极管芯片;所述跳线输出端输出的光被格林透镜准直,经过分光膜时,输出端第一部分光由分光膜反射后会聚到跳线输入端,输出端第二部分光穿过分光膜,通过球面透镜会聚后被光阑阻拦,不进入光电二极管芯片。
本发明的更进一步优选方案是:所述光阑上通孔的直径略大于通过球面透镜的输入端第二部分光的光斑直径。
本发明的更进一步优选方案是:所述光阑上设置有用于反射通过球面透镜的输出端第二部分光的斜面。
本发明的更进一步优选方案是:所述紧凑型Tap PD还包括设置在光电二极管芯片一侧的管脚,所述光电二极管芯片通过贴片与管脚连接在一起。
有益效果
本发明的有益效果在于:通过将双纤间距跳线设置在首端的玻璃管道内,将所述格林透镜、球面透镜设置在中间的玻璃管道内,再将所述光电二极管芯片设置在尾端的玻璃管道内,只需单层玻璃管道就可以将双纤间距跳线、镀有分光膜的格林透镜、球面透镜、光电二极管芯片依次连接在一起;通过这样的光路设置以及管道结构设置,结构更加紧凑,可有效的缩小整体的直径以及长度。
附图说明
下面将结合附图及实施例对发明作进一步说明,附图中:
图1是本发明紧凑型Tap PD的剖视图;
图2是本发明紧凑型Tap PD的带光路的剖视图。
本发明的最佳实施方式
现结合附图,对本发明的较佳实施例作详细说明。
如图1-2所示,本实施例的一种紧凑型Tap PD,包括:依次设置的双纤间距跳线(Dual Pigtail)1,格林透镜(G-Lens)2,球面透镜(C-Lens)3、光电二极管芯片(PD Chip)4,所述格林透镜2上镀有分光膜,所述紧凑型Tap PD还包括至少三条依次连接的玻璃管道(Glass tube),所述双纤间距跳线1设置在首端的玻璃管道内,所述格林透镜2、球面透镜3设置在中间的玻璃管道内,所述光电二极管芯片4设置在尾端的玻璃管道内。通过将双纤间距跳线1设置在首端的玻璃管道内,将所述格林透镜2、球面透镜3设置在中间的玻璃管道内,再将所述光电二极管芯片4设置在尾端的玻璃管道内,只需单层玻璃管道就可以将双纤间距跳线1、镀有分光膜的格林透镜2、球面透镜3、光电二极管芯片4依次连接在一起;通过这样的光路设置以及管道结构设置,结构更加紧凑,可有效的缩小整体的直径以及长度。
进一步的,本实施例中,所述紧凑型Tap PD包括三条玻璃管道,所述双纤间距跳线1设置在第一玻璃管道51内,所述格林透镜2、球面透镜3分别设置在第二玻璃管道52内的两端、所述光电二极管芯片4设置在第三玻璃管道53内。通过设置三条玻璃管道,即可将双纤间距跳线1、镀有分光膜的格林透镜2、球面透镜3、光电二极管芯片4依次连接在。双纤间距跳线1、镀有分光膜的格林透镜2、球面透镜3以及光电二极管芯片4在玻璃管道内的安装也比较方便,可准确的控制每个部件之间的距离。通过三条玻璃管道连接,安装连接方便,可以有效的节约成本,提高生产效率。可以理解的是,此处的玻璃管道也可以设置为四条,双纤间距跳线1、镀有分光膜的格林透镜2、球面透镜3以及光电二极管芯片4分别设置在一条玻璃管道内,通过玻璃管道连接,一样可以达到单层玻璃管道完成连接的效果,有效的缩小紧凑型Tap PD的直径以及长度。
进一步的,本实施例中,所述玻璃管道之间通过环氧树脂胶粘贴在一起。通过环氧树脂胶将玻璃管道连接在一起后,再通过高温处理进行固化,连接效果好,使用寿命长,且成产成本低。
进一步的,本实施例中,所述紧凑型Tap PD还包括设有通孔61的光阑(Aperture)6,所述光阑6设置在第三玻璃管道53靠近第二玻璃管道52的一端。所述双纤间距跳线1包括跳线输入端11和跳线输出端12,所述跳线输入端11和跳线输出端12间隔设置;所述跳线输入端11输出的光被格林透镜2准直,经过格林透镜2上的分光膜时,输入端第一部分光由分光膜反射后会聚到跳线输出端12;输入端第二部分光穿过分光膜,通过球面透镜3会聚,然后穿过光阑6的通孔61进入光电二极管芯片4,进行光功率的检测;所述跳线输出端12输出的光被格林透镜2准直,经过格林透镜2上的分光膜时,输出端第一部分光由分光膜反射后会聚到跳线输入端11;输出端第二部分光穿过分光膜,通过球面透镜3会聚后被光阑6阻拦,无法进入光电二极管芯片4。通过增加一个设有通孔61的光阑6,所述通孔61可容输入端第二部分光通过进入光电二极管芯片4进行光功率检测;所述光阑6可将输出端第二部分光阻拦无法进入光电二极管芯片4,可有效的降低输出端第二部分光对测试结果的影响,提高紧凑型Tap PD方向性,提高测试结果的准确性。
进一步的,本实施例中,所述光阑6上通孔61的直径略大于通过球面透镜3的输入端第二部分光的光斑直径。通过将通孔61的直径设置成略大于输入端第二部分光的光斑直径,可以在不影响输入端第二部分光通过光阑6的前提下,防止输出端第二部分光进入光电二极管芯片4,提高测试结果的准确性。
进一步的,本实施例中,所述光阑6上设置有用于反射通过球面透镜3的输出端第二部分光的斜面62。通过增加一个斜面62,可用于将输出端第二部分光反射出去,尽可能的减少输出端第二部分光经多次反射后进入光电二极管芯片4,影响测试结果,提高测试结果的准确性。
进一步的,本实施例中,所述紧凑型Tap PD还包括设置在光电二极管芯片4一侧的管脚7,所述光电二极管芯片4通过贴片与管脚7连接在一起。通过贴片将光电二极管芯片4与管脚7连接在一起,与外界连接,将测试结果显示出来,结构紧凑,使用方便。
应当理解的是,以上实施例仅用以说明本发明的技术方案,而非对其限制,对本领域技术人员来说,可以对上述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而所有这些修改和替换,都应属于本发明所附权利要求的保护范围。

Claims (8)

  1. 一种紧凑型Tap PD,包括:依次设置的双纤间距跳线,格林透镜,球面透镜、光电二极管芯片,所述格林透镜上镀有分光膜,其特征在于,所述紧凑型Tap PD还包括至少三条依次连接的玻璃管道,所述双纤间距跳线设置在首端的玻璃管道内,所述格林透镜、球面透镜设置在中间的玻璃管道内,所述光电二极管芯片设置在尾端的玻璃管道内。
  2. 根据权利要求1所述的紧凑型Tap PD,其特征在于,所述紧凑型Tap PD包括三条玻璃管道,所述双纤间距跳线设置在第一玻璃管道内,所述格林透镜、球面透镜分别设置在第二玻璃管道内的两端、所述光电二极管芯片设置在第三玻璃管道内。
  3. 根据权利要求1所述的紧凑型Tap PD,其特征在于,所述玻璃管道之间通过环氧树脂胶粘贴在一起。
  4. 根据权利要求2所述的紧凑型Tap PD,其特征在于,所述紧凑型Tap PD还包括设有通孔的光阑,所述光阑设置在第三玻璃管道靠近第二玻璃管道的一端。
  5. 根据权利要求1所述的紧凑型Tap PD,其特征在于,所述双纤间距跳线包括跳线输入端和跳线输出端;所述跳线输入端输出的光被格林透镜准直,经过分光膜时,输入端第一部分光由分光膜反射后会聚到跳线输出端;输入端第二部分光穿过分光膜,通过球面透镜会聚,然后穿过光阑的通孔进入光电二极管芯片;所述跳线输出端输出的光被格林透镜准直,经过分光膜时,输出端第一部分光由分光膜反射后会聚到跳线输入端,输出端第二部分光穿过分光膜,通过球面透镜会聚后被光阑阻拦,不进入光电二极管芯片。
  6. 根据权利要求3所述的紧凑型Tap PD,其特征在于,所述光阑上通孔的直径略大于通过球面透镜的输入端第二部分光的光斑直径。
  7. 根据权利要求4所述的紧凑型Tap PD,其特征在于,所述光阑上设置有用于反射通过球面透镜的输出端第二部分光的斜面。
  8. 根据权利要求1所述的紧凑型Tap PD,其特征在于,所述紧凑型Tap PD还包括设置在光电二极管芯片一侧的管脚,所述光电二极管芯片通过贴片与管脚连接在一起。
PCT/CN2018/110048 2018-06-29 2018-10-12 一种紧凑型Tap PD WO2020000775A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810715423.X 2018-06-29
CN201810715423.XA CN108761671A (zh) 2018-06-29 2018-06-29 一种紧凑型Tap PD

Publications (1)

Publication Number Publication Date
WO2020000775A1 true WO2020000775A1 (zh) 2020-01-02

Family

ID=63975732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/110048 WO2020000775A1 (zh) 2018-06-29 2018-10-12 一种紧凑型Tap PD

Country Status (2)

Country Link
CN (1) CN108761671A (zh)
WO (1) WO2020000775A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112558242A (zh) * 2020-12-11 2021-03-26 江苏奥雷光电有限公司 一种可用多通道射频光模块的小型化光引擎

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101017230A (zh) * 2006-02-06 2007-08-15 日立金属株式会社 单向光功率监视器
CN101021602A (zh) * 2006-02-16 2007-08-22 日本板硝子株式会社 光抽头模块
CN101107552A (zh) * 2005-01-31 2008-01-16 日立金属株式会社 光功率监视器及其制造方法
CN102043209A (zh) * 2009-10-15 2011-05-04 Jds尤尼弗思公司 紧凑型光抽头监测器
CN102338909A (zh) * 2011-10-28 2012-02-01 武汉光迅科技股份有限公司 一种光分接头探测器
WO2012026523A1 (ja) * 2010-08-27 2012-03-01 株式会社ケンコー・トキナー 光タップモジュール
CN202563130U (zh) * 2012-04-28 2012-11-28 上海中科股份有限公司 一种单向Tap-PD检测器
CN103323105A (zh) * 2013-05-31 2013-09-25 深圳市易飞扬通信技术有限公司 单向分光检测器及其制造方法
US9188744B1 (en) * 2012-06-11 2015-11-17 Alliance Fiber Optic Products, Inc. Multimode optical tap filters without dispersion for high-speed data communications
CN206074854U (zh) * 2016-07-18 2017-04-05 飞秒光电科技(西安)有限公司 梯度折射率透镜
CN107390329A (zh) * 2017-08-24 2017-11-24 武汉光迅科技股份有限公司 一种单方向性tap pd
CN208314276U (zh) * 2018-06-29 2019-01-01 昂纳信息技术(深圳)有限公司 一种紧凑型Tap PD

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210221289U (zh) * 2019-08-12 2020-03-31 昂纳信息技术(深圳)有限公司 一种紧凑型Tap PD

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101107552A (zh) * 2005-01-31 2008-01-16 日立金属株式会社 光功率监视器及其制造方法
CN101017230A (zh) * 2006-02-06 2007-08-15 日立金属株式会社 单向光功率监视器
CN101021602A (zh) * 2006-02-16 2007-08-22 日本板硝子株式会社 光抽头模块
CN102043209A (zh) * 2009-10-15 2011-05-04 Jds尤尼弗思公司 紧凑型光抽头监测器
WO2012026523A1 (ja) * 2010-08-27 2012-03-01 株式会社ケンコー・トキナー 光タップモジュール
CN102338909A (zh) * 2011-10-28 2012-02-01 武汉光迅科技股份有限公司 一种光分接头探测器
CN202563130U (zh) * 2012-04-28 2012-11-28 上海中科股份有限公司 一种单向Tap-PD检测器
US9188744B1 (en) * 2012-06-11 2015-11-17 Alliance Fiber Optic Products, Inc. Multimode optical tap filters without dispersion for high-speed data communications
CN103323105A (zh) * 2013-05-31 2013-09-25 深圳市易飞扬通信技术有限公司 单向分光检测器及其制造方法
CN206074854U (zh) * 2016-07-18 2017-04-05 飞秒光电科技(西安)有限公司 梯度折射率透镜
CN107390329A (zh) * 2017-08-24 2017-11-24 武汉光迅科技股份有限公司 一种单方向性tap pd
CN208314276U (zh) * 2018-06-29 2019-01-01 昂纳信息技术(深圳)有限公司 一种紧凑型Tap PD

Also Published As

Publication number Publication date
CN108761671A (zh) 2018-11-06

Similar Documents

Publication Publication Date Title
WO2021197240A1 (zh) 多通道光接收模块
US7421161B2 (en) Optical power monitor and its manufacturing method
TWI497142B (zh) 光纖連接器
US9971109B1 (en) Optical element with light-splitting function
CN102043209B (zh) 紧凑型光抽头监测器
WO2019100703A1 (zh) 一种光学耦合模块及电子设备
WO2018076425A1 (zh) 一种基于pon系统的密集型波分复用光收发组件
CN201926504U (zh) 激光功率监测装置
CN102338909A (zh) 一种光分接头探测器
WO2016107499A1 (zh) 外置otdr光组件结构
WO2020000775A1 (zh) 一种紧凑型Tap PD
US9541720B1 (en) Optical element with light-splitting function
CN210221289U (zh) 一种紧凑型Tap PD
JP2004006638A (ja) 高性能高信頼性小型光パワーモニタ及びその製造方法
WO2019037362A1 (zh) 一种单方向性tap pd
CN201100946Y (zh) 光功率光电探测器
CN208314276U (zh) 一种紧凑型Tap PD
CN201517949U (zh) 一种光监测装置
CN208860999U (zh) 微型光纤准直器
CN207611173U (zh) 一种光路优化设计的高速光接收组件
CN212905556U (zh) 一种反射型集成微光学器件
CN212134995U (zh) 分光探测器
CN209460452U (zh) 激光准直器及激光系统
WO2020000776A1 (zh) 一种光学装置
CN204145503U (zh) 一种单向光功率监测器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924706

Country of ref document: EP

Kind code of ref document: A1