WO2018076425A1 - 一种基于pon系统的密集型波分复用光收发组件 - Google Patents

一种基于pon系统的密集型波分复用光收发组件 Download PDF

Info

Publication number
WO2018076425A1
WO2018076425A1 PCT/CN2016/106606 CN2016106606W WO2018076425A1 WO 2018076425 A1 WO2018076425 A1 WO 2018076425A1 CN 2016106606 W CN2016106606 W CN 2016106606W WO 2018076425 A1 WO2018076425 A1 WO 2018076425A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
division multiplexing
wavelength division
optical transceiver
pon system
Prior art date
Application number
PCT/CN2016/106606
Other languages
English (en)
French (fr)
Inventor
王金荣
杨标
Original Assignee
成都优博创通信技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都优博创通信技术股份有限公司 filed Critical 成都优博创通信技术股份有限公司
Publication of WO2018076425A1 publication Critical patent/WO2018076425A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4286Optical modules with optical power monitoring
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources

Definitions

  • the present invention relates to the field of communication engineering, and in particular to optical communication technologies.
  • BOSA is a core component of optical fiber transmission and reception.
  • the BOSA component of wavelength division and dense multiplexing puts new requirements on the wavelength interval of the transceiver.
  • the wavelength of the transceiver is 60nm or more, and 45° is adopted.
  • the filter can separate two beams with an 8° divergence angle, but when the wavelength interval of the transceiver end light is reduced to about 20 nm, the 45° filter cannot high quality so that the two beams have an 8° convergence angle. The light is separated.
  • the pass resistance band of the small angle (13°-22.5°) filter film changes much less with the incident angle than the 45° filter film.
  • the 45° filter acts to separate the optical path of the receiving end from the optical path of the transmitting end, but the through-stop band of the 45° filter is seriously degraded with the change of the incident angle, and the wavelength of the transmitting and receiving ends is small.
  • it is about 20 nm, it is impossible to separate the optical path of the transceiver end and ensure high isolator degree. If the scheme of collimating the optical path of the transceiver end is adopted, complicated structure and high cost are brought, and in addition, the structure of multiple filters is adopted. It is necessary to pass the assembly multiple times and carry out multiple glue curing processes, which wastes a lot of time and the assembly process is complicated, and the structural processing is also difficult to guarantee.
  • the present invention adopts a technique of integrating a small-angle filter film on a polygonal prism to realize splitting of narrow wavelength intervals, and at the same time, encapsulating a semiconductor laser, a photodetector, and a ferrule assembly on a structural base.
  • the production efficiency is improved, the processing difficulty is reduced, and the performance of the product is ensured.
  • a dense wavelength division multiplexing optical transceiver component based on a PON system comprising a semiconductor laser, a photodetector, a ferrule, a polygonal prism, and a structural base member, and a structural base member Loading a polygonal prism, a semiconductor laser, a photodetector, and a ferrule In the component.
  • the semiconductor laser realizes the conversion of the photoelectric signal, and serves as a light source part in the entire BOSA component structure, which is a transmitting end of the BOSA, and provides a high-speed, narrow-spectrum wide, high-power optical signal; the photodetector converts the optical signal into electricity
  • the signal, the optical signal input by the ferrule enters the photodetector through the small angle filter film on the polygon prism and the reflection of the 0° filter film, and converts the optical signal into an electrical signal recognizable by the receiver through the photoelectric converter.
  • the ferrule described herein realizes the connection between the component and the optical fiber.
  • the light emitted by the semiconductor laser is coupled into the ferrule and transmitted through the optical fiber.
  • the light input from the optical fiber is injected into the component through the ferrule and received by the detector.
  • the four mirror surfaces of the polygonal prism are respectively coated with a small angle filter film, a reflective film, a 0° filter film and an antireflection film.
  • the angle of incidence of the small angle filter film ranges between 13° and 22.5°.
  • the structural base member is made of a metal material.
  • the invention designs an optical path capable of separating two narrow-wavelength-spaced lights by plating a small-angle splitting film on the polygonal prism, and simultaneously reduces the loss of the two beams to an extremely low level.
  • the optical path scheme has simple design, easy assembly, simple process and low cost.
  • the inclination angle of the prism light exit surface the angle of the incident light is changed, and the coupling efficiency of the optical fiber is improved.
  • Figure 1 is an optical path diagram of the interior of the present invention
  • Figure 2 is an analysis diagram of the internal structure parts of the present invention.
  • Figure 3 is a graph showing the variation of the conventional 45° filter through-resistance zone with incident angle.
  • Figure 4 is a graph showing the change of the resistance of the small-angle filter film with the incident angle.
  • a dense wavelength division multiplexing optical transceiver component based on a PON system is composed of a semiconductor laser 1, a photodetector 3, a ferrule 4, a polygonal prism 5, and a structural base member 2, and the structural base member 2
  • the polygonal prism 5, the semiconductor laser 1, the photodetector 3, and the ferrule 4 are loaded in one assembly, wherein the polygonal prism 5 used in the embodiment is designed as an irregular pentagon, and the polygon can be added according to the requirements of coating and assembly.
  • the number of sides is based on a prism surface of the polygon prism 5 and the photosensitive surface of the photodetector 3 which is parallel to each other.
  • the parallel prism surface is plated with a 0° filter film 53, between the 0° filter film 53 and the semiconductor laser 1.
  • the prism surface is plated with a small angle filter film 51, and the prism surface between the 0° filter film 53 and the ferrule 4 is coated with an anti-reflection film 54, and the surface is designed to have an angle with the coating surface 51.
  • the optical coupling power is increased by adjusting the angle at which the optical path is incident on the ferrule surface.
  • the other prism face adjacent to the anti-reflection film 54 is plated with a reflection film 52, and the remaining one of the prism faces serves as a structure to support the structure of the entire polygonal prism 5.
  • the semiconductor laser 1 is mounted directly in front of the polygon prism 5 for realizing photoelectric signal conversion.
  • the optical signal of the power is mounted with a ferrule 4 in the same horizontal space of the semiconductor laser 1 for realizing the connection between the component and the optical fiber.
  • the light emitted by the semiconductor laser is coupled into the ferrule and transmitted through the optical fiber, and the optical fiber is input.
  • the light is received by the detector through the ferrule, and the photoelectric detector 3 is mounted directly above the polygonal prism for converting the optical signal into an electrical signal, or the optical signal input by the ferrule, passing through the polygonal prism.
  • the reflection of the upper small angle filter film 51 and the 0° filter film 53 enters the photodetector, and the optical signal is converted by the photoelectric converter into an electrical signal recognizable by the receiver.
  • the small-angle filter through-resistance strip is affected by the change of the incident angle, and a polygonal prism 5 having a light integration function is specially designed, and the four sides of the polygonal prism 5 are respectively plated with small-angle filtering.
  • the film 51, the reflective film 52 and the 0° filter film 53 realize the branching of the two light beams with narrow wavelength intervals at the transmitting and receiving ends, and change the angle of the incident light by designing the angle of the surface of the antireflection film 54 of the polygonal prism 5, and match The inclination of the end face of the ferrule improves the coupling efficiency.
  • the light emitted by the laser is incident on the small-angle filter film 51, enters the polygon prism 5, and is emitted from the surface of the anti-reflection film 54 of the polygon prism 5, and the inclination of the surface of the anti-reflection film 54 of the polygon prism 5 is designed.
  • the direction of the outgoing light is changed, and the inclined surface of the ferrule 4 is matched, so that the light enters the optical fiber along the core direction after being refracted by the ferrule of the ferrule, thereby greatly improving the coupling efficiency, and the light input from the optical fiber passes through a small angle.
  • the filter film 51 After being reflected by the filter film 51, it is incident on the surface of the reflective film 52 for reflection, and then passes through the 0° filter film surface to enter the photosensitive surface of the photodetector 3, and converts the optical signal into an electrical signal to meet the needs of subsequent signal processing. .
  • FIG. 3 is experimental data of the optical isolation of the optical transceiver component of the conventional 45° filter structure
  • FIG. 4 is experimental data of the optical isolation of the optical transceiver component of the embodiment, as can be seen from the comparison of the two figures, when When the wavelength is greater than 1553nm, whether it is concentrated at 8° or parallel light, the isolation is significantly improved compared with the traditional 45° filter structure.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种基于PON系统的密集型波分复用光收发组件,包括半导体激光器(1)、结构基件(2)、光电检测器(3)、插芯(4)、以及多边形棱镜(5),其中多边形棱镜(5)上镀有不同种类的镀膜,通过使用小角度镀膜,降低由于入射角变化造成通阻带劣化的现象,实现在会聚光入射情况下滤波片对两种间隔较近波段的光的分离,并且将所有膜系集成到一个多边形棱镜的表面,便于安装,简化工艺,提高生产效率和结构件的加工精度,通过调整棱镜表面的倾角改变激光器入射角度,从而提高耦合效率。

Description

一种基于PON系统的密集型波分复用光收发组件 技术领域
本发明涉及通信工程领域,具体涉及光通信技术。
背景技术
BOSA既单纤收发双向组件,是光通信系统的核心部件,波分密集复用的BOSA组件对收发端波长间隔提出新的要求,一般的PON系统中收发端波长间隔在60nm以上,采用45°滤波片可以将两束带有8°发散角的光分开,但是当收发端光波长间隔减小至20nm左右时,45°滤波片就无法高质量的将这样两束带有8°会聚角的光分开,这是由于45°滤波片会随入射角的变化,通阻带严重畸变,使得透射光的透射率下降,发端出纤功率下降,反射光的反射率下降,收端灵敏度严重降低,而小角度(13°-22.5°)滤波膜的通阻带随入射角的变化比45°滤波膜小的多。
在收发一体的光组件中,45°滤波片起到将收端光路和发端光路分开的作用,但是45°滤波片的通阻带会随着入射角度的变化而严重劣化,当收发端波长小到20nm左右时,无法将收发端的光路分开且保证高隔离器度,如果采用将收发端光路准直的方案,又会带来复杂的结构和高昂的成本,此外,对于多个滤波片的结构,要通过装配多次,并进行多次胶固化过程,浪费了大量的时间且装配工艺复杂,结构加工也难以保证。
发明内容
针对现有技术的不足,本发明采用一种将小角度滤波膜集成在一个多边形棱镜上的技术,实现窄波长间隔的分波,同时将半导体激光器、光电检测器以及插芯集合封装在结构基件中,提高了生产效率,降低了加工难度,并保证了产品的性能。
为实现发明目的,本发明的技术方案如下:一种基于PON系统的密集型波分复用光收发组件,包括半导体激光器、光电检测器、插芯、多边形棱镜以及结构基件组成,结构基件将多边形棱镜、半导体激光器、光电检测器、插芯装载在一 个组件中。半导体激光器实现光电信号的转换,在整个BOSA组件结构中作为光源部分,是BOSA的发射端,提供高速率,窄谱宽,大功率的光信号;所述的光电检测器将光信号转化为电信号,由插芯输入的光信号,经过多边形棱镜上的小角度滤波膜和0°滤波膜的反射进入光电检测器,并通过光电转换器将光信号转换成接收器可以识别的电信号,所述的插芯实现本组件与光纤之间的连接,半导体激光器发出的光耦合进插芯后通过光纤进行传输,光纤输入的光经过插芯射入本组件内部被探测器接收。
作为优选方案,所述的多边形棱镜的四个镜面上分别镀有小角度滤波膜,反射膜,0°滤波膜和增透膜。
作为优选方案,所述的小角度滤波膜的入射角范围在13°-22.5°之间。
作为优选方案,所述的结构基件采用金属材质。
本发明的有益效果在于:
本发明通过在多边形棱镜上镀上一层小角度滤波膜(splitting film),设计出一种可以将两束窄波长间隔的光分开的光路,同时将两束光的损耗降到极低的水平,相对于准直光方案,此光路方案设计结构简单,易装配,工序简单,成本低廉,同时通过对棱镜光出射面的倾角设计,改变入射光的角度,提高光纤的耦合效率。
附图说明
图1是本发明内部的光路图
图2是本发明内部结构零件解析图
图3是常规45°滤波片通阻带随入射角度变化图
图4是小角度滤波膜通阻带随入射角度变化图
具体实施方式
为了更加清楚的理解本发明的技术方案及有益效果,下面结合附图对本发明进行更加详细的说明,但并不将本发明的保护范围限定在以下实施例中。
如图2所示,一种基于PON系统的密集型波分复用光收发组件,由半导体激光器1、光电检测器3、插芯4、多边形棱镜5以及结构基件2组成,结构基件2 将多边形棱镜5、半导体激光器1、光电检测器3、插芯4装载在一个组件中,其中本实施例所用的多边形棱镜5设计为不规则的五边形,根据镀膜和装配的需求可以增加多边形的边数,以该多边形棱镜5与光电检测器3的感光面相互平行的棱镜面为基准,该平行棱镜面上镀有一层0°滤波膜53,0°滤波膜53与半导体激光器1之间的棱镜面上镀有一层小角度滤波膜51,0°滤波膜53与插芯4之间的棱镜面上镀有一层增透膜54,且该面与镀膜面51设计有一个夹角,用于调整光路入射到插芯面上的角度,以此提高光耦合功率。与增透膜54相邻的另一棱镜面上镀有一层反射膜52,剩余一个棱镜面作为结构体支撑整个多边形棱镜5的结构。
其中,半导体激光器1安装在多边形棱镜5的正前方,用以实现光电信号的转换,在整个光收发组件结构中作为光源部分,是光收发组件的发射端,提供高速率,窄谱宽,大功率的光信号,正对半导体激光器1的同一水平面空间内安装有插芯4,用以实现本组件与光纤之间的连接,半导体激光器发出的光耦合进插芯后通过光纤进行传输,光纤输入的光经过插芯射入本组件内部被探测器接收,多边形棱镜的正上方安装有光电加测器3,用以将光信号转化为电信号,或者由插芯输入的光信号,经过多边形棱镜上的小角度滤波膜51和0°滤波膜53的反射进入光电检测器,并通过光电转换器将光信号转换成接收器可以识别的电信号。
本实施例利用小角度滤波片通阻带受入射角度变化影响很小的特性,专门设计了一种具有光集成功能的多边形棱镜5,在多边形棱镜5的四个面上分别镀上小角度滤波膜51,反射膜52和0°滤波膜53,实现了收发端波长间隔很窄的两束光的分路,并通过设计多边形棱镜5的增透膜54面的角度改变入射光的角度,匹配插芯的端面的倾角,提高耦合效率。
如图1,激光器发出的光水平入射到小角度滤波膜51上,进入多边形棱镜5,并从多边形棱镜5的增透膜54面射出,对多边形棱镜5的增透膜54面的倾角进行设计,使得出射光方向发生改变,与插芯4的斜面进行匹配,使得光在经过插芯斜面发生折射后,沿纤芯方向进入光纤,大大提高耦合效率,同时从光纤输入进来的光经过小角度滤波膜51反射后入射到反射膜52面上进行反射,再透过0°滤波膜面,进入到光电检测器3的感光面上,并将光信号转换为电信号,满足后续信号处理的需要。
图3是传统的45°滤波片结构的光收发组件光隔离度的实验数据,图4是本实施例所述光收发组件光隔离度的实验数据,从两图的对比中可以看出,当波长大于1553nm时,无论是8°会聚光还是平行光,隔离度均较传统的45°滤波片结构的光收发组件效果得到了显著的提高。

Claims (4)

  1. 一种基于PON系统的密集型波分复用光收发组件,其特征在于,包括半导体激光器(1)、光电检测器(3)、插芯(4)、多边形棱镜(5)以及结构基件(2),所述的结构基件(2)将多边形棱镜(5)、半导体激光器(1)、光电检测器(3)、插芯(4)装载在一个组件中。
  2. 根据权利要求1所述的基于PON系统的密集型波分复用光收发组件,其特征在于,所述的多边形棱镜(5)的四个镜面上分别镀有小角度滤波膜(51),反射膜(52),0°滤波膜(53)和增透膜(54)。
  3. 根据权利要求2所述的基于PON系统的密集型波分复用光收发组件,其特征在于所述的小角度滤波膜(51)的入射角范围在13°-22.5°。
  4. 根据权利要求3所述的基于PON系统的密集型波分复用光收发组件,其特征在于所述的结构基件(2)采用金属材质。
PCT/CN2016/106606 2016-10-31 2016-11-21 一种基于pon系统的密集型波分复用光收发组件 WO2018076425A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610926850.3A CN106353861B (zh) 2016-10-31 2016-10-31 一种基于pon系统的密集型波分复用光收发组件
CN201610926850.3 2016-10-31

Publications (1)

Publication Number Publication Date
WO2018076425A1 true WO2018076425A1 (zh) 2018-05-03

Family

ID=57863836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/106606 WO2018076425A1 (zh) 2016-10-31 2016-11-21 一种基于pon系统的密集型波分复用光收发组件

Country Status (2)

Country Link
CN (1) CN106353861B (zh)
WO (1) WO2018076425A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109212689A (zh) * 2018-10-26 2019-01-15 厦门市贝莱通信设备有限公司 一种相邻波长一收一发bosa光收发组件
CN114257307A (zh) * 2021-12-27 2022-03-29 闽都创新实验室 一种光纤到户混传光收发模块

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018170714A1 (en) * 2017-03-21 2018-09-27 Source Photonics (Chengdu) Company Limited Transceiver with reduced filter insertion loss and methods of making and using the same
CN110024308B (zh) * 2017-03-23 2021-05-18 华为技术有限公司 双向光组件、光网络单元、光线路终端和无源光网络系统
CN107314890B (zh) * 2017-08-08 2023-07-07 成都优博创通信技术股份有限公司 光束准直度检测组件及检测方法
CN107678108A (zh) * 2017-11-21 2018-02-09 武汉电信器件有限公司 一种高耦合率光电组件
CN110058362B (zh) * 2019-04-23 2021-07-06 中国计量大学 一种基于五边形棱镜和干涉滤光片的单纤双向收发器件
CN113448021B (zh) * 2020-03-24 2022-09-23 华为技术有限公司 一种光纤连接器、单纤双向光组件及光纤传输系统
CN115494595B (zh) * 2022-10-31 2023-08-01 苏州天孚光通信股份有限公司 光接收次模块

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005352256A (ja) * 2004-06-11 2005-12-22 Fujikura Ltd 一心双方向光送受信モジュール用光部品及び一心双方向光送受信モジュール
US20090196617A1 (en) * 2007-12-20 2009-08-06 Fujitsu Limited Single core bidirectional optical device
CN103487899A (zh) * 2013-09-17 2014-01-01 中国科学院半导体研究所 一种单纤双向光收发器件
CN104076450A (zh) * 2013-03-28 2014-10-01 福州高意通讯有限公司 一种用于高速收发系统的bosa光学结构
CN104459904A (zh) * 2013-09-18 2015-03-25 福州高意通讯有限公司 一种单纤双向bosa结构
CN205229520U (zh) * 2015-11-02 2016-05-11 苏州旭创科技有限公司 单纤双向bosa结构

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2454994Y (zh) * 2000-11-17 2001-10-17 福建华科光电有限公司 一种紧密型封装高隔离度波分复用器
KR20110114395A (ko) * 2010-04-13 2011-10-19 (주)에이알텍 파장 분할 다중화 시스템용 양방향 전송 광송수신 모듈
JP2012159640A (ja) * 2011-01-31 2012-08-23 Alps Electric Co Ltd 一芯双方向光通信モジュールとその製造方法
CN102651667A (zh) * 2011-02-25 2012-08-29 汪润泉 聚合物单纤光收发模组及其制备方法
CN105099557A (zh) * 2012-11-08 2015-11-25 青岛海信宽带多媒体技术有限公司 光模块以及应用于光模块的光器件
CN203166943U (zh) * 2012-12-04 2013-08-28 青岛海信宽带多媒体技术有限公司 一种波分复用光电器件
CN104076456A (zh) * 2014-06-24 2014-10-01 上海波汇通信科技有限公司 一种小型化的单纤双向光学器件
CN105938222B (zh) * 2015-12-31 2019-12-10 杭州富光科技有限公司 一种基于小角度滤波片的紧凑型波分复用器
CN205656355U (zh) * 2016-04-08 2016-10-19 福建天蕊光电有限公司 一种多波长光收发装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005352256A (ja) * 2004-06-11 2005-12-22 Fujikura Ltd 一心双方向光送受信モジュール用光部品及び一心双方向光送受信モジュール
US20090196617A1 (en) * 2007-12-20 2009-08-06 Fujitsu Limited Single core bidirectional optical device
CN104076450A (zh) * 2013-03-28 2014-10-01 福州高意通讯有限公司 一种用于高速收发系统的bosa光学结构
CN103487899A (zh) * 2013-09-17 2014-01-01 中国科学院半导体研究所 一种单纤双向光收发器件
CN104459904A (zh) * 2013-09-18 2015-03-25 福州高意通讯有限公司 一种单纤双向bosa结构
CN205229520U (zh) * 2015-11-02 2016-05-11 苏州旭创科技有限公司 单纤双向bosa结构

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109212689A (zh) * 2018-10-26 2019-01-15 厦门市贝莱通信设备有限公司 一种相邻波长一收一发bosa光收发组件
CN114257307A (zh) * 2021-12-27 2022-03-29 闽都创新实验室 一种光纤到户混传光收发模块
CN114257307B (zh) * 2021-12-27 2024-04-30 闽都创新实验室 一种光纤到户混传光收发模块

Also Published As

Publication number Publication date
CN106353861B (zh) 2019-07-19
CN106353861A (zh) 2017-01-25

Similar Documents

Publication Publication Date Title
WO2018076425A1 (zh) 一种基于pon系统的密集型波分复用光收发组件
CN110045468B (zh) 一种单纤双向的光耦合组件
US10048456B2 (en) Packaging device of single optical multiplexed parallel optical receiver coupling system component and the system thereof
US11754787B2 (en) Multi-channel light-receiving module
WO2019105113A1 (zh) 光收发器件
CN204925459U (zh) 一种多波长单纤双向光收发模块
EP3063574A1 (en) Multiplexed optoelectronic engines
US6829442B2 (en) High speed optical receiver
US20230058940A1 (en) Detection structure and method for feed-forward pump failure in l-band optical fiber amplifier
JP2013061587A (ja) ビームスプリッタ及びそれを用いた光通信モジュール
CN105739032A (zh) 一种单接口多波长发射接收组件
CN213240587U (zh) 一种紧凑型光学波分复用解复用装置
US9541720B1 (en) Optical element with light-splitting function
CN110794529B (zh) 一种光组件及其系统
CN106019645A (zh) 一种尾纤耦合型声光可调滤光装置
US9588308B1 (en) Optical element with light-splitting function
CN203166943U (zh) 一种波分复用光电器件
CN102866447A (zh) 光学极性转换系统及对称式光学极性转换模块
JPH11223745A (ja) 波長多重(wdm)光を分波するための波長分波器と組み合せたバーチャル・イメージ・フェーズ・アレイ(vipa)を備える装置
CN111313967A (zh) 一种长波红外无线光通信的收发分离式光学天线
CN112073124B (zh) 一种用于调节波长的器件
CN210348114U (zh) 自由空间的偏振光隔离组件及其自由空间型相干接收机
CN205317979U (zh) 一种相邻波长收发模组
CN211856998U (zh) 一种5G通信用的25GBiDi光模块的微光学组件
WO2021203359A1 (zh) 一种光通信器件及光信号处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919884

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16919884

Country of ref document: EP

Kind code of ref document: A1