WO2020000437A1 - Procédé d'invalidation du gène aprf humain - Google Patents

Procédé d'invalidation du gène aprf humain Download PDF

Info

Publication number
WO2020000437A1
WO2020000437A1 PCT/CN2018/093841 CN2018093841W WO2020000437A1 WO 2020000437 A1 WO2020000437 A1 WO 2020000437A1 CN 2018093841 W CN2018093841 W CN 2018093841W WO 2020000437 A1 WO2020000437 A1 WO 2020000437A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
aprf
gene
sgrna
lentivirus
Prior art date
Application number
PCT/CN2018/093841
Other languages
English (en)
Chinese (zh)
Inventor
毛吉炎
Original Assignee
深圳市博奥康生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市博奥康生物科技有限公司 filed Critical 深圳市博奥康生物科技有限公司
Priority to PCT/CN2018/093841 priority Critical patent/WO2020000437A1/fr
Publication of WO2020000437A1 publication Critical patent/WO2020000437A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors

Definitions

  • the invention mainly relates to the field of genetic engineering, in particular to a method for knocking human APRF genes by using CRISPR-Cas9 gene editing technology.
  • STAT transcriptional activators
  • APRF is an important member of the STAT family and is closely related to cell proliferation, apoptosis and differentiation. Under normal conditions, the activation of APRF by extracellular signals is strictly regulated. The process of APRF activation is short and rapid, which can maintain the biological function of normal cells. Deletion of APRF causes death of early embryonic cells.
  • APRF is continuously activated.
  • Continuous activation of APRF can mediate tumor immune escape, promote tumor neovascularization, inhibit tumor cell apoptosis, promote tumor cell proliferation and other mechanisms, leading to malignant transformation of tumor cells. Therefore, APRF is an ideal target for the treatment of potential tumors, but the lack of a method for specifically knocking out human APRF genes in the prior art has caused a certain obstacle to the progress of related research.
  • the present invention provides a method for knocking out human APRF gene by using CRISPR-Cas9 gene editing technology.
  • the specific operation steps are as follows:
  • nt sequence is used as the sgRNA to be selected to ensure that it has no homology or low homology with the sequences of other genes, and its sequence is shown in SEQ ID NO.1.
  • SEQ ID NO. 2 and SEQ ID NO. 3 respectively. Entrust the company to synthesize these two sequences;
  • dsDNA Dilute 2 synthetic single-stranded sgRNA sequences to After 100 ⁇ mol / L, dsDNA was mixed and annealed to form dsDNA, and then ligated to the lenti CRISPR v2 vector treated with BsmBI endonuclease.
  • the above products were transformed into E. coli competent cells Stbl3 according to the conventional molecular cloning technology method, and positive clones were selected. The positive clones were picked and expanded and cultured. A large number of plasmids were extracted to obtain a constructed CRISPR-Cas9 system containing the knockout APRF gene. Expression plasmid, save for later use;
  • lentivirus and culture medium containing 4 ⁇ g / mL polybrene
  • the lentiviral solution was changed to a complete medium containing 1 ⁇ g / mL puromycin, and the screening culture was started. 7-14 After d, the cells infected with lentivirus will form single cell clones, and the cell selection is completed.
  • the selected HepG2 cells (experimental group) and normal HepG2 cells without any treatment were extracted respectively, and their genomic DNA was extracted and used as a template for PCR amplification. After re-annealing, they were treated with T7E1 enzyme and agarose gel electrophoresis Observe the results of APRF gene knockout.
  • the method for knocking out the APRF gene provided by the present invention and the cell strain constructed by applying the method provide an experimental technology platform for further exploring the role of the APRF gene, and can be used in research and development of drugs related to abnormal expression of APRF.
  • FIG. 1 is a graph of the results of identifying the editing status of the APRF gene by the T7E1 enzyme.
  • Embodiment one sgRNA the design of
  • nt sequence is used as the sgRNA to be selected to ensure that it has no homology or low homology with the sequences of other genes. Its sequence is 5’- GAAGGGCCTCTCCGAGCCGA -3 ’, such as SEQ ID NO.1. According to the actual needs, the two strands of sgRNA need to be synthesized separately: the CACC sequence needs to be added to the 5 'end of the sgRNA sense strand, and the AAAC sequence needs to be added to the 5' end of the sgRNA antisense strand for subsequent connection.
  • sequences of the two strands are 5 ' -CACCGAAGGGCCTCTCCGAGCCGA -3 'and 5'- AAACTCGGCTCGGAGAGGCCCTTC -3', such as SEQ ID NO. 2 and SEQ ID NO. 3 are shown.
  • the company was commissioned to synthesize the two sequences.
  • the synthesized two single-stranded sgRNA sequences were diluted to 100 ⁇ mol / L, mixed in equal amounts and annealed to form dsDNA, and then ligated to the lenti CRISPR v2 vector treated with BsmBI endonuclease.
  • the above products were transformed into E. coli competent cells Stbl3 according to the conventional molecular cloning technology method, and positive clones were selected.
  • the positive clones were picked up and cultured, and then verified by sequencing to screen out positive clones E. coli containing sequences that fully matched the expected. It performs expansion culture, and then uses the endotoxin-free plasmid extraction kit to extract the recombinant vector therein, and a large number of constructed CRISPR-Cas9 system-containing expression vectors pLentiCRISPR-APRF are obtained.
  • Example 3 Packaging of lentivirus
  • Embodiment 4 HepG2 Lentiviral infection of cells and puromycin selection
  • Embodiment 5 T7E1 Enzyme identification APRF Knockout results
  • the lentivirus-infected HepG2 cells (experimental group) and normal HepG2 cells (control group) were expanded and cultured. Genomic DNA was extracted and amplified by high-fidelity PCR. The PCR product was recovered by electrophoresis, and then the product was digested with T7 endonuclease I at 37 ° C for 1 h. After the digestion, 1% agarose gel electrophoresis was performed, and the results are shown in FIG. 1. It can be seen that the PCR product of the control group was still only one band after digestion, while the experimental group showed multiple bands, indicating that the APRF gene in HepG2 cells was successfully edited.
  • the method for knocking out the APRF gene provided by the present invention and the cell strain constructed by applying the method provide an experimental technology platform for further exploring the role of the APRF gene, and can be used in research and development of drugs related to abnormal expression of APRF.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Virology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

La présente invention concerne un procédé d'invalidation du gène APRF humain en faisant appel à la technologie d'édition de gènes CRISPR-Cas9. Le procédé comprend les étapes fonctionnelles spécifiques suivantes : (1) la conception d'une séquence d'ARNsg ; (2) la ligature, la transformation et l'amplification de l'ARNsg ; (3) la transfection des plasmides des cellules 293T et leur conditionnement en lentivirus ; (4) l'infection lentivirale de la cellule cible et son dépistage avec la puromycine ; et (5) la vérification du résultat de l'invalidation du gène APRF.
PCT/CN2018/093841 2018-06-29 2018-06-29 Procédé d'invalidation du gène aprf humain WO2020000437A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/093841 WO2020000437A1 (fr) 2018-06-29 2018-06-29 Procédé d'invalidation du gène aprf humain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/093841 WO2020000437A1 (fr) 2018-06-29 2018-06-29 Procédé d'invalidation du gène aprf humain

Publications (1)

Publication Number Publication Date
WO2020000437A1 true WO2020000437A1 (fr) 2020-01-02

Family

ID=68985736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093841 WO2020000437A1 (fr) 2018-06-29 2018-06-29 Procédé d'invalidation du gène aprf humain

Country Status (1)

Country Link
WO (1) WO2020000437A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114574524A (zh) * 2022-03-14 2022-06-03 深圳市体内生物医药科技有限公司 一种从全基因组中筛选肝癌抑癌基因的方法及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1113517A (zh) * 1994-04-04 1995-12-20 岸本忠三 转录因子aprf

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1113517A (zh) * 1994-04-04 1995-12-20 岸本忠三 转录因子aprf

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RAN, F.A. ET AL.: "Genome Engineering Using the CRISPR-Cas9 System", NATURE PROTOCOLS, vol. 8, no. 11, 24 October 2013 (2013-10-24), pages 2281 - 2306, XP009174668, ISSN: 1754-2189 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114574524A (zh) * 2022-03-14 2022-06-03 深圳市体内生物医药科技有限公司 一种从全基因组中筛选肝癌抑癌基因的方法及其应用

Similar Documents

Publication Publication Date Title
CN107435051B (zh) 一种通过CRISPR/Cas9系统快速获得大片段缺失的细胞系基因敲除方法
JP7174958B2 (ja) ステルス性を有するrnaを使った遺伝子発現系および当該rnaを含む遺伝子導入・発現ベクター
WO2020000437A1 (fr) Procédé d'invalidation du gène aprf humain
Tomico-Cuenca et al. An overview on current molecular tools for heterologous gene expression in Trichoderma
Inwood et al. Improved protein expression in HEK293 cells by over-expressing miR-22 and knocking-out its target gene, HIPK1
WO2019184372A1 (fr) Combinaison de gènes pour l'expression efficace d'un facteur de croissance neuronal humain recombinant
CN110678553B (zh) 在哺乳动物干细胞中进行基因组编辑的方法
WO2019237386A1 (fr) Procédé d'invalidation du gène ct1.1 humain
WO2019184373A1 (fr) Intron pour augmenter le niveau d'expression de rhngf
WO2019237390A1 (fr) Procédé d'inactivation d'un gène hdmx humain
CN111088256B (zh) 食蟹猴u6启动子高效表达小rna及多个小rna表达的载体构建方法
WO2019237397A1 (fr) Procédé d'inactivation de gène pin1 humain
WO2019062887A1 (fr) Procédé de génération de molécules d'acide nucléique circulaire in vitro
US20210310010A1 (en) Plasmid Vector for Expressing mRNA in Vitro, Construction Method and Application Thereof
CN110331165B (zh) 用于人体细胞重编程的重组仙台病毒的制备方法及其应用
US8034589B2 (en) Method of preparing a proliferation-regulated recombinant adenoviral vector efficiently and kit for preparing the same
Kumar et al. Generation and validation of CRISPR-engineered human natural killer cell lines for research and therapeutic applications
KR101261852B1 (ko) 아가레즈 발현 벡터, 이의 형질전환체, 이 형질전환체를 이용한 아가레즈 제조방법
WO2019237391A1 (fr) Inactivation ciblée par crispr/cas9 du gène txgp1 humain et arng spécifique associé
WO2020000455A1 (fr) Nouveau fragment d'arni ciblé sur le gène aprf humain, vecteur d'arni, et son procédé de préparation et son application
RU2818348C1 (ru) Рекомбинантные плазмиднные ДНК PX458D10A_Myc, обеспечивающие нокаут гена MYC в клетках человека, способ получения линии клеток человека с нокаутом гена MYC и линия клеток рака молочной железы человека MDA-MB231_Myc с подавленной экспрессией гена MYC
US20230279442A1 (en) Engineered cas9-nucleases and method of use thereof
WO2020000449A1 (fr) Vecteur modifié pour édition de gène pin1 humain, son procédé de préparation et son utilisation
WO2022006745A1 (fr) Arn guide pour l'édition du gène hsv-1 et son procédé
CN116694668A (zh) 一种过表达hic1基因质粒及其构建方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924402

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924402

Country of ref document: EP

Kind code of ref document: A1