WO2020000416A1 - 非道路燃气发动机的燃气控制系统及其燃气控制方法 - Google Patents

非道路燃气发动机的燃气控制系统及其燃气控制方法 Download PDF

Info

Publication number
WO2020000416A1
WO2020000416A1 PCT/CN2018/093799 CN2018093799W WO2020000416A1 WO 2020000416 A1 WO2020000416 A1 WO 2020000416A1 CN 2018093799 W CN2018093799 W CN 2018093799W WO 2020000416 A1 WO2020000416 A1 WO 2020000416A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
air
pressure
current
pressure sensor
Prior art date
Application number
PCT/CN2018/093799
Other languages
English (en)
French (fr)
Inventor
徐帅卿
王学滨
谢凤
李旺
Original Assignee
潍柴动力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 潍柴动力股份有限公司 filed Critical 潍柴动力股份有限公司
Priority to CN201880012904.2A priority Critical patent/CN110337537B/zh
Priority to PCT/CN2018/093799 priority patent/WO2020000416A1/zh
Priority to US16/765,576 priority patent/US11203991B2/en
Priority to EP18924783.6A priority patent/EP3677769B1/en
Publication of WO2020000416A1 publication Critical patent/WO2020000416A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/021Control of components of the fuel supply system
    • F02D19/022Control of components of the fuel supply system to adjust the fuel pressure, temperature or composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/021Control of components of the fuel supply system
    • F02D19/023Control of components of the fuel supply system to adjust the fuel mass or volume flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/026Measuring or estimating parameters related to the fuel supply system
    • F02D19/027Determining the fuel pressure, temperature or volume flow, the fuel tank fill level or a valve position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/023Valves; Pressure or flow regulators in the fuel supply or return system
    • F02M21/0239Pressure or flow regulators therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/04Gas-air mixing apparatus
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D11/00Control of flow ratio
    • G05D11/02Controlling ratio of two or more flows of fluid or fluent material
    • G05D11/13Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means
    • G05D11/131Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means by measuring the values related to the quantity of the individual components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0215Mixtures of gaseous fuels; Natural gas; Biogas; Mine gas; Landfill gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0284Arrangement of multiple injectors or fuel-air mixers per combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/04Gas-air mixing apparatus
    • F02M21/047Venturi mixer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to the technical field of automobile control, in particular to a gas control system for a non-road gas engine, and the present invention also relates to a gas control method for a non-road gas engine including the gas control system.
  • LPG liquefied petroleum gas
  • natural gas and biomass gas
  • the main products after combustion are gases such as CO 2 and NOx, which have little environmental pollution. They have been widely used as clean power in various countries.
  • the performance of the engine mainly depends on the quality of the gas provided by the air supply system and its mixture.
  • the mixer in the air supply system has an important influence on the performance of the engine.
  • the mixers used on non-road gas engines are mainly Venturi type mixers and proportional type mixers.
  • the Venturi type mixer mainly uses the low cross-section static pressure of the throat to suck gas Mixing, but this type of mixer must not only achieve the uniform mixing of gas and air through the relevant size at the throat, but also control the air inlet and outlet flow, so that the control accuracy is low and the control is difficult;
  • the proportional mixer uses air And the pressure difference between the gas and the intake port to adjust the opening of the inner core to control the air-fuel ratio of the mixture, but the control range of this structure is not small enough, and the response speed is slow.
  • the object of the present invention is to solve at least one of the problems mentioned above, and the object is achieved by the following technical solutions.
  • the invention provides a gas control system for a non-road gas engine, which includes a mixer.
  • the mixer is provided with an air inlet, a gas inlet, and a mixed gas outlet.
  • the air inlet is provided with a first pressure sensor.
  • the gas inlet is provided with a second pressure sensor and a pressure regulating valve at intervals, and the mixed gas outlet is provided with a third pressure sensor;
  • the first pressure sensor, the second pressure sensor, the pressure regulating valve, and the third pressure sensor are respectively electrically connected to a controller, and the controller is based on the first pressure sensor and the second pressure sensor.
  • the pressure information fed back by the third pressure sensor controls the opening degree of the pressure regulating valve so as to adjust the air-fuel ratio of the mixed gas.
  • the second pressure sensor is interposed between the gas inlet and the pressure regulating valve.
  • a gas passage, an air passage, a pressure transmission passage, a mixing chamber, and a working chamber are provided in the mixer, the gas passage communicates with the gas inlet and the mixing chamber, and the air passage communicates with The air inlet is in communication with the mixing chamber, one end of the mixing chamber is in communication with the mixed gas outlet, and the other end of the mixing chamber is in communication with the working chamber through the pressure transmission channel;
  • the pressure transmission channel can transmit the pressure difference of the mixed gas outlet to the working cavity, and the movement of the working cavity can open the air inlet and the gas inlet, and suck gas and air into the mixing cavity.
  • the mixer includes an inner core having an open end, the open end faces the mixed gas outlet, and a guide post is provided inside the open end, and the guide post is coaxially provided with the inner core.
  • the guide post is coaxially inserted into the gas pipe, and the gas pipe is spaced apart from the outer wall of the guide post and the inner wall of the inner core to form the gas passage.
  • a sleeve is sheathed outside the inner core, and the sleeve is coaxially disposed with the inner core.
  • the length of the sleeve is equal to the length of the inner core, and the inner wall of the sleeve and the inner core are The outer wall of the inner core is arranged at intervals to form the pressure transmission channel.
  • an end surface of the sleeve remote from the mixed gas outlet is connected with an upper cover through an elastic component, and the elastic component includes a diaphragm and a spring;
  • One end of the diaphragm is annularly connected to an end face of the sleeve remote from the mixed gas outlet, and the other end of the diaphragm is annularly connected to an end face of the upper cover.
  • the sleeve, the diaphragm Forming the working cavity with the upper cover;
  • One end of the spring is fixedly connected to the upper cover, the other end of the spring is fixedly connected to the sleeve, and the spring is coaxially disposed with the sleeve.
  • a casing is sheathed on the outside of the sleeve, and the casing is arranged coaxially with the sleeve, and the inner wall of the casing and the outer wall of the sleeve are spaced from each other to form an air passage;
  • the length of the casing is greater than the length of the inner core, the mixed gas outlet is disposed at a port of the casing away from the inner core, and the mixing cavity is between the inner core and the mixed gas outlet. between.
  • the invention also provides a gas control method for a non-road gas engine, which is implemented by the gas control system as described above.
  • the steps of the gas control method are as follows:
  • S1 S1: Generate negative pressure and transfer negative pressure to the working chamber
  • S3 Collect the current pressure of the gas inlet, air inlet and mixed gas outlet separately;
  • S5 Calculate the current air flow according to the air density, the current air pressure, and the parameters of the air channel;
  • S6 Calculate the current air-fuel ratio based on the current air flow and current gas flow, and determine whether the current air-fuel ratio is the same as the actual air-fuel ratio in the actual working condition. If yes, keep the current state, and if not, go to S7;
  • step S4 the calculation formula of the current gas flow is:
  • Q is a combustion gas flow
  • C the structure of the fuel is constant
  • L is the radial section of the fuel gas passage perimeter
  • h is displaced air
  • P is the combustion pressure of the gas current
  • is the fuel Gas density
  • step S5 the calculation formula of the current air flow is:
  • Q space for air flow C is empty structure constant
  • L is the radial section of the air passage space perimeter
  • h is displaced air
  • P is a gas current air pressure
  • empty Air density
  • step S7 the formula of the current air-fuel ratio is:
  • the gas pressure entering the mixer is controlled, thereby controlling the required air-fuel ratio under each working condition.
  • the closed-loop control is realized, so that the air-fuel ratio control range is smaller and the accuracy is higher.
  • the air-fuel ratio of the mixer can be automatically adjusted according to the transient operating conditions of the engine to improve the transient response rate of the engine.
  • the structure is simple, which can effectively reduce manufacturing costs. At the same time, it has good performance and high control accuracy.
  • FIG. 1 is a schematic structural diagram of a gas control system of a non-road gas engine provided by the present invention
  • FIG. 2 is a flowchart of a gas control method for an off-road gas engine according to the present invention.
  • 1 is the inner core, 11 is the guide post;
  • 9 is a gas inlet, 91 is a second pressure sensor, and 92 is a pressure regulating valve;
  • FIG. 1 is a schematic structural diagram of a gas control system of an off-road gas engine provided by the present invention.
  • the non-road gas engine gas control system provided by the present invention includes a mixer, and the mixer is provided with an air inlet 7, a gas inlet 9, and a mixed gas outlet 8, respectively.
  • the air inlet 7 is provided with a first pressure sensor 71
  • the gas inlet 9 is provided with a second pressure sensor 91 and a pressure regulating valve 92 at intervals
  • the mixed gas outlet 8 is provided with a third pressure sensor 81; the first pressure sensor 71.
  • the second pressure sensor 91, the pressure regulating valve 92, and the third pressure sensor 81 are respectively electrically connected to the controller 10, and the controller 10 is based on the first pressure sensor 71 and the second pressure.
  • the pressure information fed back by the sensor 91 and the third pressure sensor 81 controls the opening degree of the pressure regulating valve 92 so as to adjust the air-fuel ratio of the mixture.
  • the mixer is provided with an air inlet 7, a gas inlet 9, and a mixed gas outlet 8, respectively. Air and gas enter the mixer through the air inlet 7 and the gas inlet 9, respectively, and enter the engine through the mixed gas outlet 8 after mixing in the mixer. .
  • a first pressure sensor 71 is provided at the air inlet 7 for real-time detection of the pressure of the air entering the mixer, and a second pressure sensor 91 is provided at the gas inlet 9 for the real-time detection of the pressure of the gas entering the mixer.
  • the outlet 8 is provided with a third pressure sensor 81 for detecting the pressure of the mixed gas in real time, wherein a pressure regulating valve 92 is further provided at the gas inlet 9, and the second pressure sensor 91 is located between the pressure regulating valve 92 and the gas inlet 9. .
  • the first pressure sensor 71, the second pressure sensor 91, and the third pressure sensor 81 detect the pressure at the air inlet 7, the gas inlet 9, and the mixed gas outlet 8, respectively, and the pressures at the three locations are transmitted to the controller 10.
  • the controller 10 calculates according to the pressures at the above three places to determine the required pressure at the gas inlet 9.
  • the controller 10 adjusts the opening of the pressure regulating valve 92 to enter the gas inlet.
  • the gas pressure of 9 meets the requirements of the current working conditions, so as to achieve the adjustment of the air-fuel ratio.
  • the thin solid line arrow indicates the flow of air
  • the hollow arrow indicates the flow of gas
  • the thick black arrow indicates the flow of the mixture .
  • the system has a simple structure and low manufacturing cost.
  • the pressure regulating valve 92 provided at the gas inlet 9 to control the pressure of the gas entering the mixer, the air-fuel ratio required under each working condition is controlled, and closed-loop control is achieved to make the air-fuel ratio
  • the control range is smaller, the accuracy is higher, and the transient response rate of the engine is improved.
  • Q is a combustion gas flow
  • C the structure of the fuel is constant
  • L is the radial section of the fuel gas passage perimeter
  • h is displaced air
  • P is the combustion pressure of the gas current
  • is the fuel Gas density.
  • Q space for air flow C is empty structure constant
  • L is the radial section of the air passage space perimeter
  • h is displaced air
  • P is a gas current air pressure
  • empty Air density
  • C- air , L- air , C- fuel , and L- fuel are all determined by the internal structural parameters of the mixer. Through CFD simulation optimization, it can be made not to change with h. ⁇ - air and ⁇ - fuel are constant.
  • the fuel ratio Q air / Q fuel depends only on P fuel , P air , and P mix . Given the P air and P mix , adjusting the P fuel can adjust the air fuel ratio.
  • the current required gas pressure can be obtained, and the current air-fuel ratio can be achieved according to the current required gas pressure to meet the actual air-fuel ratio requirements.
  • the controller 10 controls the opening degree of the pressure regulating valve 92 so that the gas is input to the gas according to the current required gas pressure, so that the air-fuel ratio effectively meets the requirements of the current working conditions, thereby improving Engine transient response rate.
  • the second pressure sensor 91 is interposed between the gas inlet 9 and the pressure regulating valve 92.
  • the second pressure sensor 91 is disposed near the inside of the mixer. By setting the second pressure sensor 91 at this position, the real-time detection of the gas pressure at the rear end of the pressure regulating valve 92 (the connection end with the gas inlet 9) can be achieved, so that The accuracy of the pressure detection of the gas inlet 9 is ensured, which provides a basis for accurately controlling the air-fuel ratio, and further improves the adjustment accuracy of the air-fuel ratio.
  • a gas passage, an air passage, a pressure transmission passage, a mixing chamber, and a working chamber are provided in the mixer, the gas passage is in communication with the gas inlet 9 and the mixing chamber, and the air passage is in communication with
  • the air inlet 7 is in communication with the mixing chamber, one end of the mixing chamber is in communication with the mixed gas outlet 8, and the other end of the mixing chamber is in communication with the working chamber through the pressure transmission channel; the pressure transmission channel
  • the pressure difference of the mixed gas outlet 8 can be transmitted to the working cavity, and the movement of the working cavity can open the air inlet 7 and the gas inlet 9 to suck gas and air into the mixing cavity.
  • an air passage, a gas passage, and a pressure transmission passage are respectively provided in the mixer, and a working chamber and a mixing chamber are also provided.
  • the air passage and the gas passage are respectively connected to the mixing chamber and are convenient for air and gas to enter the mixing chamber.
  • Mixing is carried out inside, and the working cavity and the mixing cavity are arranged in communication through a pressure transmission channel.
  • the engine starts, a negative pressure is generated at the mixed gas outlet 8 and transmitted to the working chamber through the pressure transmission channel.
  • the working chamber moves under the action of negative pressure and external pressure. At this time, the volume of the working chamber becomes larger.
  • the throats at the gas inlet 9 and the air inlet 7 are opened, and the gas and air are mixed in the mixing chamber.
  • the gas is passed through the mixed gas outlet 8 and entered the engine.
  • the structure is simple and fully utilizes the principle of atmospheric pressure to realize the intake and mixing of air and gas, thereby effectively improving the transient response efficiency of the engine.
  • the mixer includes an inner core 1 having an open end, the open end faces the mixed gas outlet 8, and a guide post 11 is provided inside the open end, and the guide post 11 is the same as the inner core 1.
  • the guide post 11 is coaxially inserted into a gas pipe, and the gas pipe is spaced apart from the outer wall of the guide post 11 and the inner wall of the inner core 1 to form the gas passage.
  • the gas passage is set on the axis of the inner core 1, and the gas passage is realized by the gas passage formed between the port of the gas pipe and the inner wall of the inner core 1, and between the outer wall of the gas pipe and the inner wall of the inner core 1.
  • the gas passes through the mixer
  • the central position of the gas is entered, and the gas is uniformly dispersed in the mixing chamber by the flow guiding effect of the guide post 11 and the inner end face of the inner core 1 during the entry process, so that the mixing effect of air and gas is better, and the accuracy of the air-fuel ratio is improved.
  • a sleeve 2 is sleeved on the outside of the inner core 1, and the sleeve 2 is coaxially disposed with the inner core 1.
  • the length of the sleeve 2 is equal to the length of the inner core 1.
  • the inner wall of the cylinder 2 is spaced from the outer wall of the inner core 1 to form the pressure transmission channel.
  • the sleeve 2 is coaxially fitted on the outside of the inner core 1, and the inner wall of the sleeve 2 and the outer wall of the inner core 1 are spaced apart.
  • the annular gap formed between the two is the pressure transmission channel.
  • the pressure transmitted from the pressure channel to the working chamber is more uniform, avoiding the phenomenon of uneven pressure in the working chamber caused by pressure concentration, thereby ensuring the uniformity of the movement of the working chamber and ensuring the air intake effect.
  • an end surface of the sleeve 2 remote from the mixed gas outlet 8 is connected to the upper cover 4 through an elastic component, and the elastic component includes a diaphragm 5 and a spring 6;
  • the elastic component includes a diaphragm 5 and a spring 6;
  • the other end of the diaphragm 5 is connected to the end surface of the upper cover 4 in an annular shape, and the sleeve 2, the diaphragm 5 and the upper end
  • the working cavity is formed between the covers 4; one end of the spring 6 is fixedly connected to the upper cover 4, the other end of the spring 6 is fixedly connected to the sleeve 2, and the spring 6 is the same as the sleeve 2.
  • the diaphragm 5 is a flexible structure.
  • the upper cover 4 is connected to the sleeve 2 through the diaphragm 5.
  • the upper cover 4 is provided with a cavity having an open end. The diameter of the open end is larger than the diameter of the sleeve 2.
  • the upper cover 4 and the sleeve The cylinder 2 is arranged coaxially and spaced apart.
  • the diaphragm 5 has a tapered structure. The large end of the tapered structure is connected to the open end, and the small end is connected to the sleeve 2.
  • the sleeve 2, the diaphragm 5 and the upper cover 4 form a structure.
  • the working chamber is described in which the spring 6 is coaxially disposed with the upper cover 4 and the sleeve 2 respectively, one end of the spring 6 is fixedly connected with the upper cover 4 and the other end is fixedly connected with the sleeve 2.
  • a casing 3 is sleeved on the outside of the sleeve 2, the casing 3 is coaxially disposed with the sleeve 2, and an inner wall of the casing 3 and an outer wall of the sleeve 2 are spaced apart from each other.
  • An air passage is formed; the length of the casing 3 is greater than the length of the inner core 1, and the mixed gas outlet 8 is provided at a port of the casing 3 away from the inner core 1, and the mixing cavity is interposed between the Between the inner core 1 and the mixed gas outlet 8.
  • the edge of the sleeve 2 is a bent structure
  • the end surface of the housing 3 is spaced from the bent structure
  • the inner wall of the housing 3 and the outer wall of the mixer are spaced apart to form an air passage.
  • the air passage is Ring structure
  • the mixing chamber is set in the casing Inside 3, it is formed by the geometric structure between the housing 3 and the inner core 1. On the one hand, it can achieve effective mixing of air and gas to ensure the accuracy of the air-fuel ratio; on the other hand, its compact structure can reduce manufacturing costs and installation space.
  • FIG. 2 is a flowchart of a gas control method for a non-road gas engine provided in the present invention.
  • the invention also provides a gas control method for a non-road gas engine, which is implemented by the gas control system as described above.
  • the steps of the gas control method are as follows:
  • S1 Generate negative pressure and transmit the negative pressure to the working chamber; the engine works through the intake operation to make the mixed gas outlet 8 generate negative pressure, so as to realize the air and gas intake, and avoid the energy in the air and gas intake process Consumption.
  • S3 Collect the current pressure of gas inlet 9, air inlet 7, and mixed gas outlet 8 respectively; by setting a first sensor at air inlet 7, the current pressure of the air is collected, and by setting a second pressure sensor 91 at gas inlet 9 Therefore, the current pressure of the gas is collected, and a third sensor is provided at the mixed gas outlet 8 to realize the current pressure of the mixed gas.
  • Q is a combustion gas flow
  • C the structure of the fuel is constant
  • L is the radial section of the fuel gas passage perimeter
  • h is displaced air
  • P is the combustion pressure of the gas current
  • is the fuel Gas density.
  • step S5 Calculate the current air flow according to the air density, the current air pressure, and the parameters of the air channel.
  • the current air flow calculation formula is:
  • Q space for air flow C is empty structure constant
  • L is the radial section of the air passage space perimeter
  • h is displaced air
  • P is a gas current air pressure
  • empty Air density
  • S6 Calculate the current air-fuel ratio based on the current air flow and current gas flow, and determine whether the current air-fuel ratio is the same as the actual air-fuel ratio in the actual working condition. If it is, the current state is maintained. If not, go to S7.
  • S7 Determine the current gas pressure according to the actual air-fuel ratio of the working condition.
  • the formula of the current air-fuel ratio is:
  • C- air , L- air , C- fuel , and L- fuel are all determined by the internal structural parameters of the mixer. Through CFD simulation optimization, it can not be changed with the change of h, and ⁇ - air and ⁇ - fuel are constant.
  • the fuel ratio Q air / Q fuel depends only on P fuel , P air , and P mix . Given the P air and P mix , adjusting the P fuel can adjust the air fuel ratio.
  • the current required gas pressure can be obtained, and the current air-fuel ratio can be achieved according to the current required gas pressure to meet the actual air-fuel ratio requirements.
  • the gas pressure entering the mixer is controlled, thereby controlling the required air-fuel ratio under each working condition.
  • the closed-loop control is realized, so that the air-fuel ratio control range is smaller and the accuracy is higher.
  • the air-fuel ratio of the mixer can be automatically adjusted according to the transient operating conditions of the engine to improve the transient response rate of the engine.
  • the structure is simple, which can effectively reduce manufacturing costs. At the same time, it has good performance and high control accuracy.
  • first, second, third, etc. may be used herein to describe multiple elements, components, regions, layers and / or sections, these elements, components, regions, layers and / or sections Sections should not be limited by these terms. These terms may be used only to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Unless the context clearly indicates otherwise, terms such as “first,” “second,” and other numerical terms are not used in the text to imply a sequence or order.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

一种非道路燃气发动机的燃气控制系统及其燃气控制方法,前者包括有混合器,混合器上分别设置有空气入口(7)、燃气入口(9)和混合气出口(8),空气入口(7)设置有第一压力传感器(71),燃气入口(9)间隔设置有第二压力传感器(91)和调压阀(92),混合气出口(8)设置有第三压力传感器(81);第一压力传感器(71)、第二压力传感器(91)、调压阀(92)和第三压力传感器(81)分别电连接控制器(10),控制器(10)依据第一压力传感器(71)、第二压力传感器(91)和第三压力传感器(81)反馈的压力信息控制调压阀(92)的开度,以便调整混合气的空燃比。该系统结构简单,通过调节设置在燃气入口(9)处的调压阀(92),控制进入混合器的燃气压力,控制各工况下所需的空燃比,实现闭环控制,使得空燃比控制范围更小,精度更高,提高发动机的瞬态响应速率。

Description

非道路燃气发动机的燃气控制系统及其燃气控制方法 技术领域
本发明涉及汽车控制技术领域,尤其涉及一种非道路燃气发动机的燃气控制系统,本发明还涉及一种包括上述燃气控制系统的非道路燃气发动机的燃气控制方法。
背景技术
燃气发动机主要以LPG(液化石油气)、天然气、生物质气等作为燃料,其燃烧后的主要产物是CO 2、NOx等气体,对环境的污染小,已被各国作为清洁动力广泛应用,燃气发动机的性能主要取决于供气系统所提供燃气及其混合的质量,其供气系统中的混合器对发动机性能有着重要的影响。
目前,现有技术中非道路燃气发动机上用的混合器主要以文丘里式混合器和比例式混合器为主,其中,文丘里式混合器主要是利用喉口截面静压低将燃气吸入进行混合,但是该种混合器既要通过喉口处的相关尺寸实现燃气与空气的均匀混合,又要控制空气的进出口流量,使得控制精度低,而且控制难度也大;比例式混合器利用空气和燃气与进气道的压差来调节内芯的开度,来控制混合气的空燃比,但是该种结构控制范围不够小,而且响应速度慢的问题。
发明内容
本发明的目的是为了解决上述存在的至少一个问题,该目的是通过以下技术方案实现的。
本发明提供了一种非道路燃气发动机的燃气控制系统,包括有混合器,所述混合器上分别设置有空气入口、燃气入口和混合气出口,所述空气入口设置有第一压力传感器,所述燃气入口间隔设置有第二压力传感器和调压阀,所述混合气出口设置有第三压力传感器;
所述第一压力传感器、所述第二压力传感器、所述调压阀和所述第三压力传感器分别电连接控制器,所述控制器依据所述第一压力传感器、所述第二压力传感器和所述第三压力传感器反馈的压力信息控制所述调压阀的开度,以便 调整混合气的空燃比。
优选地,所述第二压力传感器介于所述燃气入口和所述调压阀之间。
优选地,所述混合器内设置有燃气通道、空气通道、传压通道、混合腔和工作腔,所述燃气通道分别与所述燃气入口和所述混合腔连通,所述空气通道分别与所述空气入口和混合腔连通,所述混合腔的一端与所述混合气出口连通,所述混合腔的另一端经所述传压通道与所述工作腔连通;
所述传压通道能够将所述混合气出口的压差传递至所述工作腔,所述工作腔的运动能够使所述空气入口和所述燃气入口开启,将燃气和空气吸入所述混合腔内。
优选地,所述混合器包括具有开口端的内芯,所述开口端朝向所述混合气出口,所述开口端内部设置有导柱,所述导柱与所述内芯同轴设置,所述导柱同轴插入燃气管内,所述燃气管分别与所述导柱的外壁和所述内芯的内壁间隔设置形成所述燃气通道。
优选地,所述内芯外部套装有套筒,所述套筒与所述内芯同轴设置,所述套筒的长度与所述内芯的长度相等,所述套筒的内壁与所述内芯的外壁间隔设置形成所述传压通道。
优选地,所述套筒远离所述混合气出口的端面通过弹性组件连接有上盖,所述弹性组件包括有膜片和弹簧;
所述膜片的一端环形连接在所述套筒远离所述混合气出口的端面上,所述膜片的另一端环形连接在所述上盖的端面上,所述套筒、所述膜片和所述上盖之间形成所述工作腔;
所述弹簧的一端与所述上盖固接,所述弹簧的另一端与所述套筒固接,所述弹簧与所述套筒同轴设置。
优选地,所述套筒的外部套装有壳体,所述壳体与所述套筒同轴设置,所述壳体的内壁与所述套筒的外壁间隔设置形成空气通道;
所述壳体的长度大于所述内芯的长度,所述混合气出口设置在所述壳体远离所述内芯的端口,所述混合腔介于所述内芯与所述混合气出口之间。
本发明还提供一种非道路燃气发动机的燃气控制方法,其通过如上所述的燃气控制系统实施,该燃气控制方法的步骤如下:
S1:S1:产生负压,将负压传递至工作腔;
S2:驱动工作腔移动,分别将空气入口和燃气入口打开;
S3:分别采集燃气入口、空气入口和混合气出口的当前压力;
S4:根据燃气密度,燃气当前压力、燃气通道的参数计算当前燃气流量;
S5:根据空气密度,空气当前压力、空气通道的参数计算当前空气流量;
S6:根据当前空气流量和当前燃气流量计算当前空燃比,判断将当前空燃比与实际工况空燃比是否相同,若是,则保持当前状态,若否,则转入S7;
S7:根据实际工况空燃比确定当前所需燃气压力;
S8:根据当前所需燃气压力控制调压阀的开度。
优选地,在步骤S4中,当前燃气流量的计算公式为:
Figure PCTCN2018093799-appb-000001
其中,Q 为燃气流量,C 为结构常数,L 为燃气通道的径向截面周长,h为进气位移,P 为燃气当前压力,P 为混合气当前压力,ρ 为燃气密度;
在步骤S5中,当前空气流量的计算公式为:
Figure PCTCN2018093799-appb-000002
其中,Q 为空气流量,C 为结构常数,L 为空气通道的径向截面周长,h为进气位移,P 为燃气当前压力,P 为混合气当前压力,ρ 为空气密度。
优选地,在步骤S7中,当前空燃比的公式为:
Figure PCTCN2018093799-appb-000003
经过推导可知,燃气压力的计算公式为:
Figure PCTCN2018093799-appb-000004
与现有技术相比,本发明所述提供的非道路燃气发动机的燃气控制系统及其控制方法的有益效果为:
1、在测定空气的当前压力、混合气的当前压力的前提下,通过调节设置在燃气入口处的调压阀,控制进入混合器的燃气压力,从而控制各工况下所需的空燃比,实现闭环控制,使得空燃比控制范围更小,精度更高。
2、可根据发动机的瞬态工况自动调节混合器的空燃比,提高发动机的瞬态响应速率。
3、结构简单,能够有效降低制造成本,同时,性能佳,控制精度高。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明所提供的非道路燃气发动机的燃气控制系统的结构示意图;
图2为本发明所述提供的非道路燃气发动机的燃气控制方法的流程图。
附图标记
1为内芯,11为导柱;
2为套筒;
3为壳体;
4上盖;
5为膜片;
6为弹簧;
7为空气入口,71为第一压力传感器;
8为混合气出口,81为第三压力传感器;
9为燃气入口,91为第二压力传感器,92为调压阀;
10为控制器。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施方式。虽然附图中显示了本公开的示例性实施方式,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
请参考图1,图1为本发明所提供的非道路燃气发动机的燃气控制系统的结构示意图。
在一种具体实施方式中,本发明所提供的非道路燃气发动机的燃气控制系统,包括有混合器,所述混合器上分别设置有空气入口7、燃气入口9和混合气出口8,所述空气入口7设置有第一压力传感器71,所述燃气入口9间隔设置有第二压力传感器91和调压阀92,所述混合气出口8设置有第三压力传感器81;所述第一压力传感器71、所述第二压力传感器91、所述调压阀92和所述第三压力传感器81分别电连接控制器10,所述控制器10依据所述第一压力传感器71、所述第二压力传感器91和所述第三压力传感器81反馈的压力信息控制所述调压阀92的开度,以便调整混合气的空燃比。混合器上分别设置有空气入口7、燃气入口9和混合气出口8,空气和燃气分别经过空气入口7和燃气入口9进入混合器内,在混合器内经过混合后经过混合气出口8进入发动机。在空气入口7处设置第一压力传感器71,用于实时检测进入混合器的空气压力,在燃气入口9处设置第二压力传感器91,用于实时检测进入混合器内燃气的压力,在混合气出口8设置第三压力传感器81,用于实时检测混合气的压力,其中,在燃气入口9处还设置有调压阀92,第二压力传感器91介于调压阀92和燃气入口9之间。
使用过程中,第一压力传感器71、第二压力传感器91和第三压力传感器81分别检测空气入口7、燃气入口9和混合气出口8处的压力,上述三处的压力传输至控制器10,实际工况需要对空燃比进行调整时,控制器10根据上述三处的压力进行计算,从而确定燃气入口9处需要的压力,控制器10通过调整 调压阀92的开度,使得进入燃气入口9的燃气压力满足当前工况的使用要求,从而实现空燃比的调整,在说明书附图1中,细实线箭头表示空气的流向,空心箭头表示燃气的流向,黑色粗箭头表示混合气的流向。
该系统结构简单,制造成本低,通过调节设置在燃气入口9处的调压阀92,控制进入混合器的燃气压力,从而控制各工况下所需的空燃比,实现闭环控制,使得空燃比控制范围更小,精度更高,提高发动机的瞬态响应速率。
需要指出的是,上述控制器10在计算过程中,通过以下公式进行计算:
当前燃气流量的计算公式为:
Figure PCTCN2018093799-appb-000005
其中,Q 为燃气流量,C 为结构常数,L 为燃气通道的径向截面周长,h为进气位移,P 为燃气当前压力,P 为混合气当前压力,ρ 为燃气密度。
当前空气流量的计算公式为:
Figure PCTCN2018093799-appb-000006
其中,Q 为空气流量,C 为结构常数,L 为空气通道的径向截面周长,h为进气位移,P 为燃气当前压力,P 为混合气当前压力,ρ 为空气密度。
当前空燃比的公式为:
Figure PCTCN2018093799-appb-000007
经过推导可知,燃气压力的计算公式为:
Figure PCTCN2018093799-appb-000008
通过上述公式可知,C 、L 、C 、L 均由混合器内部结构参数决定,通 过CFD仿真优化,可使其不随h的变化而变化,ρ 和ρ 为常数,这样空燃比Q /Q 只取决于P 、P 、P ,在给定P 、P 的前提下,调节P 即可调节空燃比,通过将实际工况空燃比输入公式中,即可得出当前所需燃气压力,根据当前所需燃气压力实现当前空燃比满足实际工况空燃比的需求。
当计算出处当前所需燃气压力后,控制器10通过控制调压阀92的开度使得燃气按照当前所需燃气压力进行燃气的输入,从而使得空燃比有效满足当前工况的需求,进而提高了发动机的瞬态响应速率。
进一步理解的是,所述第二压力传感器91介于所述燃气入口9和所述调压阀92之间。上述第二压力传感器91靠近混合器的内部设置,通过将第二压力传感器91设置在该位置,能够实现对调压阀92后端(与燃气入口9的连接端)燃气压力的实时检测,从而保证燃气入口9压力检测的精度,从而为精确控制空燃比提供了依据,进而提高了空燃比的调节精度。
进一步地,所述混合器内设置有燃气通道、空气通道、传压通道、混合腔和工作腔,所述燃气通道分别与所述燃气入口9和所述混合腔连通,所述空气通道分别与所述空气入口7和混合腔连通,所述混合腔的一端与所述混合气出口8连通,所述混合腔的另一端经所述传压通道与所述工作腔连通;所述传压通道能够将所述混合气出口8的压差传递至所述工作腔,所述工作腔的运动能够使所述空气入口7和所述燃气入口9开启,将燃气和空气吸入所述混合腔内。上述结构中,在混合器内分别设置空气通道、燃气通道和传压通道,并且还设置有工作腔和混合腔,其中空气通道和燃气通道分别与混合腔连通设置,便于空气和燃气进入混合腔内进行混合,工作腔和混合腔通过传压通道连通设置。在工作时,发动机启动,混合气出口8处产生负压,通过传压通道传递到工作腔中,工作腔在负压和外部压力的作用下发生运动,此时,工作腔的体积变大,从而将燃气入口9和空气入口7处的喉口打开,燃气和空气进行混合腔中,经过充分混合后,经过混合气出口8进入发动机。该结构简单,充分利用大气压原理实现空气和燃气的吸入、混合,从而有效提高了发动机的瞬态响应效率。
进一步地,所述混合器包括具有开口端的内芯1,所述开口端朝向所述混合气出口8,所述开口端内部设置有导柱11,所述导柱11与所述内芯1同轴设置,所述导柱11同轴插入燃气管内,所述燃气管分别与所述导柱11的外壁和 所述内芯1的内壁间隔设置形成所述燃气通道。燃气通道设置在内芯1的轴线上,利用燃气管的端口与内芯1的内壁、燃气管的外壁与内芯1的内壁之间形成的燃气通道实现燃气的进入,此时燃气通过混合器的中心位置进入,在进入过程中通过导柱11和内芯1内部端面的导流作用使得燃气在混合腔内均匀分散,从而使得空气与燃气的混合效果更佳,进而提高空燃比的精度。
进一步地,所述内芯1外部套装有套筒2,所述套筒2与所述内芯1同轴设置,所述套筒2的长度与所述内芯1的长度相等,所述套筒2的内壁与所述内芯1的外壁间隔设置形成所述传压通道。上述结构中,套筒2同轴套装在内芯1的外侧,套筒2的内壁与内芯1的外壁间隔设置,两者之间形成的环形缝隙即为传压通道,通过该结构使得传压通道传递到工作腔内的压力更加均匀,避免出现压力集中导致工作腔内压力不均的现象,从而保证工作腔运动的均匀性,使得进气效果的到保证。
进一步地,所述套筒2远离所述混合气出口8的端面通过弹性组件连接有上盖4,所述弹性组件包括有膜片5和弹簧6;所述膜片5的一端环形连接在所述套筒2远离所述混合气出口8的端面上,所述膜片5的另一端环形连接在所述上盖4的端面上,所述套筒2、所述膜片5和所述上盖4之间形成所述工作腔;所述弹簧6的一端与上盖4固接,所述弹簧6的另一端与所述套筒2固接,所述弹簧6与所述套筒2同轴设置。上述结构中,膜片5为柔性结构,上盖4通过膜片5与套筒2连接,上盖4上设置具有开口端的腔体,开口端的直径大于套筒2的直径,上盖4与套筒2同轴间隔设置,膜片5为锥形结构,该锥形结构的大端与开口端连接,小端与套筒2连接,套筒2、膜片5和上盖4之间形成所述工作腔,其中弹簧6分别与上盖4和套筒2同轴设置,弹簧6的一端与上盖4固接,另一端与套筒2固接。
该结构在工作时,发动机启动,在混合气出口8处产生负压,通过传压通道传递到工作腔中,空气与工作腔产生的压差作用在膜片5上,使得膜片5发生形变,膜片5克服弹簧6的重力和阻力向上运行使得上盖4向远离套筒2的方向运动,工作腔的体积变大,从而将燃气入口9和空气入口7处的喉口打开,燃气和空气进行混合腔中,经过充分混合后,经过混合气出口8进入发动机,当工作腔内外的压差取消后,上盖4在弹簧6的作用下回到初始位置。
具体理解的是,所述套筒2的外部套装有壳体3,所述壳体3与所述套筒2同轴设置,所述壳体3的内壁与所述套筒2的外壁间隔设置形成空气通道;所述壳体3的长度大于所述内芯1的长度,所述混合气出口8设置在所述壳体3远离所述内芯1的端口,所述混合腔介于所述内芯1与所述混合气出口8之间。上述结构中,套筒2的边缘为折弯结构,壳体3的端面与该折弯结构间隔设置,壳体3的内壁与混合器的外壁之间间隔设置从而形成空气通道,该空气通道为环形结构,空气通过该空气通道内进入混合腔,从而使得空气在混合腔内部分布更加均匀,进而使得空气与燃气的混合密度均匀,有效提高空燃比的精度,同时,将混合腔设置在壳体3内部,利用壳体3与内芯1之间的几何结构形成,一方面能够实现空气和燃气的有效混合,保证空燃比的精度,另一方面结构紧凑,能够降低制造成本和减少安装空间。
请参考图1和图2,其中,图2为本发明所述提供的非道路燃气发动机的燃气控制方法的流程图。
本发明还提供一种非道路燃气发动机的燃气控制方法,其通过如上所述的燃气控制系统实施,该燃气控制方法的步骤如下:
S1:产生负压,将负压传递至工作腔;发动机工作通过进气操作,使得混合气出口8产生负压,从而实现空气和燃气的进气,避免了空气和燃气的进气过程中能源的消耗。
S2:驱动工作腔移动,分别将空气入口7和燃气入口9打开;工作腔的上盖4部分向远离套筒2的方向运动,从而使得工作腔内部体积增大,使得工作腔的内部压力小于外部大气压力,从而有效实现空气和燃气的自动进气操作。
S3:分别采集燃气入口9、空气入口7和混合气出口8的当前压力;通过在空气入口7设置第一传感器,从而实现对空气当前压力的采集,通过在燃气入口9设置第二压力传感器91,从而实现对燃气当前压力的采集,通过在混合气出口8设置第三传感器,从而实现对混合气当前压力的采集。
S4:根据燃气密度,燃气当前压力、燃气通道的参数计算当前燃气流量;当前燃气流量的计算公式为:
Figure PCTCN2018093799-appb-000009
其中,Q 为燃气流量,C 为结构常数,L 为燃气通道的径向截面周长,h为进气位移,P 为燃气当前压力,P 为混合气当前压力,ρ 为燃气密度。
S5:根据空气密度,空气当前压力、空气通道的参数计算当前空气流量;在步骤S5中,当前空气流量的计算公式为:
Figure PCTCN2018093799-appb-000010
其中,Q 为空气流量,C 为结构常数,L 为空气通道的径向截面周长,h为进气位移,P 为燃气当前压力,P 为混合气当前压力,ρ 为空气密度。
S6:根据当前空气流量和当前燃气流量计算当前空燃比,判断将当前空燃比与实际工况空燃比是否相同,若是,则保持当前状态,若否,则转入S7。
S7:根据实际工况空燃比确定当前所需燃气压力,当前空燃比的公式为:
Figure PCTCN2018093799-appb-000011
经过推导可知,燃气压力的计算公式为:
Figure PCTCN2018093799-appb-000012
通过上述公式可知,C 、L 、C 、L 均由混合器内部结构参数决定,通过CFD仿真优化,可使其不随h的变化而变化,ρ 和ρ 为常数,这样空燃比Q /Q 只取决于P 、P 、P ,在给定P 、P 的前提下,调节P 即可调节空燃比,通过将实际工况空燃比输入公式中,即可得出当前所需燃气压力,根据当前所需燃气压力实现当前空燃比满足实际工况空燃比的需求。
S8:根据当前所需燃气压力控制调压阀92的开度。
与现有技术相比,本发明所述提供的非道路燃气发动机的燃气控制系统及 其控制方法的有益效果为:
1、在测定空气的当前压力、混合气的当前压力的前提下,通过调节设置在燃气入口处的调压阀,控制进入混合器的燃气压力,从而控制各工况下所需的空燃比,实现闭环控制,使得空燃比控制范围更小,精度更高。
2、可根据发动机的瞬态工况自动调节混合器的空燃比,提高发动机的瞬态响应速率。
3、结构简单,能够有效降低制造成本,同时,性能佳,控制精度高。
应当理解的是,尽管可以在文中使用术语第一、第二、第三等来描述多个元件、部件、区域、层和/或部段,但是,这些元件、部件、区域、层和/或部段不应被这些术语所限制。这些术语可以仅用来将一个元件、部件、区域、层或部段与另一元件、部件、区域、层或部段区分开。除非上下文明确地指出,否则诸如“第一”、“第二”之类的术语以及其它数字术语在文中使用时并不暗示顺序或者次序。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (10)

  1. 一种非道路燃气发动机的燃气控制系统,包括有混合器,所述混合器上分别设置有空气入口、燃气入口和混合气出口,其特征在于,所述空气入口设置有第一压力传感器,所述燃气入口间隔设置有第二压力传感器和调压阀,所述混合气出口设置有第三压力传感器;
    所述第一压力传感器、所述第二压力传感器、所述调压阀和所述第三压力传感器分别电连接控制器,所述控制器依据所述第一压力传感器、所述第二压力传感器和所述第三压力传感器反馈的压力信息控制所述调压阀的开度,以便调整混合气的空燃比。
  2. 根据权利要求1所述的非道路燃气发动机的燃气控制系统,其特征在于,所述第二压力传感器介于所述燃气入口和所述调压阀之间。
  3. 根据权利要求1所述的非道路燃气发动机的燃气控制系统,其特征在于,所述混合器内设置有燃气通道、空气通道、传压通道、混合腔和工作腔,所述燃气通道分别与所述燃气入口和所述混合腔连通,所述空气通道分别与所述空气入口和混合腔连通,所述混合腔的一端与所述混合气出口连通,所述混合腔的另一端经所述传压通道与所述工作腔连通;
    所述传压通道能够将所述混合气出口的压差传递至所述工作腔,所述工作腔的运动能够使所述空气入口和所述燃气入口开启,将燃气和空气吸入所述混合腔内。
  4. 根据权利要求3所述的非道路燃气发动机的燃气控制系统,其特征在于,所述混合器包括具有开口端的内芯,所述开口端朝向所述混合气出口,所述开口端内部设置有导柱,所述导柱与所述内芯同轴设置,所述导柱同轴插入燃气管内,所述燃气管分别与所述导柱的外壁和所述内芯的内壁间隔设置形成所述燃气通道。
  5. 根据权利要求4所述的非道路燃气发动机的燃气控制系统,其特征在于,所述内芯外部套装有套筒,所述套筒与所述内芯同轴设置,所述套筒的长度与所述内芯的长度相等,所述套筒的内壁与所述内芯的外壁间隔设置形成所述传压通道。
  6. 根据权利要求5所述的非道路燃气发动机的燃气控制系统,其特征在于,所述套筒远离所述混合气出口的端面通过弹性组件连接有上盖,所述弹性组件 包括有膜片和弹簧;
    所述膜片的一端环形连接在所述套筒远离所述混合气出口的端面上,所述膜片的另一端环形连接在所述上盖的端面上,所述套筒、所述膜片和所述上盖之间形成所述工作腔;
    所述弹簧的一端与所述上盖固接,所述弹簧的另一端与所述套筒固接,所述弹簧与所述套筒同轴设置。
  7. 根据权利要求6所述的非道路燃气发动机的燃气控制系统,其特征在于,所述套筒的外部套装有壳体,所述壳体与所述套筒同轴设置,所述壳体的内壁与所述套筒的外壁间隔设置形成空气通道;
    所述壳体的长度大于所述内芯的长度,所述混合气出口设置在所述壳体远离所述内芯的端口,所述混合腔介于所述内芯与所述混合气出口之间。
  8. 一种非道路燃气发动机的燃气控制方法,其通过权利要求1-7任一项所述的燃气控制系统实施,其特征在于,该燃气控制方法的步骤如下:
    S1:产生负压,将负压传递至工作腔;
    S2:驱动工作腔移动,分别将空气入口和燃气入口打开;
    S3:分别采集燃气入口、空气入口和混合气出口的当前压力;
    S4:根据燃气密度,燃气当前压力、燃气通道的参数计算当前燃气流量;
    S5:根据空气密度,空气当前压力、空气通道的参数计算当前空气流量;
    S6:根据当前空气流量和当前燃气流量计算当前空燃比,判断将当前空燃比与实际工况空燃比是否相同,若是,则保持当前状态,若否,则转入S7;
    S7:根据实际工况空燃比确定当前所需燃气压力;
    S8:根据当前所需燃气压力控制调压阀的开度。
  9. 根据权利要求8所述的非道路燃气发动机的燃气控制方法,其特征在于,在步骤S4中,当前燃气流量的计算公式为:
    Figure PCTCN2018093799-appb-100001
    其中,Q 为燃气流量,C 为结构常数,L 为燃气通道的径向截面周长,h为进气位移,P 为燃气当前压力,P 为混合气当前压力,ρ 为燃气密度;
    在步骤S5中,当前空气流量的计算公式为:
    Figure PCTCN2018093799-appb-100002
    其中,Q 为空气流量,C 为结构常数,L 为空气通道的径向截面周长,h为进气位移,P 为燃气当前压力,P 为混合气当前压力,ρ 为空气密度。
  10. 根据权利要求9所述的非道路燃气发动机的燃气控制方法,其特征在于,在步骤S7中,当前空燃比的公式为:
    Figure PCTCN2018093799-appb-100003
    经过推导可知,燃气压力的计算公式为:
    Figure PCTCN2018093799-appb-100004
PCT/CN2018/093799 2018-06-29 2018-06-29 非道路燃气发动机的燃气控制系统及其燃气控制方法 WO2020000416A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880012904.2A CN110337537B (zh) 2018-06-29 2018-06-29 非道路燃气发动机的燃气控制系统及其燃气控制方法
PCT/CN2018/093799 WO2020000416A1 (zh) 2018-06-29 2018-06-29 非道路燃气发动机的燃气控制系统及其燃气控制方法
US16/765,576 US11203991B2 (en) 2018-06-29 2018-06-29 Gas control system and gas control method of off-road gas engine
EP18924783.6A EP3677769B1 (en) 2018-06-29 2018-06-29 Gas control system and gas control method of off-road gas engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/093799 WO2020000416A1 (zh) 2018-06-29 2018-06-29 非道路燃气发动机的燃气控制系统及其燃气控制方法

Publications (1)

Publication Number Publication Date
WO2020000416A1 true WO2020000416A1 (zh) 2020-01-02

Family

ID=68139470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093799 WO2020000416A1 (zh) 2018-06-29 2018-06-29 非道路燃气发动机的燃气控制系统及其燃气控制方法

Country Status (4)

Country Link
US (1) US11203991B2 (zh)
EP (1) EP3677769B1 (zh)
CN (1) CN110337537B (zh)
WO (1) WO2020000416A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110905701A (zh) * 2019-11-27 2020-03-24 四川华气动力有限责任公司 一种燃气发动机进气组件
CN113006977B (zh) * 2021-03-12 2023-02-03 中国人民解放军国防科技大学 气体预混装置及其流量控制方法
CN114033879A (zh) * 2021-11-25 2022-02-11 永高股份有限公司 一种排水系统用吸气阀

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0690215B1 (en) * 1994-06-29 2002-12-11 Honda Giken Kogyo Kabushiki Kaisha Control system for internal combustion engines
CN2656652Y (zh) * 2003-10-14 2004-11-17 重庆鼎辉机电有限公司 膜片式混合器
CN102230425A (zh) * 2011-05-16 2011-11-02 胜利油田胜利动力机械集团有限公司 燃气发电机组空燃比快速自动调节系统
CN104121115A (zh) * 2014-07-23 2014-10-29 山东大学 电控随动调压式天然气发动机空燃比控制系统及控制方法
CN104728479A (zh) * 2015-03-18 2015-06-24 南充市农业机械科学研究所 膜盒式二级调压稳压混合器
CN106677909A (zh) * 2016-12-08 2017-05-17 湖北鹰牌动力科技有限公司 一种燃气发动机的电子卸荷装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE442633A (zh) 1941-09-03 1941-10-31
US5070851A (en) * 1990-06-22 1991-12-10 Briggs & Stratton Corp. Air fuel mixing device for producer gas
US5245977A (en) * 1991-07-03 1993-09-21 Tecogen, Inc. Flow proportioning mixer for gaseous fuel and air and internal combustion engine gas fuel mixer system
US5188141A (en) 1991-12-03 1993-02-23 Siemens Automotive Limited Vacuum boost valve
JP2000146263A (ja) * 1998-11-16 2000-05-26 Sanyo Electric Co Ltd エンジン燃料供給装置及びこのエンジン燃料供給装置を備えた空気調和装置
US6752135B2 (en) * 2002-11-12 2004-06-22 Woodward Governor Company Apparatus for air/fuel ratio control
US6843236B1 (en) * 2003-07-14 2005-01-18 Michael Shetley Multi-phase fuel system
JP4452092B2 (ja) * 2004-02-24 2010-04-21 三菱重工業株式会社 ガスエンジンの燃焼制御方法及びその装置
US6932052B1 (en) * 2004-09-24 2005-08-23 Woodward Governor Company Air/fuel ratio control system for gaseous fueled engines
US8176897B1 (en) * 2006-06-29 2012-05-15 E-Controls, Inc. Electronic pressure regulator
US8006668B1 (en) * 2006-06-29 2011-08-30 Econtrols, Inc. Electronic pressure regulator
DE102007011312A1 (de) 2007-03-08 2008-09-11 Robert Bosch Gmbh Gasdosiereinrichtung
US8005603B2 (en) * 2007-09-27 2011-08-23 Continental Controls Corporation Fuel control system and method for gas engines
US7958866B2 (en) * 2008-05-16 2011-06-14 Cummins Intellectual Properties, Inc. Method and system for closed loop lambda control of a gaseous fueled internal combustion engine
US9181901B2 (en) * 2009-11-03 2015-11-10 Indian Institute Of Science Producer gas carburettor
CN202381174U (zh) * 2011-12-23 2012-08-15 重庆潍柴发动机厂 一种大功率气体发动机进气系统
CA2798870C (en) * 2012-12-17 2014-07-22 Westport Power Inc. Air-enriched gaseous fuel direct injection for an internal combustion engine
US9581089B2 (en) * 2013-05-10 2017-02-28 General Electric Company Gas dosage control for gas engine
CN203978644U (zh) * 2014-07-23 2014-12-03 山东大学 电控随动调压式天然气发动机空燃比控制系统
US9624863B1 (en) * 2015-10-28 2017-04-18 Caterpillar Inc. System and method for supplying fuel to engine
SE541091C2 (en) * 2016-03-23 2019-04-02 Scania Cv Ab A method and a system for adapting engine control of a gas engine in a vehicle
DE102016115113A1 (de) 2016-08-15 2018-02-15 Tutech Innovation Gmbh Gasmotor oder Zweistoffmotor mit Gasventil sowie Verwendung eines druckentlasteten Gasventils hierfür
US10364398B2 (en) * 2016-08-30 2019-07-30 Thermochem Recovery International, Inc. Method of producing product gas from multiple carbonaceous feedstock streams mixed with a reduced-pressure mixing gas
JP6869150B2 (ja) * 2017-09-13 2021-05-12 日立Astemo株式会社 過給機付内燃機関の蒸発燃料処理装置
WO2019172875A1 (en) * 2018-03-05 2019-09-12 Cummins Emission Solutions Inc. Improved soot load estimation using dual differential pressure sensors
KR101987458B1 (ko) * 2018-03-21 2019-06-12 (주)모토닉 고압연료펌프 및 이를 포함하는 엘피디아이 시스템

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0690215B1 (en) * 1994-06-29 2002-12-11 Honda Giken Kogyo Kabushiki Kaisha Control system for internal combustion engines
CN2656652Y (zh) * 2003-10-14 2004-11-17 重庆鼎辉机电有限公司 膜片式混合器
CN102230425A (zh) * 2011-05-16 2011-11-02 胜利油田胜利动力机械集团有限公司 燃气发电机组空燃比快速自动调节系统
CN104121115A (zh) * 2014-07-23 2014-10-29 山东大学 电控随动调压式天然气发动机空燃比控制系统及控制方法
CN104728479A (zh) * 2015-03-18 2015-06-24 南充市农业机械科学研究所 膜盒式二级调压稳压混合器
CN106677909A (zh) * 2016-12-08 2017-05-17 湖北鹰牌动力科技有限公司 一种燃气发动机的电子卸荷装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3677769A4 *

Also Published As

Publication number Publication date
EP3677769B1 (en) 2024-02-14
CN110337537A (zh) 2019-10-15
EP3677769A4 (en) 2021-03-10
EP3677769A1 (en) 2020-07-08
US20200309050A1 (en) 2020-10-01
US11203991B2 (en) 2021-12-21
CN110337537B (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
WO2020000416A1 (zh) 非道路燃气发动机的燃气控制系统及其燃气控制方法
CN109442405B (zh) 一种空燃比例混合器
US20170082320A1 (en) Dual sensor combustion system
KR880003232A (ko) 이종 기체의 상대질량 유량 제어 시스템
CN105298664A (zh) 一种沼气内燃发电机组空燃比控制系统及其控制方法
CN101614161A (zh) 一种空燃比控制装置
CN101672858A (zh) 气体燃料在本生灯燃烧过程中火焰传播速度的测量方法
CN205101127U (zh) 一种沼气内燃发电机组空燃比控制系统
US9181901B2 (en) Producer gas carburettor
US2105056A (en) Fuel-gas and air carburetor
CN107642418B (zh) 节流阀及发动机
CN208041252U (zh) 瓦斯器具与瓦斯阀
CN206160190U (zh) 一种高温燃烧炉的流量自动控制系统
CN207554200U (zh) 节流阀及发动机
US8544334B2 (en) Systems, methods, and apparatus for compensating atmospheric pressure measurements in fired equipment
CN109184961A (zh) 进气(歧)管真空吸入式气体燃料供应方法和装置
CN208749464U (zh) 集成式电子节气门
US2848201A (en) Carburetor
CN218645564U (zh) 一种数显式预混器
CN212841562U (zh) 一种高过剩空气燃烧器
CN220017696U (zh) 一种壁挂式智能热水器
CN215890248U (zh) 进气间隙可调整的燃气混合装置
CN209246396U (zh) 一种全预混燃气热水器
NZ192252A (en) Ic engine: carburettor supplementary air-fuel ratio control
CN114857614A (zh) 燃气燃烧智能控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924783

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018924783

Country of ref document: EP

Effective date: 20200330

NENP Non-entry into the national phase

Ref country code: DE