WO2020000343A1 - 一种污泥干化蒸馏水除氨氮、cod的工艺 - Google Patents

一种污泥干化蒸馏水除氨氮、cod的工艺 Download PDF

Info

Publication number
WO2020000343A1
WO2020000343A1 PCT/CN2018/093548 CN2018093548W WO2020000343A1 WO 2020000343 A1 WO2020000343 A1 WO 2020000343A1 CN 2018093548 W CN2018093548 W CN 2018093548W WO 2020000343 A1 WO2020000343 A1 WO 2020000343A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
wastewater
ammonia gas
gas
cod
Prior art date
Application number
PCT/CN2018/093548
Other languages
English (en)
French (fr)
Inventor
蒋路漫
胡敏娴
瞿其能
单灵灵
刘美芝
Original Assignee
江苏海容热能环境工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏海容热能环境工程有限公司 filed Critical 江苏海容热能环境工程有限公司
Priority to PCT/CN2018/093548 priority Critical patent/WO2020000343A1/zh
Publication of WO2020000343A1 publication Critical patent/WO2020000343A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption

Definitions

  • the invention relates to the technical field of sewage treatment, and in particular relates to a process for removing ammonia nitrogen and COD from sludge drying distilled water.
  • the blow-off method is widely used in sludge drying, distilled water, and ammonia removal systems.
  • the existing blow-off methods have the following disadvantages: COD cannot be processed. Even if it is, the process is too complicated and the processing cost is high. At the same time, the blowing efficiency of ammonia gas cannot be improved; it is not conducive to the recovery of ammonia gas, which is directly discharged into the atmosphere, and the energy saving and environmental protection effect is poor.
  • the purpose of the present invention is to provide a process for removing ammonia nitrogen and COD from sludge drying and distilled water, so as to solve the problems mentioned in the background art.
  • the present invention provides the following technical solutions:
  • a process for removing ammonia nitrogen and COD from sludge drying distilled water including the following steps: step one, removing COD; step two, pH adjustment; step three, preheating; step four, pretreatment; step five, gas-liquid separation; step Sixth, ammonia recovery;
  • the wastewater is passed into the first sand filter filter, and then filtered through the activated carbon filter, and then into the second sand filter filter, and the wastewater is passed into the regulating tank after filtering;
  • ammonia nitrogen exists in the wastewater in the form of NH 4 + and NH 3.
  • a certain amount of sodium hydroxide is passed into the regulating tank, and the pH value of the wastewater in the regulating tank is observed by a pH meter to the wastewater.
  • solution was made alkaline, alkaline environment NH 4 + + OH - ⁇ NH 3 + H 2 O;
  • step three the waste water and ammonia gas in the regulating tank are pumped out by a feed pump, heated by a liquid heater, and then passed into the sulfur blowing tank through a connecting pipe;
  • the potassium permanganate acid solution is extracted from the potassium permanganate acid solution tank through the first water pump, and is sprayed from the first nozzle to carry out the waste water and ammonia gas flowing into the sulfur blowing tank.
  • step 5 above the waste water and ammonia gas sprayed with the potassium permanganate acid solution pass through the filler layer in the sulfur blowing tank and the first gas-liquid separator provided on the filler layer to separate the ammonia gas and
  • the wastewater is separated, the ammonia gas rises to the upper layer of the sulfur blowing tank, the wastewater falls to the bottom of the sulfur blowing tank, flows into the collection box through the connecting pipe, and the external air is compressed by the air compressor and heated by the gas heater. It is then blown to the sulfur blowing tank, and the hot air drives the ammonia gas to rise;
  • step 6 mentioned above the ammonia gas and air in the upper layer of the sulfur blowing tank are extracted by the first suction pump and discharged into the absorption tank, and the peristaltic pump extracts the absorption liquid in the absorption liquid tank and sprays it by the second nozzle.
  • spray the ammonia gas and air flowing into the absorption tank absorb the air to form a saturated absorption liquid, and then extract the saturated absorption liquid and ammonia gas through a second water pump and discharge it into the regeneration tank.
  • the ammonia gas rises to the headspace of the regeneration tank, the saturated absorption liquid falls into the bottom space of the regeneration tank, and the saturated absorption liquid is pumped back to the absorption liquid tank by the circulating pump.
  • a white sand filter layer, a gauze filter layer and a baffle are provided inside the first sand filter filter and the second sand filter filter, and an activated carbon filter is provided inside the activated carbon filter.
  • Layer, gauze filter layer and baffle are provided inside the first sand filter filter and the second sand filter filter, and an activated carbon filter is provided inside the activated carbon filter.
  • the pH value of the wastewater is between 7 and 9.
  • a plurality of balls are arranged at an equal distance inside the connecting pipe.
  • the filler layer is a stainless steel ring material component.
  • the temperature value of the condensation is -40 ° C.
  • the first spray head is an atomizing spray head.
  • the temperature heated by the gas heater is 70 ° C.
  • the wastewater is passed into the first sand filter filter, then filtered through the activated carbon filter, and then passed into the second sand filter filter, which is beneficial to the removal of COD and has a simple structure;
  • the peristaltic pump draws out the absorption liquid in the absorption liquid tank and sprays it out from the second nozzle, sprays the ammonia gas and air flowing into the absorption tank, and absorbs the air to form a saturated absorption liquid.
  • the second water pump extracts the saturated absorption liquid and ammonia gas and discharges it into the regeneration tank. After passing through the second gas-liquid separator in the regeneration tank, the ammonia gas rises to the head space of the regeneration tank, and the saturated absorption liquid falls into the regeneration tank.
  • the saturated absorption liquid is pumped back to the absorption liquid tank by a circulation pump, neutralized, recirculated and sprayed, and then the ammonia gas in the top space of the regeneration tank is drawn out by a second suction pump and discharged into a collection tank.
  • the condenser in the collection tank the ammonia gas is condensed into ammonia water, which is beneficial to the recovery of ammonia gas and the reuse of resources to achieve the effect of energy conservation and environmental protection.
  • FIG. 1 is a process flow chart of the present invention.
  • the present invention provides a technical solution: a process for removing ammonia nitrogen and COD from sludge drying distilled water:
  • a process for removing ammonia nitrogen and COD from sludge drying distilled water including the following steps: step one, removing COD; step two, pH adjustment; step three, preheating; step four, pretreatment; step five, gas-liquid separation; step Sixth, ammonia recovery;
  • the wastewater is passed into the first sand filter filter, and then filtered through the activated carbon filter, and then into the second sand filter filter. After filtering, the wastewater is passed into the regulating tank, which is beneficial Remove COD;
  • ammonia nitrogen exists in the wastewater in the form of NH 4 + and NH 3.
  • a certain amount of sodium hydroxide is passed into the regulating tank, and the pH value of the wastewater in the regulating tank is observed by a pH meter to the wastewater.
  • solution was made alkaline, alkaline environment NH 4 + + OH - ⁇ NH 3 + H 2 O, NH 4 + conducive to making into NH 3, facilitate the collection;
  • the waste water and ammonia gas in the regulating tank are pumped out by a feed pump, heated by a liquid heater, and then passed into the sulfur blowing tank through a connecting pipe;
  • the potassium permanganate acid solution is extracted from the potassium permanganate acid solution tank through the first water pump, and is sprayed from the first nozzle to carry out the waste water and ammonia gas flowing into the sulfur blowing tank.
  • step 5 above the waste water and ammonia gas sprayed with the potassium permanganate acid solution pass through the filler layer in the sulfur blowing tank and the first gas-liquid separator provided on the filler layer to separate the ammonia gas and
  • the wastewater is separated, the ammonia gas rises to the upper layer of the sulfur blowing tank, the wastewater falls to the bottom of the sulfur blowing tank, flows into the collection box through the connecting pipe, and the external air is compressed by the air compressor and heated by the gas heater. It is then blown to the sulfur blowing tank.
  • the hot air drives the ammonia gas to rise, which is conducive to gas-liquid separation and improves the blowing efficiency of ammonia gas.
  • step 6 mentioned above the ammonia gas and air in the upper layer of the sulfur blowing tank are extracted by the first suction pump and discharged into the absorption tank, and the peristaltic pump extracts the absorption liquid in the absorption liquid tank and sprays it by the second nozzle.
  • spray the ammonia gas and air flowing into the absorption tank absorb the air to form a saturated absorption liquid, and then extract the saturated absorption liquid and ammonia gas through a second water pump and discharge it into the regeneration tank.
  • the ammonia gas rises to the headspace of the regeneration tank, the saturated absorption liquid falls into the bottom space of the regeneration tank, and the saturated absorption liquid is pumped back to the absorption liquid tank by the circulating pump.
  • a white sand filter layer, a gauze filter layer, and a baffle are provided inside the first sand filter filter tank and a second sand filter filter tank, and an activated carbon filter layer and gauze filter are provided inside the activated carbon filter tank Layer and baffle plate;
  • step two the pH value of the wastewater is between 7 and 9;
  • step three a plurality of balls are equidistantly arranged inside the connecting pipe;
  • step five the packing layer is a stainless steel ring Material component;
  • the temperature of condensation is -40 ° C;
  • the first nozzle is an atomizing nozzle; in step five, the temperature heated by the gas heater is 70 ° C.
  • the present invention has the advantage that the present invention passes wastewater into the first sand filter tank, then filters through the activated carbon filter tank, and then into the second sand filter tank. After filtering, the wastewater is passed into the regulating tank. ; Ammonia nitrogen exists in the form of NH 4 + and NH 3 in the wastewater, and a certain amount of sodium hydroxide is passed into the adjustment tank, and the pH value of the wastewater in the adjustment tank is observed through a pH meter, until the wastewater is adjusted to an alkaline solution, alkali NH 4 + + OH under environment - ⁇ NH 3 + H 2 O ; adjusted by means of a feeding pump and the waste water tank the ammonia is withdrawn through the liquid heater is heated, and then through the connection pipe into the blow tank sulfur ; The potassium permanganate acid solution is extracted from the potassium permanganate acid solution tank by the first water pump, and is sprayed from the first nozzle to spray the waste water and ammonia gas that enter the sulfur blowing tank; The waste water
  • the wastewater falls into the bottom of the sulfur blowing tank and flows into the collection box through the connecting pipe.
  • the external air is compressed by an air compressor to be heated by a gas heater, and then blown to the sulfur blowing tank, and the hot air drives the ammonia gas to rise;
  • the ammonia gas and air in the upper layer of the sulfur blowing tank are extracted by the first suction pump and discharged into the In the absorption tank, the peristaltic pump draws out the absorption liquid in the absorption liquid tank and sprays it out through the second nozzle, spraying the ammonia gas and air flowing into the absorption tank, and absorbing the air to form a saturated absorption liquid.
  • the second water pump extracts the saturated absorption liquid and ammonia gas and discharges it into the regeneration tank.
  • the ammonia gas rises to the head space of the regeneration tank, and the saturated absorption liquid falls into the regeneration.
  • the saturated absorption liquid is pumped back to the absorption liquid tank by a circulation pump, neutralized, recirculated and sprayed, and then the ammonia gas in the top space of the regeneration tank is drawn out by a second suction pump and discharged into a collection tank.
  • the condenser in the collection tank condenses the ammonia gas into ammonia water; this process is beneficial for the removal of COD; it is beneficial for gas-liquid separation and at the same time improves the blowing efficiency of ammonia gas; it is beneficial for ammonia gas recovery Resource recycling, to achieve energy saving effect.

Abstract

本发明公开了一种污泥干化蒸馏水除氨氮、COD的工艺,包括如下步骤:步骤一,除COD;步骤二,PH调节;步骤三,预热;步骤四,预处理;步骤五,气液分离;步骤六,氨气回收;其中在上述的步骤一中,将废水通入到第一砂滤过滤池,再经过活性炭过滤池过滤,再通入第二砂滤过滤池,过滤后将废水通入到调节罐中;其中在上述的步骤二中,氨氮在废水中的存在形式为NH 4 +和NH 3,向调节罐通入一定量的氢氧化钠,通过PH检测计观察调节罐中废水的PH值,至废水调成碱性溶液,碱性环境下NH 4 ++OH -→NH 3+H 2O;本发明,有利于除去COD,结构简单;有利于进行气液分离,同时提升氨气的吹送效率;有利于对氨气进行回收,资源再利用,达到节能环保的效果。

Description

一种污泥干化蒸馏水除氨氮、COD的工艺 技术领域
本发明涉及污水处理技术领域,具体为一种污泥干化蒸馏水除氨氮、COD的工艺。
背景技术
随着我国经济的高速发展,产生了大量高浓度氨氮废水。工业含氨氮废水的大量排放,导致水体中氨氮大量富集,并引起水体的富营养化与恶化,不仅严重影响了人们的正常生活,甚至危害了人们的身体健康,社会影响巨大。
目前污泥干化蒸馏水除氨氮系统采用吹脱法较为普遍,但是现有的吹脱法存在以下的缺陷:不能够对COD进行处理,就算有,工艺过于复杂,处理成本高;不利于进行气液分离,同时不能提升氨气的吹送效率;不利于对氨气的回收,都是直接排往大气中,节能环保效果差。
发明内容
本发明的目的在于提供一种污泥干化蒸馏水除氨氮、COD的工艺,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:
一种污泥干化蒸馏水除氨氮、COD的工艺,包括如下步骤:步骤一,除COD;步骤二,PH调节;步骤三,预热;步骤四,预处理;步骤五,气液分离;步骤六,氨气回收;
其中在上述的步骤一中,将废水通入到第一砂滤过滤池,再经过活性炭过滤池过滤,再通入第二砂滤过滤池,过滤后将废水通入到调节罐中;
其中在上述的步骤二中,氨氮在废水中的存在形式为NH 4 +和NH 3,向调节罐通入一定量的氢氧化钠,通过PH检测计观察调节罐中废水的PH值,至废水调成碱性溶液,碱性环境下NH 4 ++OH -→NH 3+H 2O;
其中在上述的步骤三中,通过进料泵将调节罐中的废水和氨气抽出,经 过液体加热器进行加热,再通过连接管通入到吹硫罐中;
其中在上述的步骤四中,通过第一水泵从高锰酸钾酸液箱体中抽出高锰酸钾酸液,由第一喷头喷出,对通入吹硫罐中的废水和氨气进行喷淋;
其中在上述的步骤五中,被高锰酸钾酸液喷淋后的废水和氨气,经过吹硫罐中的填料层和设置在填料层上的第一气液分离器,将氨气和废水进行分离,氨气上升到吹硫罐的上层,废水落入到吹硫罐的底部,通过连接管流入到收集盒中,同时通过空气压缩机将外部空气压缩后经过气体加热器进行加热,再吹送到吹硫罐,热空气带动氨气上升;
其中在上述的步骤六中,通过第一抽气泵将吹硫罐上层的氨气和空气抽出,排入到吸收罐中,蠕动泵将吸收液箱体中的吸收液抽出,由第二喷头喷出,对通入到吸收罐中的氨气和空气,进行喷淋,对空气进行吸收,形成饱和吸收液,再由第二水泵将饱和吸收液和氨气抽出,排入到再生罐中,经过再生罐中的第二气液分离器,氨气上升到再生罐的顶部空间,饱和吸收液落入再生罐的底部空间,通过循环泵将饱和吸收液抽回到吸收液箱体,进行中和,再循环喷淋,再通过第二抽气泵将再生罐顶部空间的氨气抽出,排入到收集罐中,经过收集罐中的冷凝器,将氨气冷凝,变成氨水。
根据上述技术方案,在所述步骤一中,第一砂滤过滤池和第二砂滤过滤池的内部设置有白沙过滤层、纱网过滤层和挡板,活性炭过滤池的内部设置有活性炭过滤层、纱网过滤层和挡板。
根据上述技术方案,在所述步骤二中,废水的PH值在7~9之间。
根据上述技术方案,在所述步骤三中,连接管的内部等距离设置有若干个滚珠。
根据上述技术方案,在所述步骤五中,填料层为一种不锈钢环材料构件。
根据上述技术方案,在所述步骤六中,冷凝的温度值为-40℃。
根据上述技术方案,在所述步骤四中,第一喷头为雾化喷头。
根据上述技术方案,在所述步骤五中,气体加热器加热的温度为70℃。
与现有技术相比,本发明的有益效果是:
1.将废水通入到第一砂滤过滤池,再经过活性炭过滤池过滤,再通入第二砂滤过滤池,有利于除去COD,结构简单;
2.经过吹硫罐中的填料层和设置在填料层上的第一气液分离器,将氨气和废水进行分离,氨气上升到吹硫罐的上层,废水落入到吹硫罐的底部,通过连接管流入到收集盒中,同时通过空气压缩机将外部空气压缩后经过气体加热器进行加热,再吹送到吹硫罐,热空气带动氨气上升,有利于进行气液分离,同时提升氨气的吹送效率;
3.蠕动泵将吸收液箱体中的吸收液抽出,由第二喷头喷出,对通入到吸收罐中的氨气和空气,进行喷淋,对空气进行吸收,形成饱和吸收液,再由第二水泵将饱和吸收液和氨气抽出,排入到再生罐中,经过再生罐中的第二气液分离器,氨气上升到再生罐的顶部空间,饱和吸收液落入再生罐的底部空间,通过循环泵将饱和吸收液抽回到吸收液箱体,进行中和,再循环喷淋,再通过第二抽气泵将再生罐顶部空间的氨气抽出,排入到收集罐中,经过收集罐中的冷凝器,将氨气冷凝,变成氨水,有利于对氨气进行回收,资源再利用,达到节能环保的效果。
附图说明
图1是本发明的工艺流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,本发明提供一种技术方案:一种污泥干化蒸馏水除氨氮、COD 的工艺:
实施例1:
一种污泥干化蒸馏水除氨氮、COD的工艺,包括如下步骤:步骤一,除COD;步骤二,PH调节;步骤三,预热;步骤四,预处理;步骤五,气液分离;步骤六,氨气回收;
其中在上述的步骤一中,将废水通入到第一砂滤过滤池,再经过活性炭过滤池过滤,再通入第二砂滤过滤池,过滤后将废水通入到调节罐中,有利于除去COD;
其中在上述的步骤二中,氨氮在废水中的存在形式为NH 4 +和NH 3,向调节罐通入一定量的氢氧化钠,通过PH检测计观察调节罐中废水的PH值,至废水调成碱性溶液,碱性环境下NH 4 ++OH -→NH 3+H 2O,有利于使NH 4 +变成NH 3,便于收集;
其中在上述的步骤三中,通过进料泵将调节罐中的废水和氨气抽出,经过液体加热器进行加热,再通过连接管通入到吹硫罐中;
其中在上述的步骤四中,通过第一水泵从高锰酸钾酸液箱体中抽出高锰酸钾酸液,由第一喷头喷出,对通入吹硫罐中的废水和氨气进行喷淋;
其中在上述的步骤五中,被高锰酸钾酸液喷淋后的废水和氨气,经过吹硫罐中的填料层和设置在填料层上的第一气液分离器,将氨气和废水进行分离,氨气上升到吹硫罐的上层,废水落入到吹硫罐的底部,通过连接管流入到收集盒中,同时通过空气压缩机将外部空气压缩后经过气体加热器进行加热,再吹送到吹硫罐,热空气带动氨气上升,有利于进行气液分离,同时提升氨气的吹送效率;
其中在上述的步骤六中,通过第一抽气泵将吹硫罐上层的氨气和空气抽出,排入到吸收罐中,蠕动泵将吸收液箱体中的吸收液抽出,由第二喷头喷出,对通入到吸收罐中的氨气和空气,进行喷淋,对空气进行吸收,形成饱 和吸收液,再由第二水泵将饱和吸收液和氨气抽出,排入到再生罐中,经过再生罐中的第二气液分离器,氨气上升到再生罐的顶部空间,饱和吸收液落入再生罐的底部空间,通过循环泵将饱和吸收液抽回到吸收液箱体,进行中和,再循环喷淋,再通过第二抽气泵将再生罐顶部空间的氨气抽出,排入到收集罐中,经过收集罐中的冷凝器,将氨气冷凝,变成氨水,有利于对氨气进行回收,资源再利用,达到节能环保的效果。
其中,在步骤一中,第一砂滤过滤池和第二砂滤过滤池的内部设置有白沙过滤层、纱网过滤层和挡板,活性炭过滤池的内部设置有活性炭过滤层、纱网过滤层和挡板;在步骤二中,废水的PH值在7~9之间;在步骤三中,连接管的内部等距离设置有若干个滚珠;在步骤五中,填料层为一种不锈钢环材料构件;在步骤六中,冷凝的温度值为-40℃;在步骤四中,第一喷头为雾化喷头;在步骤五中,气体加热器加热的温度为70℃。
基于上述,本发明的优点在于,本发明将废水通入到第一砂滤过滤池,再经过活性炭过滤池过滤,再通入第二砂滤过滤池,过滤后将废水通入到调节罐中;氨氮在废水中的存在形式为NH 4 +和NH 3,向调节罐通入一定量的氢氧化钠,通过PH检测计观察调节罐中废水的PH值,至废水调成碱性溶液,碱性环境下NH 4 ++OH -→NH 3+H 2O;通过进料泵将调节罐中的废水和氨气抽出,经过液体加热器进行加热,再通过连接管通入到吹硫罐中;通过第一水泵从高锰酸钾酸液箱体中抽出高锰酸钾酸液,由第一喷头喷出,对通入吹硫罐中的废水和氨气进行喷淋;被高锰酸钾酸液喷淋后的废水和氨气,经过吹硫罐中的填料层和设置在填料层上的第一气液分离器,将氨气和废水进行分离,氨气上升到吹硫罐的上层,废水落入到吹硫罐的底部,通过连接管流入到收集盒中,同时通过空气压缩机将外部空气压缩后经过气体加热器进行加热,再吹送到吹硫罐,热空气带动氨气上升;通过第一抽气泵将吹硫罐上层的氨气和空气抽出,排入到吸收罐中,蠕动泵将吸收液箱体中的吸收液抽出,由第二 喷头喷出,对通入到吸收罐中的氨气和空气,进行喷淋,对空气进行吸收,形成饱和吸收液,再由第二水泵将饱和吸收液和氨气抽出,排入到再生罐中,经过再生罐中的第二气液分离器,氨气上升到再生罐的顶部空间,饱和吸收液落入再生罐的底部空间,通过循环泵将饱和吸收液抽回到吸收液箱体,进行中和,再循环喷淋,再通过第二抽气泵将再生罐顶部空间的氨气抽出,排入到收集罐中,经过收集罐中的冷凝器,将氨气冷凝,变成氨水;该过程,有利于除去COD;有利于进行气液分离,同时提升氨气的吹送效率;有利于对氨气进行回收,资源再利用,达到节能环保的效果。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (8)

  1. 一种污泥干化蒸馏水除氨氮、COD的工艺,包括如下步骤:步骤一,除COD;步骤二,PH调节;步骤三,预热;步骤四,预处理;步骤五,气液分离;步骤六,氨气回收;其特征在于:
    其中在上述的步骤一中,将废水通入到第一砂滤过滤池,再经过活性炭过滤池过滤,再通入第二砂滤过滤池,过滤后将废水通入到调节罐中;
    其中在上述的步骤二中,氨氮在废水中的存在形式为NH 4 +和NH 3,向调节罐通入一定量的氢氧化钠,通过PH检测计观察调节罐中废水的PH值,至废水调成碱性溶液,碱性环境下NH 4 ++OH -→NH 3+H 2O;
    其中在上述的步骤三中,通过进料泵将调节罐中的废水和氨气抽出,经过液体加热器进行加热,再通过连接管通入到吹硫罐中;
    其中在上述的步骤四中,通过第一水泵从高锰酸钾酸液箱体中抽出高锰酸钾酸液,由第一喷头喷出,对通入吹硫罐中的废水和氨气进行喷淋;
    其中在上述的步骤五中,被高锰酸钾酸液喷淋后的废水和氨气,经过吹硫罐中的填料层和设置在填料层上的第一气液分离器,将氨气和废水进行分离,氨气上升到吹硫罐的上层,废水落入到吹硫罐的底部,通过连接管流入到收集盒中,同时通过空气压缩机将外部空气压缩后经过气体加热器进行加热,再吹送到吹硫罐,热空气带动氨气上升;
    其中在上述的步骤六中,通过第一抽气泵将吹硫罐上层的氨气和空气抽出,排入到吸收罐中,蠕动泵将吸收液箱体中的吸收液抽出,由第二喷头喷出,对通入到吸收罐中的氨气和空气,进行喷淋,对空气进行吸收,形成饱和吸收液,再由第二水泵将饱和吸收液和氨气抽出,排入到再生罐中,经过再生罐中的第二气液分离器,氨气上升到再生罐的顶部空间,饱和吸收液落入再生罐的底部空间,通过循环泵将饱和吸收液抽回到吸收液箱体,进行中和,再循环喷淋,再通过第二抽气泵将再生罐顶部空间的氨气抽出,排入到收集罐中,经过收集罐中的冷凝器,将氨气冷凝,变成氨水。
  2. 根据权利要求1的一种污泥干化蒸馏水除氨氮、COD的工艺,其特征在于:在所述步骤一中,第一砂滤过滤池和第二砂滤过滤池的内部设置有白沙过滤层、纱网过滤层和挡板,活性炭过滤池的内部设置有活性炭过滤层、纱网过滤层和挡板。
  3. 根据权利要求1的一种污泥干化蒸馏水除氨氮、COD的工艺,其特征在于:在所述步骤二中,废水的PH值在7~9之间。
  4. 根据权利要求1的一种污泥干化蒸馏水除氨氮、COD的工艺,其特征在于:在所述步骤三中,连接管的内部等距离设置有若干个滚珠。
  5. 根据权利要求1的一种污泥干化蒸馏水除氨氮、COD的工艺,其特征在于:在所述步骤五中,填料层为一种不锈钢环材料构件。
  6. 根据权利要求1的一种污泥干化蒸馏水除氨氮、COD的工艺,其特征在于:在所述步骤六中,冷凝的温度值为-40℃。
  7. 根据权利要求1的一种污泥干化蒸馏水除氨氮、COD的工艺,其特征在于:在所述步骤四中,第一喷头为雾化喷头。
  8. 根据权利要求1的一种污泥干化蒸馏水除氨氮、COD的工艺,其特征在于:在所述步骤五中,气体加热器加热的温度为70℃。
PCT/CN2018/093548 2018-06-29 2018-06-29 一种污泥干化蒸馏水除氨氮、cod的工艺 WO2020000343A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/093548 WO2020000343A1 (zh) 2018-06-29 2018-06-29 一种污泥干化蒸馏水除氨氮、cod的工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/093548 WO2020000343A1 (zh) 2018-06-29 2018-06-29 一种污泥干化蒸馏水除氨氮、cod的工艺

Publications (1)

Publication Number Publication Date
WO2020000343A1 true WO2020000343A1 (zh) 2020-01-02

Family

ID=68985757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093548 WO2020000343A1 (zh) 2018-06-29 2018-06-29 一种污泥干化蒸馏水除氨氮、cod的工艺

Country Status (1)

Country Link
WO (1) WO2020000343A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112696663A (zh) * 2020-12-29 2021-04-23 四川省洪雅青衣江元明粉有限公司 一种控制锅炉低氮燃烧的方法
CN113526723A (zh) * 2021-07-06 2021-10-22 长江大学 一种在对羟基苯甲腈生产废水中提取铵盐的处理方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120078819A (ko) * 2011-01-03 2012-07-11 하동희 폐수의 암모니아 스트리핑장치
RU140857U1 (ru) * 2013-07-09 2014-05-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Череповецкий государственный университет" Установка утилизации танковых и продувочных газов производства аммиака
CN204588745U (zh) * 2015-04-30 2015-08-26 徐州工程学院 高浓度氨氮废水处理装置
CN204918289U (zh) * 2015-09-14 2015-12-30 山东杨帆环保工程有限公司 一种氨氮吹脱系统
CN106830487A (zh) * 2017-03-21 2017-06-13 北京中科康仑环境科技研究院有限公司 一种含有机物硫脲的高浓度氨氮废水的综合处理工艺
CN206814596U (zh) * 2017-06-19 2017-12-29 河北民族师范学院 一种高浓度有机废水处理装置
CN206940478U (zh) * 2017-04-18 2018-01-30 江苏沃德凯环保科技有限公司 一种蒸汽循环脱氨装置
CN207210180U (zh) * 2017-08-16 2018-04-10 江苏沃德凯环保科技有限公司 一种高效蒸氨回收氨水装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120078819A (ko) * 2011-01-03 2012-07-11 하동희 폐수의 암모니아 스트리핑장치
RU140857U1 (ru) * 2013-07-09 2014-05-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Череповецкий государственный университет" Установка утилизации танковых и продувочных газов производства аммиака
CN204588745U (zh) * 2015-04-30 2015-08-26 徐州工程学院 高浓度氨氮废水处理装置
CN204918289U (zh) * 2015-09-14 2015-12-30 山东杨帆环保工程有限公司 一种氨氮吹脱系统
CN106830487A (zh) * 2017-03-21 2017-06-13 北京中科康仑环境科技研究院有限公司 一种含有机物硫脲的高浓度氨氮废水的综合处理工艺
CN206940478U (zh) * 2017-04-18 2018-01-30 江苏沃德凯环保科技有限公司 一种蒸汽循环脱氨装置
CN206814596U (zh) * 2017-06-19 2017-12-29 河北民族师范学院 一种高浓度有机废水处理装置
CN207210180U (zh) * 2017-08-16 2018-04-10 江苏沃德凯环保科技有限公司 一种高效蒸氨回收氨水装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112696663A (zh) * 2020-12-29 2021-04-23 四川省洪雅青衣江元明粉有限公司 一种控制锅炉低氮燃烧的方法
CN112696663B (zh) * 2020-12-29 2023-06-02 四川省洪雅青衣江元明粉有限公司 一种控制锅炉低氮燃烧的方法
CN113526723A (zh) * 2021-07-06 2021-10-22 长江大学 一种在对羟基苯甲腈生产废水中提取铵盐的处理方法

Similar Documents

Publication Publication Date Title
CN106833758A (zh) 一种工业焦炉煤气氨气回收方法与装置
CN203878017U (zh) 电厂脱硫废水回用装置
CN101579595B (zh) 利用喷淋降温法处理氨基酸发酵废气的工艺
CN103060884B (zh) 一种镀硬铬生产线铬酸循环回收处理系统及工艺
KR20130086045A (ko) 활성화된 탄산나트륨을 사용하여 연도 가스 중의 이산화탄소를 포획하는 방법 및 장치
CN105236609B (zh) 一种高效氨氮吹脱与合成乌洛托品闭环处理系统
CN104163535B (zh) 一种脱硫废水零排放的装置及处理方法
WO2020000343A1 (zh) 一种污泥干化蒸馏水除氨氮、cod的工艺
CN206463697U (zh) 一种循环高压喷淋池
CN108408812B (zh) 一种含盐废水的脱盐淡化方法及装置
CN204469524U (zh) 一种塔式废气接触净化设备
CN106422680B (zh) 一种副产40%以上硫酸的冶炼烟气净化处理装置及方法
CN109647160B (zh) 一种处理硫铵母液循环槽尾气的方法
CN108658095A (zh) 一种氨水回收浓度易调节的节能回收工艺及系统
CN206881453U (zh) 一种混合有机废气净化与能源化处理系统
CN204097264U (zh) 一种脱硫废水零排放的装置
CN206108988U (zh) 一种利用电厂余热的水处理装置
CN110745787A (zh) 一种硫酸法钛白粉煅烧余热浓缩废酸工艺
CN205683807U (zh) 一种聚酯树脂真空尾气吸收装置
CN212451255U (zh) 甲胺/乙胺回收处理系统
CN210915714U (zh) 一种基于mvr工艺和ro装置的垃圾渗滤液处理系统
CN204824498U (zh) 垃圾渗滤液零排放处理系统
CN209549106U (zh) 一种废气回收利用节能装置
CN105817046A (zh) 一种减压多效玻璃蒸发器系统
CN111004144A (zh) 一种低浓度dmf提浓回收工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924425

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924425

Country of ref document: EP

Kind code of ref document: A1