WO2020000152A1 - 电子烟的温度控制系统 - Google Patents

电子烟的温度控制系统 Download PDF

Info

Publication number
WO2020000152A1
WO2020000152A1 PCT/CN2018/092704 CN2018092704W WO2020000152A1 WO 2020000152 A1 WO2020000152 A1 WO 2020000152A1 CN 2018092704 W CN2018092704 W CN 2018092704W WO 2020000152 A1 WO2020000152 A1 WO 2020000152A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
temperature
heating element
control module
module
Prior art date
Application number
PCT/CN2018/092704
Other languages
English (en)
French (fr)
Inventor
朱智鹏
段磊
周军
薛团委
胡鹏
李涛
Original Assignee
深圳市丽福科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市丽福科技有限责任公司 filed Critical 深圳市丽福科技有限责任公司
Priority to PCT/CN2018/092704 priority Critical patent/WO2020000152A1/zh
Publication of WO2020000152A1 publication Critical patent/WO2020000152A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F47/00Smokers' requisites not otherwise provided for
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes

Definitions

  • the invention relates to the field of electronic technology, and in particular to a temperature control system for an electronic cigarette.
  • E-cigarette is an electronic product that mimics cigarettes. It has the same appearance, smoke, taste and feel as cigarettes. Tobacco-type electronic cigarettes are heated and baked at constant temperature to evaporate smoke for users to inhale.
  • the electronic cigarette temperature control technology largely determines the quality of the electronic cigarette.
  • the output power is increased when the temperature is higher than the target temperature, and the output power is decreased when the temperature is lower than the target temperature.
  • the corresponding control effect is not good, the temperature control is not accurate enough, and the temperature is too low or too high, which greatly reduces the user's smoking taste, and when the temperature is too high, the tobacco is locally burnt and harmful. Substances that increase the health hazards to smokers.
  • the control of the heating temperature of the heating type electronic cigarette has a problem of insufficient control accuracy.
  • An electronic cigarette temperature control system includes:
  • Power supply module for powering the system
  • Heating element for emitting heat to the smokeable material in the electronic cigarette
  • a temperature detection module which is electrically connected to the power module and the heating element, and is configured to detect the temperature of the heating element after receiving power input by the power module;
  • a heating control module which is electrically connected to the power module and the heating element, and is used to form a switching circuit between the power module and the heating element; when the heating control module is turned on, the heating element obtains power and is heated;
  • the main control module is electrically connected to the temperature detection module and the heating control module, respectively, and is used to send control signals to the temperature detection module and the heating control module, and control the temperature detection module and the heating control module to work alternately to control
  • the temperature of the heating element is the same as the target temperature.
  • the temperature detection module includes a signal input terminal, a first switch unit, and a sampling resistor, the signal input terminal, the first switch unit, and a sampling resistor are electrically connected in sequence, and the main control unit
  • the module is electrically connected to a signal input terminal
  • the power module is electrically connected to the first switching unit
  • the sampling resistor is connected in series with a heating element to form a temperature detection loop.
  • the first switch unit when the main control module inputs a high voltage to the signal input terminal, the first switch unit is controlled to be turned on, and the main control module inputs a low voltage to the signal input terminal.
  • the first switch unit When the voltage is controlled, the first switch unit is controlled to be turned off.
  • the main control module calculates the resistance value of the heating element according to Ohm's law, and obtains the heating element according to the correspondence between the resistance value of the heating element and the temperature temperature.
  • the main control module is further configured to obtain voltage values of the sampling resistor and the heating element, and according to a formula
  • the heating control module includes a second switching unit, and the main control module sends a pulse width modulation signal to the second switching unit to control the heating element to periodically heat.
  • the main control module is further configured to obtain a current duty cycle value, and calculate a pulse width modulation signal based on a difference between a detected current temperature value of the heating element and a target temperature value.
  • Target duty cycle adjustment value is further configured to obtain a current duty cycle value, and calculate a pulse width modulation signal based on a difference between a detected current temperature value of the heating element and a target temperature value.
  • the main control module calculates a temperature difference between the target temperature value and the current temperature value as a first difference value, according to a preset difference value and a quantized value.
  • the corresponding relationship between the first difference quantization value corresponding to the first difference value, the first difference quantization value is a value between 0 and 1; and the previously calculated difference quantization value is used as the first Two difference quantization values; the main control module determines the target duty cycle adjustment value according to the current duty cycle value, the first difference quantization value, and the second difference quantization value.
  • the main control module is based on a formula
  • D N D N-1 + 2E N -E N-1
  • D N is the target duty cycle adjustment value
  • D N-1 is the current duty cycle value
  • E N is the first difference quantization value
  • E N-1 is the second difference The value is quantized.
  • the main control module controls the temperature detection module to work in a first cycle
  • the main control module controls the heating control module to work in a second cycle
  • the first The period is smaller than the second period
  • An electronic cigarette includes the above-mentioned temperature control system, and the electronic cigarette adopts the temperature control system for constant temperature control when performing temperature control.
  • a control signal is sent to the temperature detection module and the heating control module through the main control module, and the temperature detection module and the heating control module are controlled to work alternately to control the temperature of the heating element and The target temperature is the same.
  • FIG. 1 is a structural block diagram of a temperature control system for an electronic cigarette in an embodiment
  • FIG. 2 is a schematic circuit diagram of a temperature detection module according to an embodiment
  • 3 is a resistance-temperature curve of a heating element in an embodiment
  • FIG. 4 is a schematic circuit diagram of a heating control module in an embodiment.
  • FIG. 1 it is a structural block diagram of a temperature control system for the electronic cigarette.
  • the temperature control system includes a power module 110, a main control module 120, a heating control module 130, a temperature detection module 140, and a heating element 150.
  • the heating control module 130 and the heating element 150 are electrically connected in sequence, the power supply module 110, the temperature detection module 140, and the heating element 150 are electrically connected in sequence, and the main control module 120 is electrically connected to the heating control module 130 and the temperature detection module 140, respectively.
  • the power supply module 110 is used to supply power to the heating control module 130 and the temperature detection module 140 in the system.
  • the power supply module 110 may be a battery, such as a lithium battery, a nickel-cadmium battery, and a nickel-hydrogen battery.
  • the temperature detection module 140 includes a signal input terminal, a first switching unit, and a sampling resistor.
  • the signal input terminal, the first switching unit, and a sampling resistor are electrically connected in sequence.
  • the main control module 120 is electrically connected to the signal input terminal.
  • the power module 110 and the first A switch unit is electrically connected, and the sampling resistor is connected in series with the heating element 150 to form a temperature detection loop.
  • the main control module 120 may send a control signal to the signal input terminal to control the on / off of the first switch unit.
  • the first switch unit when the main control module 120 sends a high voltage signal to the signal input terminal, the first switch unit is turned on, and the temperature The detection module 140 turns on the temperature detection; when the main control module 120 sends a low voltage signal to the signal input terminal, the first switch unit is turned off, and the temperature detection module 140 stops the temperature detection.
  • the sampling resistor is used to sample the current in the loop. It is used as a reference for measuring the resistance value of the heating element 150 in the circuit. In this embodiment, the resistance of the sampling resistor is less than the resistance of the heating element 150. In other embodiments, the resistance It is set to sample the voltage in the loop through the sampling resistor. When the voltage is sampled through the sampling resistor, the resistance of the sampling resistor can be set to be greater than the resistance of the heating element.
  • the main control module 120 can calculate the resistance value of the starting thermal element 150 according to Ohm's law, and obtain the temperature value of the heating element 150 according to the correspondence between the resistance value and the temperature value of the heating element 150.
  • the heating control module 130 includes a second switching unit, and the main control module 120 may control the heating of the heating element 150 periodically by sending a PWM (Pulse Width Modulation) signal to the second switching unit.
  • the duty cycle of the second switching unit can be set by setting the duty cycle of the PWM signal.
  • the second switching unit When the second switching unit is turned on, the power output by the power module 110 flows to the heating element through the second switching unit. 150, so that the heating element 150 obtains power and emits heat, that is, the heating element 150 performs a heating process when the second switching unit is turned on.
  • the second switching unit is turned off, the heating element 150 stops heating.
  • different duty cycles of different PWM signals control different heating periods, that is, the main control module 120 adjusts the duty cycle of the PWM signals to achieve temperature adjustment of the heating element 150 .
  • the main control module 120 controls the temperature detection module 140 to work in a first cycle
  • the main control module 120 controls the heating control module 130 to work in a second cycle
  • the first cycle is smaller than the second cycle.
  • the temperature control system of the electronic cigarette provided in this embodiment sends a control signal to the temperature detection module and the heating control module through the main control module, and controls the temperature detection module and the heating control module to work alternately to control the temperature of the heating element Same as target temperature.
  • FIG. 2 it is a schematic circuit diagram of the temperature detection module in an embodiment.
  • the input terminal R_DET_EN is connected to the base of the transistor Q1 through a resistor R2, and the collector of the transistor Q1 is connected to the power terminal V_BAT.
  • the emitter of transistor Q1 is connected to one end of resistor R1, one end of resistor RL is connected to resistor R1, and the other end of resistor RL is grounded.
  • a port V_OUT_DET is drawn between resistor R1 and the emitter of transistor Q1, and resistor R1 and resistor RL are connected. Lead out port V_OUT.
  • the transistor Q1 is an NPN type transistor.
  • the transistor Q1 When the base of the transistor Q1 receives a high voltage, the transistor Q1 is turned on. When the base of the transistor Q1 receives a low voltage, the transistor Q1 is turned off; the resistor R1 is a sampling resistor, a resistor RL is a heating element.
  • the resistor R1 is connected in series with the resistor RL to form a series loop. The current in the loop is sampled through the resistor R1.
  • the resistance value of the resistor RL can be calculated according to Ohm's law. Obtain the temperature of the heating element.
  • the first switching unit may also be a PNP transistor, a PMOS transistor, an NMOS transistor, a low-dropout linear regulator, a switching power supply, and the like.
  • the MCU chip reads the voltage values of the resistor R1 and the resistor RL after the transistor Q1 is turned on. At this time, the MCU chip reads the voltage value of the port V_OUT as N1 and the voltage value of the port V_OUT_DET as N2.
  • the current of resistor R1 is:
  • RL is the resistance value of the heating element
  • R1 is the resistance value of the sampling resistor
  • N1 is the voltage value of the heating element
  • N2 is the voltage value of the sampling resistor.
  • the heating temperature represented by the resistance value of the resistor RL can be obtained.
  • Figure 3 shows the resistance-temperature curve of a heating element in an embodiment. In this embodiment, according to different resistance values of the heating element, the temperature corresponding to the current resistance value of the heating element can be obtained correspondingly.
  • the current temperature of the heating element can be obtained from the resistance-temperature curve of the heating element at 25 ° C; when the resistance value of the heating element is detected at 0.91 ⁇ , The resistance-temperature curve can obtain the current temperature of the heating element as 100 ° C; when the resistance value of the heating element is detected as 1.86 ⁇ , the current temperature of the heating element can be obtained according to the resistance-temperature curve of the heating element as 600 °C.
  • FIG. 4 it is a schematic circuit diagram of a heating control module in an embodiment.
  • the heating control module includes a PMOS tube U2, and pins 1, 2, and 3 of the PMOS tube U2 are connected to a power module.
  • the pin 4 of the PMOS tube U2 is connected to the main control module, and the pins 5, 6, 7, 8 of the PMOS tube U2 are connected to the heating element.
  • the PWM signal sent by the main control module is sent to PMOS tube U2 through pin 4 to control the on-off of PMOS tube U2.
  • the second switching unit may also be an NMOS transistor, an NPN-type transistor, a PNP-type transistor, a low-dropout linear regulator, a switching power supply, and the like, which are not limited in this embodiment.
  • the main control module sends a PWM signal to the second switching unit to control the heating element to periodically heat. Specifically, the main control module obtains a current duty cycle value, and calculates a target duty cycle adjustment value of the pulse width modulation signal according to a difference between a detected current temperature value of the heating element and a target temperature value.
  • the specific process of adjusting the duty cycle of the PWM signal can be determined according to the current duty cycle and the specific size and situation of the current temperature value.
  • the target duty cycle adjustment value is set to 0. That is, in the case where the current duty cycle value D N-1 ⁇ 0 and the current temperature value T N-1 > T t + T E (where T t is the target temperature value and T E is the preset difference Value threshold), set the target duty cycle adjustment value to 0, that is, clear the PWM output to 0 in order to reduce the temperature of the heating resistor.
  • the specific process of adjusting the PWM duty cycle is: when the current duty cycle value is 0 and the acquired current temperature value is less than or equal to the target temperature value, adjusting the target duty cycle The value is set to the buffer duty cycle value.
  • the specific size of the current PWM duty cycle needs to be stored, so that when the specific value of the PWM duty cycle is set later, it can be determined that it is closer to the target temperature value.
  • the PWM duty cycle improves the user experience. Therefore, in the case of a duty cycle of 0, if the detected current temperature value is greater than or equal to the target temperature value, the PWM duty cycle is maintained at 0; if the detected current temperature value is less than or equal to the target temperature value , You need to adjust the PWM duty cycle. Therefore, set the target duty cycle adjustment value to the buffered duty cycle value, that is, the value of the stored duty cycle before the last PWM duty clear operation was performed. .
  • the target duty cycle adjustment value D N is set
  • the PWM duty cycle is adjusted to a size corresponding to the buffered duty cycle value D ′, so as to control the heating temperature of the electronic cigarette around the optimal target temperature.
  • the main control module calculates a temperature difference between the target temperature value and the current temperature value The value is used as the first difference value, and a first difference quantization value corresponding to the first difference value is obtained according to a preset correspondence between the difference value and the quantization value.
  • the first difference quantization value is between 0 and 1.
  • the difference quantization value obtained from the last calculation is obtained as the second difference quantization value; the main control module is based on the current duty cycle value, the first difference quantization value, and the second difference
  • the value quantization value determines the target duty cycle adjustment value.
  • the determining the target duty cycle adjustment value according to the current duty cycle value, the first difference quantization value, and the second difference quantization value is specifically:
  • D N D N-1 + 2E N -E N-1
  • D N is the target duty cycle adjustment value
  • D N-1 is the current duty cycle value
  • E N is the first difference quantization value
  • E N-1 is the second difference The value is quantized.
  • the PWM duty cycle The ratio is adjusted, but the amplitude of the adjustment is the current duty cycle value plus twice the difference quantization value, and subtracting the previous difference quantization value.
  • the difference quantization value is a quantization value between 0 and 1 based on the difference between the detected current temperature value and the target temperature value. For example, if the difference value is 5 ° C, the difference is The value quantization value is set to 2%.
  • the first difference quantization value E N represents the difference between the detected current temperature value and the target temperature value in this adjustment (that is, the Nth adjustment).
  • the second difference quantization value E N-1 represents the difference between the detected current temperature value and the target temperature value in the current adjustment (that is, the N-1th adjustment or the last adjustment)
  • the difference quantized value corresponding to the difference is the difference quantized value corresponding to the difference.
  • the determination of the target duty cycle adjustment value can be determined according to the following formula:
  • the adjustment range of the PWM duty cycle is added to the original PWM duty cycle.
  • the twice the quantized value of the temperature difference detected during the current adjustment and subtracting the quantized value of the temperature difference detected during the last adjustment is PID (proportion-integral-derivative, ratio, integral, Differential control) adjustment.
  • PID proportion-integral-derivative, ratio, integral, Differential control
  • the correspondence between the difference between the current temperature value and the target temperature value, and the difference quantization value may be a linear function, a non-linear function, or a step function.
  • the difference between the current temperature value and the target temperature value can be a step function.
  • function definition For example, use the following function definition:
  • E is the difference quantization value
  • the corresponding relationship between the difference between the current temperature value and the target temperature value and the difference quantization value may use any positive correlation function.
  • the present invention also provides an electronic cigarette, which includes the temperature control system as in the above embodiment, and the electronic cigarette uses the temperature control system for constant temperature control when performing temperature control.
  • the electronic cigarette may be an electronic cigarette rod of a heating type electronic cigarette, which may contain a smokeable material such as tobacco shreds, and the smokeable material may be heated for users to smoke.
  • a control signal is sent to the temperature detection module and the heating control module through the main control module, and the temperature detection module and the heating control module are controlled to work alternately to control the temperature of the heating element and The target temperature is the same.

Abstract

一种电子烟的温度控制系统,包括:电源模块;发热元件,用于发出热量给电子烟中的可抽吸材料加热;温度检测模块,用于在接收到所述电源模块输入的电源后对发热元件进行温度检测;加热控制模块,用于在所述电源模块与发热元件之间形成开关回路;主控模块,控制所述温度检测模块和加热控制模块交替工作,以控制所述发热元件的温度与目标温度相同。

Description

电子烟的温度控制系统 技术领域
本发明涉及电子技术领域,尤其涉及一种电子烟的温度控制系统。
背景技术
电子烟是一种模仿卷烟的电子产品,有着与卷烟一样的外观、烟雾、味道和感觉。烟草型电子烟通过对烟草进行恒温加热烘烤,蒸发出烟雾以供用户吸食。电子烟的温度控制技术很大程度上决定了电子烟的品质。
传统的电子烟温度控制方法中,对于加热温度的控制,多采用温度大于目标温度时,输出功率增加,小于目标温度时,输出功率减小的办法,对于这种温度控制的方案来讲,其对应的控制效果不佳,对于温度的控制不够准确并且容易出现温度过低或过高的情况,极大的降低了用户的吸烟口感,并且当温度过高时容易使得烟草局部烤焦,产生有害物质,增加对吸烟者健康的危害。
也就是说,在相关技术方案中,对于加热型电子烟的加热温度的控制存在控制准确率不足的问题。
发明内容
基于此,为解决传统电子烟温控技术中对加热温度的控制存在控制准确率不足的技术问题,特提出了一种电子烟的温度控制系统。
一种电子烟的温度控制系统,包括:
电源模块,用于给系统供电;
发热元件,用于发出热量给电子烟中的可抽吸材料加热;
温度检测模块,与所述电源模块和发热元件电连接,用于在接收到所述电源模块输入的电源后对发热元件进行温度检测;
加热控制模块,与所述电源模块和发热元件电连接,用于在所述电源模块与发热元件之间形成开关回路,所述加热控制模块导通时以使得所述发热元件获得电源而加热;
主控模块,分别与所述温度检测模块、加热控制模块电连接,用于向所述 温度检测模块和加热控制模块发出控制信号,并控制所述温度检测模块和加热控制模块交替工作,以控制所述发热元件的温度与目标温度相同。
可选的,在其中一个实施例中,所述温度检测模块包括信号输入端、第一开关单元和采样电阻,所述信号输入端、第一开关单元和采样电阻依次电连接,所述主控模块与信号输入端电连接,所述电源模块与所述第一开关单元电连接,所述采样电阻与发热元件串联,以形成温度检测回路。
可选的,在其中一个实施例中,所述主控模块向所述信号输入端输入高电压时,控制所述第一开关单元导通,所述主控模块向所述信号输入端输入低电压时,控制所述第一开关单元断开,所述主控模块根据欧姆定律计算出所述发热元件的电阻值,并根据所述发热元件的电阻值与温度的对应关系获得所述发热元件的温度。
可选的,在其中一个实施例中,所述主控模块还用于获取所述采样电阻和发热元件的电压值,并根据公式
RL=R*N1/(N2-N1)
计算出所述发热元件的电阻值,其中,RL为发热元件的电阻值,R为采样电阻的电阻值,N1为发热元件的电压值,N2为采样电阻的电压值。
可选的,在其中一个实施例中,所述加热控制模块包括第二开关单元,所述主控模块向所述第二开关单元发送脉冲宽度调制信号,以控制所述发热元件周期性加热。
可选的,在其中一个实施例中,所述主控模块还用于获取当占空比值,并根据检测的所述发热元件的当前温度值与目标温度值的差异,计算脉冲宽度调制信号的目标占空比调节值。
可选的,在其中一个实施例中,所述主控模块计算所述目标温度值与所述当前温度值之间的温度差值作为第一差值,根据预设的差值与量化值之间的对应关系,获取与所述第一差值对应的第一差值量化值,第一差值量化值为0到1之间的数值;并获取上一次计算得到的差值量化值作为第二差值量化值;所述主控模块根据所述当前占空比值和所述第一差值量化值、所述第二差值量化值确定所述目标占空比调节值。
可选的,在其中一个实施例中,所述主控模块根据公式
D N=D N-1+2E N-E N-1
计算所述目标占空比调节值,其中,D N为目标占空比调节值,D N-1为当前占空比值,E N为第一差值量化值,E N-1为第二差值量化值。
可选的,在其中一个实施例中,所述主控模块控制所述温度检测模块工作在第一周期,所述主控模块控制所述加热控制模块工作在第二周期,且所述第一周期小于第二周期。
此外,为解决传统电子烟温控技术中采用温度传感器测量温度的误差较大、并且设计成本较高的技术问题,还提出了一种电子烟。
一种电子烟,包括上述温度控制系统,所述电子烟在进行温度控制时采用所述温度控制系统进行恒温控制。
实施本发明实施例,将具有如下有益效果:
采用了上述电子烟的温度控制系统之后,通过主控模块向温度检测模块和加热控制模块发出控制信号,并控制所述温度检测模块和加热控制模块交替工作,以控制所述发热元件的温度与目标温度相同。通过上述系统,在温度上升或者温度产生扰动时,能较好的控制电子烟的温度稳定性,提高了对加热温度控制的准确度,提升了用户在使用电子烟设备中的抽吸口感,并且减少了有害物质的产生,提升了对用户健康的保护。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
其中:
图1为一个实施例中电子烟的温度控制系统的结构框图;
图2为一个实施例中温度检测模块的电路示意图;
图3为一个实施例中发热元件的阻值-温度曲线图;
图4为一个实施例中加热控制模块的电路示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实 施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本发明。可以理解,本发明所使用的术语“第一”、“第二”等可在本文中用于描述各种元件,但这些元件不受这些术语限制。这些术语仅用于将第一个元件与另一个元件区分。举例来说,在不脱离本申请的范围的情况下,可以将第一元件称为第二元件,且类似地,可将第二元件为第一元件。第一元件和第二元件两者都是元件,但其不是同一元件。
为解决传统电子烟温控技术中采用温度传感器测量温度的误差较大、并且设计成本较高的技术问题,在本实施例中,特提出了一种电子烟的温度控制系统,用于实现电子烟的恒温控制。如图1所示,为该电子烟的温度控制系统的结构框图,该温度控制系统包括电源模块110、主控模块120、加热控制模块130、温度检测模块140和发热元件150,电源模块110、加热控制模块130和发热元件150依次电连接,电源模块110、温度检测模块140和发热元件150依次电连接,主控模块120分别与加热控制模块130、温度检测模块140电连接。
其中,电源模块110用于给系统中的加热控制模块130和温度检测模块140供电,在一些具体的实施例中,电源模块110可以是电池,例如锂电池、镉镍电池和氢镍电池等。
温度检测模块140包括信号输入端、第一开关单元和采样电阻,所述信号输入端、第一开关单元和采样电阻依次电连接,主控模块120与信号输入端电连接,电源模块110与第一开关单元电连接,采样电阻与发热元件150串联,以形成温度检测回路。其中,主控模块120可以向该信号输入端发送控制信号以控制第一开关单元的通断,例如当主控模块120向信号输入端发送高电压信号时,第一开关单元导通,则温度检测模块140开启温度检测;当主控模块120向信号输入端发送低电压信号时,第一开关单元断开,则温度检测模块140停 止温度检测。采样电阻用于对回路中的电流进行采样,为测量电路中的发热元件150的电阻值作参考,本实施例中采样电阻的阻值小于发热元件150的阻值,在其他实施例中还可以设置为通过采样电阻来对回路中的电压进行采样,当通过采样电阻对电压进行采样时还可以设置采样电阻的阻值大于发热元件的阻值。
进一步的,主控模块120可以根据欧姆定律计算出发热元件150的电阻值,并根据发热元件150的电阻值与温度值的对应关系获得发热元件150的温度值。
加热控制模块130包括第二开关单元,主控模块120可以通过向该第二开关单元发送PWM(Pulse Width Modulation,脉冲宽度调制)信号,以控制发热元件150周期性加热。具体的,通过设定PWM信号的占空比,可设定该第二开关单元的导通周期,当该第二开关单元导通时,电源模块110输出的电源经第二开关单元流向发热元件150,以使得发热元件150获取电源而发出热量,也即是当第二开关单元导通时发热元件150会进行加热的过程,当第二开关单元断开时,发热元件150停止加热。需要说明的是,在本实施例中,不同的PWM信号的占空比控制了不同的加热时长,也即主控模块120通过对PWM信号占空比的调节来实现对发热元件150的温度调节。
进一步的,主控模块120控制温度检测模块140工作在第一周期,主控模块120控制加热控制模块130工作在第二周期,且第一周期小于第二周期。
本实施例提供的电子烟的温度控制系统,通过主控模块向温度检测模块和加热控制模块发出控制信号,并控制所述温度检测模块和加热控制模块交替工作,以控制所述发热元件的温度与目标温度相同。通过上述系统,在温度上升或者温度产生扰动时,能较好的控制电子烟的温度稳定性,提高了对加热温度控制的准确度,提升了用户在使用电子烟设备中的抽吸口感,并且减少了有害物质的产生,提升了对用户健康的保护。
在一个具体的实施例中,如图2所示,为一个实施例中温度检测模块的电路示意图,输入端R_DET_EN通过电阻R2连接至三极管Q1的基极,三极管Q1的集电极与电源端V_BAT连接,三极管Q1的发射极与电阻R1的一端连接,电阻RL的一端与电阻R1连接,电阻RL的另一端接地,在电阻R1与三极管 Q1的发射极之间引出端口V_OUT_DET,在电阻R1与电阻RL之间引出端口V_OUT。
其中,三极管Q1为NPN型三极管,当三极管Q1的基极接收到高电压时,三极管Q1导通,当三极管Q1的基极接收到低电压时,三极管Q1断开;电阻R1为采样电阻,电阻RL为发热元件,电阻R1与电阻RL串联,形成串联回路,通过电阻R1采样回路中的电流,根据欧姆定律可以计算出电阻RL的电阻值,通过发热元件的阻值与温度的对应关系表可以获取发热元件的温度。可以理解的是,在其他实施例中,第一开关单元还可以是PNP型三极管、PMOS管、NMOS管、低压差线性稳压器、开关电源等。
具体的,MCU芯片在三极管Q1导通后读取所述电阻R1和电阻RL的电压值,此时通过MCU芯片读取端口V_OUT的电压值为N1、端口V_OUT_DET的电压值为N2,则流经电阻R1的电流为:
i=(N2-N1)/R1
从而计算出电阻RL的阻值为:
RL=N1/i=R1*N1/(N2-N1)
其中,RL为发热元件的电阻值,R1为采样电阻的电阻值,N1为发热元件的电压值,N2为采样电阻的电压值。
进一步的,根据发热元件的阻值与温度的对应关系表,可以得到电阻RL的阻值表示的发热温度。如图3所示为一个实施例中发热元件的阻值-温度曲线,本实施例中,根据发热元件的不同阻值可以对应获取该发热元件的当前阻值对应的温度,例如,当检测到发热元件的电阻值为0.77Ω时,根据该发热元件的阻值-温度曲线可获得该发热元件的当前温度为25℃;当检测到发热元件的电阻值为0.91Ω时,根据该发热元件的阻值-温度曲线可获得该发热元件的当前温度为100℃;当检测到发热元件的电阻值为1.86Ω时,根据该发热元件的阻值-温度曲线可获得该发热元件的当前温度为600℃。
在一个具体的实施例中,如图4所示,为一个实施例中加热控制模块的电路示意图,该加热控制模块包括PMOS管U2,PMOS管U2的引脚1、2、3与 电源模块连接,PMOS管U2的引脚4与主控模块连接,PMOS管U2的引脚5、6、7、8与发热元件连接。主控模块发送的PWM信号通过引脚4发送至PMOS管U2,以控制PMOS管U2的通断。可选的,当端口PWM_OUT为低电压时,PMOS管U2导通;当端口PWM_OUT为高电压时,PMOS管U2截止。在其他实施例中,第二开关单元还可以是NMOS管、NPN型三极管、PNP型三极管、低压差线性稳压器、开关电源等,本实施例对此不进行限定。
在一个实施例中,主控模块向第二开关单元发送PWM信号,以控制发热元件周期性加热。具体的,主控模块获取当占空比值,并根据检测的所述发热元件的当前温度值与目标温度值的差异,计算脉冲宽度调制信号的目标占空比调节值。
如下作出更为详尽的说明,对PWM信号占空比的调节的具体过程可以根据当前的占空比的大小以及当前温度值的具体大小、分情况进行确定。
在一个具体的实施例中,在所述当前温度值大于所述目标温度值、且所述第一差值超过预设的差值阈值的情况下,获取所述PWM输出端当前输出的占空比值为缓存占空比值;将所述目标占空比调节值设置为0。也就是说,在当前占空比值D N-1≠0,且当前温度值T N-1>T t+T E的情况下(其中,T t为目标温度值,T E为预设的差值阈值),将目标占空比调节值设置为0,即将PWM输出清0,以便降低加热电阻的温度。
在占空比为0或者将占空比的设置为0之后,在据所述当前占空比值和所述当前温度值、预设的目标温度值确定目标占空比调节值的过程中,对PWM占空比进行调节的具体过程为:在所述当前占空比值为0、且所述获取到的当前温度值小于或等于所述目标温度值的情况下,将所述目标占空比调节值设置为所述缓存占空比值。
也就是说,在将PWM占空比清零之前,还需要将当前的PWM占空比的具体大小进行存储,以便后续在设置PWM占空比的具体值时,能确定与目标温度值较为接近的PWM占空比,提高用户的使用体验。因此,在占空比为0的情况下,如果检测到的当前温度值大于或等于目标温度值,则保持PWM占空比为0 的状态;如果检测到的当前温度值小于或等于目标温度值,则需要对PWM占空比进行调节,因此,将目标占空比调节值设置为缓存的占空比值,即为上一次对PWM占空比执行清零操作之前的存储的占空比的值。
也即,在当前占空比值D N-1=0,且当前温度值T N-1<T t的情况下(其中,T t为目标温度值),将目标占空比调节值D N设置为缓存的占空比值D′,即将PWM占空比调节为与缓存的占空比值D′对应的大小,以便控制电子烟的加热温度在最佳的目标温度左右。
在另一个可选的实施例中,当前温度值小于或等于目标温度值且占空比不为0的情况下,主控模块计算所述目标温度值与所述当前温度值之间的温度差值作为第一差值,根据预设的差值与量化值之间的对应关系,获取与所述第一差值对应的第一差值量化值,第一差值量化值为0到1之间的数值;并获取上一次计算得到的差值量化值作为第二差值量化值;所述主控模块根据所述当前占空比值和所述第一差值量化值、所述第二差值量化值确定所述目标占空比调节值。
其中,根据所述当前占空比值和所述第一差值量化值、所述第二差值量化值确定所述目标占空比调节值,具体为:
根据公式
D N=D N-1+2E N-E N-1
计算所述目标占空比调节值,其中,D N为目标占空比调节值,D N-1为当前占空比值,E N为第一差值量化值,E N-1为第二差值量化值。
也就是说,在当前占空比值不为0,且当前温度值小于目标温度值或者没有超过目标温度一定范围(例如,比目标温度值大了不到5℃)的情况下,对PWM占空比进行调节,但是调节的幅度为当前占空比值加上两倍的差值量化值、并减去上一次的差值量化值。其中,差值量化值为根据检测到的当前温度值与目标温度值之间的差值给出的一个0到1之间的量化值,例如,在差值为5℃的情况下,将差值量化值设置为2%。
需要说明的是,在本实施例中,第一差值量化值E N代表的是本次调节(即第N次调节)中,检测到的当前温度值与目标温度值之间的差值所对应的差值量化值;第二差值量化值E N-1代表的是本次调节(即第N-1次调节或上一次调节)中,检测到的当前温度值与目标温度值之间的差值所对应的差值量化值。
如前所述,目标占空比调节值的确定可以按照如下公式进行确定:
Figure PCTCN2018092704-appb-000001
也就是说,在当前的PWM占空比不为0且加热电阻当前的温度不超过目标温度一定范围的情况下,对PWM占空比的调节幅度为在原来的PWM占空比的基础上加上两倍的本次调节的检测到的温度差值的量化值并减去上一次调节的过程中检测到的温度差值的量化值,即为PID(proportion-integral-derivative,比例、积分、微分控制)调节。而在加热电阻的温度超过目标温度一定范围的情况下,将PWM占空比设置为0;且在当前PWM占空比不为0的情况下,获取该PWM占空比的具体值为缓存值。而在PWM占空比清零之后,当加热电阻的温度下降到目标温度时,价格清零之前的PWM占空比进行恢复,并重新启动PID调节。
在一个具体的实施例中,可以对当前温度值与目标温度值之间的差值值、与差值量化值之间的对应关系,例如,可以为线性函数或者非线性函数,也可以为阶梯函数。
在一个具体的实施例中,为了避免细微的温度差别所带来的频繁的PWM占空比的调节对电子烟处理器所带来的负担,当前温度值与目标温度值之间的差值值、与差值量化值之间的对应关系可以采用阶梯函数。例如,采用如下的函数定义:
Figure PCTCN2018092704-appb-000002
其中,E为差值量化值,ΔT为目标温度值与当前温度值之间的差值,即:ΔT=T t-T N
在其他实施例中,当前温度值与目标温度值之间的差值值、与差值量化值之间的对应关系可以采用任何的正相关的函数。
基于相同的发明构思,本发明还提供一种电子烟,包括如上述实施例中的温度控制系统,该电子烟在进行温度控制时采用所述温度控制系统进行恒温控制。可选的,该电子烟可以是加热型电子烟的电子烟烟杆,可以容纳例如烟丝等可抽吸材料,并且可以对该可抽吸材料进行加热以供用户进行抽吸。
实施本发明实施例,将具有如下有益效果:
采用了上述电子烟的温度控制系统之后,通过主控模块向温度检测模块和加热控制模块发出控制信号,并控制所述温度检测模块和加热控制模块交替工作,以控制所述发热元件的温度与目标温度相同。通过上述系统,在温度上升或者温度产生扰动时,能较好的控制电子烟的温度稳定性,提高了对加热温度控制的准确度,提升了用户在使用电子烟设备中的抽吸口感,并且减少了有害物质的产生,提升了对用户健康的保护。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种电子烟的温度控制系统,其特征在于,包括:
    电源模块,用于给系统供电;
    发热元件,用于发出热量给电子烟中的可抽吸材料加热;
    温度检测模块,与所述电源模块和发热元件电连接,用于在接收到所述电源模块输入的电源后对发热元件进行温度检测;
    加热控制模块,与所述电源模块和发热元件电连接,用于在所述电源模块与发热元件之间形成开关回路,所述加热控制模块导通时以使得所述发热元件获得电源而加热;
    主控模块,分别与所述温度检测模块、加热控制模块电连接,用于向所述温度检测模块和加热控制模块发出控制信号,并控制所述温度检测模块和加热控制模块交替工作,以控制所述发热元件的温度与目标温度相同。
  2. 根据权利要求1所述的系统,其特征在于,所述温度检测模块包括信号输入端、第一开关单元和采样电阻,所述信号输入端、第一开关单元和采样电阻依次电连接,所述主控模块与信号输入端电连接,所述电源模块与所述第一开关单元电连接,所述采样电阻与发热元件串联,以形成温度检测回路。
  3. 根据权利要求2所述的系统,其特征在于,所述主控模块向所述信号输入端输入高电压时,控制所述第一开关单元导通,所述主控模块向所述信号输入端输入低电压时,控制所述第一开关单元断开;所述主控模块根据欧姆定律计算出所述发热元件的电阻值,并根据所述发热元件的电阻值与温度的对应关系获得所述发热元件的温度。
  4. 根据权利要求3所述的系统,其特征在于,所述主控模块还用于获取所述采样电阻和发热元件的电压值,并根据公式
    RL=R*N1/(N2-N1)
    计算出所述发热元件的电阻值,其中,RL为发热元件的电阻值,R为采样电阻的电阻值,N1为发热元件的电压值,N2为采样电阻的电压值。
  5. 根据权利要求1所述的系统,其特征在于,所述加热控制模块包括第二开关单元,所述主控模块向所述第二开关单元发送脉冲宽度调制信号,以控制所述发热元件周期性加热。
  6. 根据权利要求5所述的系统,其特征在于,所述主控模块还用于获取当占空比值,并根据检测的所述发热元件的当前温度值与目标温度值的差异,计算脉冲宽度调制信号的目标占空比调节值。
  7. 根据权利要求6所述的系统,其特征在于,所述主控模块计算所述目标温度值与所述当前温度值之间的温度差值作为第一差值,根据预设的差值与量化值之间的对应关系,获取与所述第一差值对应的第一差值量化值,第一差值量化值为0到1之间的数值;并获取上一次计算得到的差值量化值作为第二差值量化值;所述主控模块根据所述当前占空比值和所述第一差值量化值、所述第二差值量化值确定所述目标占空比调节值。
  8. 根据权利要求7所述的系统,其特征在于,所述主控模块根据公式
    D N=D N-1+2E N-E N-1
    计算所述目标占空比调节值,其中,D N为目标占空比调节值,D N-1为当前占空比值,E N为第一差值量化值,E N-1为第二差值量化值。
  9. 根据权利要求1所述的系统,其特征在于,所述主控模块控制所述温度检测模块工作在第一周期,所述主控模块控制所述加热控制模块工作在第二周期,且所述第一周期小于第二周期。
  10. 一种电子烟,其特征在于,包括如权利要求1-9所述的温度控制系统,所述电子烟在进行温度控制时采用所述温度控制系统进行恒温控制。
PCT/CN2018/092704 2018-06-25 2018-06-25 电子烟的温度控制系统 WO2020000152A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/092704 WO2020000152A1 (zh) 2018-06-25 2018-06-25 电子烟的温度控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/092704 WO2020000152A1 (zh) 2018-06-25 2018-06-25 电子烟的温度控制系统

Publications (1)

Publication Number Publication Date
WO2020000152A1 true WO2020000152A1 (zh) 2020-01-02

Family

ID=68985368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092704 WO2020000152A1 (zh) 2018-06-25 2018-06-25 电子烟的温度控制系统

Country Status (1)

Country Link
WO (1) WO2020000152A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105686087A (zh) * 2016-03-17 2016-06-22 深圳麦克韦尔股份有限公司 电子烟控制电路和控制方法、电子烟
WO2016172921A1 (zh) * 2015-04-30 2016-11-03 惠州市吉瑞科技有限公司深圳分公司 一种电子烟及其发热件温度控制方法
CN106579560A (zh) * 2016-12-15 2017-04-26 深圳市合元科技有限公司 电子烟驱动方法、组件及电子烟具
WO2017219360A1 (zh) * 2016-06-24 2017-12-28 惠州市吉瑞科技有限公司深圳分公司 一种电子烟控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016172921A1 (zh) * 2015-04-30 2016-11-03 惠州市吉瑞科技有限公司深圳分公司 一种电子烟及其发热件温度控制方法
CN105686087A (zh) * 2016-03-17 2016-06-22 深圳麦克韦尔股份有限公司 电子烟控制电路和控制方法、电子烟
WO2017219360A1 (zh) * 2016-06-24 2017-12-28 惠州市吉瑞科技有限公司深圳分公司 一种电子烟控制方法
CN106579560A (zh) * 2016-12-15 2017-04-26 深圳市合元科技有限公司 电子烟驱动方法、组件及电子烟具

Similar Documents

Publication Publication Date Title
CN108873976B (zh) 电子烟的温度控制系统
US9603386B2 (en) Method and device for heating control of an electronic cigarette
CN109907374B (zh) 分段发热式温度控制系统及电子烟
WO2016082136A1 (zh) 一种电子烟及其烟雾量控制方法
WO2018170800A1 (zh) 电子吸烟装置及其温度控制方法
WO2017156743A1 (zh) 电子烟控制电路和控制方法、电子烟
CN108873981B (zh) 电子烟加热温度的控制方法及装置
WO2016115891A1 (zh) 温控系统及其控制方法、含有温控系统的电子烟
CN108181951B (zh) 电子烟控制电路及方法
US20180184715A1 (en) Electronic cigarette and method for controlling heating and atomization thereof
CN107205479A (zh) 一种电子烟雾化控制方法以及电子烟控制电路
CN104950953A (zh) 一种电子烟及其温度控制方法
CN106102493A (zh) 一种电子烟控制方法
US11849770B2 (en) Method for detecting the number of puffs of an electronic cigarette, and electronic cigarette
CN104881063A (zh) 一种自动控温铂金丝电子烟
CN108618206B (zh) 烟具设备及用于该烟具设备的测温控温方法
CN109156898A (zh) 一种电子烟雾化温度的控制电路
CN109007985B (zh) 混合式电子烟控制系统、控制方法、装置及计算机设备
EP3554190A1 (en) An electronic heating control system, electronic heating device and control method thereof
WO2019228155A1 (zh) 电子烟的控制方法和装置
WO2023134358A1 (zh) 气溶胶产生装置及其控制方法、控制装置和存储介质
WO2022028097A1 (zh) 加热温度可调节的烘烤烟具
WO2020029905A1 (zh) 控制电路、电子烟以及电子烟的控制方法
CN108449811B (zh) 电子加热装置的温度智能控制系统及其控制方法
WO2020000152A1 (zh) 电子烟的温度控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.05.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18924715

Country of ref document: EP

Kind code of ref document: A1