WO2019245077A1 - High-strength nickel-based powder super heat-resistant alloy having excellent work-hardening capacity - Google Patents

High-strength nickel-based powder super heat-resistant alloy having excellent work-hardening capacity Download PDF

Info

Publication number
WO2019245077A1
WO2019245077A1 PCT/KR2018/006960 KR2018006960W WO2019245077A1 WO 2019245077 A1 WO2019245077 A1 WO 2019245077A1 KR 2018006960 W KR2018006960 W KR 2018006960W WO 2019245077 A1 WO2019245077 A1 WO 2019245077A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistant alloy
super heat
nickel
present
based super
Prior art date
Application number
PCT/KR2018/006960
Other languages
French (fr)
Korean (ko)
Inventor
김홍규
김동훈
홍성석
이병주
김영광
Original Assignee
국방과학연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국방과학연구소 filed Critical 국방과학연구소
Priority to PCT/KR2018/006960 priority Critical patent/WO2019245077A1/en
Publication of WO2019245077A1 publication Critical patent/WO2019245077A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Definitions

  • the present invention relates to a high strength powder super heat resistant alloy used in a high performance gas turbine engine.
  • Nickel-based powder super heat-resistant alloy is a representative heat-resistant metal material that is used as a part of gas turbine engine because it has high strength at high temperature and excellent oxidation resistance and corrosion resistance. Mechanical properties are greatly affected by the fraction and size distribution, and the volume fraction of gamma prime ( ⁇ ') has been continuously increased to improve the high temperature strength. However, due to the inherent properties of the gamma prime ( ⁇ ') phase that increases with increasing temperature, the formation of superheat-resistant alloys with very high gamma prime ( ⁇ ') top fractions of about 40 to 60% is almost impossible. Not only is it impossible, but the high temperature elongation is significantly reduced.
  • the present invention is to solve the problem of sudden fracture due to brittle fracture of the conventional nickel-based powder super-alloy alloy, by controlling the content of elements added to the alloy to improve the strain hardening capability of the material, low yield It is an object to provide an alloy having a yield ratio.
  • an object of the present invention is to provide an alloy having a strength of at least 1000 MPa yield strength to maintain high rigidity at high temperatures.
  • the present invention is 13 to 15wt. % Co, 12-16 wt. % Cr, 2.5-4.0 wt. % Mo, 2.5-3.5 wt. % W, 2.5-3.0 wt% Al, 2.5-4.0 wt. % Ti, 1.0-2.0 wt. % Ta, 0.01-0.03 wt. % C, 53-63.5 wt. It provides a nickel-based super heat resistant alloy containing% Ni.
  • the super heat-resistant alloy may have a yield strength of 1000 MPa or more at 620 to 680 °C.
  • the mass ratio of Ti to Al may be greater than or equal to 1.0 so that the superheat resistant alloy has an anti-phase boundary energy value of 260 mJ / m 2 or more.
  • the volume fraction of the gamma prime ( ⁇ ') in the super heat-resistant alloy may be 40 to 45%.
  • a nickel-based super heat resistant alloy having a yield strength of 1000 MPa or more at a high temperature (620 to 680 ° C.) and ensuring high work hardening ability may be manufactured.
  • 1A is a graph showing the yield ratio (ratio of yield strength to tensile strength) at high temperature (650 ° C.) according to the reverse phase boundary energy of the nickel-based superheat-resistant alloy according to the present invention.
  • Figure 1b is a graph showing the change of the anti-phase boundary energy according to the content ratio of titanium (Ti) and aluminum (Al) added to the nickel-based super heat-resistant alloy according to the present invention.
  • Figure 2 is a graph showing the crystallinity of MC carbide from the liquidus temperature and the formation temperature of MC carbide of the nickel-based super heat-resistant alloy according to the present invention.
  • FIG 3 is a graph showing the precipitation driving force of the eta phase of the nickel-based super heat-resistant alloy according to the present invention.
  • Figure 4 is a photograph showing the grain boundary shape obtained by the heat treatment conditions of the nickel-based super heat-resistant alloy according to the present invention.
  • Nickel-based super heat-resistant alloy according to the invention is 13 to 15wt. % Co, 12-16 wt. % Cr, 2.5-4.0 wt. % Mo, 2.5-3.5 wt. % W, 2.5-3.0 wt. % Al, 2.5-4.0 wt. % Ti, 1.0-2.0 wt. % Ta, 0.01-0.03 wt. % C, 53-63.5 wt. It consists of% Ni.
  • nickel-based super heat-resistant alloy according to the invention is 0.1 to 1.0wt. % Nb, 0.01-0.03 wt. % B, 0.1-0.3 wt. % Hf, 0.01-0.03 wt. It may comprise at least one of% Zr.
  • the present invention is to adjust the content of Ni, Co, Cr, Mo, W, Al, Ti, Ta, Nb, B, C, Hf and Zr added in the nickel-based super heat-resistant alloy gamma prime ( ⁇ ') as the main reinforcement phase
  • the volume fraction of the phase is designed to be in the range from 40 to 45%.
  • titanium and aluminum are the elements constituting the gamma prime ( ⁇ ') phase.
  • the ratio of aluminum to titanium is 1.0 or more so that the value of the anti-phase boundary energy is 260 mJ / m 2 or more.
  • the present invention is W, Cr, known as MC carbide forming element among the elements of Ni, Co, Cr, Mo, W, Al, Ti, Ta, Nb, B, C, Hf and Zr added in the nickel-based super heat-resistant alloy
  • Mo and C content By controlling the Mo and C content, MC carbide is precipitated below the liquidus temperature of the alloy, thereby controlling coarse MC carbide from the liquid phase of the alloy.
  • the present invention controls the ratio of titanium and aluminum so that the precipitation driving force of the gamma prime phase is greater than the precipitation driving force of the eta phase, below the solidification temperature of the alloy, in order to suppress precipitation of the eta phase, which may be a starting point of the crack.
  • the present invention is the maximum content of titanium contained 4.0wt. Adjust below%.
  • the present invention is a gamma prime by slowly controlling the cooling rate to the cooling rate of the air-cooled level after maintaining the alloy at a solution treatment temperature for a predetermined time in the solution treatment process of the nickel-based super heat-resistant alloy of the composition derived from the above embodiments Allow the ( ⁇ ') phase to preferentially precipitate at energy-stable grain boundaries. This allows the alloy to have a zigzag grain shape.

Abstract

The present invention relates to a high-strength super heat-resistant alloy used in a high-performance gas-turbine engine. To achieve the above-described purpose, the present invention provides a nickel-based super heat-resistant alloy comprising 13-15 wt.% of Co, 12-16 wt.% of Cr, 2.5-4.0 wt.% of Mo, 2.5-3.5 wt.% of W, 2.5-3.0 wt.% of Al, 2.5-4.0 wt.% of Ti, 1.0-2.0 wt.% of Ta, 0.01-0.03 wt.% of C, and 53-63.5 wt.% of Ni. According to an embodiment of the present invention, a nickel-based super heat-resistant alloy having a yield strength of 1000 MPa or more at a high temperature (620-680°C) and ensuring high work-hardening capacity can be manufactured.

Description

우수한 가공경화능을 갖는 고강도 니켈기 분말 초내열합금High Strength Nickel-Based Powder Super Heat-resistant Alloy with Excellent Hardening Process
본 발명은 고성능 가스터빈엔진에 사용되는 고강도 분말 초내열합금에 관한 것이다.The present invention relates to a high strength powder super heat resistant alloy used in a high performance gas turbine engine.
니켈기 분말 초내열합금은 고온에서 높은 강도를 갖고 내산화성 및 내식성이 우수하여 가스터빈엔진의 부품으로 사용되는 대표적인 내열금속재료로서, 니켈 기지에 고용되었다가 석출하는 감마프라임(γ‘) 상의 부피분율 및 크기분포에 의해 기계적 특성이 크게 영향을 받으며, 고온강도 향상을 위하여 감마프라임(γ‘) 상의 부피분율을 계속 증가시켜 왔다. 그러나 온도가 증가할수록 강도가 증가하는 감마프라임(γ‘) 상의 고유한 특성 때문에 40∼60%정도의 매우 높은 감마프라임(γ‘) 상부피분율을 가지는 초내열합금의 경우 고온에서의 성형이 거의 불가능할 뿐만 아니라 고온연신율이 현저히 감소한다.Nickel-based powder super heat-resistant alloy is a representative heat-resistant metal material that is used as a part of gas turbine engine because it has high strength at high temperature and excellent oxidation resistance and corrosion resistance. Mechanical properties are greatly affected by the fraction and size distribution, and the volume fraction of gamma prime (γ ') has been continuously increased to improve the high temperature strength. However, due to the inherent properties of the gamma prime (γ ') phase that increases with increasing temperature, the formation of superheat-resistant alloys with very high gamma prime (γ') top fractions of about 40 to 60% is almost impossible. Not only is it impossible, but the high temperature elongation is significantly reduced.
특히 열간 단조와 같은 고온에서의 소성가공이 없이 합금분말을 그대로 결합(consolidation)하여 사용하는 분말 초내열합금 소재 및 부품의 경우, 고온에서 연신율이 현저히 감소하면 소재 또는 부품이 파단에 이르기 전까지 아무런 소성변형이 일어나지 않다가 갑자기 파단 되는 취성파괴의 원인이 될 수 있으므로 이를 개선하기 위한 방안이 필요하다.Particularly in the case of powder super heat-resistant alloy materials and components that use alloy powder as it is without solid plastic processing at high temperature such as hot forging, if the elongation is significantly reduced at high temperature, no plasticity is required until the material or component breaks. There is a need for a method for improving the brittle fracture, which is a cause of brittle fracture which is suddenly broken without deformation.
본 발명은 종래 니켈기 분말 초내열합금의 취성파괴로 인한 갑작스런 파단문제를 해결하기 위한 것으로, 재료의 가공경화능력(strain hardening capability)이 향상되도록 합금중에 첨가되는 원소의 함량을 조절함으로써, 낮은 항복비(yield ratio)를 갖는 합금을 제공하는 것을 목적으로 한다.The present invention is to solve the problem of sudden fracture due to brittle fracture of the conventional nickel-based powder super-alloy alloy, by controlling the content of elements added to the alloy to improve the strain hardening capability of the material, low yield It is an object to provide an alloy having a yield ratio.
또한, 본 발명은 고온에서 높은 강성을 유지할 수 있도록 항복강도 1000MPa이상의 강도를 가지는 합금을 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide an alloy having a strength of at least 1000 MPa yield strength to maintain high rigidity at high temperatures.
상술한 목적을 달성하기 위하여 본 발명은 13 내지 15wt. %의 Co, 12 내지 16wt. %의 Cr, 2.5 내지 4.0wt. %의 Mo, 2.5 내지 3.5wt. %의 W, 2.5 내지 3.0wt%의 Al, 2.5 내지 4.0wt. %의 Ti, 1.0 내지 2.0wt. %의 Ta, 0.01 내지 0.03wt. %의 C, 53 내지 63.5wt. %의 Ni을 포함하는 니켈기 초내열합금을 제공한다.In order to achieve the above object, the present invention is 13 to 15wt. % Co, 12-16 wt. % Cr, 2.5-4.0 wt. % Mo, 2.5-3.5 wt. % W, 2.5-3.0 wt% Al, 2.5-4.0 wt. % Ti, 1.0-2.0 wt. % Ta, 0.01-0.03 wt. % C, 53-63.5 wt. It provides a nickel-based super heat resistant alloy containing% Ni.
일 실시 예에 있어서, 0.1 내지 1.0wt. %의 Nb를 더 포함할 수 있다.In one embodiment, 0.1 to 1.0wt. It may further comprise% Nb.
일 실시 예에 있어서, 0.01 내지 0.03wt. % B를 더 포함할 수 있다.In one embodiment, 0.01 to 0.03 wt. It may further comprise% B.
일 실시 예에 있어서, 0.1 내지 0.3wt. %의 Hf을 더 포함할 수 있다.In one embodiment, 0.1 to 0.3 wt. It may further comprise% Hf.
일 실시 예에 있어서, 0.01 내지 0.03wt. %의 Zr을 더 포함할 수 있다.In one embodiment, 0.01 to 0.03 wt. It may further comprise% Zr.
일 실시 예에 있어서, 상기 초내열합금은 620 내지 680℃에서 1000MPa 이상의 항복강도를 가질 수 있다.In one embodiment, the super heat-resistant alloy may have a yield strength of 1000 MPa or more at 620 to 680 ℃.
일 실시 예에 있어서, 상기 초내열합금이 260mJ/m2이상의 역위상경계(anti-phase boundary)에너지 값을 가지도록, Al 질량 대비 Ti의 질량 비율은 1.0이상일 수 있다.In one embodiment, the mass ratio of Ti to Al may be greater than or equal to 1.0 so that the superheat resistant alloy has an anti-phase boundary energy value of 260 mJ / m 2 or more.
일 실시 예에 있어서, 상기 초내열합금에서 감마프라임(γ‘)상의 부피분율은 40 내지 45% 일 수 있다.In one embodiment, the volume fraction of the gamma prime (γ ') in the super heat-resistant alloy may be 40 to 45%.
본 발명의 일 실시 예에 따르면, 고온(620 내지 680℃)에서 1000MPa이상의 항복강도를 가지며, 높은 가공경화능이 확보된 니켈기 초내열합금을 제조할 수 있다.According to an embodiment of the present invention, a nickel-based super heat resistant alloy having a yield strength of 1000 MPa or more at a high temperature (620 to 680 ° C.) and ensuring high work hardening ability may be manufactured.
또한, 본 발명에 따르면, 니켈기 초내열합금의 소성변형과정에서 균열의 시작점으로 작용할 수 있는 MC탄화물의 정출을 억제할 수 있으며, 조기 균열의 시작점으로 작용할 수 있는 에타상의 석출을 억제할 수 있다.In addition, according to the present invention, it is possible to suppress the crystallization of MC carbide which may act as a starting point of cracking in the plastic deformation process of the nickel-based super heat-resistant alloy, and to suppress the precipitation of an eta phase which may act as a starting point of premature cracking. .
또한, 본 발명에 따르면, 고온에서 니켈기 초내열합금의 결정립계의 변형저항성을 증가시킴으로써 합금의 고온강도 및 연신율을 향상시킬 수 있다. In addition, according to the present invention, it is possible to improve the high temperature strength and elongation of the alloy by increasing the deformation resistance of the grain boundaries of the nickel-based superheat-resistant alloy at a high temperature.
도 1a는 본 발명에 따른 니켈기 초내열합금의 역위상경계 에너지에 따른 고온(650℃)에서의 항복비(인장강도 대비 항복강도의 비율)를 나타내는 그래프이다.1A is a graph showing the yield ratio (ratio of yield strength to tensile strength) at high temperature (650 ° C.) according to the reverse phase boundary energy of the nickel-based superheat-resistant alloy according to the present invention.
도 1b는 본 발명에 따른 니켈기 초내열합금에 첨가되는 티타늄(Ti)과 알루미늄(Al)의 함량비율에 따른 역위상경계 에너지의 변화를 나타내는 그래프이다.Figure 1b is a graph showing the change of the anti-phase boundary energy according to the content ratio of titanium (Ti) and aluminum (Al) added to the nickel-based super heat-resistant alloy according to the present invention.
도 2는 본 발명에 따른 니켈기 초내열합금의 액상선 온도와 MC탄화물의 형성온도로부터 MC탄화물의 정출가능성을 나타내는 그래프이다.Figure 2 is a graph showing the crystallinity of MC carbide from the liquidus temperature and the formation temperature of MC carbide of the nickel-based super heat-resistant alloy according to the present invention.
도 3은 본 발명에 따른 니켈기 초내열합금의 에타상의 석출구동력을 나타내는 그래프이다.3 is a graph showing the precipitation driving force of the eta phase of the nickel-based super heat-resistant alloy according to the present invention.
도 4는 본 발명에 따른 니켈기 초내열합금의 열처리조건에 의하여 얻어진 결정립계 형상을 나타내는 사진이다. Figure 4 is a photograph showing the grain boundary shape obtained by the heat treatment conditions of the nickel-based super heat-resistant alloy according to the present invention.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. Hereinafter, embodiments of the present disclosure will be described in detail with reference to the accompanying drawings, and the same or similar components are denoted by the same reference numerals regardless of the reference numerals, and redundant description thereof will be omitted. In the following description of the embodiments disclosed herein, if it is determined that the detailed description of the related known technology may obscure the gist of the embodiments disclosed herein, the detailed description thereof will be omitted. In addition, the accompanying drawings are intended to facilitate understanding of the embodiments disclosed herein, but are not limited to the technical spirit disclosed in the present specification by the accompanying drawings, all changes included in the spirit and scope of the present invention. It should be understood to include equivalents and substitutes.
이하 본 발명에 따른 니켈기 초내열합금에 대하여 설명한다.Hereinafter, the nickel-based superheat resistant alloy according to the present invention will be described.
본 발명에 따른 니켈기 초내열합금은 13 내지 15wt. %의 Co, 12 내지 16wt. %의 Cr, 2.5 내지 4.0wt. %의 Mo, 2.5 내지 3.5wt. %의 W, 2.5 내지 3.0wt. %의 Al, 2.5 내지 4.0wt. %의 Ti, 1.0 내지 2.0wt. %의 Ta, 0.01 내지 0.03wt. %의 C, 53 내지 63.5wt. %의 Ni을 포함하여 이루어진다.Nickel-based super heat-resistant alloy according to the invention is 13 to 15wt. % Co, 12-16 wt. % Cr, 2.5-4.0 wt. % Mo, 2.5-3.5 wt. % W, 2.5-3.0 wt. % Al, 2.5-4.0 wt. % Ti, 1.0-2.0 wt. % Ta, 0.01-0.03 wt. % C, 53-63.5 wt. It consists of% Ni.
한편, 본 발명에 따른 니켈기 초내열 합금은 0.1 내지 1.0wt. %의 Nb, 0.01 내지 0.03wt. % B, 0.1 내지 0.3wt. %의 Hf, 0.01 내지 0.03wt. %의 Zr 중 적어도 하나를 포함하여 이루어질 수 있다.On the other hand, nickel-based super heat-resistant alloy according to the invention is 0.1 to 1.0wt. % Nb, 0.01-0.03 wt. % B, 0.1-0.3 wt. % Hf, 0.01-0.03 wt. It may comprise at least one of% Zr.
본 발명은 니켈기 초내열합금 중에 첨가되는 Ni, Co, Cr, Mo, W, Al, Ti, Ta, Nb, B, C, Hf 및 Zr의 함량을 조절하여 주요 강화상인 감마프라임(γ‘)상의 부피분율이 40 내지 45% 범위가 되도록 설계한다. The present invention is to adjust the content of Ni, Co, Cr, Mo, W, Al, Ti, Ta, Nb, B, C, Hf and Zr added in the nickel-based super heat-resistant alloy gamma prime (γ ') as the main reinforcement phase The volume fraction of the phase is designed to be in the range from 40 to 45%.
한편, 티타늄 및 알루미늄은 감마프라임(γ‘)상을 구성하는 원소들이다. 본 발명은 티타늄 대비 알루미늄의 비율을 1.0 이상이 되도록 하여 역위상경계 에너지의 값이 260mJ/m2 이상이 되도록 한다.On the other hand, titanium and aluminum are the elements constituting the gamma prime (γ ') phase. In the present invention, the ratio of aluminum to titanium is 1.0 or more so that the value of the anti-phase boundary energy is 260 mJ / m 2 or more.
한편, 본 발명은 니켈기 초내열합금 중에 첨가되는 Ni, Co, Cr, Mo, W, Al, Ti, Ta, Nb, B, C, Hf 및 Zr의 원소 중 MC탄화물형성원소로 알려진 W, Cr, Mo 및 C 함량을 조절하여 MC탄화물이 합금의 액상선온도 이하에서 석출되게 함으로써 합금의 액상으로부터 조대한 MC탄화물이 정출되지 않도록 제어한다. On the other hand, the present invention is W, Cr, known as MC carbide forming element among the elements of Ni, Co, Cr, Mo, W, Al, Ti, Ta, Nb, B, C, Hf and Zr added in the nickel-based super heat-resistant alloy By controlling the Mo and C content, MC carbide is precipitated below the liquidus temperature of the alloy, thereby controlling coarse MC carbide from the liquid phase of the alloy.
또한, 본 발명은 균열의 시작점이 될 수 있는 에타상의 석출을 억제하기 위하여, 합금의 응고온도 이하에서 감마 프라임상의 석출 구동력이 에타상의 석출구동력에 비하여 더 크도록 티타늄과 알루미늄의 비율을 제어한다. 이때, 본 발명은 최대로 함유되는 티타늄의 함량을 4.0wt. %이하로 조절한다.In addition, the present invention controls the ratio of titanium and aluminum so that the precipitation driving force of the gamma prime phase is greater than the precipitation driving force of the eta phase, below the solidification temperature of the alloy, in order to suppress precipitation of the eta phase, which may be a starting point of the crack. At this time, the present invention is the maximum content of titanium contained 4.0wt. Adjust below%.
한편, 본 발명은 상기 실시 예들로부터 도출된 조성의 니켈기 초내열합금의 용체화처리 과정에서 합금을 용체화 처리온도에서 일정시간 유지한 후 냉각속도를 공냉 수준의 냉각속도로 느리게 제어함으로써 감마프라임(γ‘)상이 에너지적으로 불안정한 결정립계에서 우선적으로 석출되게 한다. 이를 통해, 합금이 지그재그 형태의 결정립형상을 갖도록 한다.On the other hand, the present invention is a gamma prime by slowly controlling the cooling rate to the cooling rate of the air-cooled level after maintaining the alloy at a solution treatment temperature for a predetermined time in the solution treatment process of the nickel-based super heat-resistant alloy of the composition derived from the above embodiments Allow the (γ ') phase to preferentially precipitate at energy-stable grain boundaries. This allows the alloy to have a zigzag grain shape.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. It is apparent to those skilled in the art that the present invention can be embodied in other specific forms without departing from the spirit and essential features of the present invention.
또한, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.In addition, the above detailed description should not be interpreted as limiting in all aspects and should be considered as illustrative. The scope of the invention should be determined by reasonable interpretation of the appended claims, and all changes within the equivalent scope of the invention are included in the scope of the invention.

Claims (8)

13 내지 15wt. %의 Co, 12 내지 16wt. %의 Cr, 2.5 내지 4.0wt. %의 Mo, 2.5 내지 3.5wt. %의 W, 2.5 내지 3.0wt%의 Al, 2.5 내지 4.0wt. %의 Ti, 1.0 내지 2.0wt. %의 Ta, 0.01 내지 0.03wt. %의 C, 53 내지 63.5wt. %의 Ni을 포함하는 니켈기 초내열합금.13 to 15 wt. % Co, 12-16 wt. % Cr, 2.5-4.0 wt. % Mo, 2.5-3.5 wt. % W, 2.5-3.0 wt% Al, 2.5-4.0 wt. % Ti, 1.0-2.0 wt. % Ta, 0.01-0.03 wt. % C, 53-63.5 wt. Nickel-based super heat-resistant alloy containing% Ni.
제1항에 있어서,The method of claim 1,
0.1 내지 1.0wt. %의 Nb를 더 포함하는 것을 특징으로 하는 니켈기 초내열합금.0.1 to 1.0 wt. Nickel-based super heat-resistant alloy further comprises% Nb.
제2항에 있어서,The method of claim 2,
0.01 내지 0.03wt. % B를 더 포함하는 것을 특징으로 하는 니켈기 초내열합금.0.01 to 0.03 wt. Nickel-based super heat-resistant alloy further comprises% B.
제3항에 있어서,The method of claim 3,
0.1 내지 0.3wt. %의 Hf을 더 포함하는 것을 특징으로 하는 니켈기 초내열합금.0.1 to 0.3 wt. Nickel-based super heat-resistant alloy, characterized in that it further comprises Hf of%.
제4항에 있어서,The method of claim 4, wherein
0.01 내지 0.03wt. %의 Zr을 더 포함하는 것을 특징으로 하는 니켈기 초내열합금.0.01 to 0.03 wt. Nickel-based super heat-resistant alloy, characterized in that it further comprises Zr of%.
제5항에 있어서,The method of claim 5,
상기 초내열합금은 620 내지 680℃에서 1000MPa 이상의 항복강도를 가지는 것을 특징으로 하는 니켈기 초내열합금.The super heat resistant alloy is a nickel-based super heat resistant alloy, characterized in that it has a yield strength of at least 1000MPa at 620 to 680 ℃.
제6항에 있어서,The method of claim 6,
상기 초내열합금이 260mJ/m2이상의 역위상경계에너지 값을 가지도록, Al 질량 대비 Ti의 질량 비율은 1.0이상인 것을 특징으로 하는 니켈기 초내열합금.Nickel-based super heat-resistant alloy, characterized in that the mass ratio of Ti to Al mass is 1.0 or more so that the super-heat-resistant alloy has a reverse phase boundary energy value of 260mJ / m 2 or more.
제7항에 있어서,The method of claim 7, wherein
상기 초내열합금에서 감마프라임(γ‘)상의 부피분율은 40 내지 45% 인 것을 특징으로 하는 니켈기 초내열합금.Nickel-based super heat-resistant alloy, characterized in that the volume fraction of the gamma prime (γ ') phase in the super heat-resistant alloy is 40 to 45%.
PCT/KR2018/006960 2018-06-20 2018-06-20 High-strength nickel-based powder super heat-resistant alloy having excellent work-hardening capacity WO2019245077A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2018/006960 WO2019245077A1 (en) 2018-06-20 2018-06-20 High-strength nickel-based powder super heat-resistant alloy having excellent work-hardening capacity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2018/006960 WO2019245077A1 (en) 2018-06-20 2018-06-20 High-strength nickel-based powder super heat-resistant alloy having excellent work-hardening capacity

Publications (1)

Publication Number Publication Date
WO2019245077A1 true WO2019245077A1 (en) 2019-12-26

Family

ID=68982961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/006960 WO2019245077A1 (en) 2018-06-20 2018-06-20 High-strength nickel-based powder super heat-resistant alloy having excellent work-hardening capacity

Country Status (1)

Country Link
WO (1) WO2019245077A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115074557A (en) * 2022-05-16 2022-09-20 北京科技大学 Ultrahigh-plasticity low-yield-ratio high-density nickel alloy and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110203707A1 (en) * 2009-05-29 2011-08-25 General Electric Company Nickel-base alloy, processing therefor, and components formed thereof
JP2012255196A (en) * 2011-06-10 2012-12-27 Hitachi Ltd Ni-BASED SUPERALLOY, AND TURBINE ROTOR AND STATOR BLADE FOR GAS TURBINE USING THE SAME
JP2014005528A (en) * 2012-05-29 2014-01-16 Toshiba Corp Ni-BASED HEAT-RESISTANT ALLOY AND TURBINE COMPONENT
WO2016053489A2 (en) * 2014-08-18 2016-04-07 General Electric Company Enhanced superalloys by zirconium addition
KR20180005247A (en) * 2015-07-09 2018-01-15 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Ni-based high strength heat resistant alloy member, method of manufacturing the same, and gas turbine blade
KR20180074338A (en) * 2016-12-23 2018-07-03 국방과학연구소 HIGH STRENGTH Ni-BASE POWDER SUPERALLOY HAVING HIGH STRAIN HARDENING CAPABILITY

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110203707A1 (en) * 2009-05-29 2011-08-25 General Electric Company Nickel-base alloy, processing therefor, and components formed thereof
JP2012255196A (en) * 2011-06-10 2012-12-27 Hitachi Ltd Ni-BASED SUPERALLOY, AND TURBINE ROTOR AND STATOR BLADE FOR GAS TURBINE USING THE SAME
JP2014005528A (en) * 2012-05-29 2014-01-16 Toshiba Corp Ni-BASED HEAT-RESISTANT ALLOY AND TURBINE COMPONENT
WO2016053489A2 (en) * 2014-08-18 2016-04-07 General Electric Company Enhanced superalloys by zirconium addition
KR20180005247A (en) * 2015-07-09 2018-01-15 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Ni-based high strength heat resistant alloy member, method of manufacturing the same, and gas turbine blade
KR20180074338A (en) * 2016-12-23 2018-07-03 국방과학연구소 HIGH STRENGTH Ni-BASE POWDER SUPERALLOY HAVING HIGH STRAIN HARDENING CAPABILITY

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115074557A (en) * 2022-05-16 2022-09-20 北京科技大学 Ultrahigh-plasticity low-yield-ratio high-density nickel alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
CA2901259C (en) Nickel-cobalt alloy
KR102056035B1 (en) High strength and ductility alpha/beta titanium alloy
JP5582532B2 (en) Co-based alloy
RU1839683C (en) High-temperature alloy based on tial
JP6477252B2 (en) Austenitic heat-resistant alloy and heat-resistant pressure-resistant member
AU2022224763B2 (en) Creep resistant titanium alloys
RU2150528C1 (en) Titanium-based alloy
CN106103757A (en) High intensity α/β titanium alloy
JP6358503B2 (en) Consumable electrode manufacturing method
WO2020091915A2 (en) Titanium alloy with moderate strength and high ductility
US5167732A (en) Nickel aluminide base single crystal alloys
JP2017036477A (en) Austenitic heat resistant alloy member and manufacturing method therefor
WO2019245077A1 (en) High-strength nickel-based powder super heat-resistant alloy having excellent work-hardening capacity
EP3505648A1 (en) High-strength aluminum alloy, internal combustion engine piston comprising said alloy, and method for producing internal combustion engine piston
JP6690359B2 (en) Austenitic heat-resistant alloy member and method for manufacturing the same
KR102318721B1 (en) Beta titanium alloys with excellent mechanical properties and ductility
JP2021021138A (en) Aluminum alloy for die casting, and method for producing cast product using the same
CN109161767B (en) Creep-resistant magnesium alloy containing W phase and preparation method thereof
JP2004002987A (en) Aluminum alloy material for forging superior in high-temperature property
KR102245612B1 (en) Ti-Al-Fe-Sn TITANIUM ALLOYS WITH EXCELLENT MECHANICAL PROPERTIES AND LOW COST
KR20180074338A (en) HIGH STRENGTH Ni-BASE POWDER SUPERALLOY HAVING HIGH STRAIN HARDENING CAPABILITY
KR20210084762A (en) Titanium aluminium alloy with improved high temperature characteristrics
TWI564398B (en) Nickel-based alloy and method of producing thereof
JPH10226837A (en) Heat resistant steel for gas turbine disk
RU2737835C1 (en) Nickel-based heat-resistant wrought alloy and article made from it

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18922990

Country of ref document: EP

Kind code of ref document: A1