JPH10226837A - Heat resistant steel for gas turbine disk - Google Patents

Heat resistant steel for gas turbine disk

Info

Publication number
JPH10226837A
JPH10226837A JP3168297A JP3168297A JPH10226837A JP H10226837 A JPH10226837 A JP H10226837A JP 3168297 A JP3168297 A JP 3168297A JP 3168297 A JP3168297 A JP 3168297A JP H10226837 A JPH10226837 A JP H10226837A
Authority
JP
Japan
Prior art keywords
gas turbine
strength
increase
turbine disk
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3168297A
Other languages
Japanese (ja)
Inventor
Shinya Konno
晋也 今野
Hiroyuki Doi
裕之 土井
Masao Shiga
正男 志賀
Shigeyoshi Nakamura
重義 中村
Hiroshi Fukui
寛 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3168297A priority Critical patent/JPH10226837A/en
Publication of JPH10226837A publication Critical patent/JPH10226837A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable the increase of fatigue strength, the increase of high temp. strength and the improvement of ductility for a gas turbine disk material by composing it of a compsn. contg. specified weight ratios of Ti, Nb, Cr, Fe, Al and C, in which the contents of C and N are prescribed by a specified inequality, and the balance Ni with inevitable impurities. SOLUTION: The componental compsn. of a heat resistance steel for a gas turbine disk is composed of the one contg., by weight, 1.0 to 2.0% Ti, 1.5 to 3.1% Nb, 10 to 20% Cr, 25 to 45% Fe and 0.5 to 2.0% Al, in which the contents of C and N are prescribed by an inequality, and the balance Ni with inevitable impurities. In the case the refining of the crystal grains is attained by increasing the content of C and increasing the content of Nb (C, N) in the Ni-Fe-Cr-Nb-Ti superalloy, deterioration in its strength caused by the reduction of Ni3 Nb (γ" phases) occurs, and Al is added thereto to prevent it. The increase of the temp. of a gas turbine disk and its high-reliability and made possible, and the increase of its combustion temp. and the increase of its scale, i.e., the improvement of its thermal efficiency are realized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は新規な耐熱鋼に係
り、特に、燃焼温度が高く高効率なガスタービンのディ
スクなど大型鍛造品に用いられる耐熱鋼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel heat-resistant steel, and more particularly to a heat-resistant steel used for a large forged product such as a gas turbine disk having a high combustion temperature and high efficiency.

【0002】[0002]

【従来の技術】産業用ガスタービンディスクなどは大型
であり、遠心力や熱応力など、高い応力がかかるため、
ガスタービンディスク材には製造性と高い強度が要求さ
れる。従来のガスタービンには、これらの特性に優れた
12Cr鋼やCrMoV鋼などの鉄鋼材料が用いられて
きた。近年、熱効率向上のために、ガスタービンの燃焼
温度が上昇し、それに伴ってガスタービンディスクの使
用温度も上昇する傾向にある。従来の鉄鋼材料は高温で
強度低下が著しいため、燃焼温度の高いガスタービンで
は、高温強度に優れたNi基合金が用いられるようにな
っている。特に、Ni−Fe−Cr−Nb−Ti系超合
金(IN706)は大型の鍛造品が製造できることから
産業用ガスタービンディスクとして広く用いられつつあ
る。
2. Description of the Related Art Industrial gas turbine disks are large and subject to high stresses such as centrifugal force and thermal stress.
Manufacturability and high strength are required for gas turbine disk materials. In conventional gas turbines, steel materials such as 12Cr steel and CrMoV steel excellent in these characteristics have been used. In recent years, in order to improve thermal efficiency, the combustion temperature of a gas turbine has risen, and the working temperature of a gas turbine disk has tended to rise accordingly. Since the strength of conventional steel materials significantly decreases at high temperatures, Ni-based alloys having excellent high-temperature strength have been used in gas turbines having high combustion temperatures. In particular, a Ni-Fe-Cr-Nb-Ti superalloy (IN706) is being widely used as an industrial gas turbine disk because a large forged product can be manufactured.

【0003】[0003]

【発明が解決しようとする課題】従来のNi−Fe−C
r−Nb−Ti系超合金IN706はNi3Nb(γ″
相)強化型合金であり高温強度に優れるが、従来の鉄鋼
材料に比べて延性や疲労強度が著しく低く信頼性が低い
という問題がある。延性や疲労強度の改善のためには結
晶粒の微細化が効果的である。Ni−Fe−Cr−Nb
−Ti超合金中に析出しているNb(C,N)はピン止
め効果によって鍛造や熱処理中の結晶粒粗大化を抑制
し、結晶粒を微細化する効果がある。このため、C量を
増大させニオブカーボナイトライド(Nb(C,N))
量を増やすことによって結晶粒微細化がはかれるが、母
相中のNbがNb(C,N)に取られ減少するため、強
化析出物であるNi3Nb(γ″相)が減少し、強度が低
下してしまう。また、Nbの増加によってもNb(C,
N)の増加ははかれるがNbは偏析元素であり特に大型
部品においてはNbの増加はフレッケル欠陥を引き起こ
すことが知られている。
SUMMARY OF THE INVENTION Conventional Ni-Fe-C
The r-Nb-Ti superalloy IN706 is made of Ni 3 Nb (γ ″
Phase) Although it is a reinforced type alloy and excellent in high-temperature strength, there is a problem that ductility and fatigue strength are extremely low and reliability is low as compared with conventional steel materials. To improve ductility and fatigue strength, refinement of crystal grains is effective. Ni-Fe-Cr-Nb
Nb (C, N) precipitated in the -Ti superalloy has an effect of suppressing crystal grain coarsening during forging or heat treatment by a pinning effect and making crystal grains fine. For this reason, the C content is increased and niobium carbonitride (Nb (C, N))
By increasing the amount, the crystal grains are refined, but Nb in the parent phase is taken up by Nb (C, N) and reduced, so that Ni 3 Nb (γ ″ phase) as a strengthening precipitate decreases and the strength increases. Also, Nb (C, C,
Although N) is increased, Nb is a segregating element, and it is known that an increase in Nb causes freckle defects particularly in large-sized parts.

【0004】合金粉末を焼結し等静水圧成形によって成
形するプロセスを用いれば、加工性や偏析を考慮する必
要がなく、より高強度な材料が使えるが、コストが高く
なり、また、大型の部品は設備的にも製造が困難であ
る。
[0004] If a process of sintering alloy powder and forming by isostatic pressing or the like is used, there is no need to consider workability and segregation, and a higher strength material can be used. Parts are also difficult to manufacture in terms of equipment.

【0005】[0005]

【課題を解決するための手段】前述のようにNi−Fe
−Cr−Nb−Ti超合金IN706に対してC量を増
大させNb(C,N)量を増やすことによって製造プロ
セス中の結晶粒粗大化を抑制し結晶粒微細化をはかった
場合、Ni3Nb(γ″相)減少に伴う強度低下が問題と
なる。この問題に対し数々の検討を行い、従来、微量添
加元素であったAlを積極的に添加し、従来ガスタービ
ン動翼材などの強化相であるγ′相(Ni3Al)を多く
析出させることによってこの強度低下を補えることを見
出した。すなわち、従来Nb化合物であるγ″相強化型
合金であったものAl化合物であるγ′相強化型合金と
することによって、強度低下を招くことなくCの増量、
すなわちNb(C,N)の増量を可能とし結晶粒微細化
がはかれた。Nb(C,N)分散による結晶粒微細化が
延性向上および疲労強度向上を、γ′相による析出強化
が強度維持あるいは向上を可能とする。
As described above, Ni-Fe
-Cr-Nb-Ti increases the amount of C with respect to superalloys IN706 Nb (C, N) amounts to suppress coarsening of crystal grains during the manufacturing process by increasing the case of working to grain refinement, Ni 3 Nb (γ ″ phase) reduction in strength causes a problem.A number of studies have been conducted on this problem, and Al, which has been a trace addition element in the past, has been positively added, and the conventional gas turbine blade material and the like have been added. It has been found that this strength reduction can be compensated for by precipitating a large amount of the γ 'phase (Ni 3 Al), which is a strengthening phase, that is, a γ ″ phase strengthened alloy, which is a conventional Nb compound, but an Al compound, γ相 By using a phase-strengthened alloy, the amount of C can be increased without reducing strength.
That is, the amount of Nb (C, N) can be increased, and the crystal grains are refined. Refinement of crystal grains by Nb (C, N) dispersion improves ductility and fatigue strength, and precipitation strengthening by γ 'phase enables strength maintenance or improvement.

【0006】なお、本発明鋼は従来の溶解精製プロセス
および熱間鍛造による製造が可能であるため、本発明に
より大型部品を安価に製造できる。
Since the steel of the present invention can be manufactured by a conventional melting and refining process and hot forging, a large part can be manufactured at low cost by the present invention.

【0007】以下、本発明の成分範囲の限定理由につい
て説明する。Cの添加はNb(C,N)の分散量を増や
し結晶粒を微細化するため重要である。しかし、過大に
添加すると凝固時に粗大なNb(C,N)が液相より晶
出し延性低下を招くため添加量は0.2(重量%)以下で
あることが望ましい。また、Nが過剰な場合には液相よ
り粗大なTiNが多く晶出するため0.01(重量%)以
下にすることが望ましい。また、適正な量のNb(C,
N)を析出させるために以下の条件を満たす必要があ
る。
Hereinafter, the reasons for limiting the range of the components of the present invention will be described. The addition of C is important for increasing the amount of dispersion of Nb (C, N) and making the crystal grains fine. However, if added excessively, coarse Nb (C, N) at the time of solidification causes crystallization from the liquid phase and lowers ductility, so the amount of addition is desirably 0.2 (% by weight) or less. Further, when N is excessive, more coarse TiN is crystallized than in the liquid phase, so that the content is preferably set to 0.01 (% by weight) or less. In addition, an appropriate amount of Nb (C,
In order to precipitate N), the following conditions must be satisfied.

【0008】[0008]

【数2】 0.15≦[Nb(重量%)]×[C(重量%)+[N(重量%)]≦0.60 …(数2) 強度維持のため、Al量は0.75(重量%)以上添加す
る必要があるが添加量が2(重量%)を超えると延性や
鍛造性が低下する。Nb量は低めることにより、より大
型の鍛造品の製造が可能になる。しかし、Nbは強化相
であるγ′相にも若干固溶し強化する。また、前述のよ
うにNb(C,N)を形成する重要な元素である。これ
らの兼ね合いから、Nb量は1.0(重量%)以上3.1
(重量%)以下とすることが望ましい。Tiはγ′相安
定化元素であるため少なすぎると本発明で強化相として
用いているγ′相が析出しなくなり、多すぎると有害相
であるNi3Ti を多量に析出させるため1.0(重量
%)以上2.0(重量%)以下とすることが望ましいが、
1.5〜2.0(重量%)が強度的にはもっとも好まし
い。また、Crは耐食性を向上させる元素である過度な
添加はδ相やσ相などの有害相を析出させるため、10
(重量%)以上20(重量%)以下とすべきである。
0.15 ≦ [Nb (% by weight)] × [C (% by weight) + [N (% by weight)] ≦ 0.60 (Expression 2) To maintain the strength, the Al content is 0.75. (% By weight) or more, but if the added amount exceeds 2 (% by weight), ductility and forgeability deteriorate. By lowering the amount of Nb, a larger forged product can be manufactured. However, Nb is slightly dissolved in the γ 'phase, which is the strengthening phase, and strengthens. Further, as described above, it is an important element for forming Nb (C, N). From these balances, the Nb content is 1.0 (% by weight) or more and 3.1% or more.
(% By weight) or less. If Ti is too small, the γ 'phase used as a strengthening phase in the present invention will not be precipitated because Ti is a γ' phase stabilizing element, and if too large, a large amount of Ni 3 Ti, which is a harmful phase, will be precipitated. (% By weight) or more and 2.0 (% by weight) or less,
1.5 to 2.0 (% by weight) is most preferable in terms of strength. In addition, excessive addition of Cr, which is an element for improving corrosion resistance, precipitates a harmful phase such as a δ phase and a σ phase.
(% By weight) and not more than 20 (% by weight).

【0009】[0009]

【発明の実施の形態】表1に示す組成の試料をそれぞれ
50kgずつ溶解製練し、982℃において熱間鍛造によ
って直径200mmの棒状試料とした。
BEST MODE FOR CARRYING OUT THE INVENTION 50 kg of each sample having the composition shown in Table 1 was melted and kneaded, and a rod-shaped sample having a diameter of 200 mm was formed by hot forging at 982 ° C.

【0010】[0010]

【表1】 [Table 1]

【0011】試番706Aは従来ディスク材であるIN
706相当品であり、試番706HC は従来材のCを増加さ
せたものである。以下、500A〜500Dについては
本発明材であり、500Eおよび500Fは比較材であ
る。
The test number 706A is a conventional disk material IN
706HC is equivalent to 706, and the C of the conventional material is increased. Hereinafter, 500A to 500D are materials of the present invention, and 500E and 500F are comparative materials.

【0012】この試料を1050℃で2時間溶体化後、
720℃で2時間さらに650℃で8時間時効処理を施
した。この試料より平行部直径6mmの引張試験片および
平行部直径8mmの疲労試験を採取し引張試験,疲労試験
および組織観察(光学顕微鏡,透過型電子顕微鏡)を行
った。表2は組織観察の結果を示している。
After this sample was solution-treated at 1050 ° C. for 2 hours,
Aging treatment was performed at 720 ° C. for 2 hours and further at 650 ° C. for 8 hours. From this sample, a tensile test specimen having a parallel part diameter of 6 mm and a fatigue test having a parallel part diameter of 8 mm were taken and subjected to a tensile test, a fatigue test, and a structure observation (optical microscope, transmission electron microscope). Table 2 shows the results of the structure observation.

【0013】[0013]

【表2】 [Table 2]

【0014】光学顕微鏡観察の結果パラメータMC(M
C=[Nb(重量%)]×[C(重量%)]+[N(重
量%)])が大きい試料ではNb(C,N)の分散量が
多く、その結果、結晶粒が微細であった。しかし、試番
500E,500Fの試料では液相から晶出したと思わ
れる粗大なNb(C,N)が頻繁に見られた。透過型電
子顕微鏡の結果、従来材の主な析出物がγ″相であるの
に対して、発明材は主な析出物がγ′相であった。
As a result of observation with an optical microscope, the parameter MC (M
In a sample having a large C = [Nb (% by weight)] × [C (% by weight)] + [N (% by weight)], the dispersion amount of Nb (C, N) is large, and as a result, the crystal grains are fine. there were. However, in the samples of test numbers 500E and 500F, coarse Nb (C, N) which seems to be crystallized from the liquid phase was frequently observed. As a result of transmission electron microscopy, the main precipitate of the conventional material was the γ 'phase, whereas the main precipitate of the invention material was the γ' phase.

【0015】表3は引張試験結果を示している。Table 3 shows the results of the tensile test.

【0016】[0016]

【表3】 [Table 3]

【0017】従来材に対してCを増加させた706HC
は延性が向上しているがγ″相が減少しているため強度
低下が著しい。Nb(C,N)によって微細化され、な
おかつ、γ′相によって強化された発明材500A〜5
00Dは従来材と比べてほぼ同等な強度を維持しながら
伸びおよび絞りが大き改善されている。図3は、パラメ
ータMCと伸びの関係を示している。Nb(C,N)が
適正量析出しているパラメータMCが0.15から0.6
の範囲で良好な伸びを示している。粗大なNb(C,
N)が析出していたパラメータMCが0.6 以上の範囲
では伸びが急激に減少している。MCパラメータが適正
な範囲にあっても、試番706HCはAl量0.75〜
2.0が適正範囲にないため強度が低い。
706HC with increased C compared to conventional material
Although the ductility is improved, the strength is remarkably reduced due to the decrease in the γ ″ phase. Inventive materials 500A to 5A which are refined by Nb (C, N) and strengthened by the γ ′ phase
In the case of 00D, elongation and drawing are greatly improved while maintaining almost the same strength as the conventional material. FIG. 3 shows the relationship between the parameter MC and the elongation. The parameter MC in which an appropriate amount of Nb (C, N) is precipitated is 0.15 to 0.6.
In the range, good elongation is shown. Coarse Nb (C,
The elongation sharply decreases when the parameter MC where N) is precipitated is 0.6 or more. Even if the MC parameter is in an appropriate range, the test number 706HC has an Al content of 0.75 to
The strength is low because 2.0 is not within the appropriate range.

【0018】図4は発明材の従来材の高温引張試験結果
を示しており発明材は特に高温での強度低下が小さい。
これはγ′相強化型合金の特徴である。図4は疲労試験
の結果を示している。Nb(C,N)によって微細化さ
れた発明材500Cは従来材に対して疲労特性が大きく
改善されている。
FIG. 4 shows the results of a high-temperature tensile test of the conventional material of the invention material. The invention material shows a small decrease in strength particularly at high temperatures.
This is a characteristic of the γ 'phase strengthened alloy. FIG. 4 shows the results of the fatigue test. The inventive material 500C refined by Nb (C, N) has greatly improved fatigue characteristics over the conventional material.

【0019】[0019]

【発明の効果】本発明によってガスタービンディスク材
の疲労強度上昇,高温強度上昇,延性向上が可能とな
り、ガスタービンディスクの高温化および高信頼化が可
能となり、ガスタービンの燃焼温度上昇,大型化すなわ
ち熱効率向上を実現できる。
According to the present invention, it is possible to increase the fatigue strength, the high-temperature strength, and the ductility of the gas turbine disk material, to increase the temperature and reliability of the gas turbine disk, to increase the combustion temperature of the gas turbine, and to increase the size of the gas turbine disk. That is, improvement in thermal efficiency can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】室温における従来材と発明材の引張強度の特性
図。
FIG. 1 is a characteristic diagram of tensile strength of a conventional material and an inventive material at room temperature.

【図2】室温における従来材と発明材の絞りおよび伸び
の特性図。
FIG. 2 is a characteristic diagram of drawing and elongation of a conventional material and an inventive material at room temperature.

【図3】パラメータMCと伸びの関係の特性図。FIG. 3 is a characteristic diagram of a relationship between a parameter MC and elongation.

【図4】発明材と従来材の高サイクル疲労試験結果の特
性図。
FIG. 4 is a characteristic diagram of a high cycle fatigue test result of the invention material and the conventional material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 重義 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 福井 寛 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shigeyoshi Nakamura 7-1-1, Omikacho, Hitachi City, Ibaraki Prefecture Within Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Hiroshi Fukui 7-1 Omikamachi, Hitachi City, Ibaraki Prefecture No. 1 Inside the Hitachi Research Laboratory, Hitachi, Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量比でTi.1.0〜2.0,Nb.1.
5〜3.1,Cr.10〜20,Fe.25〜45,A
l.0.5〜2.0,C量およびN量が次式によって規定
され残部がNiおよび不可避不純物よりなることを特徴
とするガスタービンディスク用耐熱鋼。 【数1】 0.15≦[Nb(重量%)]×([C(重量%)]+[N(重量%)])≦0.60 …(数1)
1. The method according to claim 1, wherein Ti. 1.0 to 2.0, Nb. 1.
5-3.1, Cr. 10 to 20, Fe. 25-45, A
l. 0.5 to 2.0, a heat-resistant steel for gas turbine disks, characterized in that the C content and the N content are defined by the following formula, and the balance consists of Ni and unavoidable impurities. 0.15 ≦ [Nb (% by weight)] × ([C (% by weight)] + [N (% by weight)]) ≦ 0.60 (Equation 1)
【請求項2】請求項1において、熱間鍛造によって成形
されNi3Al 相によって析出強化されたガスタービン
ディスク用耐熱鋼。
2. The heat-resistant steel for gas turbine disks according to claim 1, wherein the steel is formed by hot forging and precipitation strengthened by a Ni 3 Al phase.
JP3168297A 1997-02-17 1997-02-17 Heat resistant steel for gas turbine disk Pending JPH10226837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3168297A JPH10226837A (en) 1997-02-17 1997-02-17 Heat resistant steel for gas turbine disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3168297A JPH10226837A (en) 1997-02-17 1997-02-17 Heat resistant steel for gas turbine disk

Publications (1)

Publication Number Publication Date
JPH10226837A true JPH10226837A (en) 1998-08-25

Family

ID=12337875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3168297A Pending JPH10226837A (en) 1997-02-17 1997-02-17 Heat resistant steel for gas turbine disk

Country Status (1)

Country Link
JP (1) JPH10226837A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1486578A1 (en) * 2003-06-13 2004-12-15 Hitachi Ltd. Steam turbine rotor and steam turbine plant
EP1650319A1 (en) 2004-10-25 2006-04-26 Hitachi, Ltd. Ni-Fe based super alloy, process of producing the same, and gas turbine
WO2008007190A2 (en) * 2006-07-07 2008-01-17 Eaton Corporation Wear resistant high temperature alloy
EP1892307A1 (en) * 2006-08-25 2008-02-27 Hitachi, Ltd. Ni-Fe based forging superalloy excellent in high-temperature strength and high-temperature ductility, method of manufacturing the same, and steam turbine rotor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1486578A1 (en) * 2003-06-13 2004-12-15 Hitachi Ltd. Steam turbine rotor and steam turbine plant
US7459035B2 (en) 2003-06-13 2008-12-02 Hitachi, Ltd. Steam turbine rotor and steam turbine plant
EP1650319A1 (en) 2004-10-25 2006-04-26 Hitachi, Ltd. Ni-Fe based super alloy, process of producing the same, and gas turbine
US8043068B2 (en) 2004-10-25 2011-10-25 Hitachi, Ltd. Ni-Fe based super alloy, process of producing the same and gas turbine
WO2008007190A2 (en) * 2006-07-07 2008-01-17 Eaton Corporation Wear resistant high temperature alloy
WO2008007190A3 (en) * 2006-07-07 2008-03-20 Eaton Corp Wear resistant high temperature alloy
JP2009542919A (en) * 2006-07-07 2009-12-03 イートン コーポレーション Abrasion resistant heat resistant alloy
US7651575B2 (en) 2006-07-07 2010-01-26 Eaton Corporation Wear resistant high temperature alloy
EP1892307A1 (en) * 2006-08-25 2008-02-27 Hitachi, Ltd. Ni-Fe based forging superalloy excellent in high-temperature strength and high-temperature ductility, method of manufacturing the same, and steam turbine rotor
US8512488B2 (en) 2006-08-25 2013-08-20 Hitachi, Ltd. Ni—Fe based forging superalloy excellent in high-temperature strength and high-temperature ductility, method of manufacturing the same, and steam turbine rotor

Similar Documents

Publication Publication Date Title
US11193187B2 (en) Nickel-based superalloy and parts made from said superalloy
US20190040501A1 (en) Nickel-cobalt alloy
KR100814513B1 (en) Nickel-base alloy
US20170081750A1 (en) Nickel-based heat-resistant superalloy
US5131961A (en) Method for producing a nickel-base superalloy
JP3049767B2 (en) Ti alloy with excellent heat resistance
US20130206287A1 (en) Co-based alloy
US20080260570A1 (en) Heat-Resistant Superalloy
US10344367B2 (en) Method for producing Ni-based superalloy material
US4386976A (en) Dispersion-strengthened nickel-base alloy
KR102329565B1 (en) High-temperature, damage-resistant superalloys, articles of manufacture made from superalloys, and processes for making alloys
JP3308090B2 (en) Fe-based super heat-resistant alloy
CN106661674A (en) Ni based superheat-resistant alloy
JP2955778B2 (en) Controlled thermal expansion alloys and products made thereby
US8048368B2 (en) High temperature and oxidation resistant material
USH2245H1 (en) Age-hardenable, nickel-base superalloy with improved notch ductility
US9017605B2 (en) Nickel-based superalloy
US8696980B2 (en) Nickel-base superalloy with improved degradation behavior
JPH10226837A (en) Heat resistant steel for gas turbine disk
CN111254317B (en) Nickel-based casting alloy and preparation method thereof
CN108504903B (en) Ni-based superalloy
TWI657147B (en) A HIGH STRENGH Ni-BASE ALLOY
JP2686140B2 (en) Alloy for high temperature bolt and method for producing the same
JPH03134144A (en) Nickel-base alloy member and its manufacture
US12024758B2 (en) Nickel-based superalloy and parts made from said superalloy