WO2019245077A1 - Alliage en une poudre à base de nickel, super-résistant à la chaleur, à haute résistance et ayant une excellente capacité d'écrouissage - Google Patents

Alliage en une poudre à base de nickel, super-résistant à la chaleur, à haute résistance et ayant une excellente capacité d'écrouissage Download PDF

Info

Publication number
WO2019245077A1
WO2019245077A1 PCT/KR2018/006960 KR2018006960W WO2019245077A1 WO 2019245077 A1 WO2019245077 A1 WO 2019245077A1 KR 2018006960 W KR2018006960 W KR 2018006960W WO 2019245077 A1 WO2019245077 A1 WO 2019245077A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistant alloy
super heat
nickel
present
based super
Prior art date
Application number
PCT/KR2018/006960
Other languages
English (en)
Korean (ko)
Inventor
김홍규
김동훈
홍성석
이병주
김영광
Original Assignee
국방과학연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국방과학연구소 filed Critical 국방과학연구소
Priority to PCT/KR2018/006960 priority Critical patent/WO2019245077A1/fr
Publication of WO2019245077A1 publication Critical patent/WO2019245077A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Definitions

  • the present invention relates to a high strength powder super heat resistant alloy used in a high performance gas turbine engine.
  • Nickel-based powder super heat-resistant alloy is a representative heat-resistant metal material that is used as a part of gas turbine engine because it has high strength at high temperature and excellent oxidation resistance and corrosion resistance. Mechanical properties are greatly affected by the fraction and size distribution, and the volume fraction of gamma prime ( ⁇ ') has been continuously increased to improve the high temperature strength. However, due to the inherent properties of the gamma prime ( ⁇ ') phase that increases with increasing temperature, the formation of superheat-resistant alloys with very high gamma prime ( ⁇ ') top fractions of about 40 to 60% is almost impossible. Not only is it impossible, but the high temperature elongation is significantly reduced.
  • the present invention is to solve the problem of sudden fracture due to brittle fracture of the conventional nickel-based powder super-alloy alloy, by controlling the content of elements added to the alloy to improve the strain hardening capability of the material, low yield It is an object to provide an alloy having a yield ratio.
  • an object of the present invention is to provide an alloy having a strength of at least 1000 MPa yield strength to maintain high rigidity at high temperatures.
  • the present invention is 13 to 15wt. % Co, 12-16 wt. % Cr, 2.5-4.0 wt. % Mo, 2.5-3.5 wt. % W, 2.5-3.0 wt% Al, 2.5-4.0 wt. % Ti, 1.0-2.0 wt. % Ta, 0.01-0.03 wt. % C, 53-63.5 wt. It provides a nickel-based super heat resistant alloy containing% Ni.
  • the super heat-resistant alloy may have a yield strength of 1000 MPa or more at 620 to 680 °C.
  • the mass ratio of Ti to Al may be greater than or equal to 1.0 so that the superheat resistant alloy has an anti-phase boundary energy value of 260 mJ / m 2 or more.
  • the volume fraction of the gamma prime ( ⁇ ') in the super heat-resistant alloy may be 40 to 45%.
  • a nickel-based super heat resistant alloy having a yield strength of 1000 MPa or more at a high temperature (620 to 680 ° C.) and ensuring high work hardening ability may be manufactured.
  • 1A is a graph showing the yield ratio (ratio of yield strength to tensile strength) at high temperature (650 ° C.) according to the reverse phase boundary energy of the nickel-based superheat-resistant alloy according to the present invention.
  • Figure 1b is a graph showing the change of the anti-phase boundary energy according to the content ratio of titanium (Ti) and aluminum (Al) added to the nickel-based super heat-resistant alloy according to the present invention.
  • Figure 2 is a graph showing the crystallinity of MC carbide from the liquidus temperature and the formation temperature of MC carbide of the nickel-based super heat-resistant alloy according to the present invention.
  • FIG 3 is a graph showing the precipitation driving force of the eta phase of the nickel-based super heat-resistant alloy according to the present invention.
  • Figure 4 is a photograph showing the grain boundary shape obtained by the heat treatment conditions of the nickel-based super heat-resistant alloy according to the present invention.
  • Nickel-based super heat-resistant alloy according to the invention is 13 to 15wt. % Co, 12-16 wt. % Cr, 2.5-4.0 wt. % Mo, 2.5-3.5 wt. % W, 2.5-3.0 wt. % Al, 2.5-4.0 wt. % Ti, 1.0-2.0 wt. % Ta, 0.01-0.03 wt. % C, 53-63.5 wt. It consists of% Ni.
  • nickel-based super heat-resistant alloy according to the invention is 0.1 to 1.0wt. % Nb, 0.01-0.03 wt. % B, 0.1-0.3 wt. % Hf, 0.01-0.03 wt. It may comprise at least one of% Zr.
  • the present invention is to adjust the content of Ni, Co, Cr, Mo, W, Al, Ti, Ta, Nb, B, C, Hf and Zr added in the nickel-based super heat-resistant alloy gamma prime ( ⁇ ') as the main reinforcement phase
  • the volume fraction of the phase is designed to be in the range from 40 to 45%.
  • titanium and aluminum are the elements constituting the gamma prime ( ⁇ ') phase.
  • the ratio of aluminum to titanium is 1.0 or more so that the value of the anti-phase boundary energy is 260 mJ / m 2 or more.
  • the present invention is W, Cr, known as MC carbide forming element among the elements of Ni, Co, Cr, Mo, W, Al, Ti, Ta, Nb, B, C, Hf and Zr added in the nickel-based super heat-resistant alloy
  • Mo and C content By controlling the Mo and C content, MC carbide is precipitated below the liquidus temperature of the alloy, thereby controlling coarse MC carbide from the liquid phase of the alloy.
  • the present invention controls the ratio of titanium and aluminum so that the precipitation driving force of the gamma prime phase is greater than the precipitation driving force of the eta phase, below the solidification temperature of the alloy, in order to suppress precipitation of the eta phase, which may be a starting point of the crack.
  • the present invention is the maximum content of titanium contained 4.0wt. Adjust below%.
  • the present invention is a gamma prime by slowly controlling the cooling rate to the cooling rate of the air-cooled level after maintaining the alloy at a solution treatment temperature for a predetermined time in the solution treatment process of the nickel-based super heat-resistant alloy of the composition derived from the above embodiments Allow the ( ⁇ ') phase to preferentially precipitate at energy-stable grain boundaries. This allows the alloy to have a zigzag grain shape.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Powder Metallurgy (AREA)

Abstract

La présente invention concerne un alliage super-résistant à la chaleur et à haute résistance utilisé dans un moteur de turbine à gaz à hautes performances. Dans cette perspective, la présente invention concerne un alliage à base de nickel super-résistant à la chaleur. Ledit alliage contient de 13 à 15 % en poids de Co, de 12 à 16 % en poids de Cr, de 2,5 à 4,0 % en poids de Mo, de 2,5 à 3,5 % en poids de W, de 2,5 à 3,0 % en poids d'Al, de 2,5 à 4,0 % en poids de Ti, de 1,0 à 2,0 % en poids de Ta, de 0,01 à 0,03 % en poids de C et de 53 à 63,5 % en poids de Ni. Un mode de réalisation de la présente invention permet de fabriquer un alliage à base de nickel super-résistant à la chaleur ayant une limite d'élasticité supérieure ou égale à 1000 MPa à une température élevée (620 à 680 °C) et assurant une capacité d'écrouissage élevée.
PCT/KR2018/006960 2018-06-20 2018-06-20 Alliage en une poudre à base de nickel, super-résistant à la chaleur, à haute résistance et ayant une excellente capacité d'écrouissage WO2019245077A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2018/006960 WO2019245077A1 (fr) 2018-06-20 2018-06-20 Alliage en une poudre à base de nickel, super-résistant à la chaleur, à haute résistance et ayant une excellente capacité d'écrouissage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2018/006960 WO2019245077A1 (fr) 2018-06-20 2018-06-20 Alliage en une poudre à base de nickel, super-résistant à la chaleur, à haute résistance et ayant une excellente capacité d'écrouissage

Publications (1)

Publication Number Publication Date
WO2019245077A1 true WO2019245077A1 (fr) 2019-12-26

Family

ID=68982961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/006960 WO2019245077A1 (fr) 2018-06-20 2018-06-20 Alliage en une poudre à base de nickel, super-résistant à la chaleur, à haute résistance et ayant une excellente capacité d'écrouissage

Country Status (1)

Country Link
WO (1) WO2019245077A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115074557A (zh) * 2022-05-16 2022-09-20 北京科技大学 一种超高塑性低屈强比的高密度镍合金及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110203707A1 (en) * 2009-05-29 2011-08-25 General Electric Company Nickel-base alloy, processing therefor, and components formed thereof
JP2012255196A (ja) * 2011-06-10 2012-12-27 Hitachi Ltd Ni基超合金と、それを用いたガスタービンのタービン動・静翼
JP2014005528A (ja) * 2012-05-29 2014-01-16 Toshiba Corp Ni基耐熱合金およびタービン用部品
WO2016053489A2 (fr) * 2014-08-18 2016-04-07 General Electric Company Superalliages améliorés par l'ajout de zirconium
KR20180005247A (ko) * 2015-07-09 2018-01-15 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Ni기 고강도 내열 합금 부재, 그의 제조 방법, 및 가스 터빈 날개
KR20180074338A (ko) * 2016-12-23 2018-07-03 국방과학연구소 우수한 가공경화능을 갖는 고강도 니켈기 분말 초내열합금

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110203707A1 (en) * 2009-05-29 2011-08-25 General Electric Company Nickel-base alloy, processing therefor, and components formed thereof
JP2012255196A (ja) * 2011-06-10 2012-12-27 Hitachi Ltd Ni基超合金と、それを用いたガスタービンのタービン動・静翼
JP2014005528A (ja) * 2012-05-29 2014-01-16 Toshiba Corp Ni基耐熱合金およびタービン用部品
WO2016053489A2 (fr) * 2014-08-18 2016-04-07 General Electric Company Superalliages améliorés par l'ajout de zirconium
KR20180005247A (ko) * 2015-07-09 2018-01-15 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Ni기 고강도 내열 합금 부재, 그의 제조 방법, 및 가스 터빈 날개
KR20180074338A (ko) * 2016-12-23 2018-07-03 국방과학연구소 우수한 가공경화능을 갖는 고강도 니켈기 분말 초내열합금

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115074557A (zh) * 2022-05-16 2022-09-20 北京科技大学 一种超高塑性低屈强比的高密度镍合金及其制备方法

Similar Documents

Publication Publication Date Title
CA2901259C (fr) Alliage nickel-cobalt
KR102056035B1 (ko) 높은 강도 및 전성 알파/베타 티타늄 합금
JP5582532B2 (ja) Co基合金
RU1839683C (ru) Высокотемпературный сплав на основе TIAL
JP6477252B2 (ja) オーステナイト系耐熱合金および耐熱耐圧部材
AU2022224763B2 (en) Creep resistant titanium alloys
RU2150528C1 (ru) Сплав на основе титана
CN106103757A (zh) 高强度α/β 钛合金
JP6358503B2 (ja) 消耗電極の製造方法
JP7566729B2 (ja) 中強度と高延性を備えたチタン合金
US5167732A (en) Nickel aluminide base single crystal alloys
WO2019245077A1 (fr) Alliage en une poudre à base de nickel, super-résistant à la chaleur, à haute résistance et ayant une excellente capacité d'écrouissage
EP3505648A1 (fr) Alliage d'aluminium haute résistance, piston de moteur à combustion interne comprenant ledit alliage et procédé de production de piston de moteur à combustion interne
JP6690359B2 (ja) オーステナイト系耐熱合金部材およびその製造方法
KR102245612B1 (ko) 우수한 기계적 특성을 가지는 저비용 Ti-Al-Fe-Sn계 타이타늄 합금
KR102318721B1 (ko) 고강도 고성형성 베타 타이타늄 합금
JP2021021138A (ja) ダイカスト鋳造用アルミニウム合金及びそれを用いた鋳造製品の製造方法
CN109161767B (zh) 一种含w相的抗蠕变性能镁合金及其制备方法
KR20180074338A (ko) 우수한 가공경화능을 갖는 고강도 니켈기 분말 초내열합금
KR20210084762A (ko) 고온 특성이 향상된 티타늄-알루미늄계 합금
TWI564398B (zh) 鎳基合金及其製造方法
JPH10226837A (ja) ガスタービンディスク用耐熱鋼
RU2737835C1 (ru) Жаропрочный деформируемый сплав на основе никеля и изделие, выполненное из него
JPH0143833B2 (fr)
JPS6328973B2 (fr)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18922990

Country of ref document: EP

Kind code of ref document: A1