WO2019245077A1 - Alliage en une poudre à base de nickel, super-résistant à la chaleur, à haute résistance et ayant une excellente capacité d'écrouissage - Google Patents
Alliage en une poudre à base de nickel, super-résistant à la chaleur, à haute résistance et ayant une excellente capacité d'écrouissage Download PDFInfo
- Publication number
- WO2019245077A1 WO2019245077A1 PCT/KR2018/006960 KR2018006960W WO2019245077A1 WO 2019245077 A1 WO2019245077 A1 WO 2019245077A1 KR 2018006960 W KR2018006960 W KR 2018006960W WO 2019245077 A1 WO2019245077 A1 WO 2019245077A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resistant alloy
- super heat
- nickel
- present
- based super
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/10—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
Definitions
- the present invention relates to a high strength powder super heat resistant alloy used in a high performance gas turbine engine.
- Nickel-based powder super heat-resistant alloy is a representative heat-resistant metal material that is used as a part of gas turbine engine because it has high strength at high temperature and excellent oxidation resistance and corrosion resistance. Mechanical properties are greatly affected by the fraction and size distribution, and the volume fraction of gamma prime ( ⁇ ') has been continuously increased to improve the high temperature strength. However, due to the inherent properties of the gamma prime ( ⁇ ') phase that increases with increasing temperature, the formation of superheat-resistant alloys with very high gamma prime ( ⁇ ') top fractions of about 40 to 60% is almost impossible. Not only is it impossible, but the high temperature elongation is significantly reduced.
- the present invention is to solve the problem of sudden fracture due to brittle fracture of the conventional nickel-based powder super-alloy alloy, by controlling the content of elements added to the alloy to improve the strain hardening capability of the material, low yield It is an object to provide an alloy having a yield ratio.
- an object of the present invention is to provide an alloy having a strength of at least 1000 MPa yield strength to maintain high rigidity at high temperatures.
- the present invention is 13 to 15wt. % Co, 12-16 wt. % Cr, 2.5-4.0 wt. % Mo, 2.5-3.5 wt. % W, 2.5-3.0 wt% Al, 2.5-4.0 wt. % Ti, 1.0-2.0 wt. % Ta, 0.01-0.03 wt. % C, 53-63.5 wt. It provides a nickel-based super heat resistant alloy containing% Ni.
- the super heat-resistant alloy may have a yield strength of 1000 MPa or more at 620 to 680 °C.
- the mass ratio of Ti to Al may be greater than or equal to 1.0 so that the superheat resistant alloy has an anti-phase boundary energy value of 260 mJ / m 2 or more.
- the volume fraction of the gamma prime ( ⁇ ') in the super heat-resistant alloy may be 40 to 45%.
- a nickel-based super heat resistant alloy having a yield strength of 1000 MPa or more at a high temperature (620 to 680 ° C.) and ensuring high work hardening ability may be manufactured.
- 1A is a graph showing the yield ratio (ratio of yield strength to tensile strength) at high temperature (650 ° C.) according to the reverse phase boundary energy of the nickel-based superheat-resistant alloy according to the present invention.
- Figure 1b is a graph showing the change of the anti-phase boundary energy according to the content ratio of titanium (Ti) and aluminum (Al) added to the nickel-based super heat-resistant alloy according to the present invention.
- Figure 2 is a graph showing the crystallinity of MC carbide from the liquidus temperature and the formation temperature of MC carbide of the nickel-based super heat-resistant alloy according to the present invention.
- FIG 3 is a graph showing the precipitation driving force of the eta phase of the nickel-based super heat-resistant alloy according to the present invention.
- Figure 4 is a photograph showing the grain boundary shape obtained by the heat treatment conditions of the nickel-based super heat-resistant alloy according to the present invention.
- Nickel-based super heat-resistant alloy according to the invention is 13 to 15wt. % Co, 12-16 wt. % Cr, 2.5-4.0 wt. % Mo, 2.5-3.5 wt. % W, 2.5-3.0 wt. % Al, 2.5-4.0 wt. % Ti, 1.0-2.0 wt. % Ta, 0.01-0.03 wt. % C, 53-63.5 wt. It consists of% Ni.
- nickel-based super heat-resistant alloy according to the invention is 0.1 to 1.0wt. % Nb, 0.01-0.03 wt. % B, 0.1-0.3 wt. % Hf, 0.01-0.03 wt. It may comprise at least one of% Zr.
- the present invention is to adjust the content of Ni, Co, Cr, Mo, W, Al, Ti, Ta, Nb, B, C, Hf and Zr added in the nickel-based super heat-resistant alloy gamma prime ( ⁇ ') as the main reinforcement phase
- the volume fraction of the phase is designed to be in the range from 40 to 45%.
- titanium and aluminum are the elements constituting the gamma prime ( ⁇ ') phase.
- the ratio of aluminum to titanium is 1.0 or more so that the value of the anti-phase boundary energy is 260 mJ / m 2 or more.
- the present invention is W, Cr, known as MC carbide forming element among the elements of Ni, Co, Cr, Mo, W, Al, Ti, Ta, Nb, B, C, Hf and Zr added in the nickel-based super heat-resistant alloy
- Mo and C content By controlling the Mo and C content, MC carbide is precipitated below the liquidus temperature of the alloy, thereby controlling coarse MC carbide from the liquid phase of the alloy.
- the present invention controls the ratio of titanium and aluminum so that the precipitation driving force of the gamma prime phase is greater than the precipitation driving force of the eta phase, below the solidification temperature of the alloy, in order to suppress precipitation of the eta phase, which may be a starting point of the crack.
- the present invention is the maximum content of titanium contained 4.0wt. Adjust below%.
- the present invention is a gamma prime by slowly controlling the cooling rate to the cooling rate of the air-cooled level after maintaining the alloy at a solution treatment temperature for a predetermined time in the solution treatment process of the nickel-based super heat-resistant alloy of the composition derived from the above embodiments Allow the ( ⁇ ') phase to preferentially precipitate at energy-stable grain boundaries. This allows the alloy to have a zigzag grain shape.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Powder Metallurgy (AREA)
Abstract
La présente invention concerne un alliage super-résistant à la chaleur et à haute résistance utilisé dans un moteur de turbine à gaz à hautes performances. Dans cette perspective, la présente invention concerne un alliage à base de nickel super-résistant à la chaleur. Ledit alliage contient de 13 à 15 % en poids de Co, de 12 à 16 % en poids de Cr, de 2,5 à 4,0 % en poids de Mo, de 2,5 à 3,5 % en poids de W, de 2,5 à 3,0 % en poids d'Al, de 2,5 à 4,0 % en poids de Ti, de 1,0 à 2,0 % en poids de Ta, de 0,01 à 0,03 % en poids de C et de 53 à 63,5 % en poids de Ni. Un mode de réalisation de la présente invention permet de fabriquer un alliage à base de nickel super-résistant à la chaleur ayant une limite d'élasticité supérieure ou égale à 1000 MPa à une température élevée (620 à 680 °C) et assurant une capacité d'écrouissage élevée.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2018/006960 WO2019245077A1 (fr) | 2018-06-20 | 2018-06-20 | Alliage en une poudre à base de nickel, super-résistant à la chaleur, à haute résistance et ayant une excellente capacité d'écrouissage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2018/006960 WO2019245077A1 (fr) | 2018-06-20 | 2018-06-20 | Alliage en une poudre à base de nickel, super-résistant à la chaleur, à haute résistance et ayant une excellente capacité d'écrouissage |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019245077A1 true WO2019245077A1 (fr) | 2019-12-26 |
Family
ID=68982961
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/006960 WO2019245077A1 (fr) | 2018-06-20 | 2018-06-20 | Alliage en une poudre à base de nickel, super-résistant à la chaleur, à haute résistance et ayant une excellente capacité d'écrouissage |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019245077A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115074557A (zh) * | 2022-05-16 | 2022-09-20 | 北京科技大学 | 一种超高塑性低屈强比的高密度镍合金及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110203707A1 (en) * | 2009-05-29 | 2011-08-25 | General Electric Company | Nickel-base alloy, processing therefor, and components formed thereof |
JP2012255196A (ja) * | 2011-06-10 | 2012-12-27 | Hitachi Ltd | Ni基超合金と、それを用いたガスタービンのタービン動・静翼 |
JP2014005528A (ja) * | 2012-05-29 | 2014-01-16 | Toshiba Corp | Ni基耐熱合金およびタービン用部品 |
WO2016053489A2 (fr) * | 2014-08-18 | 2016-04-07 | General Electric Company | Superalliages améliorés par l'ajout de zirconium |
KR20180005247A (ko) * | 2015-07-09 | 2018-01-15 | 미츠비시 히타치 파워 시스템즈 가부시키가이샤 | Ni기 고강도 내열 합금 부재, 그의 제조 방법, 및 가스 터빈 날개 |
KR20180074338A (ko) * | 2016-12-23 | 2018-07-03 | 국방과학연구소 | 우수한 가공경화능을 갖는 고강도 니켈기 분말 초내열합금 |
-
2018
- 2018-06-20 WO PCT/KR2018/006960 patent/WO2019245077A1/fr active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110203707A1 (en) * | 2009-05-29 | 2011-08-25 | General Electric Company | Nickel-base alloy, processing therefor, and components formed thereof |
JP2012255196A (ja) * | 2011-06-10 | 2012-12-27 | Hitachi Ltd | Ni基超合金と、それを用いたガスタービンのタービン動・静翼 |
JP2014005528A (ja) * | 2012-05-29 | 2014-01-16 | Toshiba Corp | Ni基耐熱合金およびタービン用部品 |
WO2016053489A2 (fr) * | 2014-08-18 | 2016-04-07 | General Electric Company | Superalliages améliorés par l'ajout de zirconium |
KR20180005247A (ko) * | 2015-07-09 | 2018-01-15 | 미츠비시 히타치 파워 시스템즈 가부시키가이샤 | Ni기 고강도 내열 합금 부재, 그의 제조 방법, 및 가스 터빈 날개 |
KR20180074338A (ko) * | 2016-12-23 | 2018-07-03 | 국방과학연구소 | 우수한 가공경화능을 갖는 고강도 니켈기 분말 초내열합금 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115074557A (zh) * | 2022-05-16 | 2022-09-20 | 北京科技大学 | 一种超高塑性低屈强比的高密度镍合金及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2901259C (fr) | Alliage nickel-cobalt | |
KR102056035B1 (ko) | 높은 강도 및 전성 알파/베타 티타늄 합금 | |
JP5582532B2 (ja) | Co基合金 | |
RU1839683C (ru) | Высокотемпературный сплав на основе TIAL | |
JP6477252B2 (ja) | オーステナイト系耐熱合金および耐熱耐圧部材 | |
AU2022224763B2 (en) | Creep resistant titanium alloys | |
RU2150528C1 (ru) | Сплав на основе титана | |
CN106103757A (zh) | 高强度α/β 钛合金 | |
JP6358503B2 (ja) | 消耗電極の製造方法 | |
JP7566729B2 (ja) | 中強度と高延性を備えたチタン合金 | |
US5167732A (en) | Nickel aluminide base single crystal alloys | |
WO2019245077A1 (fr) | Alliage en une poudre à base de nickel, super-résistant à la chaleur, à haute résistance et ayant une excellente capacité d'écrouissage | |
EP3505648A1 (fr) | Alliage d'aluminium haute résistance, piston de moteur à combustion interne comprenant ledit alliage et procédé de production de piston de moteur à combustion interne | |
JP6690359B2 (ja) | オーステナイト系耐熱合金部材およびその製造方法 | |
KR102245612B1 (ko) | 우수한 기계적 특성을 가지는 저비용 Ti-Al-Fe-Sn계 타이타늄 합금 | |
KR102318721B1 (ko) | 고강도 고성형성 베타 타이타늄 합금 | |
JP2021021138A (ja) | ダイカスト鋳造用アルミニウム合金及びそれを用いた鋳造製品の製造方法 | |
CN109161767B (zh) | 一种含w相的抗蠕变性能镁合金及其制备方法 | |
KR20180074338A (ko) | 우수한 가공경화능을 갖는 고강도 니켈기 분말 초내열합금 | |
KR20210084762A (ko) | 고온 특성이 향상된 티타늄-알루미늄계 합금 | |
TWI564398B (zh) | 鎳基合金及其製造方法 | |
JPH10226837A (ja) | ガスタービンディスク用耐熱鋼 | |
RU2737835C1 (ru) | Жаропрочный деформируемый сплав на основе никеля и изделие, выполненное из него | |
JPH0143833B2 (fr) | ||
JPS6328973B2 (fr) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18922990 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18922990 Country of ref document: EP Kind code of ref document: A1 |