WO2019244991A1 - Sensor module - Google Patents

Sensor module Download PDF

Info

Publication number
WO2019244991A1
WO2019244991A1 PCT/JP2019/024560 JP2019024560W WO2019244991A1 WO 2019244991 A1 WO2019244991 A1 WO 2019244991A1 JP 2019024560 W JP2019024560 W JP 2019024560W WO 2019244991 A1 WO2019244991 A1 WO 2019244991A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
sensor module
strain
strain gauge
base material
Prior art date
Application number
PCT/JP2019/024560
Other languages
French (fr)
Japanese (ja)
Inventor
祐汰 相澤
小川 隆志
佑紀 丸山
Original Assignee
ミネベアミツミ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミネベアミツミ株式会社 filed Critical ミネベアミツミ株式会社
Publication of WO2019244991A1 publication Critical patent/WO2019244991A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge

Definitions

  • the present invention relates to a sensor module.
  • the strain gauge includes a resistor for detecting strain, and a material containing, for example, Cr (chromium) or Ni (nickel) is used as a material of the resistor. Further, the resistor is formed on, for example, a base material made of an insulating resin and is covered with a protective film (for example, see Patent Document 1).
  • This strain gauge can be used as a sensor module, for example, by bonding the base material side to a strain body via an adhesive layer.
  • the present invention has been made in view of the above points, and has as its object to suppress an increase in cost of a sensor module.
  • the present sensor module includes a strain gauge having a flexible base material, a resistor formed on the base material from a material containing at least one of chromium and nickel, and a strain gauge for transmitting strain to the strain gauge.
  • a strain body, and the strain gauge is bonded to the strain body with the resistor facing the strain body.
  • FIG. 2 is a plan view illustrating the sensor module according to the first embodiment.
  • FIG. 2 is a cross-sectional view (part 1) illustrating the sensor module according to the first embodiment.
  • FIG. 3 is a cross-sectional view (part 2) illustrating the sensor module according to the first embodiment.
  • FIG. 1 is a plan view illustrating the sensor module according to the first embodiment.
  • FIG. 2 is a cross-sectional view illustrating the sensor module according to the first embodiment, and shows a cross section taken along line AA in FIG.
  • the sensor module 5 includes a strain gauge 1, a strain body 110, and an adhesive layer 120.
  • the strain gauge 1 has a base material 10, a resistor 30, and a terminal 41.
  • the substrate 10 side is the upper side or one side
  • the strain generating element 110 side is the lower side or the other side.
  • the surface of each part on the base material 10 side is defined as one surface or upper surface
  • the surface on the strain generating body 110 side is defined as the other surface or lower surface.
  • the sensor module 5 can be used upside down, or can be arranged at any angle.
  • the plan view refers to viewing the target from the normal direction of the upper surface 10a of the base material 10
  • the planar shape refers to the shape of the target viewed from the normal direction of the upper surface 10a of the base material 10.
  • the base material 10 is a member serving as a base layer for forming the resistor 30 and the like, and has flexibility.
  • the substrate 10 has an upper surface 10a and a lower surface 10b.
  • the thickness of the base material 10 is not particularly limited and can be appropriately selected depending on the purpose. For example, the thickness can be about 5 ⁇ m to 500 ⁇ m. In particular, when the thickness of the base material 10 is 5 ⁇ m to 200 ⁇ m, the transferability of strain from the surface of the strain generating body 110 bonded to the lower surface 10 b of the base material 10 via the adhesive layer 120 and the dimensional stability to the environment Is preferable in terms of insulating property.
  • the substrate 10 is made of, for example, PI (polyimide) resin, epoxy resin, PEEK (polyetheretherketone) resin, PEN (polyethylene naphthalate) resin, PET (polyethylene terephthalate) resin, PPS (polyphenylene sulfide) resin, polyolefin resin, and the like. From an insulating resin film. Note that a film refers to a member having a thickness of about 500 ⁇ m or less and having flexibility.
  • the substrate 10 may be formed from, for example, an insulating resin film containing a filler such as silica or alumina.
  • the resistor 30 is a thin film formed on the lower surface 10b of the base material 10 in a predetermined pattern, and is a sensing portion that undergoes a strain and undergoes a resistance change.
  • the resistor 30 may be formed directly on the lower surface 10b of the substrate 10, or may be formed on the lower surface 10b of the substrate 10 via another layer. In FIG. 1, the resistor 30 is shown in a satin pattern for convenience.
  • the resistor 30 can be formed of, for example, a material containing Cr (chromium), a material containing Ni (nickel), or a material containing both Cr and Ni. That is, the resistor 30 can be formed from a material containing at least one of Cr and Ni.
  • a material containing Cr for example, a Cr mixed-phase film is given.
  • a material containing Ni for example, Cu—Ni (copper nickel) is given.
  • Ni—Cr nickel chrome
  • the Cr mixed phase film is a film in which Cr, CrN, Cr 2 N and the like are mixed.
  • the Cr mixed phase film may contain unavoidable impurities such as chromium oxide.
  • the thickness of the resistor 30 is not particularly limited and can be appropriately selected depending on the purpose.
  • the thickness can be about 0.05 ⁇ m to 2 ⁇ m.
  • the crystallinity of the crystal constituting the resistor 30 (for example, the crystallinity of ⁇ -Cr) is improved. It is further preferable that cracks in the film and warpage from the base material 10 due to the internal stress of the film constituting the film 30 can be reduced.
  • the stability of the gauge characteristics can be improved by using ⁇ -Cr (alpha chromium), which is a stable crystal phase, as a main component.
  • ⁇ -Cr alpha chromium
  • the gauge factor of the strain gauge 1 is 10 or more, and the gauge factor temperature coefficient TCS and the resistance temperature coefficient TCR are within the range of ⁇ 1000 ppm / ° C. to +1000 ppm / ° C. It can be.
  • the main component means that the target substance occupies 50% by mass or more of all the substances constituting the resistor.
  • the resistor 30 contains ⁇ -Cr at 80% by weight. It is preferable to include the above.
  • ⁇ -Cr is Cr having a bcc structure (body-centered cubic lattice structure).
  • the terminal portions 41 extend from both ends of the resistor 30 and are formed in a substantially rectangular shape with a width wider than that of the resistor 30 in plan view.
  • the terminal portion 41 is a pair of electrodes for outputting a change in the resistance value of the resistor 30 caused by the strain to the outside.
  • each terminal portion 41 is exposed to the outside of the strain gauge 1, and a lead wire or the like for external connection is joined to the exposed portion.
  • the exposed part may not be the side surface of each terminal part 41.
  • a through hole or a notch may be provided in the base material 10 to expose a part or all of the upper surface of each terminal portion 41.
  • the resistor 30 extends from one of the terminal portions 41 in a zigzag manner, for example, and is connected to the other terminal portion 41.
  • the top and side surfaces of the terminal 41 may be covered with a metal having better solderability than the terminal 41.
  • the resistor 30 and the terminal portion 41 are denoted by different reference numerals for convenience, but they can be integrally formed of the same material in the same step.
  • the lower surface 10 b side of the base material 10 is bonded to the upper surface 110 a of the strain body 110 via the bonding layer 120. That is, the strain gauge 1 is bonded to the strain body 110 with the resistor 30 facing the strain body 110 side.
  • the strain generating element 110 is formed of, for example, a metal such as Fe, SUS (stainless steel), or Al, or a resin such as PEEK, and is deformed according to an applied force, and transmits the generated strain to the strain gauge 1. It is.
  • the strain gauge 1 can detect the strain generated in the strain body 110 as a change in the resistance value of the resistor 30.
  • the adhesive layer 120 is sandwiched between the strain gauge 1 and the strain body 110 and covers the resistor 30.
  • the adhesive layer 120 is not particularly limited as long as it has a function of bonding the strain gauge 1 and the strain body 110, and can be appropriately selected depending on the purpose.
  • an epoxy resin, a modified epoxy resin, a silicone resin , Modified silicone resin, urethane resin, modified urethane resin and the like can be used.
  • a material such as a bonding sheet may be used.
  • the strain body 110 is a conductor, it is necessary to select an insulating material for the adhesive layer 120.
  • the thickness of the adhesive layer 120 is not particularly limited and can be appropriately selected depending on the purpose. For example, the thickness can be about 0.1 ⁇ m to 50 ⁇ m.
  • the base material 10 is prepared, and the planar resistor 30 and the terminal portion 41 shown in FIG. 1 are formed on the lower surface 10b of the base material 10.
  • the materials and thicknesses of the resistor 30 and the terminal portion 41 are as described above.
  • the resistor 30 and the terminal 41 can be integrally formed of the same material.
  • the resistor 30 and the terminal portion 41 can be formed by, for example, forming a film by a magnetron sputtering method using a material capable of forming the resistor 30 and the terminal portion 41 as a target, and patterning the film by photolithography.
  • the resistor 30 and the terminal portion 41 may be formed by a reactive sputtering method, an evaporation method, an arc ion plating method, a pulse laser deposition method, or the like instead of the magnetron sputtering method.
  • the layer is deposited in a vacuum.
  • the functional layer refers to a layer having a function of promoting crystal growth of at least the upper layer of the resistor 30.
  • the functional layer preferably further has a function of preventing the resistor 30 from being oxidized by oxygen or moisture contained in the substrate 10 and a function of improving the adhesion between the substrate 10 and the resistor 30.
  • the functional layer may further have another function.
  • the insulating resin film constituting the base material 10 contains oxygen and moisture, especially when the resistor 30 contains Cr, Cr forms a self-oxidized film, so that the functional layer has a function of preventing oxidation of the resistor 30. Providing is effective.
  • the material of the functional layer is not particularly limited as long as it has a function of promoting the crystal growth of the resistor 30 as the upper layer, and can be appropriately selected depending on the purpose.
  • Cr chromium
  • Ti Titanium
  • V vanadium
  • Nb niobium
  • Ta tantalum
  • Ni nickel
  • Y yttrium
  • Zr zirconium
  • Hf hafnium
  • Si silicon
  • C carbon
  • Zn Zinc
  • Cu copper
  • Bi bismuth
  • Fe iron
  • Mo mobdenum
  • W tungsten
  • Ru ruthenium
  • Rh Rhodium
  • Re rhenium
  • Os osmium
  • Ir Selected from the group consisting of iridium), Pt (platinum), Pd (palladium), Ag (silver), Au (gold), Co (cobalt), Mn (manganese), and Al (aluminum)
  • iridium platinum
  • Pt platinum
  • Examples of the above alloy include FeCr, TiAl, FeNi, NiCr, CrCu and the like.
  • Examples of the above compound include TiN, TaN, Si 3 N 4 , TiO 2 , Ta 2 O 5 , and SiO 2 .
  • the functional layer can be formed, for example, by a conventional sputtering method using a material capable of forming the functional layer as a target and introducing an Ar (argon) gas into the chamber.
  • Ar argon
  • the functional layer is formed while etching the lower surface 10b of the base material 10 with Ar, so that the effect of improving the adhesion can be obtained by minimizing the amount of the functional layer formed.
  • the functional layer may be formed by another method.
  • the lower surface 10b of the base material 10 is activated by plasma treatment using Ar or the like to obtain an adhesion improving effect, and then the functional layer is vacuum-formed by magnetron sputtering. May be used.
  • the combination of the material of the functional layer and the material of the resistor 30 and the terminal portion 41 is not particularly limited and can be appropriately selected depending on the purpose.
  • Ti is used for the functional layer, and the resistor 30 and the terminal portion 41 are used. It is possible to form a Cr mixed phase film containing ⁇ -Cr (alpha chromium) as a main component.
  • the resistor 30 and the terminal portion 41 can be formed by a magnetron sputtering method using a raw material capable of forming a Cr mixed-phase film as a target and introducing Ar gas into the chamber.
  • the resistor 30 and the terminal portion 41 may be formed by a reactive sputtering method by introducing an appropriate amount of nitrogen gas together with Ar gas into a chamber using pure Cr as a target.
  • the growth surface of the Cr mixed phase film is defined by the functional layer made of Ti, and a Cr mixed phase film having ⁇ -Cr as a main component, which has a stable crystal structure, can be formed.
  • the gauge characteristics are improved by diffusing Ti constituting the functional layer into the Cr mixed phase film.
  • the gauge factor of the strain gauge 1 can be 10 or more, and the gauge factor temperature coefficient TCS and the resistance temperature coefficient TCR can be in the range of ⁇ 1000 ppm / ° C. to +1000 ppm / ° C.
  • the Cr mixed phase film may include Ti or TiN (titanium nitride).
  • the functional layer made of Ti has a function of promoting the crystal growth of the resistor 30 and a function of preventing the resistor 30 from being oxidized by oxygen or moisture contained in the base material 10. , And all the functions of improving the adhesion between the substrate 10 and the resistor 30.
  • Ta, Si, Al, or Fe is used instead of Ti as the functional layer.
  • the crystal growth of the resistor 30 can be promoted, and the resistor 30 having a stable crystal phase can be manufactured.
  • the stability of the gauge characteristics can be improved.
  • the material forming the functional layer diffuses into the resistor 30, the gauge characteristics of the strain gauge 1 can be improved.
  • the strain gauge 1 of the sensor module 5 has a sectional shape shown in FIG.
  • the layer indicated by reference numeral 20 is a functional layer.
  • the plane shape of the strain gauge 1 when the functional layer 20 is provided is the same as that in FIG.
  • any one of the above-described materials to be the adhesive layer 120 is applied to the lower surface 10 b of the base material 10 and / or the upper surface 110 a of the strain body 110. . Then, the lower surface 10b of the base material 10 faces the upper surface 110a of the strain body 110, and the strain gauge 1 is arranged on the strain body 110 with the applied material interposed therebetween. Alternatively, a bonding sheet may be sandwiched between the strain body 110 and the base material 10.
  • the strain gauge 1 is heated to a predetermined temperature while being pressed against the strain generating element 110, and the applied material is cured to form the adhesive layer 120.
  • the upper surface 110a of the strain body 110 and the lower surface 10b of the substrate 10 are bonded via the bonding layer 120, and the sensor module 5 is completed.
  • the sensor module 5 can be applied to, for example, measurement of load, pressure, torque, acceleration, and the like.
  • the strain gauge 1 is bonded to the strain body 110 with the resistor 30 facing the strain body 110.
  • the upper surface side of the resistor 30 is covered with the base material 10.
  • a strain gauge in which a resistor and a protective film were formed on a substrate was produced, and the substrate side of the strain gauge was bonded to the strain generating element via an adhesive layer. Structure.
  • a step of covering the resistor with a protective film is required, so that there is a problem that the cost of the sensor module using the strain gauge increases.
  • the strain gauge 1 is bonded to the strain body 110 with the resistor 30 facing the strain body 110, and the upper surface of the resistor 30 is covered with the base material 10. ing. That is, in the sensor module 5, since the substrate 10 also functions as a protective film in the conventional sensor module, a step of covering the resistor with the protective film is not required, and the time required for manufacturing is reduced. Thereby, an increase in the cost of the sensor module 5 can be suppressed.

Abstract

This sensor module has: a strain gauge that comprises a flexible substrate and a resistor that is formed on the substrate from a material that includes chromium and/or nickel; and a deformable body that transmits strain to the strain gauge. The strain gauge is adhered to the deformable body such that the resistor faces the deformable body.

Description

センサモジュールSensor module
 本発明は、センサモジュールに関する。 The present invention relates to a sensor module.
 測定対象物に貼り付けて、測定対象物のひずみを検出するひずみゲージが知られている。ひずみゲージは、ひずみを検出する抵抗体を備えており、抵抗体の材料としては、例えば、Cr(クロム)やNi(ニッケル)を含む材料が用いられている。又、抵抗体は、例えば、絶縁樹脂からなる基材上に形成され、保護フィルムにより被覆されている(例えば、特許文献1参照)。 ひ ず み Strain gauges that are attached to an object to be measured and detect strain of the object to be measured are known. The strain gauge includes a resistor for detecting strain, and a material containing, for example, Cr (chromium) or Ni (nickel) is used as a material of the resistor. Further, the resistor is formed on, for example, a base material made of an insulating resin and is covered with a protective film (for example, see Patent Document 1).
 このひずみゲージは、例えば、基材側を接着層を介して起歪体に接着されてセンサモジュールとして用いることができる。 ひ ず み This strain gauge can be used as a sensor module, for example, by bonding the base material side to a strain body via an adhesive layer.
特開2016-74934号公報JP 2016-74934 A
 しかしながら、上記のひずみゲージでは、抵抗体を湿気等から保護するために保護フィルムを設けているため、基材に抵抗体を成膜する工程に加え、抵抗体を保護フィルムで被覆する工程が必要になる。そのため、上記のひずみゲージをセンサモジュールに用いると、センサモジュール全体としてのコストが上昇するという問題があった。 However, in the above strain gauge, since a protective film is provided to protect the resistor from moisture and the like, a step of coating the resistor with the protective film is necessary in addition to the step of forming the resistor on the base material. become. Therefore, when the above-described strain gauge is used for a sensor module, there is a problem that the cost of the entire sensor module increases.
 本発明は、上記の点に鑑みてなされたもので、センサモジュールのコスト上昇を抑制することを目的とする。 The present invention has been made in view of the above points, and has as its object to suppress an increase in cost of a sensor module.
 本センサモジュールは、可撓性を有する基材、及び前記基材上にクロムとニッケルの少なくとも一方を含む材料から形成された抵抗体を備えたひずみゲージと、前記ひずみゲージにひずみを伝達する起歪体と、を有し、前記ひずみゲージは、前記抵抗体を前記起歪体側に向けて前記起歪体に接着されている。 The present sensor module includes a strain gauge having a flexible base material, a resistor formed on the base material from a material containing at least one of chromium and nickel, and a strain gauge for transmitting strain to the strain gauge. A strain body, and the strain gauge is bonded to the strain body with the resistor facing the strain body.
 開示の技術によれば、センサモジュールのコスト上昇を抑制することができる。 According to the disclosed technology, it is possible to suppress an increase in the cost of the sensor module.
第1の実施の形態に係るセンサモジュールを例示する平面図である。FIG. 2 is a plan view illustrating the sensor module according to the first embodiment. 第1の実施の形態に係るセンサモジュールを例示する断面図(その1)である。FIG. 2 is a cross-sectional view (part 1) illustrating the sensor module according to the first embodiment. 第1の実施の形態に係るセンサモジュールを例示する断面図(その2)である。FIG. 3 is a cross-sectional view (part 2) illustrating the sensor module according to the first embodiment.
 以下、図面を参照して発明を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。 Hereinafter, embodiments for carrying out the invention will be described with reference to the drawings. In the drawings, the same components are denoted by the same reference numerals, and redundant description may be omitted.
 〈第1の実施の形態〉
 図1は、第1の実施の形態に係るセンサモジュールを例示する平面図である。図2は、第1の実施の形態に係るセンサモジュールを例示する断面図であり、図1のA-A線に沿う断面を示している。図1及び図2を参照するに、センサモジュール5は、ひずみゲージ1と、起歪体110と、接着層120とを有している。ひずみゲージ1は、基材10と、抵抗体30と、端子部41とを有している。
<First Embodiment>
FIG. 1 is a plan view illustrating the sensor module according to the first embodiment. FIG. 2 is a cross-sectional view illustrating the sensor module according to the first embodiment, and shows a cross section taken along line AA in FIG. Referring to FIGS. 1 and 2, the sensor module 5 includes a strain gauge 1, a strain body 110, and an adhesive layer 120. The strain gauge 1 has a base material 10, a resistor 30, and a terminal 41.
 なお、本実施の形態では、便宜上、センサモジュール5において、基材10側を上側又は一方の側、起歪体110側を下側又は他方の側とする。又、各部位の基材10側の面を一方の面又は上面、起歪体110側の面を他方の面又は下面とする。但し、センサモジュール5は天地逆の状態で用いることができ、又は任意の角度で配置することができる。又、平面視とは対象物を基材10の上面10aの法線方向から視ることを指し、平面形状とは対象物を基材10の上面10aの法線方向から視た形状を指すものとする。 In the present embodiment, for the sake of convenience, in the sensor module 5, the substrate 10 side is the upper side or one side, and the strain generating element 110 side is the lower side or the other side. Also, the surface of each part on the base material 10 side is defined as one surface or upper surface, and the surface on the strain generating body 110 side is defined as the other surface or lower surface. However, the sensor module 5 can be used upside down, or can be arranged at any angle. The plan view refers to viewing the target from the normal direction of the upper surface 10a of the base material 10, and the planar shape refers to the shape of the target viewed from the normal direction of the upper surface 10a of the base material 10. And
 ひずみゲージ1において、基材10は、抵抗体30等を形成するためのベース層となる部材であり、可撓性を有する。基材10は、上面10a及び下面10bを備えている。基材10の厚さは、特に制限はなく、目的に応じて適宜選択できるが、例えば、5μm~500μm程度とすることができる。特に、基材10の厚さが5μm~200μmであると、接着層120を介して基材10の下面10bに接合される起歪体110の表面からのひずみの伝達性、環境に対する寸法安定性の点で好ましく、10μm以上であると絶縁性の点で更に好ましい。 In the strain gauge 1, the base material 10 is a member serving as a base layer for forming the resistor 30 and the like, and has flexibility. The substrate 10 has an upper surface 10a and a lower surface 10b. The thickness of the base material 10 is not particularly limited and can be appropriately selected depending on the purpose. For example, the thickness can be about 5 μm to 500 μm. In particular, when the thickness of the base material 10 is 5 μm to 200 μm, the transferability of strain from the surface of the strain generating body 110 bonded to the lower surface 10 b of the base material 10 via the adhesive layer 120 and the dimensional stability to the environment Is preferable in terms of insulating property.
 基材10は、例えば、PI(ポリイミド)樹脂、エポキシ樹脂、PEEK(ポリエーテルエーテルケトン)樹脂、PEN(ポリエチレンナフタレート)樹脂、PET(ポリエチレンテレフタレート)樹脂、PPS(ポリフェニレンサルファイド)樹脂、ポリオレフィン樹脂等の絶縁樹脂フィルムから形成することができる。なお、フィルムとは、厚さが500μm以下程度であり、可撓性を有する部材を指す。 The substrate 10 is made of, for example, PI (polyimide) resin, epoxy resin, PEEK (polyetheretherketone) resin, PEN (polyethylene naphthalate) resin, PET (polyethylene terephthalate) resin, PPS (polyphenylene sulfide) resin, polyolefin resin, and the like. From an insulating resin film. Note that a film refers to a member having a thickness of about 500 μm or less and having flexibility.
 ここで、『絶縁樹脂フィルムから形成する』とは、基材10が絶縁樹脂フィルム中にフィラーや不純物等を含有することを妨げるものではない。基材10は、例えば、シリカやアルミナ等のフィラーを含有する絶縁樹脂フィルムから形成しても構わない。 Here, “formed from an insulating resin film” does not prevent the base material 10 from containing fillers, impurities, and the like in the insulating resin film. The substrate 10 may be formed from, for example, an insulating resin film containing a filler such as silica or alumina.
 抵抗体30は、基材10の下面10bに所定のパターンで形成された薄膜であり、ひずみを受けて抵抗変化を生じる受感部である。抵抗体30は、基材10の下面10bに直接形成されてもよいし、基材10の下面10bに他の層を介して形成されてもよい。なお、図1では、便宜上、抵抗体30を梨地模様で示している。 The resistor 30 is a thin film formed on the lower surface 10b of the base material 10 in a predetermined pattern, and is a sensing portion that undergoes a strain and undergoes a resistance change. The resistor 30 may be formed directly on the lower surface 10b of the substrate 10, or may be formed on the lower surface 10b of the substrate 10 via another layer. In FIG. 1, the resistor 30 is shown in a satin pattern for convenience.
 抵抗体30は、例えば、Cr(クロム)を含む材料、Ni(ニッケル)を含む材料、又はCrとNiの両方を含む材料から形成することができる。すなわち、抵抗体30は、CrとNiの少なくとも一方を含む材料から形成することができる。Crを含む材料としては、例えば、Cr混相膜が挙げられる。Niを含む材料としては、例えば、Cu-Ni(銅ニッケル)が挙げられる。CrとNiの両方を含む材料としては、例えば、Ni-Cr(ニッケルクロム)が挙げられる。 The resistor 30 can be formed of, for example, a material containing Cr (chromium), a material containing Ni (nickel), or a material containing both Cr and Ni. That is, the resistor 30 can be formed from a material containing at least one of Cr and Ni. As a material containing Cr, for example, a Cr mixed-phase film is given. As a material containing Ni, for example, Cu—Ni (copper nickel) is given. As a material containing both Cr and Ni, for example, Ni—Cr (nickel chrome) can be mentioned.
 ここで、Cr混相膜とは、Cr、CrN、CrN等が混相した膜である。Cr混相膜は、酸化クロム等の不可避不純物を含んでもよい。 Here, the Cr mixed phase film is a film in which Cr, CrN, Cr 2 N and the like are mixed. The Cr mixed phase film may contain unavoidable impurities such as chromium oxide.
 抵抗体30の厚さは、特に制限はなく、目的に応じて適宜選択できるが、例えば、0.05μm~2μm程度とすることができる。特に、抵抗体30の厚さが0.1μm以上であると抵抗体30を構成する結晶の結晶性(例えば、α-Crの結晶性)が向上する点で好ましく、1μm以下であると抵抗体30を構成する膜の内部応力に起因する膜のクラックや基材10からの反りを低減できる点で更に好ましい。 The thickness of the resistor 30 is not particularly limited and can be appropriately selected depending on the purpose. For example, the thickness can be about 0.05 μm to 2 μm. In particular, when the thickness of the resistor 30 is 0.1 μm or more, the crystallinity of the crystal constituting the resistor 30 (for example, the crystallinity of α-Cr) is improved. It is further preferable that cracks in the film and warpage from the base material 10 due to the internal stress of the film constituting the film 30 can be reduced.
 例えば、抵抗体30がCr混相膜である場合、安定な結晶相であるα-Cr(アルファクロム)を主成分とすることで、ゲージ特性の安定性を向上することができる。又、抵抗体30がα-Crを主成分とすることで、ひずみゲージ1のゲージ率を10以上、かつゲージ率温度係数TCS及び抵抗温度係数TCRを-1000ppm/℃~+1000ppm/℃の範囲内とすることができる。ここで、主成分とは、対象物質が抵抗体を構成する全物質の50質量%以上を占めることを意味するが、ゲージ特性を向上する観点から、抵抗体30はα-Crを80重量%以上含むことが好ましい。なお、α-Crは、bcc構造(体心立方格子構造)のCrである。 For example, when the resistor 30 is a Cr mixed phase film, the stability of the gauge characteristics can be improved by using α-Cr (alpha chromium), which is a stable crystal phase, as a main component. Further, since the resistor 30 contains α-Cr as a main component, the gauge factor of the strain gauge 1 is 10 or more, and the gauge factor temperature coefficient TCS and the resistance temperature coefficient TCR are within the range of −1000 ppm / ° C. to +1000 ppm / ° C. It can be. Here, the main component means that the target substance occupies 50% by mass or more of all the substances constituting the resistor. From the viewpoint of improving the gauge characteristics, the resistor 30 contains α-Cr at 80% by weight. It is preferable to include the above. Note that α-Cr is Cr having a bcc structure (body-centered cubic lattice structure).
 端子部41は、抵抗体30の両端部から延在しており、平面視において、抵抗体30よりも拡幅して略矩形状に形成されている。端子部41は、ひずみにより生じる抵抗体30の抵抗値の変化を外部に出力するための一対の電極である。 The terminal portions 41 extend from both ends of the resistor 30 and are formed in a substantially rectangular shape with a width wider than that of the resistor 30 in plan view. The terminal portion 41 is a pair of electrodes for outputting a change in the resistance value of the resistor 30 caused by the strain to the outside.
 例えば、各々の端子部41の側面の一部がひずみゲージ1の外部に露出しており、露出する部分に外部接続用のリード線等が接合される。但し、各々の端子部41の一部がひずみゲージ1の外部に露出していれば、露出する部分は各々の端子部41の側面でなくてもよい。例えば、基材10に貫通孔や切り欠きを設け、各々の端子部41の上面の一部又は全部を露出させてもよい。 {For example, a part of the side surface of each terminal portion 41 is exposed to the outside of the strain gauge 1, and a lead wire or the like for external connection is joined to the exposed portion. However, if a part of each terminal part 41 is exposed to the outside of the strain gauge 1, the exposed part may not be the side surface of each terminal part 41. For example, a through hole or a notch may be provided in the base material 10 to expose a part or all of the upper surface of each terminal portion 41.
 抵抗体30は、例えば、端子部41の一方からジグザグに折り返しながら延在して他方の端子部41に接続されている。端子部41の上面や側面を、端子部41よりもはんだ付け性が良好な金属で被覆してもよい。なお、抵抗体30と端子部41とは便宜上別符号としているが、両者は同一工程において同一材料により一体に形成することができる。 The resistor 30 extends from one of the terminal portions 41 in a zigzag manner, for example, and is connected to the other terminal portion 41. The top and side surfaces of the terminal 41 may be covered with a metal having better solderability than the terminal 41. Note that the resistor 30 and the terminal portion 41 are denoted by different reference numerals for convenience, but they can be integrally formed of the same material in the same step.
 センサモジュール5において、基材10の下面10b側は、接着層120を介して、起歪体110の上面110aと接着されている。すなわち、ひずみゲージ1は、抵抗体30を起歪体110側に向けて起歪体110に接着されている。 In the sensor module 5, the lower surface 10 b side of the base material 10 is bonded to the upper surface 110 a of the strain body 110 via the bonding layer 120. That is, the strain gauge 1 is bonded to the strain body 110 with the resistor 30 facing the strain body 110 side.
 起歪体110は、例えば、Fe、SUS(ステンレス鋼)、Al等の金属やPEEK等の樹脂から形成され、印加される力に応じて変形し、生じたひずみをひずみゲージ1に伝達する物体である。ひずみゲージ1は、起歪体110に生じるひずみを抵抗体30の抵抗値変化として検出することができる。 The strain generating element 110 is formed of, for example, a metal such as Fe, SUS (stainless steel), or Al, or a resin such as PEEK, and is deformed according to an applied force, and transmits the generated strain to the strain gauge 1. It is. The strain gauge 1 can detect the strain generated in the strain body 110 as a change in the resistance value of the resistor 30.
 接着層120は、ひずみゲージ1と起歪体110とに挟持されており、抵抗体30を被覆している。接着層120は、ひずみゲージ1と起歪体110とを接着する機能を有する材料であれば、特に制限はなく、目的に応じて適宜選択できるが、例えば、エポキシ樹脂、変性エポキシ樹脂、シリコーン樹脂、変性シリコーン樹脂、ウレタン樹脂、変性ウレタン樹脂等を用いることができる。又、ボンディングシート等の材料を用いても良い。但し、起歪体110が導電体である場合には、接着層120として絶縁性の材料を選択する必要がある。接着層120の厚さは、特に制限はなく、目的に応じて適宜選択できるが、例えば、0.1μm~50μm程度とすることができる。 The adhesive layer 120 is sandwiched between the strain gauge 1 and the strain body 110 and covers the resistor 30. The adhesive layer 120 is not particularly limited as long as it has a function of bonding the strain gauge 1 and the strain body 110, and can be appropriately selected depending on the purpose. For example, an epoxy resin, a modified epoxy resin, a silicone resin , Modified silicone resin, urethane resin, modified urethane resin and the like can be used. Further, a material such as a bonding sheet may be used. However, when the strain body 110 is a conductor, it is necessary to select an insulating material for the adhesive layer 120. The thickness of the adhesive layer 120 is not particularly limited and can be appropriately selected depending on the purpose. For example, the thickness can be about 0.1 μm to 50 μm.
 ひずみゲージ1を製造するためには、まず、基材10を準備し、基材10の下面10bに図1に示す平面形状の抵抗体30及び端子部41を形成する。抵抗体30及び端子部41の材料や厚さは、前述の通りである。抵抗体30と端子部41とは、同一材料により一体に形成することができる。 In order to manufacture the strain gauge 1, first, the base material 10 is prepared, and the planar resistor 30 and the terminal portion 41 shown in FIG. 1 are formed on the lower surface 10b of the base material 10. The materials and thicknesses of the resistor 30 and the terminal portion 41 are as described above. The resistor 30 and the terminal 41 can be integrally formed of the same material.
 抵抗体30及び端子部41は、例えば、抵抗体30及び端子部41を形成可能な原料をターゲットとしたマグネトロンスパッタ法により成膜し、フォトリソグラフィによってパターニングすることで形成できる。抵抗体30及び端子部41は、マグネトロンスパッタ法に代えて、反応性スパッタ法や蒸着法、アークイオンプレーティング法、パルスレーザー堆積法等を用いて成膜してもよい。 The resistor 30 and the terminal portion 41 can be formed by, for example, forming a film by a magnetron sputtering method using a material capable of forming the resistor 30 and the terminal portion 41 as a target, and patterning the film by photolithography. The resistor 30 and the terminal portion 41 may be formed by a reactive sputtering method, an evaporation method, an arc ion plating method, a pulse laser deposition method, or the like instead of the magnetron sputtering method.
 ゲージ特性を安定化する観点から、抵抗体30及び端子部41を成膜する前に、下地層として、基材10の下面10bに、例えば、コンベンショナルスパッタ法により膜厚が1nm~100nm程度の機能層を真空成膜することが好ましい。なお、機能層は、機能層の下面全体に抵抗体30及び端子部41を形成後、フォトリソグラフィによって抵抗体30及び端子部41と共に図1に示す平面形状にパターニングされる。 From the viewpoint of stabilizing the gauge characteristics, before forming the resistor 30 and the terminal portion 41, a function having a film thickness of about 1 nm to 100 nm as a base layer on the lower surface 10b of the base material 10 by, for example, a conventional sputtering method. Preferably, the layer is deposited in a vacuum. After the resistor 30 and the terminal 41 are formed on the entire lower surface of the functional layer, the functional layer is patterned by photolithography together with the resistor 30 and the terminal 41 into the planar shape shown in FIG.
 本願において、機能層とは、少なくとも上層である抵抗体30の結晶成長を促進する機能を有する層を指す。機能層は、更に、基材10に含まれる酸素や水分による抵抗体30の酸化を防止する機能や、基材10と抵抗体30との密着性を向上する機能を備えていることが好ましい。機能層は、更に、他の機能を備えていてもよい。 に お い て In the present application, the functional layer refers to a layer having a function of promoting crystal growth of at least the upper layer of the resistor 30. The functional layer preferably further has a function of preventing the resistor 30 from being oxidized by oxygen or moisture contained in the substrate 10 and a function of improving the adhesion between the substrate 10 and the resistor 30. The functional layer may further have another function.
 基材10を構成する絶縁樹脂フィルムは酸素や水分を含むため、特に抵抗体30がCrを含む場合、Crは自己酸化膜を形成するため、機能層が抵抗体30の酸化を防止する機能を備えることは有効である。 Since the insulating resin film constituting the base material 10 contains oxygen and moisture, especially when the resistor 30 contains Cr, Cr forms a self-oxidized film, so that the functional layer has a function of preventing oxidation of the resistor 30. Providing is effective.
 機能層の材料は、少なくとも上層である抵抗体30の結晶成長を促進する機能を有する材料であれば、特に制限はなく、目的に応じて適宜選択できるが、例えば、Cr(クロム)、Ti(チタン)、V(バナジウム)、Nb(ニオブ)、Ta(タンタル)、Ni(ニッケル)、Y(イットリウム)、Zr(ジルコニウム)、Hf(ハフニウム)、Si(シリコン)、C(炭素)、Zn(亜鉛)、Cu(銅)、Bi(ビスマス)、Fe(鉄)、Mo(モリブデン)、W(タングステン)、Ru(ルテニウム)、Rh(ロジウム)、Re(レニウム)、Os(オスミウム)、Ir(イリジウム)、Pt(白金)、Pd(パラジウム)、Ag(銀)、Au(金)、Co(コバルト)、Mn(マンガン)、Al(アルミニウム)からなる群から選択される1種又は複数種の金属、この群の何れかの金属の合金、又は、この群の何れかの金属の化合物が挙げられる。 The material of the functional layer is not particularly limited as long as it has a function of promoting the crystal growth of the resistor 30 as the upper layer, and can be appropriately selected depending on the purpose. For example, Cr (chromium), Ti ( Titanium), V (vanadium), Nb (niobium), Ta (tantalum), Ni (nickel), Y (yttrium), Zr (zirconium), Hf (hafnium), Si (silicon), C (carbon), Zn ( Zinc), Cu (copper), Bi (bismuth), Fe (iron), Mo (molybdenum), W (tungsten), Ru (ruthenium), Rh (rhodium), Re (rhenium), Os (osmium), Ir ( Selected from the group consisting of iridium), Pt (platinum), Pd (palladium), Ag (silver), Au (gold), Co (cobalt), Mn (manganese), and Al (aluminum) One or more metals, or metal alloys of this group, or a compound of any one of metals of this group and the like.
 上記の合金としては、例えば、FeCr、TiAl、FeNi、NiCr、CrCu等が挙げられる。又、上記の化合物としては、例えば、TiN、TaN、Si、TiO、Ta、SiO等が挙げられる。 Examples of the above alloy include FeCr, TiAl, FeNi, NiCr, CrCu and the like. Examples of the above compound include TiN, TaN, Si 3 N 4 , TiO 2 , Ta 2 O 5 , and SiO 2 .
 機能層は、例えば、機能層を形成可能な原料をターゲットとし、チャンバ内にAr(アルゴン)ガスを導入したコンベンショナルスパッタ法により真空成膜することができる。コンベンショナルスパッタ法を用いることにより、基材10の下面10bをArでエッチングしながら機能層が成膜されるため、機能層の成膜量を最小限にして密着性改善効果を得ることができる。 The functional layer can be formed, for example, by a conventional sputtering method using a material capable of forming the functional layer as a target and introducing an Ar (argon) gas into the chamber. By using the conventional sputtering method, the functional layer is formed while etching the lower surface 10b of the base material 10 with Ar, so that the effect of improving the adhesion can be obtained by minimizing the amount of the functional layer formed.
 但し、これは、機能層の成膜方法の一例であり、他の方法により機能層を成膜してもよい。例えば、機能層の成膜の前にAr等を用いたプラズマ処理等により基材10の下面10bを活性化することで密着性改善効果を獲得し、その後マグネトロンスパッタ法により機能層を真空成膜する方法を用いてもよい。 However, this is an example of a method for forming a functional layer, and the functional layer may be formed by another method. For example, before the functional layer is formed, the lower surface 10b of the base material 10 is activated by plasma treatment using Ar or the like to obtain an adhesion improving effect, and then the functional layer is vacuum-formed by magnetron sputtering. May be used.
 機能層の材料と抵抗体30及び端子部41の材料との組み合わせは、特に制限はなく、目的に応じて適宜選択できるが、例えば、機能層としてTiを用い、抵抗体30及び端子部41としてα-Cr(アルファクロム)を主成分とするCr混相膜を成膜することが可能である。 The combination of the material of the functional layer and the material of the resistor 30 and the terminal portion 41 is not particularly limited and can be appropriately selected depending on the purpose. For example, Ti is used for the functional layer, and the resistor 30 and the terminal portion 41 are used. It is possible to form a Cr mixed phase film containing α-Cr (alpha chromium) as a main component.
 この場合、例えば、Cr混相膜を形成可能な原料をターゲットとし、チャンバ内にArガスを導入したマグネトロンスパッタ法により、抵抗体30及び端子部41を成膜することができる。或いは、純Crをターゲットとし、チャンバ内にArガスと共に適量の窒素ガスを導入し、反応性スパッタ法により、抵抗体30及び端子部41を成膜してもよい。 In this case, for example, the resistor 30 and the terminal portion 41 can be formed by a magnetron sputtering method using a raw material capable of forming a Cr mixed-phase film as a target and introducing Ar gas into the chamber. Alternatively, the resistor 30 and the terminal portion 41 may be formed by a reactive sputtering method by introducing an appropriate amount of nitrogen gas together with Ar gas into a chamber using pure Cr as a target.
 これらの方法では、Tiからなる機能層がきっかけでCr混相膜の成長面が規定され、安定な結晶構造であるα-Crを主成分とするCr混相膜を成膜できる。又、機能層を構成するTiがCr混相膜中に拡散することにより、ゲージ特性が向上する。例えば、ひずみゲージ1のゲージ率を10以上、かつゲージ率温度係数TCS及び抵抗温度係数TCRを-1000ppm/℃~+1000ppm/℃の範囲内とすることができる。なお、機能層がTiから形成されている場合、Cr混相膜にTiやTiN(窒化チタン)が含まれる場合がある。 According to these methods, the growth surface of the Cr mixed phase film is defined by the functional layer made of Ti, and a Cr mixed phase film having α-Cr as a main component, which has a stable crystal structure, can be formed. Further, the gauge characteristics are improved by diffusing Ti constituting the functional layer into the Cr mixed phase film. For example, the gauge factor of the strain gauge 1 can be 10 or more, and the gauge factor temperature coefficient TCS and the resistance temperature coefficient TCR can be in the range of −1000 ppm / ° C. to +1000 ppm / ° C. When the functional layer is formed of Ti, the Cr mixed phase film may include Ti or TiN (titanium nitride).
 なお、抵抗体30がCr混相膜である場合、Tiからなる機能層は、抵抗体30の結晶成長を促進する機能、基材10に含まれる酸素や水分による抵抗体30の酸化を防止する機能、及び基材10と抵抗体30との密着性を向上する機能の全てを備えている。機能層として、Tiに代えてTa、Si、Al、Feを用いた場合も同様である。 When the resistor 30 is a Cr mixed phase film, the functional layer made of Ti has a function of promoting the crystal growth of the resistor 30 and a function of preventing the resistor 30 from being oxidized by oxygen or moisture contained in the base material 10. , And all the functions of improving the adhesion between the substrate 10 and the resistor 30. The same applies when Ta, Si, Al, or Fe is used instead of Ti as the functional layer.
 このように、抵抗体30の下層に機能層を設けることにより、抵抗体30の結晶成長を促進することが可能となり、安定な結晶相からなる抵抗体30を作製できる。その結果、ひずみゲージ1において、ゲージ特性の安定性を向上することができる。又、機能層を構成する材料が抵抗体30に拡散することにより、ひずみゲージ1において、ゲージ特性を向上することができる。 As described above, by providing the functional layer below the resistor 30, the crystal growth of the resistor 30 can be promoted, and the resistor 30 having a stable crystal phase can be manufactured. As a result, in the strain gauge 1, the stability of the gauge characteristics can be improved. In addition, since the material forming the functional layer diffuses into the resistor 30, the gauge characteristics of the strain gauge 1 can be improved.
 なお、抵抗体30及び端子部41の下地層として基材10の下面10bに機能層を設けた場合には、センサモジュール5のひずみゲージ1は図3に示す断面形状となる。符号20で示す層が機能層である。機能層20を設けた場合のひずみゲージ1の平面形状は、図1と同様である。 In the case where a functional layer is provided on the lower surface 10b of the base material 10 as a base layer of the resistor 30 and the terminal portion 41, the strain gauge 1 of the sensor module 5 has a sectional shape shown in FIG. The layer indicated by reference numeral 20 is a functional layer. The plane shape of the strain gauge 1 when the functional layer 20 is provided is the same as that in FIG.
 センサモジュール5を製造するには、ひずみゲージ1を作製後、基材10の下面10b及び/又は起歪体110の上面110aに、例えば、接着層120となる上記の何れかの材料を塗布する。そして、基材10の下面10bを起歪体110の上面110aと対向させ、塗布した材料を挟んで起歪体110上にひずみゲージ1を配置する。又は、ボンディングシートを起歪体110と基材10との間に挟み込むようにしても良い。 In order to manufacture the sensor module 5, after producing the strain gauge 1, for example, any one of the above-described materials to be the adhesive layer 120 is applied to the lower surface 10 b of the base material 10 and / or the upper surface 110 a of the strain body 110. . Then, the lower surface 10b of the base material 10 faces the upper surface 110a of the strain body 110, and the strain gauge 1 is arranged on the strain body 110 with the applied material interposed therebetween. Alternatively, a bonding sheet may be sandwiched between the strain body 110 and the base material 10.
 次に、ひずみゲージ1を起歪体110側に押圧しながら所定温度に加熱し、塗布等した材料を硬化させて接着層120を形成する。これにより、接着層120を介して起歪体110の上面110aと基材10の下面10bとが接着され、センサモジュール5が完成する。センサモジュール5は、例えば、荷重、圧力、トルク、加速度等の測定に適用することができる。 Next, the strain gauge 1 is heated to a predetermined temperature while being pressed against the strain generating element 110, and the applied material is cured to form the adhesive layer 120. As a result, the upper surface 110a of the strain body 110 and the lower surface 10b of the substrate 10 are bonded via the bonding layer 120, and the sensor module 5 is completed. The sensor module 5 can be applied to, for example, measurement of load, pressure, torque, acceleration, and the like.
 このように、センサモジュール5では、ひずみゲージ1は、抵抗体30を起歪体110側に向けて起歪体110に接着されている。言い換えれば、抵抗体30の上面側は基材10により被覆されている。抵抗体30の上面側を基材10により被覆することで、抵抗体30に機械的な損傷等が生じることを防止できる。又、抵抗体30の上面側を基材10により被覆することで、抵抗体30を湿気等から保護することができる。 As described above, in the sensor module 5, the strain gauge 1 is bonded to the strain body 110 with the resistor 30 facing the strain body 110. In other words, the upper surface side of the resistor 30 is covered with the base material 10. By covering the upper surface side of the resistor 30 with the base material 10, it is possible to prevent the resistor 30 from being mechanically damaged or the like. Further, by covering the upper surface side of the resistor 30 with the base material 10, the resistor 30 can be protected from moisture and the like.
 ところで、前述のように、従来のセンサモジュールは、基材上に抵抗体及び保護フィルムが形成されたひずみゲージを作製し、ひずみゲージの基材側を接着層を介して起歪体に接着した構造である。この場合、基材に抵抗体を成膜する工程に加え、抵抗体を保護フィルムで被覆する工程が必要になるため、ひずみゲージを用いたセンサモジュールのコストが上昇するという問題があった。 By the way, as described above, in the conventional sensor module, a strain gauge in which a resistor and a protective film were formed on a substrate was produced, and the substrate side of the strain gauge was bonded to the strain generating element via an adhesive layer. Structure. In this case, in addition to the step of forming the resistor on the base material, a step of covering the resistor with a protective film is required, so that there is a problem that the cost of the sensor module using the strain gauge increases.
 これに対して、センサモジュール5では、ひずみゲージ1は、抵抗体30を起歪体110側に向けて起歪体110に接着されており、抵抗体30の上面側は基材10により被覆されている。すなわち、センサモジュール5では、基材10が従来のセンサモジュールにおける保護フィルムの役割を兼ねているため、抵抗体を保護フィルムで被覆する工程が不要になり、製造に必要な時間が短縮される。これにより、センサモジュール5のコスト上昇を抑制することができる。 On the other hand, in the sensor module 5, the strain gauge 1 is bonded to the strain body 110 with the resistor 30 facing the strain body 110, and the upper surface of the resistor 30 is covered with the base material 10. ing. That is, in the sensor module 5, since the substrate 10 also functions as a protective film in the conventional sensor module, a step of covering the resistor with the protective film is not required, and the time required for manufacturing is reduced. Thereby, an increase in the cost of the sensor module 5 can be suppressed.
 以上、好ましい実施の形態等について詳説したが、上述した実施の形態等に制限されることはなく、特許請求の範囲に記載された範囲を逸脱することなく、上述した実施の形態等に種々の変形及び置換を加えることができる。 As described above, the preferred embodiments and the like have been described in detail. However, the present invention is not limited to the above-described embodiments and the like, and various modifications may be made to the above-described embodiments and the like without departing from the scope described in the claims. Variations and substitutions can be made.
 本国際出願は2018年6月21日に出願した日本国特許出願2018-117747号に基づく優先権を主張するものであり、日本国特許出願2018-117747号の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2018-117747 filed on June 21, 2018, and the entire contents of Japanese Patent Application No. 2018-117747 are incorporated herein by reference. .
1 ひずみゲージ、5 センサモジュール、10 基材、10a 上面、10b 下面、20 機能層、30 抵抗体、41 端子部、110 起歪体、110a 上面、120 接着層 1 strain gauge, 5 sensor module, 10 base material, 10a upper surface, 10b lower surface, 20 functional layer, 30 resistor, 41 terminal part, 110 strain generator, 110a upper surface, 120 adhesive layer

Claims (8)

  1.  可撓性を有する基材、及び前記基材上にクロムとニッケルの少なくとも一方を含む材料から形成された抵抗体を備えたひずみゲージと、
     前記ひずみゲージにひずみを伝達する起歪体と、を有し、
     前記ひずみゲージは、前記抵抗体を前記起歪体側に向けて前記起歪体に接着されているセンサモジュール。
    A flexible base material, and a strain gauge including a resistor formed from a material containing at least one of chromium and nickel on the base material,
    And a strain-generating body that transmits strain to the strain gauge,
    A sensor module in which the strain gauge is bonded to the strain body with the resistor facing the strain body.
  2.  前記抵抗体は、Cr混相膜から形成されている請求項1に記載のセンサモジュール。 The sensor module according to claim 1, wherein the resistor is formed of a Cr mixed phase film.
  3.  前記抵抗体は、アルファクロムを主成分とする請求項2に記載のセンサモジュール。 The sensor module according to claim 2, wherein the resistor mainly includes alpha chrome.
  4.  前記抵抗体は、アルファクロムを80重量%以上含む請求項3に記載のセンサモジュール。 4. The sensor module according to claim 3, wherein the resistor contains alpha chrome in an amount of 80% by weight or more.
  5.  前記抵抗体は、窒化クロムを含む請求項2乃至4の何れか一項に記載のセンサモジュール。 The sensor module according to any one of claims 2 to 4, wherein the resistor includes chromium nitride.
  6.  前記抵抗体の下層に、金属、合金、又は、金属の化合物から形成された機能層を有する請求項1乃至5の何れか一項に記載のセンサモジュール。 6. The sensor module according to claim 1, further comprising a functional layer formed of a metal, an alloy, or a metal compound below the resistor. 7.
  7.  前記機能層は、前記抵抗体の結晶成長を促進する機能を有する請求項6に記載のセンサモジュール。 7. The sensor module according to claim 6, wherein the functional layer has a function of promoting crystal growth of the resistor.
  8.  前記ひずみゲージと前記起歪体とに挟持された接着層を有し、
     前記接着層は、前記抵抗体を被覆している請求項1乃至7の何れか一項に記載のセンサモジュール。
    An adhesive layer sandwiched between the strain gauge and the strain body,
    The sensor module according to claim 1, wherein the adhesive layer covers the resistor.
PCT/JP2019/024560 2018-06-21 2019-06-20 Sensor module WO2019244991A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-117747 2018-06-21
JP2018117747A JP2019219313A (en) 2018-06-21 2018-06-21 Sensor module

Publications (1)

Publication Number Publication Date
WO2019244991A1 true WO2019244991A1 (en) 2019-12-26

Family

ID=68983191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024560 WO2019244991A1 (en) 2018-06-21 2019-06-20 Sensor module

Country Status (2)

Country Link
JP (2) JP2019219313A (en)
WO (1) WO2019244991A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7261937B2 (en) * 2020-07-31 2023-04-20 ミネベアミツミ株式会社 motor
WO2022025075A1 (en) * 2020-07-31 2022-02-03 ミネベアミツミ株式会社 Motor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281511A (en) * 1993-03-26 1994-10-07 Tokyo Electric Co Ltd Strain sensor
JPH06300649A (en) * 1993-04-12 1994-10-28 Sumitomo Electric Ind Ltd Thin film strain resistance material, fabrication thereof and thin film strain sensor
JPH08102163A (en) * 1994-09-30 1996-04-16 Fujitsu Ltd Magnetic recording medium and magnetic disk device
JPH0916941A (en) * 1995-01-31 1997-01-17 Hoya Corp Magnetic recording medium and manufacture
JP2007173544A (en) * 2005-12-22 2007-07-05 Toshiba Corp X ray detector and method of fabricating same
JP2015031633A (en) * 2013-08-05 2015-02-16 公益財団法人電磁材料研究所 Strain sensor
JP2016136605A (en) * 2015-01-23 2016-07-28 株式会社豊田中央研究所 Permanent magnet and manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2539639B2 (en) * 1987-10-28 1996-10-02 株式会社共和電業 High temperature strain gauge and its attachment structure
JP3233248B2 (en) * 1994-05-13 2001-11-26 エヌオーケー株式会社 Thin film for strain gauge and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281511A (en) * 1993-03-26 1994-10-07 Tokyo Electric Co Ltd Strain sensor
JPH06300649A (en) * 1993-04-12 1994-10-28 Sumitomo Electric Ind Ltd Thin film strain resistance material, fabrication thereof and thin film strain sensor
JPH08102163A (en) * 1994-09-30 1996-04-16 Fujitsu Ltd Magnetic recording medium and magnetic disk device
JPH0916941A (en) * 1995-01-31 1997-01-17 Hoya Corp Magnetic recording medium and manufacture
JP2007173544A (en) * 2005-12-22 2007-07-05 Toshiba Corp X ray detector and method of fabricating same
JP2015031633A (en) * 2013-08-05 2015-02-16 公益財団法人電磁材料研究所 Strain sensor
JP2016136605A (en) * 2015-01-23 2016-07-28 株式会社豊田中央研究所 Permanent magnet and manufacturing method thereof

Also Published As

Publication number Publication date
JP2023138686A (en) 2023-10-02
JP2019219313A (en) 2019-12-26

Similar Documents

Publication Publication Date Title
JP2023126666A (en) strain gauge
US11499877B2 (en) Strain gauge
US11454488B2 (en) Strain gauge with improved stability
US11448560B2 (en) Strain gauge and sensor module
EP3702722A1 (en) Strain gauge and sensor module
JP2023138686A (en) sensor module
WO2019098049A1 (en) Strain gauge
JP2023144039A (en) strain gauge
JP2023126667A (en) strain gauge
JP2023106586A (en) strain gauge
US20230400370A1 (en) Strain gauge
WO2021200693A1 (en) Strain gauge
WO2021044796A1 (en) Sensor module and strain detection device
JP2023118855A (en) strain gauge
WO2019189752A1 (en) Strain gauge
JP7393890B2 (en) sensor module
JP7211807B2 (en) strain gauge
WO2019102831A1 (en) Strain gauge and sensor module
JP7296338B2 (en) strain gauge
WO2021193405A1 (en) Strain gauge
JP7021912B2 (en) Strain gauge
JP2023105037A (en) strain gauge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19823440

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19823440

Country of ref document: EP

Kind code of ref document: A1