WO2019244543A1 - 位置検出システム - Google Patents

位置検出システム Download PDF

Info

Publication number
WO2019244543A1
WO2019244543A1 PCT/JP2019/020061 JP2019020061W WO2019244543A1 WO 2019244543 A1 WO2019244543 A1 WO 2019244543A1 JP 2019020061 W JP2019020061 W JP 2019020061W WO 2019244543 A1 WO2019244543 A1 WO 2019244543A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile station
fixed
beacon signal
detection system
station
Prior art date
Application number
PCT/JP2019/020061
Other languages
English (en)
French (fr)
Inventor
匡 小林
百田 淳
天外 久保
西山 秀樹
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to US16/972,855 priority Critical patent/US11408970B2/en
Priority to JP2020525382A priority patent/JP6997871B2/ja
Priority to DE112019003144.9T priority patent/DE112019003144T5/de
Publication of WO2019244543A1 publication Critical patent/WO2019244543A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/01Determining conditions which influence positioning, e.g. radio environment, state of motion or energy consumption
    • G01S5/017Detecting state or type of motion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0295Proximity-based methods, e.g. position inferred from reception of particular signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S2205/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S2205/01Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations specially adapted for specific applications
    • G01S2205/02Indoor

Definitions

  • the invention disclosed in this specification relates to a position detection system.
  • iBeacon registered trademark
  • BLE Bluetooth (registered trademark) Low Energy] communication of a smartphone (iphone (registered trademark)
  • a beacon placed in front of a store is used.
  • push signals of coupons X and Y for each store are detected when a smart phone of a person passing nearby detects a signal output by the user (FIG. 5).
  • beacons are considered to be effective means capable of detecting an absolute position indoors where the GPS [Global Positioning System] signal does not reach.
  • Patent Literature 1 and Patent Literature 2 can be cited.
  • a plurality of access points are prepared in a space, a signal output by one beacon is detected by a plurality of access points, and a server controlling the plurality of access points transmits a beacon at each access point.
  • Techniques for estimating the position of the beacon by analyzing the reception intensity are used (three-point survey, triangulation, etc.).
  • both the access points A and B detect the signal output by the beacon, and the strength of the signal received at the access point B is greater than the strength of the signal received at the access point A. If the beacon is also large, there is a risk that the beacon is erroneously recognized as being in the room where the access point B is installed, not in the room where the access point A is installed.
  • the invention disclosed in this specification has an object to provide a more accurate position detection system in view of the above-mentioned problems found by the inventors of the present application.
  • the position detection system disclosed in this specification is a mobile station that transmits a beacon signal, a plurality of fixed stations that receive the beacon signal, and the reception strength of the beacon signal at each fixed station of the mobile station
  • a position analysis device that obtains position information of the mobile station by performing position estimation, wherein the mobile station includes a motion detection unit for performing a stillness determination, and the position analysis device includes: While the mobile station is stationary, the position estimation of the mobile station is stopped and the position information is held at a fixed position (first configuration).
  • the position analysis device measures the reception strength of the beacon signal at each fixed station a plurality of times after stopping the position estimation of the mobile station, and measures the measurement result. It is preferable to adopt a configuration (second configuration) in which the fixed position is determined from the above.
  • the position analysis device specifies a fixed station having the highest reception intensity of the beacon signal at the highest frequency among the plurality of fixed stations. It is preferable to adopt a configuration (third configuration) in which the fixed position is determined from the result.
  • the position analysis device specifies, among the plurality of fixed stations, a fixed station in which the average reception strength of the beacon signal is the largest, and from the result of the specification, A configuration for determining the fixed position (fourth configuration) may be used.
  • the motion detection unit may have a configuration including an acceleration sensor for detecting acceleration (a fifth configuration).
  • the motion detection unit may have a configuration including a geomagnetic sensor for detecting geomagnetism (a sixth configuration).
  • the mobile station sequentially derives the number of steps of a person carrying the mobile station from a detection signal obtained by the acceleration sensor, and updates the number of steps. (Seventh configuration) for performing the above-described stillness determination in accordance with.
  • the mobile station uses at least one of a raw value, an average value, and a variance value of a detection signal obtained by the motion detection unit. It is preferable to adopt a configuration (eighth configuration) in which the stationary determination is performed.
  • the mobile station performs frequency analysis on a detection signal obtained by the acceleration sensor, and performs the stillness determination according to the analysis result (a ninth configuration). ).
  • the mobile station may be configured to transmit the result of the stillness determination together with the beacon signal (a tenth configuration).
  • the plurality of fixed stations may have a configuration (eleventh configuration) provided at different positions indoors.
  • the position analysis device disclosed in this specification when the mobile station transmitting the beacon signal is not stationary, performs the position estimation of the mobile station from the reception strength of the beacon signal in a plurality of fixed stations Thereby, the position information of the mobile station is acquired, and when the mobile station is stationary, the position estimation of the mobile station is stopped and the position information is held at a fixed position (twelfth configuration). ing.
  • the mobile station disclosed in this specification includes a motion detection unit for performing a stillness determination, and transmits a result of the stillness determination together with a beacon signal (a thirteenth configuration).
  • Diagram showing overall configuration of position detection system Flow chart showing an operation example of a mobile station Flow chart showing an operation example of the position analysis device
  • FIG. 1 is a diagram showing the overall configuration of the position detection system.
  • the position detection system 1 of this configuration example is a kind of indoor positioning system used to monitor the position of a person or an object moving indoors (in an office, in a factory, in a store, or the like). And a plurality of fixed stations 200 and a position analysis device 300.
  • a storage unit 140 for example, an information processing terminal (such as a smartphone) carried by a person to be monitored may be used, or another wearable device (such as a smart watch or a name tag with a communication function) may be used.
  • the mobile station 100 can take the form of a shopping cart used in a store or an IC tag attached to a product.
  • the control unit 110 is a subject that comprehensively controls the operation of the mobile station 100.
  • a CPU Central Processing Unit
  • the control unit 110 has a function of determining whether or not the mobile station 100 is stationary (details will be described later) based on various detection signals obtained by the motion detection unit 130.
  • the communication unit 120 performs broadcast transmission of the beacon signal Sb in accordance with a predetermined short-range wireless communication standard (for example, BLE) based on an instruction from the control unit 110.
  • a predetermined short-range wireless communication standard for example, BLE
  • the beacon signal Sb contains ID information for identifying the mobile station 100 (or its carrier).
  • the motion detection unit 130 is a sensor unit for determining whether the mobile station 100 is stationary by the control unit 110, and includes, for example, an acceleration sensor 131 that detects acceleration and a geomagnetic sensor 132 that detects geomagnetism.
  • an acceleration sensor 131 that detects acceleration
  • a geomagnetic sensor 132 that detects geomagnetism.
  • a two-axis detection type x-axis / y-axis
  • a three-axis detection type x-axis / y-axis / z-axis
  • the storage unit 140 is used not only as a storage area for the control program executed by the control unit 110 but also as a temporary storage area for the detection values obtained by the motion detection unit 130.
  • the plurality of fixed stations 200 are access points (or gateways) each receiving the beacon signal Sb broadcast-transmitted from the mobile station 100, and are provided at different locations indoors.
  • a strength (so-called RSSI [Received ⁇ Signal ⁇ Strength ⁇ Indicator]) or the like is added and transmitted to the position analysis device 300.
  • the position analysis device 300 acquires the position information of the mobile station 100 by estimating the position of the mobile station 100 from the reception strength of the beacon signal Sb at each fixed station 200.
  • a local server may be used as the position analysis device 300, or a cloud server may be used.
  • the position detection system 1 of this configuration example for example, by attaching the mobile station 100 to the monitoring target, the position information of the monitoring target is acquired even indoors where the GPS signal does not reach, and the flow line analysis thereof is performed. Becomes possible.
  • the operations of the mobile station 100 and the position analysis device 300 will be described in detail.
  • FIG. 2 is a flowchart illustrating an operation example of the mobile station 100.
  • step S105 a broadcast transmission of the beacon signal Sb (and the stillness determination flag STB) is performed.
  • step S106 it is determined whether or not a predetermined interval period T has elapsed.
  • the flow returns to step S101, and the above series of processing is repeated.
  • the flow returns to step S106, and the elapse of the inverter valve period T is awaited.
  • FIG. 3 is a flowchart illustrating an operation example of the position analysis device 300.
  • step S112 it is determined whether the stationary flag STB is “1”, that is, whether the mobile station 100 is stationary.
  • the flow proceeds to step S113.
  • the flow returns to step S111, and the position estimation processing of the mobile station 100 is continued.
  • a detection value (raw value, average value, or variance value, or a value obtained by compressing these values using a predetermined algorithm) of the motion detection unit 130 is transmitted to the position analysis device 300. It is theoretically possible for the position analysis device 300 to perform the stationary determination process of the mobile station 100 (see step S101 in FIG. 2). However, in view of the power consumption and the communication band required for transmitting the detected value itself, it can be said that such a configuration is not practical.
  • step S112 If a YES determination is made in step S112, fixed position determination processing for the stationary mobile station 100 is performed in step S113.
  • the fixed position determination processing in this step will be described later in detail.
  • step S114 the position estimation processing of the mobile station 100 is stopped, and the position information of the mobile station 100 is held at a fixed position. That is, the mobile station 100 is considered to be stationary at the fixed position determined in step S113.
  • step S115 it is determined whether the stationary flag STB is “0”, that is, whether the mobile station 100 has started moving again.
  • the flow returns to step S111, and the position estimation processing of the mobile station 100 is restarted.
  • the flow returns to step S114, and the position estimation stop of the mobile station 100 and the fixed position holding are continued.
  • the position analysis device 300 stops estimating the position of the mobile station 100 and holds the position information of the mobile station 100 at the fixed position. That is, when the mobile station 100 is stationary, even if the reception strength of the beacon signal Sb at each fixed station 200 is unstable, unnecessary fluctuation does not occur in the position information of the mobile station 100. Therefore, the position detection accuracy of the mobile station 100 can be improved.
  • a determination method utilizing the pedometer function of the acceleration sensor 131 that is, the number of steps of the person carrying the mobile station 100 is sequentially derived from the detection signal obtained by the acceleration sensor 131.
  • a method of determining whether the mobile station 100 is stationary based on the update state of the number of steps can be considered.
  • the mobile station 100 when the number of steps is not incremented over a predetermined stationary determination period (or when the increment value is less than a predetermined threshold), it is determined that the mobile station 100 (and the carrier) is stationary. be able to.
  • the first stillness determination process is one of the simplest determination methods, and can be easily implemented in the mobile station 100.
  • the mobile station 100 stops. It is difficult to properly determine whether or not there is.
  • a second stationary determination method whether or not the mobile station 100 is stationary using at least one of a raw value, an average value, and a variance value of the detection signal obtained by the motion detecting unit 130 Can be determined.
  • the variance of each axis for example, x-axis acceleration, y-axis acceleration, z-axis acceleration, x-axis geomagnetism, y-axis geomagnetism, and , Z-axis geomagnetism
  • the storage unit 140 may be used as a temporary storage area of the detection value, or a register (not shown) of the control unit 110 may be used.
  • the stationary determination of the mobile station 100 can be performed more strictly than in the first stationary determination process.
  • the stationary criterion of the mobile station 100 can be arbitrarily determined.
  • the stationary state may be determined only when the variance value is equal to or smaller than the threshold value on all axes, or the stationary state may be determined when the variance value is equal to or smaller than the threshold value on the majority axis. Further, it is possible to further reduce the stillness determination criterion and determine that the stillness is attained if the variance value is equal to or less than the threshold value even for one axis.
  • the motion detector 130 includes not only the acceleration sensor 131 but also a geomagnetic sensor 132.
  • the geomagnetic sensor 132 may not be able to correctly execute the stationary determination processing. In such a case, the stationary state determination process may be performed based only on the detection value of the acceleration sensor 131.
  • a method of performing frequency analysis of a detection signal obtained by the acceleration sensor 131 and determining whether or not the mobile station 100 is stationary based on the analysis result may be considered.
  • the stationary determination processing of the mobile station 100 may be performed by appropriately combining these. Further, other stationary determination methods may be adopted.
  • FIG. 4 is a diagram illustrating an example of the fixed position determination process.
  • step S111 in FIG. 3 if the position estimation processing based on the reception strength of the beacon signal Sb (step S111 in FIG. 3) is continued even while the mobile station 100 is stationary, As shown in the upper part of the figure, unnecessary fluctuation occurs in the position information of the mobile station 100 due to the influence of the signal attenuation and change due to the variation of the reception strength and the presence of the obstacle. Specifically, even though the mobile station 100 exists in the room where the access point A is installed, erroneous detection as if the mobile station 100 exists in the room where the access point B is installed is intermittently performed. Will happen.
  • the fixed position determination processing of the mobile station 100 is performed, for example, after stopping the position estimation of the mobile station 100 based on the reception intensity based on the determination result that the mobile station 100 is stationary, and then stopping the fixed station 200 (FIG. Then, the reception strength of the beacon signal Sb at the access points A and B) may be measured a plurality of times, and the fixed position of the mobile station 100 may be determined from the measurement result.
  • the fixed position of the mobile station 100 may be determined.
  • the reception strength of the beacon signal Sb is measured five times as the fixed position determination processing of the mobile station 100, and the reception strength of the access point A is better than that of the access point B in four of the measurements. Is greater than the reception strength of Therefore, the access point A is specified as the fixed station 200 closest to the mobile station 100, and the fixed position of the mobile station 100 (the fixed position “A” in this figure) is determined from the result of the specification.
  • the higher the average reception strength of the beacon signal Sb at the access point A the shorter the average distance dA between the mobile station 100 and the access point A.
  • the higher the average reception strength of the beacon signal Sb at the access point B the shorter the average distance dB between the mobile station 100 and the access point B. Therefore, when dA ⁇ dB, it means that the mobile station 100 exists around the access point A, and conversely, when dA ⁇ dB, it means that the mobile station 100 exists around the access point B. means.
  • the access point A is specified as the fixed station 200 closest to the mobile station 100, and the fixed position of the mobile station 100 (the fixed position “A” in this figure) is determined from the result of the specification. Become.
  • the reception intensity of the above five times (or the reception intensity of the four times that the reception intensity of the access point A is determined to be higher than the reception intensity of the access point B) is
  • the position coordinates of the mobile station 100 may be calculated, or position coordinates set in advance as the peripheral position of the access point A may be used.
  • two fixed access points A and B are used as examples of the fixed station 200 receiving the beacon signal Sb. Even when the signal Sb is received, the same fixed position determination processing as described above can be performed. Conversely, when there is only one fixed station 200 receiving the beacon signal Sb, the fixed position may be determined assuming that the mobile station 100 exists around the fixed station 200.
  • the position detection system disclosed in this specification can be used to monitor the position of a worker in an office or a factory, for example.
  • position detection system 100 mobile station (beacon) 110 control unit 120 communication unit 130 motion detection unit 131 acceleration sensor 132 geomagnetic sensor 140 storage unit 200 fixed station (access point) 300 Position analysis device (server)

Abstract

位置検出システム1は、ビーコン信号Sbを送信する移動局100と、ビーコン信号Sbを受信する複数の固定局200と、各固定局200におけるビーコン信号Sbの受信強度から移動局100の位置推定を行うことにより移動局100の位置情報を取得する位置解析装置300とを有する。移動局100は、静止判定を行うための動き検出部130(加速度センサ131や地磁気センサ132など)を含む。位置解析装置300は、移動局100が静止している間、移動局100の位置推定を停止して位置情報を固定位置に保持する。なお、位置解析装置300は、移動局100の位置推定を停止した後、各固定局200におけるビーコン信号Sbの受信強度を複数回測定し、最も高い頻度でビーコン信号Sbの受信強度が最大となる固定局を特定して、固定位置を決定するとよい。

Description

位置検出システム
 本明細書中に開示されている発明は、位置検出システムに関する。
 近年、ビーコンを用いた屋内における位置検出技術の活用事例が続々と登場している。例えば、iBeacon(登録商標)は、スマートフォン(iphone(登録商標))のBLE[Bluetooth(登録商標) Low Energy]通信を用いた屋内測位技術利用例の一つであり、店舗前に配置されたビーコンが出力する信号をその近くを通った人のスマートフォンが検知したときに店舗毎のクーポンX及びYをプッシュ通知するなど、既に実用化されている(図5)。
 一方、オフィス内や工場内などでは、スマートフォンによる情報取得だけではなく、ビーコンを人に持たせることにより、作業員の位置情報を監視して作業効率の向上を狙う用途に使われている。例えば、オフィス内や工場内の固定点にビーコン受信機(=アクセスポイントAP)を用意し、ビーコンを持つ人がアクセスポイントに接近したときに、そのアクセスポイントの周辺に人がいることが分かるようにするシステムがある(図6)。特に、GPS[Global Positioning System]信号が及ばない屋内において、ビーコンは、絶対位置を検出することのできる有効な手段であると考えられている。
 なお、上記に関連する従来技術の一例としては、特許文献1や特許文献2を挙げることができる。
特開2017-156195号公報 特開2018-36165号公報
 一般に、図6のシステムでは、アクセスポイントを空間内に複数準備し、1つのビーコンが出力する信号を複数のアクセスポイントが検知し、これら複数のアクセスポイントを制御するサーバが各アクセスポイントにおけるビーコンの受信強度を解析することによりビーコンの位置を推定する技術が使われている(三点測量や三角測量など)。
 この方法では、ビーコンの大体の位置を割り出すことは可能であるが、受信強度のばらつきや障害物の存在による信号減衰・変化の影響から、GPSが導き出すような精度の位置検出は難しいことが分かっている。
 例えば、図7で示す状況において、ビーコンの出力する信号をアクセスポイントA及びBの両方が検知し、かつ、アクセスポイントBで受信される信号の強度がアクセスポイントAで受信される信号の強度よりも大きい場合、アクセスポイントAの設置された室内ではなく、アクセスポイントBの設置された室内にビーコンが存在する、と誤認識してしまうおそれがある。
 本明細書中に開示されている発明は、本願の発明者らにより見出された上記の課題に鑑み、より精度の高い位置検出システムを提供することを目的とする。
 本明細書中に開示されている位置検出システムは、ビーコン信号を送信する移動局と、前記ビーコン信号を受信する複数の固定局と、各固定局における前記ビーコン信号の受信強度から前記移動局の位置推定を行うことにより前記移動局の位置情報を取得する位置解析装置と、を有し、前記移動局は、静止判定を行うための動き検出部を含み、前記位置解析装置は、前記移動局が静止している間、前記移動局の位置推定を停止して前記位置情報を固定位置に保持する構成(第1の構成)とされている。
 なお、上記第1の構成から成る位置検出システムにおいて、前記位置解析装置は、前記移動局の位置推定を停止した後、各固定局における前記ビーコン信号の受信強度を複数回測定し、その測定結果から前記固定位置を決定する構成(第2の構成)にするとよい。
 また、上記第2の構成から成る位置検出システムにおいて、前記位置解析装置は、前記複数の固定局のうち、最も高い頻度で前記ビーコン信号の受信強度が最大となる固定局を特定し、その特定結果から前記固定位置を決定する構成(第3の構成)にするとよい。
 また、上記第2の構成から成る位置検出システムにおいて、前記位置解析装置は、前記複数の固定局のうち、前記ビーコン信号の平均受信強度が最大となる固定局を特定し、その特定結果から前記固定位置を決定する構成(第4の構成)にするとよい。
 また、上記第1~第4いずれかの構成から成る位置検出システムにおいて、前記動き検出部は、加速度を検出する加速度センサを含む構成(第5の構成)にするとよい。
 また、上記第1~第5いずれかの構成から成る位置検出システムにおいて、前記動き検出部は、地磁気を検出する地磁気センサを含む構成(第6の構成)にするとよい。
 また、上記第5の構成から成る位置検出システムにおいて、前記移動局は、前記加速度センサで得られた検出信号から前記移動局を携帯している者の歩数を逐次導出し、前記歩数の更新状況に応じて前記静止判定を行う構成(第7の構成)にするとよい。
 また、上記第5または第6の構成から成る位置検出システムにおいて、前記移動局は、前記動き検出部で得られた検出信号の生値、平均値、及び、分散値の少なくとも一つを用いて前記静止判定を行う構成(第8の構成)にするとよい。
 また、上記第5の構成から成る位置検出システムにおいて、前記移動局は、前記加速度センサで得られた検出信号を周波数解析し、その解析結果に応じて前記静止判定を行う構成(第9の構成)にするとよい。
 また、上記した第1~第9いずれかの構成から成る位置検出システムにおいて、前記移動局は、前記ビーコン信号と共に前記静止判定の結果を送信する構成(第10の構成)にするとよい。
 また、上記第1~第10いずれかの構成から成る位置検出システムにおいて、前記複数の固定局は、屋内の異なる位置に設けられている構成(第11の構成)にするとよい。
 また、本明細書中に開示されている位置解析装置は、ビーコン信号を送信する移動局が静止していないときには、複数の固定局における前記ビーコン信号の受信強度から前記移動局の位置推定を行うことにより前記移動局の位置情報を取得し、前記移動局が静止しているときには、前記移動局の位置推定を停止して前記位置情報を固定位置に保持する構成(第12の構成)とされている。
 また、本明細書中に開示された移動局は、静止判定を行うための動き検出部を含み、ビーコン信号と共に前記静止判定の結果を送信する構成(第13の構成)とされている。
 本明細書中に開示されている発明によれば、より精度の高い位置検出システムを提供することが可能となる。
位置検出システムの全体構成を示す図 移動局の動作例を示すフローチャート 位置解析装置の動作例を示すフローチャート 固定位置決定処理の一例を示す図 ビーコンを用いた屋内における位置検出技術の第1活用事例を示す図 ビーコンを用いた屋内における位置検出技術の第2活用事例を示す図 位置の誤検出が生じる様子を示す図
<位置検出システム>
 図1は、位置検出システムの全体構成を示す図である。本構成例の位置検出システム1は、屋内(オフィス内、工場内、若しくは、店舗内など)を移動する人や物の位置を監視するために用いられる屋内測位システムの一種であり、移動局100と、複数の固定局200と、位置解析装置300と、を有する。
 移動局100は、所定のインターバル周期T(例えばT=1s)でビーコン信号Sbを定期的に送信する無線通信端末(いわゆるビーコン)であり、制御部110と、通信部120と、動き検出部130と、記憶部140を含む。移動局100としては、例えば、監視対象となる人が携帯する情報処理端末(スマートフォンなど)を用いてもよいし、他のウェアラブルデバイス(スマートウォッチや通信機能付きの名札など)を用いてもよい。また、移動局100は、店舗内で用いられる買物カートや商品に付されるICタグなどの形態も取り得る。
 制御部110は、移動局100の動作を統括的に制御する主体であり、例えば、CPU[Central Processing Unit]を好適に用いることができる。特に、制御部110は、動き検出部130で得られた各種検出信号に基づいて、移動局100の静止判定(詳細は後述)を行う機能を備えている。
 通信部120は、制御部110からの指示に基づき、所定の近距離無線通信規格(例えばBLE)に準拠してビーコン信号Sbのブロードキャスト送信を行う。なお、ビーコン信号Sbには、移動局100(またはその携帯者)を識別するためのID情報が含まれている。また、移動局100(特に通信部120)は、ビーコン信号Sbと共に静止判定フラグSTB(=移動局100の静止判定の結果に相当)を送信するが、その技術的意義については後ほど詳述する。
 動き検出部130は、制御部110で移動局100の静止判定を行うためのセンサ手段であり、例えば、加速度を検出する加速度センサ131と、地磁気を検出する地磁気センサ132と、を含む。なお、加速度センサ131及び地磁気センサ132としては、それぞれ、2軸検出型(x軸/y軸)を用いてもよいし、或いは、3軸検出型(x軸/y軸/z軸)を用いてもよい。
 記憶部140は、制御部110により実行される制御プログラムの格納領域として用いられるほか、動き検出部130で得られた検出値の一時格納領域としても用いられる。
 複数の固定局200は、それぞれ、移動局100からブロードキャスト送信されたビーコン信号Sbを受信するアクセスポイント(またはゲートウェイ)であり、屋内の異なる位置に設けられている。ビーコン信号Sbを受信した固定局200は、ビーコン信号Sbに含まれる情報(=移動局100のID情報や静止判定フラグSTBなど)に、自身のID情報、自身の位置情報、ビーコン信号Sbの受信強度(いわゆる、RSSI[Received Signal Strength Indicator])などを付与して位置解析装置300に送出する。
 位置解析装置300は、各固定局200におけるビーコン信号Sbの受信強度から移動局100の位置推定を行うことにより、移動局100の位置情報を取得する。なお、位置解析装置300としては、ローカルサーバを用いてもよいし、或いは、クラウドサーバを用いてもよい。
 本構成例の位置検出システム1によれば、例えば、監視対象に移動局100を付帯させることにより、GPS信号が及ばない屋内でも監視対象の位置情報を取得し、その動線解析などを行うことが可能となる。以下では、移動局100及び位置解析装置300それぞれの動作について詳述する。
<移動局(ビーコン)>
 図2は、移動局100の動作例を示すフローチャートである。まず、ステップS101では、移動局100の静止判定処理(=移動局100が静止しているか否かの判定処理)が行われる。なお、本ステップにおける静止判定処理については、後ほど詳述する。
 ここで、移動局100が静止していると判定された場合(=ステップS102でY判定が下された場合)には、フローがステップS103に進められて、静止判定フラグSTBが「1」(=静止時の論理値)に設定される。
 一方、移動局100が静止していないと判定された場合(=ステップS102でN判定が下された場合)には、フローがステップS104に進められて、静止判定フラグSTBが「0」(=非静止時の論理値)に設定される。
 続くステップS105では、ビーコン信号Sb(及び静止判定フラグSTB)のブロードキャスト送信が行われる。
 その後、ステップS106では、所定のインターバル周期Tが経過したか否かの判定が行われる。ここで、インターバル周期Tが経過したと判定された場合(S106=Y)には、フローがステップS101に戻されて、上記一連の処理が繰り返される。一方、インターバル周期Tが経過していないと判定された場合(S106=N)には、フローがステップS106に戻されて、インバータバル周期Tの経過が待機される。
<位置解析装置(サーバ)>
 図3は、位置解析装置300の動作例を示すフローチャートである。まず、ステップS111では、各固定局200におけるビーコン信号Sbの受信強度に基づき、各固定局200から移動局100の距離(=近接度)が算出され、移動局100の位置推定処理(三点測量や三角測量など)が行われる。
 次に、ステップS112では、静止フラグSTBが「1」であるか否か、すなわち移動局100が静止しているか否かの判定が行われる。ここで、静止フラグSTBが「1」であると判定された場合(S112=Y)には、フローがステップS113に進められる。一方、静止フラグSTBが「1」でないと判定された場合(S112=N)には、フローがステップS111に戻されて、移動局100の位置推定処理が継続される。
 このように、本構成例の位置検出システム1では、移動局100が自らの静止判定処理を行い、その判定結果(=静止判定フラグSTB)が位置解析装置300に送信される。従って、位置解析装置300は、静止判定フラグSTBの論理値を確認するだけで、移動局100が静止しているか否かを知ることができる。
 なお、静止判定フラグSTBに代えて、動き検出部130の検出値(生値、平均値、または、分散値、若しくは、これらを所定のアルゴリズムで圧縮した値)を位置解析装置300に送信し、位置解析装置300で移動局100の静止判定処理(図2のステップS101を参照)を行うことも理論的には可能である。ただし、検出値自体の送信に必要な消費電力や通信帯域を鑑みると、このような構成は現実的でないと言える。
 ステップS112でイエス判定が下された場合、ステップS113では、静止している移動局100の固定位置決定処理が行われる。なお、本ステップにおける固定位置決定処理については、後ほど詳述する。
 続くステップS114では、移動局100の位置推定処理が停止されて、移動局100の位置情報が固定位置に保持される。すなわち、移動局100は、ステップS113で決定された固定位置に静止しているものと看做される。
 その後、ステップS115では、静止フラグSTBが「0」であるか否か、すなわち、移動局100が再び移動し始めたか否かの判定が行われる。ここで、静止フラグSTBが「0」であると判定された場合(S115=Y)には、フローがステップS111に戻されて、移動局100の位置推定処理が再開される。一方、静止フラグSTBが「0」でないと判定された場合(S115=N)には、フローがステップS114に戻されて、移動局100の位置推定停止及び固定位置保持が継続される。
 このように、位置解析装置300は、移動局100が静止している間、移動局100の位置推定を停止して移動局100の位置情報を固定位置に保持する。すなわち、移動局100が静止しているときには、各固定局200におけるビーコン信号Sbの受信強度が不安定であっても、移動局100の位置情報に不要な変動が生じない。従って、移動局100の位置検出精度を向上させることが可能となる。
<静止判定処理>
 次に、移動局100の静止判定処理(=図2のステップS101)について詳述する。
 まず、第1の静止判定処理としては、加速度センサ131による歩数計機能を活用した判定手法、すなわち、加速度センサ131で得られた検出信号から移動局100を携帯している者の歩数を逐次導出し、歩数の更新状況に応じて移動局100が静止しているか否かを判定する手法が考えられる。
 例えば、所定の静止判定期間に亘って歩数がインクリメントされない場合(若しくは、そのインクリメント値が所定の閾値に満たない場合)には、移動局100(及びその携帯者)が静止していると判定することができる。
 なお、第1の静止判定処理は、最も簡単な判定手法の一つであり、移動局100への実装も容易である。ただし、移動局100の携帯者が摺り足で移動している場合や、移動局100が買物カートに付帯されている場合など、歩数を正しく検出することのできない状況では、移動局100が静止しているか否かを適切に判定することが難しい。
 次に、第2の静止判定手法としては、動き検出部130で得られた検出信号の生値、平均値、及び、分散値の少なくとも一つを用いて移動局100が静止しているか否かを判定する手法が考えられる。
 例えば、加速度センサ131及び地磁気センサ132それぞれの検出値をN個ロギングする毎に、各軸の分散値(例えば、x軸加速度、y軸加速度、z軸加速度、x軸地磁気、y軸地磁気、及び、z軸地磁気それぞれの分散値)を算出し、これが所定の閾値以下である場合には、移動局100(及びその携帯者)が静止していると判定することができる。
 なお、検出信号の平均値または分散値を算出するためには、加速度センサ131及び地磁気センサ132それぞれの検出値について、現在の出力値だけでなく、過去の出力値も保持しておく必要がある。その際、検出値の一時格納領域としては、記憶部140を用いてもよいし、制御部110のレジスタ(不図示)などを用いてもよい。
 第2の静止判定処理であれば、第1の静止判定処理と比べて、より厳密に移動局100の静止判定を行うことが可能となる。
 なお、各軸の分散値とそれぞれ対比される閾値は、例えば、加速度センサ131及び地磁気センサ132それぞれの仕様に規定された分散値(=ノイズ起因の最小分散値)に所定の係数を乗じて設定すればよい。このような閾値設定手法によれば、アプリケーション毎に静止判定処理の閾値を調整することが可能となる。もちろん、加速度センサ131及び地磁気センサ132自体のノイズが小さければ、正確な静止判定処理を行うことができるのは言うまでもない。
 また、移動局100の静止判定基準については、任意に定めることが可能である。例えば、全ての軸で分散値が閾値以下であるときにのみ静止と判定してもよいし、過半数の軸で分散値が閾値以下であれば静止と判定してもよい。また、さらに静止判定基準を引き下げて、1軸でも分散値が閾値以下ならば静止と判定することも可能である。
 特に、動き検出部130には、加速度センサ131だけでなく、地磁気センサ132が含まれている。屋内で地磁気を測定する際には、地磁気の測定位置(=移動局100の位置)が少し変化するだけで、測定環境の違い(=鉄筋の磁化状態や壁面素材などの違い)から地磁気の検出値が顕著に変動する。従って、動き検出部130の一構成要素として、地磁気センサ132を導入することにより、屋内における地磁気の環境依存性を利用して移動局100の静止判定処理を行うことが可能となる。
 ただし、外部磁場が著しく変動することが分かっている場所(モータ近傍など)では、地磁気センサ132による静止判定処理を正しく実行できない場合もあり得る。そのような場合には、加速度センサ131の検出値のみに基づいて静止判定処理を行えばよい。
 また、第3の静止判定手法としては、加速度センサ131で得られた検出信号の周波数解析を行い、その解析結果に応じて移動局100が静止しているか否かを判定する手法が考えられる。
 移動局100の携帯者が水平方向に移動(歩行または走行)しているときには、加速度センサ131の検出信号が周期的に変動する。そのため、加速度センサ131の検出信号を周波数解析すると、特定の周波数成分(数Hz)にピークが現れる。一方、移動局100の携帯者が水平方向に移動していないとき(例えば着座してデスクワークを行っている場合や立ち止まってストレッチを行っている場合)には、歩行時や走行時と異なり、加速度センサ131の検出信号が不規則に変動する。そのため、加速度センサ131の検出信号を周波数解析しても、特定の周波数成分にピークが現れることはない。従って、上記の違いから、移動局100が静止しているか否かを判定することが可能となる。
 なお、上記では、第1~第3の静止判定手法をそれぞれ個別に実施する例を挙げたが、移動局100の静止判定処理では、これらを適宜組み合わせて実施してもよい。また、これら以外の静止判定手法を採用しても構わない。
<固定位置決定処理>
 次に、移動局100の固定位置決定処理(=図3のステップS113)について、図4を参照しながら具体的に説明する。図4は、固定位置決定処理の一例を示す図である。
 アクセスポイントA及びBの双方でビーコン信号Sbが受信されている状況において、仮に、移動局100の静止中にもビーコン信号Sbの受信強度による位置推定処理(図3のステップS111)を続けると、本図の上段で示したように、受信強度のばらつきや障害物の存在による信号減衰・変化の影響から、移動局100の位置情報に不要な変動が生じる。具体的には、移動局100がアクセスポイントAの設置された室内に存在するにも関わらず、移動局100がアクセスポイントBの設置された室内に存在するかのような誤検出が断続的に生じてしまう。
 一方、本図の下段には、移動局100の静止判定を受けて、移動局100の固定位置決定処理(一点鎖線枠を参照)が行われた後、移動局100の位置情報が固定位置(本図では固定位置「A」)に保持される様子が描写されている。
 なお、移動局100の固定位置決定処理としては、例えば、移動局100が静止しているという判定結果に基づき、受信強度による移動局100の位置推定を停止した後、各固定局200(本図ではアクセスポイントA及びB)におけるビーコン信号Sbの受信強度を複数回測定し、その測定結果から移動局100の固定位置を決定するとよい。
 例えば、位置解析装置300は、複数の固定局200のうち、最も高い頻度でビーコン信号Sbの受信強度が最大となる固定局(=移動局100に最も近い固定局)を特定し、その特定結果から移動局100の固定位置を決定するとよい。
 なお、本図の下段では、移動局100の固定位置決定処理として、ビーコン信号Sbの受信強度が5回測定されており、そのうち4回の測定でアクセスポイントAの受信強度の方がアクセスポイントBの受信強度よりも大きくなっている。従って、移動局100に最も近い固定局200としてアクセスポイントAが特定され、その特定結果から移動局100の固定位置(本図では固定位置「A」)が決定されている。
 また、例えば、上記5回の測定におけるビーコン信号Sbの平均受信強度が最大となる固定局(=移動局100に最も近い固定局)を特定し、その特定結果から移動局100の固定位置を決定することもできる。なお、アクセスポイントAにおけるビーコン信号Sbの平均受信強度が大きいほど、移動局100とアクセスポイントAとの平均距離dAが短いことを意味する。同様に、アクセスポイントBにおけるビーコン信号Sbの平均受信強度が大きいほど、移動局100とアクセスポイントBとの平均距離dBが短いことを意味する。従って、dA≦dBであるときには、移動局100がアクセスポイントAの周辺に存在することを意味し、逆に、dA<dBであるときには、移動局100がアクセスポイントBの周辺に存在することを意味する。
 本図の下段では、移動局100がアクセスポイントAの設置された室内に存在していることから、dA≦dBという比較結果が得られると想定される。このような場合には、移動局100に最も近い固定局200としてアクセスポイントAが特定され、その特定結果から移動局100の固定位置(本図では固定位置「A」)が決定されることになる。
 なお、固定位置「A」については、例えば、上記5回分の受信強度(または、アクセスポイントAの受信強度の方がアクセスポイントBの受信強度よりも大きいと判定された4回分の受信強度)から移動局100の位置座標を算出してもよいし、或いは、アクセスポイントAの周辺位置として予め設定しておいた位置座標を用いてもよい。
 このように、移動局100が静止していると判定されたときには、各固定局200におけるビーコン信号Sbの受信強度が変化しても、移動局100が物理的に移動しているわけではないと考え、移動局100の位置情報を固定位置に保持することにより、移動局100の位置情報に不要な変動が生じない。従って、移動局100の位置検出精度を向上させることが可能となる。
 具体的には、移動局100がアクセスポイントAの設置された室内に存在するにも関わらず、移動局100がアクセスポイントBの設置された室内に存在するかのような誤検出が断続的に生じる状況(本図の上段を参照)を回避することができる。
 なお、本図では、説明を簡単とするために、ビーコン信号Sbを受信している固定局200として、2つのアクセスポイントA及びBを例に挙げたが、3つ以上の固定局200でビーコン信号Sbが受信されている場合でも、上記と同様の固定位置決定処理を実施することが可能である。また、逆に、ビーコン信号Sbを受信している固定局200が1つしか存在しない場合には、その固定局200の周辺に移動局100が存在するものとして固定位置を決定すればよい。
<その他の変形例>
 また、本明細書中に開示されている種々の技術的特徴は、上記実施形態のほか、その技術的創作の主旨を逸脱しない範囲で種々の変更を加えることが可能である。すなわち、上記実施形態は、全ての点で例示であって制限的なものではないと考えられるべきであり、本発明の技術的範囲は、上記実施形態に限定されるものではなく、特許請求の範囲と均等の意味及び範囲内に属する全ての変更が含まれると理解されるべきである。
 本明細書中に開示されている位置検出システムは、例えば、オフィス内や工場内で作業員の位置を監視するために利用することが可能である。
   1  位置検出システム
   100  移動局(ビーコン)
   110  制御部
   120  通信部
   130  動き検出部
   131  加速度センサ
   132  地磁気センサ
   140  記憶部
   200  固定局(アクセスポイント)
   300  位置解析装置(サーバ)

Claims (13)

  1.  ビーコン信号を送信する移動局と、
     前記ビーコン信号を受信する複数の固定局と、
     各固定局における前記ビーコン信号の受信強度から前記移動局の位置推定を行うことにより前記移動局の位置情報を取得する位置解析装置と、
     を有し、
     前記移動局は、静止判定を行うための動き検出部を含み、
     前記位置解析装置は、前記移動局が静止している間、前記移動局の位置推定を停止して前記位置情報を固定位置に保持することを特徴とする位置検出システム。
  2.  前記位置解析装置は、前記移動局の位置推定を停止した後、各固定局における前記ビーコン信号の受信強度を複数回測定し、その測定結果から前記固定位置を決定することを特徴とする請求項1に記載の位置検出システム。
  3.  前記位置解析装置は、前記複数の固定局のうち、最も高い頻度で前記ビーコン信号の受信強度が最大となる固定局を特定し、その特定結果から前記固定位置を決定することを特徴とする請求項2に記載の位置検出システム。
  4.  前記位置解析装置は、前記複数の固定局のうち、前記ビーコン信号の平均受信強度が最大となる固定局を特定し、その特定結果から前記固定位置を決定することを特徴とする請求項2に記載の位置検出システム。
  5.  前記動き検出部は、加速度を検出する加速度センサを含むことを特徴とする請求項1~請求項4のいずれか一項に記載の位置検出システム。
  6.  前記動き検出部は、地磁気を検出する地磁気センサを含むことを特徴とする請求項1~請求項5のいずれか一項に記載の位置検出システム。
  7.  前記移動局は、前記加速度センサで得られた検出信号から前記移動局を携帯している者の歩数を逐次導出し、前記歩数の更新状況に応じて前記静止判定を行うことを特徴とする請求項5に記載の位置検出システム。
  8.  前記移動局は、前記動き検出部で得られた検出信号の生値、平均値、及び、分散値の少なくとも一つを用いて前記静止判定を行うことを特徴とする請求項5または請求項6に記載の位置検出システム。
  9.  前記移動局は、前記加速度センサで得られた検出信号を周波数解析し、その解析結果に応じて前記静止判定を行うことを特徴とする請求項5に記載の位置検出システム。
  10.  前記移動局は、前記ビーコン信号と共に前記静止判定の結果を送信することを特徴とする請求項1~請求項9のいずれか一項に記載の位置検出システム。
  11.  前記複数の固定局は、屋内の異なる位置に設けられていることを特徴とする請求項1~請求項10のいずれか一項に記載の位置検出システム。
  12.  ビーコン信号を送信する移動局が静止していないときには、複数の固定局における前記ビーコン信号の受信強度から前記移動局の位置推定を行うことにより前記移動局の位置情報を取得し、前記移動局が静止しているときには、前記移動局の位置推定を停止して前記位置情報を固定位置に保持することを特徴とする位置解析装置。
  13.  静止判定を行うための動き検出部を含み、ビーコン信号と共に前記静止判定の結果を送信することを特徴とする移動局。
PCT/JP2019/020061 2018-06-22 2019-05-21 位置検出システム WO2019244543A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/972,855 US11408970B2 (en) 2018-06-22 2019-05-21 Position detection system
JP2020525382A JP6997871B2 (ja) 2018-06-22 2019-05-21 位置検出システム
DE112019003144.9T DE112019003144T5 (de) 2018-06-22 2019-05-21 Positionserkennungssystem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-118683 2018-06-22
JP2018118683 2018-06-22

Publications (1)

Publication Number Publication Date
WO2019244543A1 true WO2019244543A1 (ja) 2019-12-26

Family

ID=68983562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020061 WO2019244543A1 (ja) 2018-06-22 2019-05-21 位置検出システム

Country Status (4)

Country Link
US (1) US11408970B2 (ja)
JP (1) JP6997871B2 (ja)
DE (1) DE112019003144T5 (ja)
WO (1) WO2019244543A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000050345A (ja) * 1998-07-27 2000-02-18 Nippon Telegr & Teleph Corp <Ntt> Phs位置情報通知端末およびシステム
US20090247186A1 (en) * 2008-03-28 2009-10-01 University Of South Carolina Dynamic Localization Using Geographical Information Systems
JP2011117943A (ja) * 2009-11-06 2011-06-16 Casio Computer Co Ltd 測位装置、位置データの記録方法およびプログラム
JP2013148486A (ja) * 2012-01-20 2013-08-01 Kddi Corp ユーザが搭乗している移動車両を推定する移動車両推定方法、移動端末及びプログラム
JP2015220678A (ja) * 2014-05-20 2015-12-07 キヤノン株式会社 情報発信装置およびその制御方法、システム、並びにプログラム
JP2016217943A (ja) * 2015-05-22 2016-12-22 ダイキン工業株式会社 位置推定システム
JP2017138116A (ja) * 2016-02-01 2017-08-10 ライフラボラトリ株式会社 位置推定システム、受信装置、及び、制御方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7312752B2 (en) * 2003-10-22 2007-12-25 Awarepoint Corporation Wireless position location and tracking system
US8718937B2 (en) * 2005-09-28 2014-05-06 Honeywell International Inc. Methods and apparatus for real time position surveying using inertial navigation
US8810454B2 (en) * 2011-10-13 2014-08-19 Microsoft Corporation Power-aware tiered geofencing and beacon watchlists
US10902498B2 (en) * 2016-02-04 2021-01-26 Adobe Inc. Providing content based on abandonment of an item in a physical shopping cart
JP6499101B2 (ja) 2016-03-01 2019-04-10 Necプラットフォームズ株式会社 無線通信システム、無線通信装置、位置検出方法、およびプログラム
FR3049058B1 (fr) * 2016-03-21 2019-06-14 Sagemcom Energy & Telecom Sas Procede et systeme de localisation de chariots de manutention
JP6917042B2 (ja) 2016-08-31 2021-08-11 株式会社イーアールアイ 位置検出システム及び移動局
EP3508882A1 (en) * 2018-01-09 2019-07-10 Vivior AG An apparatus and a method for passive scanning of an object or a scene
US11503434B2 (en) * 2020-04-22 2022-11-15 CareBand Inc. Method and system for connectivity between a personal area network and an internet protocol network via low power wide area network wearable electronic device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000050345A (ja) * 1998-07-27 2000-02-18 Nippon Telegr & Teleph Corp <Ntt> Phs位置情報通知端末およびシステム
US20090247186A1 (en) * 2008-03-28 2009-10-01 University Of South Carolina Dynamic Localization Using Geographical Information Systems
JP2011117943A (ja) * 2009-11-06 2011-06-16 Casio Computer Co Ltd 測位装置、位置データの記録方法およびプログラム
JP2013148486A (ja) * 2012-01-20 2013-08-01 Kddi Corp ユーザが搭乗している移動車両を推定する移動車両推定方法、移動端末及びプログラム
JP2015220678A (ja) * 2014-05-20 2015-12-07 キヤノン株式会社 情報発信装置およびその制御方法、システム、並びにプログラム
JP2016217943A (ja) * 2015-05-22 2016-12-22 ダイキン工業株式会社 位置推定システム
JP2017138116A (ja) * 2016-02-01 2017-08-10 ライフラボラトリ株式会社 位置推定システム、受信装置、及び、制御方法

Also Published As

Publication number Publication date
US11408970B2 (en) 2022-08-09
US20210247482A1 (en) 2021-08-12
DE112019003144T5 (de) 2021-03-25
JP6997871B2 (ja) 2022-01-18
JPWO2019244543A1 (ja) 2021-06-17

Similar Documents

Publication Publication Date Title
US11049069B2 (en) Method and system for localizing tracking devices indoors and outdoors
EP3217740A1 (en) Device for determining indoor location
CN106461786B (zh) 室内全球定位系统
CN111788852B (zh) 用于支持无线设备的定位的方法、网络节点和无线设备
EP3186654A1 (en) Method and apparatus for real-time, mobile-based positioning according to sensor and radio frequency measurements
JP2005176386A (ja) モバイル機器
Anagnostopoulos et al. Accuracy enhancements in indoor localization with the weighted average technique
JP2006300918A (ja) 位置測定システムおよび位置測定方法
US9736295B2 (en) Mobile electronic device, control method, and storage medium
US20160282445A1 (en) Position information acquisition system, terminal, and method
KR20110121179A (ko) 단말기에서 상대적인 위치를 추정하는 장치 및 방법
US9949082B2 (en) Mobile terminal device, location search method, and computer-readable recording medium
JP6611117B2 (ja) 電子装置、位置特定プログラムおよび位置特定方法
CN103675803B (zh) 定位方法和定位装置
KR20150125533A (ko) 무선 위치 추정 장치 및 그 방법
US10077985B2 (en) Wireless positioning system, wireless positioning terminal, and point information transmitter
US20120239344A1 (en) Position registration apparatus, non-transitory, computer readable storage medium and method of controlling position registration apparatus
Bembenik et al. BLE Indoor Positioning System Using RSSI-based Trilateration.
WO2020099519A2 (en) Systems and methods for direction estimation in indoor and outdoor locations
WO2019244543A1 (ja) 位置検出システム
WO2021087515A2 (en) Increased positioning resolution
EP2594953B1 (en) Height calibration process
US20210048503A1 (en) Motion data based processing time window for positioning signals
JP2016183921A (ja) サーバコンピュータ、測位システム、測位方法およびプログラム
US10634505B1 (en) Method and system for threshold-based detection of distortive magnetic fields in indoor locations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19823136

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525382

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19823136

Country of ref document: EP

Kind code of ref document: A1