WO2019244395A1 - Resin laminate and method of manufacturing resin laminate - Google Patents

Resin laminate and method of manufacturing resin laminate Download PDF

Info

Publication number
WO2019244395A1
WO2019244395A1 PCT/JP2019/005319 JP2019005319W WO2019244395A1 WO 2019244395 A1 WO2019244395 A1 WO 2019244395A1 JP 2019005319 W JP2019005319 W JP 2019005319W WO 2019244395 A1 WO2019244395 A1 WO 2019244395A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
fiber
thermosetting resin
resin laminate
laminate
Prior art date
Application number
PCT/JP2019/005319
Other languages
French (fr)
Japanese (ja)
Inventor
博之 香川
剛資 近藤
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2019244395A1 publication Critical patent/WO2019244395A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/28Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance

Definitions

  • the present invention relates to a technique of a resin laminate and a method of manufacturing the resin laminate.
  • Fiber reinforced resin using fiber as a reinforcing material is used in many fields such as automobiles, railways, aircrafts, and building materials because of its excellent strength and elasticity while being lightweight.
  • fiber-reinforced thermosetting resins in which thermosetting resins are combined with continuous fibers made of glass or carbon have been widely used because of their excellent strength and heat resistance.
  • Resin transfer molding a method using an autoclave, a method using a vacuum bag, a compression molding method, and the like are known as methods for obtaining a molded article in which a thermosetting resin and fibers are composited.
  • the fiber and the resin are impregnated with a resin varnish before curing and then heat-cured, or the fiber-resin composite material is once semi-cured (prepreg), formed into a desired shape, and then heated. It is a curing method.
  • Patent Literature 1 states that “Compared with a conventional epoxy resin composition, curing is completed in a short time even at a low temperature, and a sufficient usable period can be ensured even when stored at room temperature, which is suitable for a prepreg.
  • Non-Patent Document 1 discloses a method of pressing a carbon fiber-reinforced thermosetting resin laminate after heat curing in the same manner as a metal.
  • thermosetting resin composition that is heat-transformable after curing and contains at least one thermosetting polymer precursor containing a hydroxyl group and / or an epoxy group. Is obtained by contacting with at least one curing agent selected from acid anhydrides in the presence of at least one transesterification catalyst (provided that the thermosetting polymer precursor and the acid anhydride have an equimolar ratio.
  • the total molar amount of the transesterification catalyst should be between 5% and 25% of the total molar amount of hydroxyl groups and epoxy groups contained in the thermosetting polymer precursor of the thermosetting resin composition.
  • said catalyst is selected from metal salts of zinc, tin, magnesium, cobalt, calcium, titanium and zirconium, said catalyst comprising said thermoset polymer precursor.
  • the amount of the curing agent is selected such that the thermosetting resin composition forms a network and satisfies 2NA ⁇ No + 2Nx. (Where, No represents the number of moles of hydroxyl groups in the thermosetting polymer precursor, Nx represents the number of moles of epoxy groups in the thermosetting polymer precursor, and NA represents the thermosetting polymer.
  • thermosetting resin composition disclosed in Patent Document 2 comprises, in the presence of at least one transesterification catalyst, a precursor of at least one thermosetting resin containing a hydroxyl group and / or an epoxy group to an acid anhydride. And at least one curing agent selected from the group consisting of: Thereby, the amount of acid anhydride is selected such that a network is formed which is maintained by the ester groups and free hydroxyl groups remain after the reaction between the precursor and the curing agent.
  • thermosetting resin is an exothermic reaction
  • deformation after curing is likely to occur due to temperature unevenness.
  • the fiber-containing thermosetting resin is prepared by immersing a thermosetting resin raw material liquid in a fibrous material such as cloth.
  • the fiber-containing thermosetting resin is softened by heating, the fibers are disturbed due to the flow of the resin whose viscosity has been reduced by heating. Fiber turbulence leads to uneven strength.
  • Non-Patent Document 1 when a laminated body of the fiber-containing thermosetting resin after curing is molded from a metal plate as in the technique described in Non-Patent Document 1, deformation after effect due to temperature unevenness and disturbance of the fiber due to resin flow may occur. Can be suppressed. However, according to the technology described in Non-Patent Document 1, a phenomenon called peeling between the laminated fiber-containing thermosetting resin layers and a phenomenon called springback that returns to the original state after molding occurs.
  • the present invention has been made in view of such a background, and an object of the present invention is to provide a resin laminate excellent in moldability and a method for producing the resin laminate.
  • the present invention is characterized in that a layer of a thermoplastic resin exists between two arbitrary layers of a thermosetting resin in close contact with each other.
  • a layer of a thermoplastic resin exists between two arbitrary layers of a thermosetting resin in close contact with each other.
  • a resin laminate excellent in moldability and a method for producing the resin laminate can be provided.
  • FIG. 2 is a schematic cross-sectional view (first example) of a resin laminate 1 according to the embodiment.
  • FIG. 3 is a schematic cross-sectional view (second example) of a resin laminate 1 according to the embodiment.
  • FIG. 4 is a schematic cross-sectional view (third example) of a resin laminate 1 according to the embodiment.
  • FIG. 6 is a schematic cross-sectional view (fourth example) of a resin laminate 1 according to the present embodiment.
  • FIG. 6 is a schematic cross-sectional view (fifth example) of a resin laminate 1 according to the present embodiment. It is a cross section of a resin layered product 1 concerning this embodiment (sixth example).
  • FIG. 7 is a schematic cross-sectional view (seventh example) of a resin laminate 1 according to the present embodiment. It is a cross section schematic diagram (eighth example) of the resin layered product 1 concerning this embodiment. It is a cross section of a resin layered product 1 concerning this embodiment (a 9th example). It is a cross section of a resin layered product 1 concerning this embodiment (tenth example). It is a cross section of the resin layered product 1 concerning this embodiment (eleventh example). It is a cross section of a resin layered product 1 concerning this embodiment (a 12th example). It is a cross section of a resin layered product 1 concerning this embodiment (a 13th example).
  • FIG. 14 is a schematic cross-sectional view (a fourteenth example) of a resin laminate 1 according to the present embodiment. It is a cross section schematic diagram (the 15th example) of resin layered product 1 concerning this embodiment. It is a cross section of resin laminate 1Z (CFRP resin laminate) in a comparative example. It is a figure showing the example of composition of resin laminated body manufacturing system 100 which manufactures resin laminated body 1 concerning this embodiment.
  • FIGS. 1 to 15 show examples of lamination of the resin laminate 1 according to the present embodiment.
  • 1 to 15 are schematic sectional views of the resin laminate 1 according to the present embodiment.
  • hatched lines indicate a fiber-containing resin
  • dots indicate a thermosetting resin
  • no dots indicate a thermoplastic resin. That is, in FIG. 1 to FIG. 15, the non-hatched + dot indicates a fiber-free thermosetting resin, and the hatched + dot indicates a fiber-containing thermosetting resin.
  • thermosetting resin the thermosetting resin containing no fiber and the thermosetting resin containing the fiber
  • thermoplastic resins thermoplastic resins and thermosetting resins containing no fibers.
  • thermosetting resin the thermosetting resin containing no fiber and the thermosetting resin containing the fiber
  • FIG. 1 is a schematic cross-sectional view (first example) of a resin laminate 1 according to the present embodiment.
  • a fiber-free thermosetting resin layer (thermosetting resin layer) 11 has a fiber-free thermoplastic resin layer (thermoplastic resin layer) 21. It is pinched. That is, the fiber-free thermoplastic resin layer 21 exists between the two fiber-free thermosetting resin layers 11.
  • FIG. 2 is a schematic cross-sectional view (second example) of the resin laminate 1 according to the present embodiment.
  • a fiber-free thermoplastic resin layer 21 is sandwiched between fiber-containing thermosetting resin layers (layers of fiber-containing thermosetting resin) 12. . That is, the fiber-free thermoplastic resin layer 21 exists between the two fiber-containing thermosetting resin layers 12.
  • FIG. 3 is a schematic cross-sectional view (third example) of the resin laminate 1 according to the present embodiment.
  • the resin laminate 1c (1) has a fiber-containing thermosetting resin layer 12 between three fiber-free thermoplastic resin layers 21.
  • FIG. 4 is a schematic cross-sectional view (fourth example) of the resin laminate 1 according to the present embodiment.
  • the resin laminate 1d (1) is one in which two fiber-free thermoplastic resin layers 21 and two fiber-containing thermosetting resin layers 12 are alternately laminated.
  • FIG. 5 is a schematic cross-sectional view (fifth example) of the resin laminate 1 according to the present embodiment.
  • the resin laminate 1e (1) has a fiber-containing thermoplastic resin layer (a fiber-containing thermoplastic resin layer, a thermoplastic resin layer) between each of the three fiber-free thermosetting resin layers 11. (Layer) 22 is present.
  • FIG. 6 is a schematic cross-sectional view (sixth example) of the resin laminate 1 according to the present embodiment.
  • the resin laminate 1f (1) has a fiber-free thermosetting resin layer 11 between three fiber-containing thermoplastic resin layers 22.
  • FIG. 7 is a schematic cross-sectional view (seventh example) of the resin laminate 1 according to the present embodiment.
  • the resin laminate 1g (1) has two fiber-containing thermoplastic resin layers 22 and two fiber-free thermosetting resin layers 11 alternately laminated.
  • FIG. 8 is a schematic cross-sectional view (eighth example) of the resin laminate 1 according to the present embodiment.
  • the resin laminate 1h (1) has a fiber-containing thermoplastic resin layer 22 between two fiber-containing thermosetting resin layers 12.
  • FIG. 9 is a schematic cross-sectional view (ninth example) of the resin laminate 1 according to the present embodiment.
  • the resin laminate 1 i (1) has a fiber-containing thermosetting resin layer 12 between three fiber-containing thermoplastic resin layers 22.
  • FIG. 10 is a schematic cross-sectional view (tenth example) of the resin laminate 1 according to the present embodiment.
  • the resin laminate 1j (1) has a fiber-containing thermoplastic resin layer 22 between each of the three fiber-containing thermosetting resin layers 12.
  • the resin laminate 1j shown in FIG. 10 is obtained by stacking the resin laminate 1h shown in FIG. 8 in multiple stages.
  • FIG. 11 is a schematic cross-sectional view (eleventh example) of the resin laminate 1 according to the present embodiment.
  • the resin laminate 1k (1) is one in which two fiber-containing thermosetting resin layers 12 and two fiber-containing thermoplastic resin layers 22 are alternately laminated.
  • FIG. 12 is a schematic cross-sectional view (a twelfth example) of the resin laminate 1 according to the present embodiment.
  • a fiber-free thermoplastic resin layer 21 exists between two fiber-containing thermosetting resin layers 12.
  • the fiber-containing thermoplastic resin layer 22 exists so as to sandwich the laminate of the fiber-containing thermosetting resin layer 12, the fiber-free thermoplastic resin layer 21, and the fiber-containing thermosetting resin layer 12 from above and below.
  • FIG. 13 is a schematic cross-sectional view (a thirteenth example) of the resin laminate 1 according to the present embodiment.
  • the resin laminate 1 n (1) includes, in order from the top, a fiber-free thermoplastic resin layer 21, a fiber-containing thermoplastic resin layer 22, A fiber-free thermoplastic resin layer 21 is present.
  • FIG. 14 is a schematic cross-sectional view (a fourteenth example) of the resin laminate 1 according to the present embodiment.
  • the resin laminate 1p (1) includes a fiber-free thermoplastic resin layer 21 and a fiber-containing thermoplastic resin layer 22 between two fiber-containing thermosetting resin layers 12 in order from the top. Existing.
  • FIG. 15 is a schematic cross-sectional view (fifteenth example) of the resin laminate 1 according to the present embodiment.
  • a fiber-containing thermosetting resin layer 12 a fiber-free thermoplastic resin layer 21, and a fiber-free thermosetting resin layer 11 are laminated in this order from the top. I have.
  • FIG. 16 is a schematic cross-sectional view of a resin laminate 1Z (CFRP resin laminate) in a comparative example.
  • the resin laminate 1Z in the comparative example has only the fiber-containing thermosetting resin layer 12 laminated (four layers in the example of FIG. 16). If the resin laminate 1Z as shown in FIG. 16 is cured by heating and then pressed to perform bending, the peeling between the fiber-containing thermosetting resin layers 12 occurs at the bent portions.
  • thermosetting resin in the present embodiment has a dynamic covalent bond. This makes it possible to alleviate stress due to a change in the network structure of the chemical bond in the resin, and to greatly reduce springback after molding.
  • the dynamic supply bond is a covalent bond in which molecules constituting the resin are reversibly separated and bonded.
  • at least one of the thermosetting resin layers constituting the resin laminate 1 may have a dynamic supply connection.
  • the dynamic covalent bond not only an ester bond but also an imine bond, a quaternary ammonium salt bond, an oxazoline bond, a spiro orthoester bond, a borate ester bond, a disulfide bond, a dioxoborane bond, and the like can be used.
  • the resin laminate 1 shown in FIGS. 1, 2, 4, 5, 7, 8, 10, 10, 11, and 13 to 15 has at least one of the layers constituting the outermost layer.
  • One is a thermosetting resin layer.
  • the resin laminate 1 having a high surface hardness can be provided.
  • the thermosetting resin since the thermosetting resin has a chemical structure containing oxygen, nitrogen, and the like, it has a high polarity. Therefore, by providing the outermost layer with the thermosetting resin, it is possible to provide the resin laminate 1 that can be easily applied. be able to. Further, the strength can be increased by using a fiber-containing thermosetting resin or a fiber-containing thermoplastic resin.
  • the resin laminate 1 shown in FIGS. 1 to 15 has a functional group that promotes recombination of the bond on the fiber surface, for example, a hydroxyl group or an ester bond, by using a known technique such as impregnation into a solution or vapor deposition.
  • a layer containing a large amount of a transesterification catalyst described below can be formed. By doing so, stress can be alleviated, and cracking and peeling can be suppressed. That is, the resin laminate 1 excellent in moldability can be provided.
  • thermoplastic resin layer is always sandwiched between thermosetting resin layers. That is, the thermosetting resin layers are stacked discontinuously. That is, a thermoplastic resin exists between any thermosetting resin layers.
  • Various laminated structures are possible based on the resin laminate 1 shown in FIGS. 1 to 15 as a basic configuration. For example, the resin laminate 1 shown in FIGS. 1 to 15 can be further overlapped. However, it is necessary to ensure that a thermoplastic resin layer exists between arbitrary thermosetting resin layers. In other words, the thermosetting resin layer must not be continuous.
  • thermosetting resin in the present embodiment has an appropriate curing temperature range depending on the curing agent and the catalyst, but a monomer that forms a dynamic covalent bond during curing is considered. Further, as the thermosetting resin of the present embodiment, a monomer having a structure containing a dynamic covalent bond as a monomer skeleton and capable of forming a crosslinked structure is considered. Alternatively, a mixture of both of them can be considered as the thermosetting resin of the present embodiment.
  • a monomer a mixture of a monomer, a curing agent, and a catalyst capable of forming a dynamic covalent bond or a crosslinked structure with another monomer during curing is impregnated into a fiber having a catalyst or a curing agent layer on the surface, and heated. It is conceivable to obtain one obtained by curing by the method described above. Further, the catalyst may be added as needed or may not be added.
  • Curing time and curing temperature are appropriately adjusted according to the application.
  • the fiber reinforced resin obtained after curing has a catalyst for promoting dynamic covalent bonding and recombination therein, and an exchange reaction occurs appropriately.
  • chemical formula (1) shows a chemical formula of a transesterification reaction which is one of dynamic covalent bonds.
  • the chemical formula shown in chemical formula (1) is a part of the structure obtained by the transesterification reaction.
  • R, R1, and R2 have any chemical structures.
  • thermosetting resin in the present embodiment a resin having an ester bond, an imine bond, a quaternary ammonium salt bond, an oxazoline bond, a spiro orthoester bond, a borate ester bond, a disulfide bond, or the like can be used.
  • a monomer or a monomer skeleton that forms an ester bond at the time of curing preferably has a structure containing an ester bond.
  • the monomer that forms an ester bond during curing is preferably composed of an epoxy compound having a polyfunctional epoxy group, and a carboxylic anhydride or a polycarboxylic acid as a curing agent.
  • the epoxy compound a bisphenol A type resin, a novolak type resin, an alicyclic resin, and a glycidylamine resin are preferable.
  • epoxy examples include bisphenol A diglycidyl ether phenol, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, resorcinol diglycidyl ether, hexahydrobisphenol A diglycidyl ether, polypropylene glycol diglycidyl ether, and neopentyl glycol diglycidyl ether.
  • Glycidyl ether diglycidyl phthalate, diglycidyl dimer, triglycidyl isocyanurate, tetraglycidyl diaminodiphenylmethane, tetraglycidyl metaxylene diamine, cresol novolak polyglycidyl ether, tetrabromobisphenol A diglycidyl ether, bisphenol hexafluoroacetone di Glycidyl ether, etc.
  • the present invention is not limited to.
  • carboxylic anhydride or polycarboxylic acid examples include phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, 3-dodecenylsuccinic anhydride, octenylsuccinic anhydride, Methylhexahydrophthalic anhydride, methylnadic anhydride, dodecylsuccinic anhydride, chlorendic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic anhydride, ethylene glycol bis (anhydrotrimate), methylcyclohexenetetracarboxylic acid Anhydride, trimellitic anhydride, polyazelain anhydride, ethylene glycol dibisanhydrotrimellitate, 1,2,3,4-butanetetracarboxylic acid, 4-cyclohexene-1,2-dicarbox
  • the transesterification catalyst is preferably one that is uniformly dispersed in the mixture.
  • catalysts that promote the transesterification reaction include zinc (II) acetate, zinc (II) acetylacetonate, zinc (II) naphthenate, iron (III) acetylacetone, cobalt (II) acetylacetone, aluminum isopropoxide, Titanium isopropoxide, methoxide (triphenylphosphine) copper (I) complex, ethoxide (triphenylphosphine) copper (I) complex, propoxide (triphenylphosphine) copper (I) complex, isopropoxide (triphenylphosphine) Copper (I) complex, methoxide bis (triphenylphosphine) copper (II) complex, ethoxide bis (triphenylphosphine) copper (II) complex, propoxide bis (triphenylphosphine) copper (II) complex
  • the resin composition having a covalent bond that reversibly dissociates and bonds may be composed of a vinyl monomer having a hydroxyl group, an ester bonding group and two or more vinyl groups, a polymerization initiation catalyst, and a transesterification reaction catalyst. .
  • vinyl monomers examples include 2-hydroxy methacrylate, hydroxypropyl methacrylate, 4-hydroxybutyl acrylate, divinyl ethylene glycol, monomethyl fumarate, hydroxypropyl acrylate, ethyl 2- (hydroxymethyl) acrylate, glycerol dimethacrylate , Allyl acrylate, methyl crotonate, methyl methacrylate, methyl 3,3-dimethacrylate, diethylene glycol dimethacrylate, ethylene glycol dimethacrylate, triethylene glycol dimethacrylate, dimethyl fumarate, fumaric acid, 1,4-butanediol Dimethacrylate, 1,6-hexanediol dimethacrylate, 1,3-butanediol dimethacrylate Tetraethylene glycol dimethacrylate, tetraethylene glycol diacrylate, vinyl crotonate, crotonic anhydride, diallyl maleate, neopen
  • a peroxide-based compound, an azo-based compound, and the like are considered, and specific examples thereof include 2,2′-azobisisobutyronitrile, 2, 2′-azobis (2,4-dimethylvaleronitrile), 2,2'-azobis (2,4-dimethyl-4-methoxyvaleronitrile), 1,1'-azobis (cyclohexanecarbonitrile), 2,2'-azobis (2,4,4-trimethylpentane) and the like Azo compounds, dialkyl peroxides such as di-t-butyl peroxide, di-t-hexyl peroxide, dicumyl peroxide, 1,1-bis (t-butylperoxy) cyclohexane, 1,1-bis ( t-butylperoxy) -3,3,5-trimethylcyclohexane, 2,2-bis (4,4-di-t-butylperoxycyclohexyl) pro Peroxy ketals
  • the transesterification catalyst is preferably one that is uniformly dispersed in the mixture to promote the transesterification reaction.
  • the resin composition having a reversibly dissociable and bonded covalent bond may be a thermoplastic resin into which a cross-linking component having a reversibly dissociated and bonded covalent bond is introduced.
  • thermoplastic resin include, but are not limited to, polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyethylene terephthalate, and acrylic resin.
  • cross-linking component having a covalent bond capable of reversibly dissociating and bonding include those having an alkoxyamine skeleton, a diarylbibenzofuran skeleton, and a dioxaborane skeleton, but are not limited thereto.
  • thermosetting resin inorganic fibers and organic fibers
  • examples of the inorganic fiber include glass fiber, asbestos fiber, carbon fiber, silica fiber, silica / alumina fiber, alumina fiber, zirconia fiber, potassium titanate fiber, tyranno fiber, silicon carbide fiber, and metal fiber.
  • Organic fibers include high-strength polyethylene fibers, polyacetal fibers, aliphatic or aromatic polyamide fibers, polyacrylate fibers, fluorine fibers, boron fibers, polyacrylonitrile fibers, aramid fibers, PBO (poly-p-phenylene benzobisoxazole) fibers, Fibers derived from plants (vegetable fibers) such as ramie, cellulose and the like. These fibers can be used alone or in combination of two or more. Among these fibers, inorganic fibers, particularly carbon fibers, are preferable in terms of mechanical strength and the like.
  • Carbon fibers can be classified according to their raw materials into carbon fibers derived from synthetic polymers (polyacrylonitrile-based, polyvinyl alcohol-based, rayon-based carbon fibers, etc.) and mineral-derived carbon fibers (pitch-based carbon fibers, etc.). From the viewpoint of mechanical strength, carbon fibers derived from synthetic polymers are preferred.
  • the resin laminate 1 of the present embodiment includes, for example, moving bodies such as automobiles, railway vehicles, ships, and aircraft, blades for wind power generators, fan blades, unit baths, septic tanks, printed boards, playground equipment, skis, and the like. It can be used for parts and bodies used in various fields.
  • thermosetting resin sheet is prepared according to the following procedure. First, 100 parts by weight of “jER828 (trade name)”, an epoxy resin manufactured by Mitsubishi Chemical Corporation, and zinc (II) acetyl manufactured by Tokyo Chemical Industry Co., Ltd. 14.2 parts by weight of acetonate was added and dissolved. To this, 44.8 parts by weight of "HN-2200 (trade name)” manufactured by Hitachi Chemical Co., Ltd. was added as a curing agent, followed by stirring and mixing. The resulting liquid mixture is referred to as a thermosetting resin raw material liquid. Then, the thermosetting resin raw material liquid is spread on a Teflon (registered trademark) sheet with a thickness of about 1 mm, and heat-cured at 160 ° C.
  • Teflon registered trademark
  • thermosetting resin sheet fiber-free thermosetting resin
  • Layer 11 was prepared.
  • the manufacturer sandwiched one PET film (the fiber-free thermoplastic resin layer 21) between the two produced thermosetting resin sheets and pressed it at 160 ° C. under reduced pressure to obtain a resin laminate 1.
  • the resin laminate 1 thus produced is a resin laminate 1 in which the fiber-free thermoplastic resin layer 21 exists between the fiber-free thermosetting resin layers 11. Note that the resin laminate 1 of the first specific example corresponds to the resin laminate 1a of FIG.
  • thermosetting resin body containing a thermosetting resin The manufacturer produced a fiber-containing resin body containing a thermosetting resin by the following procedure.
  • the manufacturer prepares the thermosetting resin raw material liquid described in the first specific example, and converts the thermosetting resin raw material liquid to “CO6343 (trade name)” manufactured by Toray Industries, Inc., which is a carbon fiber cloth, under reduced pressure. For impregnation.
  • the manufacturer heat-cured the impregnated carbon fiber cloth at 160 ° C. for 2 hours to produce a carbon fiber-containing thermosetting resin sheet (fiber-containing thermosetting resin layer 12).
  • the manufacturer inserts a polycarbonate film (fiber-free thermoplastic resin layer 21) one by one between the three layers of the prepared carbon fiber-containing thermosetting resin sheet and presses it at 160 ° C. under reduced pressure.
  • a resin laminate 1 was obtained.
  • the resin laminate 1 thus produced is a resin laminate 1 having a fiber-free thermoplastic resin layer 21 between the fiber-containing thermosetting resin layers 12.
  • the resin laminate of the second specific example corresponds to the resin laminate 1b of FIG.
  • the manufacturer produced a fiber-containing thermosetting resin sheet in which the resin is in a semi-cured state by the following procedure.
  • the manufacturer prepares a carbon fiber cloth (carbon fiber-containing thermosetting resin sheet; fiber-containing thermosetting resin layer 12) impregnated with a thermosetting resin raw material liquid in the same manner as described in the second specific example. Produced.
  • the manufacturer heated the carbon fiber-containing thermosetting resin sheet at 80 ° C. for 1 hour.
  • a PET film fiber-free thermoplastic resin layer 21
  • the resin laminate 1 produced in this manner is a resin laminate 1 in which the fiber-free thermoplastic resin layer 21 exists between the fiber-containing thermosetting resin layers 12 produced from a semi-cured state of the resin. is there.
  • the resin laminate 1 of the third specific example corresponds to a resin laminate 1b shown in FIG. 2 manufactured using the fiber-containing thermosetting resin layer 12 in a semi-cured state.
  • the manufacturer heat-cured the impregnated carbon fiber cloth at 160 ° C. for 2 hours.
  • the manufacturer inserts a PET film between the four layers of the prepared carbon fiber-containing thermosetting resin sheet (fiber-containing thermosetting resin layer 12) one by one, and presses it at 180 ° C. under reduced pressure to obtain a resin.
  • the laminate 1 was obtained.
  • the resin laminate 1 manufactured in this manner is a resin laminate 1 in which the fiber-free thermoplastic resin layer 21 exists between the fiber-containing thermosetting resin layers 12.
  • the resin laminate 1 manufactured in the fifth specific example is a resin laminate 1 having a non-dynamic covalent bond thermosetting resin layer.
  • the resin laminate 1 of the fifth specific example corresponds to the resin laminate 1b of FIG. 2 in which the fiber-containing thermosetting resin layer 12 has no dynamic bond.
  • a resin laminate 1Z of FIG. 16 was produced as a comparative example.
  • the resin raw material liquid prepared in the first specific example was impregnated under reduced pressure with four carbon fiber cloths used in the second specific example being stacked. Then, the four impregnated carbon fiber cloths were heated and cured at 160 ° C. for 2 hours, thereby obtaining a resin laminate 1 ⁇ / b> Z including only the fiber-containing thermosetting resin layer 12.
  • the resin laminate 1Z produced in this manner is a resin laminate 1Z in which only four fiber-containing thermosetting resin layers 12 are laminated.
  • the bending angle was measured from the height of the curved portion of the plate-shaped resin laminates 1 and 1Z taken out of the mold.
  • the difference between the bending angle ⁇ on of the mold and the bending angle ⁇ off of the resin laminates 1 and 1Z after remolding was defined as the springback amount ⁇ .
  • the amount of springback of the resin laminate 1 of the fourth specific example was compared with the resin laminate 1 of the fifth specific example (without dynamic covalent bonds).
  • the springback of the resin laminate 1 of the fourth specific example was 5 °
  • the springback of the resin laminate 1 of the fifth specific example was 15 °.
  • the amount of springback of the resin laminate 1 of the fourth specific example (with dynamic covalent bonds) was smaller than that of the resin laminate 1 of the fifth specific example (without dynamic covalent bonds). .
  • FIG. 17 is a diagram illustrating a configuration example of a resin laminate manufacturing system 100 that manufactures the resin laminate 1 according to the present embodiment.
  • the resin laminate manufacturing system 100 includes two first rolls 101, a second roll 102, a thermostat 111, and a cutter 112.
  • the first roll 101 processes a fiber-containing thermosetting resin sheet (fiber-containing thermosetting resin layer 12) in which the resin is in a semi-cured state into, for example, a width of 5 cm and a length of 1 m, and winds the sheet into a cylinder having a diameter of 5 cm. It is turned.
  • the second roll 102 is formed, for example, by winding a PET film (fiber-free thermoplastic resin layer 21) having a width of 5 cm and a length of 1 m around a cylinder having a diameter of 5 cm.
  • the width and length of each sheet in the first roll 101 and the second roll 102 and the diameter of the wound tube are not limited to these sizes.
  • the fiber-containing thermosetting resin sheet when it is in a semi-cured state, it can be wound into a roll.
  • two rolls of the fiber-containing resin sheet in a semi-cured state and one roll of the PET film are alternately stacked and heated in the thermostat 111, whereby the resin laminate 1 is heated. Are manufactured continuously.
  • the resin laminate 1 manufactured by heating is cut into an appropriate length by the cutter 112.
  • thermosetting resin layer in the semi-cured state is wound in a roll shape, but the thermosetting resin layer in the cured state may be put into the thermostat 111.

Landscapes

  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

To provide a resin laminate that has excellent moldability and a method of manufacturing the resin laminate, the present invention is characterized by having a thermoplastic resin layer in tight contact between two arbitrary thermosetting resin layers. The present invention is also characterized in that, in at least one of the thermosetting resin layers, the molecules making up the thermosetting resin have dynamic covalent bonds which are covalent bonds that can reversibly break and reform. The present invention is further characterized in that at least one of the thermosetting resin layers is a fiber-containing thermosetting resin.

Description

樹脂積層体及び樹脂積層体の製造方法Resin laminate and method for producing resin laminate
 本発明は、樹脂積層体及び樹脂積層体の製造方法の技術に関する。 The present invention relates to a technique of a resin laminate and a method of manufacturing the resin laminate.
 繊維を補強材とする繊維強化樹脂は、軽量でありながら、強度、弾性率に優れるため、自動車、鉄道、航空機、建築部材等の多くの分野に用いられている。中でも特に、熱硬化性樹脂と、ガラスまたは炭素からなる連続繊維を複合化した繊維強化熱硬化性樹脂は、強度、耐熱性に優れることから利用が広がっている。 繊 維 Fiber reinforced resin using fiber as a reinforcing material is used in many fields such as automobiles, railways, aircrafts, and building materials because of its excellent strength and elasticity while being lightweight. In particular, fiber-reinforced thermosetting resins in which thermosetting resins are combined with continuous fibers made of glass or carbon have been widely used because of their excellent strength and heat resistance.
 熱硬化性樹脂と繊維を複合化した成形体を得る方法として、レジントランスファーモールディング、オートクレーブを用いる方法、真空バッグによる方法、圧縮成形法等が知られている。いずれも、布のような繊維に硬化前の樹脂ワニスを含浸させた後に加熱硬化する、もしくは、繊維と樹脂の複合材をいったん半硬化状態(プリプレグ)にして、所望の形に成形後、加熱硬化する方法である。 Resin transfer molding, a method using an autoclave, a method using a vacuum bag, a compression molding method, and the like are known as methods for obtaining a molded article in which a thermosetting resin and fibers are composited. In either case, the fiber and the resin are impregnated with a resin varnish before curing and then heat-cured, or the fiber-resin composite material is once semi-cured (prepreg), formed into a desired shape, and then heated. It is a curing method.
 このような熱硬化性樹脂と繊維を複合化した繊維強化樹脂の製造においては生産性の向上が求められている。例えば、特許文献1には、「従来のエポキシ樹脂組成物と比較して、低温でも短時間に硬化が完了し、かつ室温での保存においても、十分な使用可能期間を確保できる、プリプレグに好適に使用されるエポキシ樹脂組成物。エポキシ樹脂と分子内に少なくとも一つの硫黄原子を有するアミン化合物との反応生成物と分子内に少なくとも一つの硫黄原子を有するアミン化合物の少なくとも一つ、尿素化合物及びジシアンジアミドからなるエポキシ樹脂組成物であって、エポキシ樹脂組成物中の硫黄原子及び尿素化合物の含有率が、それぞれ0.2~7質量%及び1~15質量%である」プレプレグ用エポキシ樹脂、プリプレグ、繊維強化複合材料及びこれらの製造方法が開示されている(要約参照)。また、非特許文献1には、加熱硬化した後の炭素繊維強化熱硬化性樹脂積層板を、金属と同様にプレス加工する方法が開示されている。 向上 In the production of such fiber-reinforced resin in which the thermosetting resin and the fiber are combined, improvement in productivity is required. For example, Patent Literature 1 states that “Compared with a conventional epoxy resin composition, curing is completed in a short time even at a low temperature, and a sufficient usable period can be ensured even when stored at room temperature, which is suitable for a prepreg. An epoxy resin composition used for at least one of a reaction product of an epoxy resin and an amine compound having at least one sulfur atom in a molecule and an amine compound having at least one sulfur atom in a molecule, a urea compound, An epoxy resin composition comprising dicyandiamide, wherein the content of sulfur atom and urea compound in the epoxy resin composition is 0.2 to 7% by mass and 1 to 15% by mass, respectively. "Epoxy resin for prepreg, prepreg , Fiber reinforced composite materials and methods for their manufacture are disclosed (see abstract). Non-Patent Document 1 discloses a method of pressing a carbon fiber-reinforced thermosetting resin laminate after heat curing in the same manner as a metal.
 一方、近年、動的共有結合を用いた樹脂組成物が提案されている。動的共有結合は、共有結合でありながら、熱、光等の外部刺激により樹脂を構成する分子において可逆的な解離-結合が可能な共有結合である。特許文献2には、「硬化後に熱変形可能(hot transformable)な熱硬化性樹脂組成物であって、ヒドロキシル基および/またはエポキシ基を含む少なくとも一種の熱硬化性ポリマー前駆物質を含む組成物を、少なくとも一種のエステル交換触媒の存在下で、酸無水物から選択される少なくとも一種の硬化剤と接触させて得られ(ただし、熱硬化性ポリマー前駆物質と酸無水物とは等モル比であってはならない)、上記エステル交換触媒の全モル量は上記熱硬化性樹脂組成物の上記熱硬化性ポリマー前駆物質中に含まれるヒドロキシル基とエポキシ基の全モル量の5%~25%の間であり、上記触媒は亜鉛、スズ、マグネシウム、コバルト、カルシウム、チタンおよびジルコニウムの金属塩から選択され、この触媒は上記熱硬化ポリマー前駆物質を含む組成物中か、上記硬化剤を含む組成物中に溶解されており、上記硬化剤の量は、上記熱硬化性樹脂組成物がネットワークを形成し且つ2NA<No+2Nxとなるような量が選択される(ここで、Noは上記熱硬化性ポリマー前駆物質中のヒドロキシル基のモル数を表し、Nxは上記熱硬化性ポリマー前駆物質中のエポキシ基のモル数を表し、NAは熱硬化性ポリマー前駆物質のヒドロキシル基またはエポキシ基との結合を形成できる上記硬化剤の無水物基のモル数を表す)ことを特徴とする」加熱成形可能で、リサイクル可能な無水エポキシ熱硬化性樹脂及び熱硬化性組成物が開示されている(請求項1参照)。特許文献2に開示されている熱硬化性樹脂組成物は、少なくとも一つのエステル交換触媒の存在下で、ヒドロキシル基および/またはエポキシ基を含む少なくとも一つの熱硬化性樹脂の前駆物質を酸無水物から選択される少なくとも一つの硬化剤と反応させられる。これにより、酸無水物の量はエステル基により維持されるネットワークが形成され、前駆物質と硬化剤と反応後もフリーなヒドロキシル基が残るように選択されるものである。 On the other hand, recently, resin compositions using dynamic covalent bonds have been proposed. The dynamic covalent bond is a covalent bond that is capable of reversible dissociation-bonding in a molecule constituting the resin by an external stimulus such as heat or light while being a covalent bond. Patent Document 2 discloses “a thermosetting resin composition that is heat-transformable after curing and contains at least one thermosetting polymer precursor containing a hydroxyl group and / or an epoxy group. Is obtained by contacting with at least one curing agent selected from acid anhydrides in the presence of at least one transesterification catalyst (provided that the thermosetting polymer precursor and the acid anhydride have an equimolar ratio. The total molar amount of the transesterification catalyst should be between 5% and 25% of the total molar amount of hydroxyl groups and epoxy groups contained in the thermosetting polymer precursor of the thermosetting resin composition. Wherein said catalyst is selected from metal salts of zinc, tin, magnesium, cobalt, calcium, titanium and zirconium, said catalyst comprising said thermoset polymer precursor. And the amount of the curing agent is selected such that the thermosetting resin composition forms a network and satisfies 2NA <No + 2Nx. (Where, No represents the number of moles of hydroxyl groups in the thermosetting polymer precursor, Nx represents the number of moles of epoxy groups in the thermosetting polymer precursor, and NA represents the thermosetting polymer. The number of moles of anhydride groups of the above curing agent capable of forming a bond with the hydroxyl group or epoxy group of the precursor). Thermosetting and recyclable anhydrous epoxy thermosetting resin and thermosetting An active composition is disclosed (see claim 1). The thermosetting resin composition disclosed in Patent Document 2 comprises, in the presence of at least one transesterification catalyst, a precursor of at least one thermosetting resin containing a hydroxyl group and / or an epoxy group to an acid anhydride. And at least one curing agent selected from the group consisting of: Thereby, the amount of acid anhydride is selected such that a network is formed which is maintained by the ester groups and free hydroxyl groups remain after the reaction between the precursor and the curing agent.
国際公開第2004/48435号International Publication No. WO 2004/48435 特許第5749354号公報Japanese Patent No. 5749354
 しかしながら、熱硬化性樹脂の硬化は発熱反応であるため、特許文献1に記載の技術では、硬化中の温度制御が難しく、温度ムラにより硬化後の変形が発生しやすい。また、繊維含有熱硬化性樹脂は、布のような繊維状のものに熱硬化性樹脂原料液を浸すことで作成される。しかし、この繊維含有熱硬化性樹脂を加熱によって、軟化させると、加熱によって低粘度化した樹脂の流動による繊維の乱れも発生する。繊維の乱れは強度のムラにつながる。一方、非特許文献1に記載の技術のように硬化後の繊維含有熱硬化性樹脂の積層体を金属板で成形した場合、温度ムラによる効果後の変形や、樹脂の流動による繊維の乱れを抑制することができる。しかし、非特許文献1に記載の技術では、積層した繊維含有熱硬化性樹脂層の間で剥離や、スプリングバックと呼ばれる、成形後に元に戻ってしまう現象が起こる。 However, since the curing of the thermosetting resin is an exothermic reaction, it is difficult to control the temperature during curing with the technology described in Patent Document 1, and deformation after curing is likely to occur due to temperature unevenness. Further, the fiber-containing thermosetting resin is prepared by immersing a thermosetting resin raw material liquid in a fibrous material such as cloth. However, when the fiber-containing thermosetting resin is softened by heating, the fibers are disturbed due to the flow of the resin whose viscosity has been reduced by heating. Fiber turbulence leads to uneven strength. On the other hand, when a laminated body of the fiber-containing thermosetting resin after curing is molded from a metal plate as in the technique described in Non-Patent Document 1, deformation after effect due to temperature unevenness and disturbance of the fiber due to resin flow may occur. Can be suppressed. However, according to the technology described in Non-Patent Document 1, a phenomenon called peeling between the laminated fiber-containing thermosetting resin layers and a phenomenon called springback that returns to the original state after molding occurs.
 このような背景に鑑みて本発明がなされたのであり、本発明は、成形性に優れた樹脂積層体及び樹脂積層体の製造方法を提供することを目的とする。 The present invention has been made in view of such a background, and an object of the present invention is to provide a resin laminate excellent in moldability and a method for producing the resin laminate.
 前記した課題を解決するため、本発明は、任意の2つの熱硬化性樹脂の層間に熱可塑性樹脂の層が密着して存在することを特徴とする。
 その他の解決手段は実施形態中で適宜記載する。
In order to solve the above-mentioned problem, the present invention is characterized in that a layer of a thermoplastic resin exists between two arbitrary layers of a thermosetting resin in close contact with each other.
Other solutions will be described in the embodiments as appropriate.
 本発明によれば、成形性に優れた樹脂積層体及び樹脂積層体の製造方法を提供することができる。 According to the present invention, a resin laminate excellent in moldability and a method for producing the resin laminate can be provided.
本実施形態に係る樹脂積層体1の断面模式図(第1例)である。FIG. 2 is a schematic cross-sectional view (first example) of a resin laminate 1 according to the embodiment. 本実施形態に係る樹脂積層体1の断面模式図(第2例)である。FIG. 3 is a schematic cross-sectional view (second example) of a resin laminate 1 according to the embodiment. 本実施形態に係る樹脂積層体1の断面模式図(第3例)である。FIG. 4 is a schematic cross-sectional view (third example) of a resin laminate 1 according to the embodiment. 本実施形態に係る樹脂積層体1の断面模式図(第4例)である。FIG. 6 is a schematic cross-sectional view (fourth example) of a resin laminate 1 according to the present embodiment. 本実施形態に係る樹脂積層体1の断面模式図(第5例)である。FIG. 6 is a schematic cross-sectional view (fifth example) of a resin laminate 1 according to the present embodiment. 本実施形態に係る樹脂積層体1の断面模式図(第6例)である。It is a cross section of a resin layered product 1 concerning this embodiment (sixth example). 本実施形態に係る樹脂積層体1の断面模式図(第7例)である。FIG. 7 is a schematic cross-sectional view (seventh example) of a resin laminate 1 according to the present embodiment. 本実施形態に係る樹脂積層体1の断面模式図(第8例)である。It is a cross section schematic diagram (eighth example) of the resin layered product 1 concerning this embodiment. 本実施形態に係る樹脂積層体1の断面模式図(第9例)である。It is a cross section of a resin layered product 1 concerning this embodiment (a 9th example). 本実施形態に係る樹脂積層体1の断面模式図(第10例)である。It is a cross section of a resin layered product 1 concerning this embodiment (tenth example). 本実施形態に係る樹脂積層体1の断面模式図(第11例)である。It is a cross section of the resin layered product 1 concerning this embodiment (eleventh example). 本実施形態に係る樹脂積層体1の断面模式図(第12例)である。It is a cross section of a resin layered product 1 concerning this embodiment (a 12th example). 本実施形態に係る樹脂積層体1の断面模式図(第13例)である。It is a cross section of a resin layered product 1 concerning this embodiment (a 13th example). 本実施形態に係る樹脂積層体1の断面模式図(第14例)である。FIG. 14 is a schematic cross-sectional view (a fourteenth example) of a resin laminate 1 according to the present embodiment. 本実施形態に係る樹脂積層体1の断面模式図(第15例)である。It is a cross section schematic diagram (the 15th example) of resin layered product 1 concerning this embodiment. 比較例における樹脂積層体1Z(CFRP樹脂積層体)の断面模式図である。It is a cross section of resin laminate 1Z (CFRP resin laminate) in a comparative example. 本実施形態に係る樹脂積層体1を製造する樹脂積層体製造システム100の構成例を示す図である。It is a figure showing the example of composition of resin laminated body manufacturing system 100 which manufactures resin laminated body 1 concerning this embodiment.
 次に、本発明を実施するための形態(「実施形態」という)について、適宜図面を参照しながら詳細に説明する。
[樹脂積層体1の積層例]
 図1~図15において、本実施形態に係る樹脂積層体1の積層例を示す。
 図1~図15は、本実施形態に係る樹脂積層体1の断面模式図である。図1~図15において、斜線は繊維含有樹脂を示し、ドットは熱硬化性樹脂を示し、ドットなしは熱可塑性樹脂を示す。
 つまり、図1~図15において、斜線なし+ドットは繊維不含熱硬化性樹脂を示し、斜線+ドットは繊維含有熱硬化性樹脂を示す。さらに、斜線なし+ドットなしは繊維不含熱可塑性樹脂を示し、斜線あり+ドットなしは繊維含有熱可塑性樹脂を示す。
 また、本実施形態では、繊維不含熱硬化性樹脂及び繊維含有熱硬化性樹脂を代表して熱硬化性樹脂と適宜称する。同様に、繊維不含熱可塑性樹脂及び繊維含有熱可塑性樹脂を代表して熱可塑性樹脂と適宜称する。ここで、繊維不含熱可塑性樹脂及び繊維不含熱硬化性樹脂とは、繊維が含まれていない熱可塑性樹脂及び熱硬化性樹脂のことである。
 さらに、本実施形態では、熱硬化性樹脂(繊維不含熱硬化性樹脂及び繊維含有熱硬化性樹脂)は動的共有結合を有することを前提としているが、動的共有結合を有しない熱硬化性樹脂でもよい。
Next, a mode for carrying out the present invention (referred to as “embodiment”) will be described in detail with reference to the drawings as appropriate.
[Lamination example of resin laminate 1]
1 to 15 show examples of lamination of the resin laminate 1 according to the present embodiment.
1 to 15 are schematic sectional views of the resin laminate 1 according to the present embodiment. In FIGS. 1 to 15, hatched lines indicate a fiber-containing resin, dots indicate a thermosetting resin, and no dots indicate a thermoplastic resin.
That is, in FIG. 1 to FIG. 15, the non-hatched + dot indicates a fiber-free thermosetting resin, and the hatched + dot indicates a fiber-containing thermosetting resin. Further, “without hatching + no dot” indicates a fiber-free thermoplastic resin, and “with hatching + no dot” indicates a fiber-containing thermoplastic resin.
In the present embodiment, the fiber-free thermosetting resin and the fiber-containing thermosetting resin are referred to as thermosetting resins as appropriate. Similarly, the fiber-free thermoplastic resin and the fiber-containing thermoplastic resin are referred to as thermoplastic resins as appropriate. Here, the fiber-free thermoplastic resin and the fiber-free thermosetting resin are thermoplastic resins and thermosetting resins containing no fibers.
Further, in the present embodiment, it is assumed that the thermosetting resin (the thermosetting resin containing no fiber and the thermosetting resin containing the fiber) has a dynamic covalent bond. Resin may be used.
 図1は、本実施形態に係る樹脂積層体1の断面模式図(第1例)である。
 図1に示すように、樹脂積層体1a(1)は、繊維不含熱硬化性樹脂層(熱硬化性樹脂の層)11が繊維不含熱可塑性樹脂層(熱可塑性樹脂の層)21を挟持している。つまり、2つの繊維不含熱硬化性樹脂層11の間に繊維不含熱可塑性樹脂層21が存在している。
FIG. 1 is a schematic cross-sectional view (first example) of a resin laminate 1 according to the present embodiment.
As shown in FIG. 1, in the resin laminate 1 a (1), a fiber-free thermosetting resin layer (thermosetting resin layer) 11 has a fiber-free thermoplastic resin layer (thermoplastic resin layer) 21. It is pinched. That is, the fiber-free thermoplastic resin layer 21 exists between the two fiber-free thermosetting resin layers 11.
 図2は、本実施形態に係る樹脂積層体1の断面模式図(第2例)である。
 図2に示すように、樹脂積層体1b(1)は、繊維含有熱硬化性樹脂層(繊維含有熱硬化性樹脂の層)12の間に繊維不含熱可塑性樹脂層21が挟持されている。つまり、2つの繊維含有熱硬化性樹脂層12の間に繊維不含熱可塑性樹脂層21が存在している。
FIG. 2 is a schematic cross-sectional view (second example) of the resin laminate 1 according to the present embodiment.
As shown in FIG. 2, in the resin laminate 1 b (1), a fiber-free thermoplastic resin layer 21 is sandwiched between fiber-containing thermosetting resin layers (layers of fiber-containing thermosetting resin) 12. . That is, the fiber-free thermoplastic resin layer 21 exists between the two fiber-containing thermosetting resin layers 12.
 図3は、本実施形態に係る樹脂積層体1の断面模式図(第3例)である。
 図3に示すように、樹脂積層体1c(1)は、3つの繊維不含熱可塑性樹脂層21の間それぞれに繊維含有熱硬化性樹脂層12が存在しているものである。
FIG. 3 is a schematic cross-sectional view (third example) of the resin laminate 1 according to the present embodiment.
As shown in FIG. 3, the resin laminate 1c (1) has a fiber-containing thermosetting resin layer 12 between three fiber-free thermoplastic resin layers 21.
 図4は、本実施形態に係る樹脂積層体1の断面模式図(第4例)である。
 図4に示すように、樹脂積層体1d(1)は、2つの繊維不含熱可塑性樹脂層21と、2つの繊維含有熱硬化性樹脂層12とが交互に積層しているものである。
FIG. 4 is a schematic cross-sectional view (fourth example) of the resin laminate 1 according to the present embodiment.
As shown in FIG. 4, the resin laminate 1d (1) is one in which two fiber-free thermoplastic resin layers 21 and two fiber-containing thermosetting resin layers 12 are alternately laminated.
 図5は、本実施形態に係る樹脂積層体1の断面模式図(第5例)である。
 図5に示すように、樹脂積層体1e(1)は、3つの繊維不含熱硬化性樹脂層11の間それぞれに繊維含有熱可塑性樹脂層(繊維含有熱可塑性樹脂の層、熱可塑性樹脂の層)22が存在しているものである。
FIG. 5 is a schematic cross-sectional view (fifth example) of the resin laminate 1 according to the present embodiment.
As shown in FIG. 5, the resin laminate 1e (1) has a fiber-containing thermoplastic resin layer (a fiber-containing thermoplastic resin layer, a thermoplastic resin layer) between each of the three fiber-free thermosetting resin layers 11. (Layer) 22 is present.
 図6は、本実施形態に係る樹脂積層体1の断面模式図(第6例)である。
 図6に示すように、樹脂積層体1f(1)は、3つの繊維含有熱可塑性樹脂層22の間それぞれに繊維不含熱硬化性樹脂層11が存在しているものである。
FIG. 6 is a schematic cross-sectional view (sixth example) of the resin laminate 1 according to the present embodiment.
As shown in FIG. 6, the resin laminate 1f (1) has a fiber-free thermosetting resin layer 11 between three fiber-containing thermoplastic resin layers 22.
 図7は、本実施形態に係る樹脂積層体1の断面模式図(第7例)である。
 図7に示すように、樹脂積層体1g(1)は、2つの繊維含有熱可塑性樹脂層22と、2つの繊維不含熱硬化性樹脂層11とが交互に積層しているものである。
FIG. 7 is a schematic cross-sectional view (seventh example) of the resin laminate 1 according to the present embodiment.
As shown in FIG. 7, the resin laminate 1g (1) has two fiber-containing thermoplastic resin layers 22 and two fiber-free thermosetting resin layers 11 alternately laminated.
 図8は、本実施形態に係る樹脂積層体1の断面模式図(第8例)である。
 図8に示すように、樹脂積層体1h(1)は、2つの繊維含有熱硬化性樹脂層12の間に繊維含有熱可塑性樹脂層22が存在しているものである。
FIG. 8 is a schematic cross-sectional view (eighth example) of the resin laminate 1 according to the present embodiment.
As shown in FIG. 8, the resin laminate 1h (1) has a fiber-containing thermoplastic resin layer 22 between two fiber-containing thermosetting resin layers 12.
 図9は、本実施形態に係る樹脂積層体1の断面模式図(第9例)である。
 図9に示すように、樹脂積層体1i(1)は、3つの繊維含有熱可塑性樹脂層22の間それぞれに繊維含有熱硬化性樹脂層12が存在するものである。
FIG. 9 is a schematic cross-sectional view (ninth example) of the resin laminate 1 according to the present embodiment.
As shown in FIG. 9, the resin laminate 1 i (1) has a fiber-containing thermosetting resin layer 12 between three fiber-containing thermoplastic resin layers 22.
 図10は、本実施形態に係る樹脂積層体1の断面模式図(第10例)である。
 図10に示すように、樹脂積層体1j(1)は、3つの繊維含有熱硬化性樹脂層12の間それぞれに繊維含有熱可塑性樹脂層22が存在するものである。なお、図10に示す樹脂積層体1jは、図8に示す樹脂積層体1hを多段積層したものである。
FIG. 10 is a schematic cross-sectional view (tenth example) of the resin laminate 1 according to the present embodiment.
As shown in FIG. 10, the resin laminate 1j (1) has a fiber-containing thermoplastic resin layer 22 between each of the three fiber-containing thermosetting resin layers 12. The resin laminate 1j shown in FIG. 10 is obtained by stacking the resin laminate 1h shown in FIG. 8 in multiple stages.
 図11は、本実施形態に係る樹脂積層体1の断面模式図(第11例)である。
 図11に示すように、樹脂積層体1k(1)は、2つの繊維含有熱硬化性樹脂層12と、2つの繊維含有熱可塑性樹脂層22とが交互に積層されているものである。
FIG. 11 is a schematic cross-sectional view (eleventh example) of the resin laminate 1 according to the present embodiment.
As shown in FIG. 11, the resin laminate 1k (1) is one in which two fiber-containing thermosetting resin layers 12 and two fiber-containing thermoplastic resin layers 22 are alternately laminated.
 図12は、本実施形態に係る樹脂積層体1の断面模式図(第12例)である。
 図12に示すように、樹脂積層体1m(1)は、2つの繊維含有熱硬化性樹脂層12の間に繊維不含熱可塑性樹脂層21が存在している。そして、繊維含有熱硬化性樹脂層12、繊維不含熱可塑性樹脂層21、繊維含有熱硬化性樹脂層12の積層体を上下から挟むように繊維含有熱可塑性樹脂層22が存在している。
FIG. 12 is a schematic cross-sectional view (a twelfth example) of the resin laminate 1 according to the present embodiment.
As shown in FIG. 12, in the resin laminate 1 m (1), a fiber-free thermoplastic resin layer 21 exists between two fiber-containing thermosetting resin layers 12. Further, the fiber-containing thermoplastic resin layer 22 exists so as to sandwich the laminate of the fiber-containing thermosetting resin layer 12, the fiber-free thermoplastic resin layer 21, and the fiber-containing thermosetting resin layer 12 from above and below.
 図13は、本実施形態に係る樹脂積層体1の断面模式図(第13例)である。
 図13に示すように、樹脂積層体1n(1)は、2つの繊維含有熱硬化性樹脂層12の間において、上から順に繊維不含熱可塑性樹脂層21、繊維含有熱可塑性樹脂層22、繊維不含熱可塑性樹脂層21が存在している。
FIG. 13 is a schematic cross-sectional view (a thirteenth example) of the resin laminate 1 according to the present embodiment.
As shown in FIG. 13, between the two fiber-containing thermosetting resin layers 12, the resin laminate 1 n (1) includes, in order from the top, a fiber-free thermoplastic resin layer 21, a fiber-containing thermoplastic resin layer 22, A fiber-free thermoplastic resin layer 21 is present.
 図14は、本実施形態に係る樹脂積層体1の断面模式図(第14例)である。
 図14に示すように、樹脂積層体1p(1)は、2つの繊維含有熱硬化性樹脂層12の間において、上から順に繊維不含熱可塑性樹脂層21、繊維含有熱可塑性樹脂層22が存在している。
FIG. 14 is a schematic cross-sectional view (a fourteenth example) of the resin laminate 1 according to the present embodiment.
As shown in FIG. 14, the resin laminate 1p (1) includes a fiber-free thermoplastic resin layer 21 and a fiber-containing thermoplastic resin layer 22 between two fiber-containing thermosetting resin layers 12 in order from the top. Existing.
 図15は、本実施形態に係る樹脂積層体1の断面模式図(第15例)である。
 図15に示すように、樹脂積層体1q(1)では、上から順に繊維含有熱硬化性樹脂層12、繊維不含熱可塑性樹脂層21、繊維不含熱硬化性樹脂層11が積層している。
FIG. 15 is a schematic cross-sectional view (fifteenth example) of the resin laminate 1 according to the present embodiment.
As shown in FIG. 15, in the resin laminate 1q (1), a fiber-containing thermosetting resin layer 12, a fiber-free thermoplastic resin layer 21, and a fiber-free thermosetting resin layer 11 are laminated in this order from the top. I have.
 [比較例]
 図16は、比較例における樹脂積層体1Z(CFRP樹脂積層体)の断面模式図である。
 図16に示すように、比較例における樹脂積層体1Zは繊維含有熱硬化性樹脂層12のみが積層(図16の例では4層)されているものである。
 図16に示すような樹脂積層体1Zを加熱硬化させた後、プレスすることによって曲げ成形が行われると、曲げた箇所において繊維含有熱硬化性樹脂層12間の剥離が生じてしまう。
[Comparative example]
FIG. 16 is a schematic cross-sectional view of a resin laminate 1Z (CFRP resin laminate) in a comparative example.
As shown in FIG. 16, the resin laminate 1Z in the comparative example has only the fiber-containing thermosetting resin layer 12 laminated (four layers in the example of FIG. 16).
If the resin laminate 1Z as shown in FIG. 16 is cured by heating and then pressed to perform bending, the peeling between the fiber-containing thermosetting resin layers 12 occurs at the bent portions.
 図1~図15に示すように、任意の熱硬化性樹脂層の間に熱可塑性樹脂層が存在することで、樹脂積層体1を加熱成形する際に、熱可塑性樹脂層が軟化する。これにより、樹脂積層体1を加熱してプレスすることで、成形が行われても曲げた箇所における熱硬化樹脂層の層間剥離や、クラックが抑制される。さらに、前記したように、本実施形態における熱硬化樹脂は動的共有結合を有することを前提としている。これにより、樹脂中における化学結合のネットワーク構造の変化による応力緩和が可能となり、成形後のスプリングバックを大幅に削減できる。前記したように、動的供給結合は、樹脂を構成する分子が可逆的に乖離及び結合する共有結合である。
 なお、樹脂積層体1を構成する熱硬化性樹脂層のうち、少なくとも1つが動的供給結合を有するようにしてもよい。
As shown in FIGS. 1 to 15, the presence of the thermoplastic resin layer between any of the thermosetting resin layers softens the thermoplastic resin layer when the resin laminate 1 is heat-formed. Thereby, by heating and pressing the resin laminate 1, delamination and cracking of the thermosetting resin layer at a bent portion even after molding is suppressed. Further, as described above, it is assumed that the thermosetting resin in the present embodiment has a dynamic covalent bond. This makes it possible to alleviate stress due to a change in the network structure of the chemical bond in the resin, and to greatly reduce springback after molding. As described above, the dynamic supply bond is a covalent bond in which molecules constituting the resin are reversibly separated and bonded.
In addition, at least one of the thermosetting resin layers constituting the resin laminate 1 may have a dynamic supply connection.
 さらに、図1~図15に示す樹脂積層体1において熱硬化樹脂層は硬化が終了している。このため、樹脂積層体1の加熱成形工程で樹脂の硬化収縮や発熱がなく、成形の寸法精度を高めることができる。また、熱硬化樹脂の動的共有結合がエステル結合を有する。さらに熱可塑性樹脂中に-C(C=O)-O-結合を有することで、熱硬化樹脂と熱可塑性樹脂間に化学結合が生成し、両層間の接着力が向上する。
 なお、動的共有結合として、エステル結合だけでなく、イミン結合、四級アンモニウム塩結合、オキサゾリン結合、スピロオルトエステル結合、ほう酸エステル結合、ジスルフィルド結合、ジオキソボラン結合等が用いられることも可能である。
Further, in the resin laminate 1 shown in FIGS. 1 to 15, the curing of the thermosetting resin layer has been completed. For this reason, there is no curing shrinkage or heat generation of the resin in the heat molding step of the resin laminate 1, and the dimensional accuracy of molding can be improved. Further, the dynamic covalent bond of the thermosetting resin has an ester bond. Further, by having a —C (C = O) —O— bond in the thermoplastic resin, a chemical bond is generated between the thermosetting resin and the thermoplastic resin, and the adhesive strength between both layers is improved.
As the dynamic covalent bond, not only an ester bond but also an imine bond, a quaternary ammonium salt bond, an oxazoline bond, a spiro orthoester bond, a borate ester bond, a disulfide bond, a dioxoborane bond, and the like can be used.
 また、図1、図2、図4、図5、図7、図8、図10、図11、図13~図15に示す樹脂積層体1は、最外層を構成する層のうち、少なくとも1つが熱硬化性樹脂層となっている。このようにすることで、表面硬度の高い樹脂積層体1を提供することができる。この結果、傷等がつきにくい樹脂積層体1を提供することができる。
 また、熱硬化性樹脂は、酸素や窒素等を含んだ化学構造をしているため極性が高いため、最外層を熱硬化性樹脂とすることで、塗装を行いやすい樹脂積層体1を提供することができる。
 さらに、繊維含有熱硬化性樹脂や、繊維含有熱可塑性樹脂が用いられることで、強度を高めることができる。
Also, the resin laminate 1 shown in FIGS. 1, 2, 4, 5, 7, 8, 10, 10, 11, and 13 to 15 has at least one of the layers constituting the outermost layer. One is a thermosetting resin layer. By doing so, the resin laminate 1 having a high surface hardness can be provided. As a result, it is possible to provide the resin laminate 1 that is hardly damaged.
In addition, since the thermosetting resin has a chemical structure containing oxygen, nitrogen, and the like, it has a high polarity. Therefore, by providing the outermost layer with the thermosetting resin, it is possible to provide the resin laminate 1 that can be easily applied. be able to.
Further, the strength can be increased by using a fiber-containing thermosetting resin or a fiber-containing thermoplastic resin.
 また、図1~図15に示す樹脂積層体1は、溶液への含浸や蒸着等の公知の技術を用いることで、繊維表面に結合の組み換えを促進する官能基、たとえば水酸基やエステル結合、また、後記するエステル交換反応触媒等を多く含む層を形成することができる。このようにすることで、応力を緩和することができ、クラックや剥離を抑制することができる。
 つまり、成形性に優れた樹脂積層体1を提供することができる。
The resin laminate 1 shown in FIGS. 1 to 15 has a functional group that promotes recombination of the bond on the fiber surface, for example, a hydroxyl group or an ester bond, by using a known technique such as impregnation into a solution or vapor deposition. In addition, a layer containing a large amount of a transesterification catalyst described below can be formed. By doing so, stress can be alleviated, and cracking and peeling can be suppressed.
That is, the resin laminate 1 excellent in moldability can be provided.
 本実施形態の樹脂積層体1は、熱硬化性樹脂層間には必ず熱可塑性樹脂層が挟持されている。すなわち、熱硬化性樹脂層が非連続で積層されている。つまり、任意の熱硬化性樹脂層の間に熱可塑性樹脂が存在している。
 また、図1~図15に示す樹脂積層体1を基本構成として、さまざまな積層構造が可能である。例えば、図1~図15に示す樹脂積層体1を、さらに重ね合わせることも可能である。ただし、任意の熱硬化性樹脂層の間に熱可塑性樹脂層が存在しているようにする必要がある。言い換えれば、熱硬化性樹脂層が連続してはならない。
In the resin laminate 1 of the present embodiment, a thermoplastic resin layer is always sandwiched between thermosetting resin layers. That is, the thermosetting resin layers are stacked discontinuously. That is, a thermoplastic resin exists between any thermosetting resin layers.
Various laminated structures are possible based on the resin laminate 1 shown in FIGS. 1 to 15 as a basic configuration. For example, the resin laminate 1 shown in FIGS. 1 to 15 can be further overlapped. However, it is necessary to ensure that a thermoplastic resin layer exists between arbitrary thermosetting resin layers. In other words, the thermosetting resin layer must not be continuous.
 <熱硬化性樹脂>
 本実施形態における熱硬化性樹脂は、硬化剤および触媒によって適正硬化温度域が異なるが、硬化時に動的共有結合を形成するモノマーが考えられる。また、本実施形態の熱硬化性樹脂としては、モノマー骨格として動的共有結合を含む構造を有し、かつ、架橋構造を形成可能なモノマーが考えられる。あるいは、本実施形態の熱硬化性樹脂としては、これら双方の混合物が考えられる。さらに、モノマーとしては、硬化時に動的共有結合あるいは他のモノマーと架橋構造を形成可能なモノマー、硬化剤、および触媒から成る混合物を触媒または硬化剤層を表面に担持した繊維に含浸させ、加熱等により硬化することで得られるものが考えられる。また、触媒は、必要に応じて添加されてもよいし、無添加でもよい。
<Thermosetting resin>
The thermosetting resin in the present embodiment has an appropriate curing temperature range depending on the curing agent and the catalyst, but a monomer that forms a dynamic covalent bond during curing is considered. Further, as the thermosetting resin of the present embodiment, a monomer having a structure containing a dynamic covalent bond as a monomer skeleton and capable of forming a crosslinked structure is considered. Alternatively, a mixture of both of them can be considered as the thermosetting resin of the present embodiment. Further, as a monomer, a mixture of a monomer, a curing agent, and a catalyst capable of forming a dynamic covalent bond or a crosslinked structure with another monomer during curing is impregnated into a fiber having a catalyst or a curing agent layer on the surface, and heated. It is conceivable to obtain one obtained by curing by the method described above. Further, the catalyst may be added as needed or may not be added.
 硬化時間および硬化温度は、用途に応じて、適宜調整する。硬化後に得られた繊維強化樹脂は、内部に動的共有結合、結合の組み換えを促進する触媒を有し、適宜交換反応が生じる。例として化学式(1)に、動的共有結合の一つであるエステル交換反応の化学式を示す。なお、化学式(1)に示した化学式はエステル交換反応で得られる構造の一部である。 Curing time and curing temperature are appropriately adjusted according to the application. The fiber reinforced resin obtained after curing has a catalyst for promoting dynamic covalent bonding and recombination therein, and an exchange reaction occurs appropriately. As an example, chemical formula (1) shows a chemical formula of a transesterification reaction which is one of dynamic covalent bonds. The chemical formula shown in chemical formula (1) is a part of the structure obtained by the transesterification reaction.
Figure JPOXMLDOC01-appb-C000001
 
 
 
Figure JPOXMLDOC01-appb-C000001
 
 
 
 化学式(1)において、R、R1、R2は任意の化学構造である。 に お い て In the chemical formula (1), R, R1, and R2 have any chemical structures.
 本実施形態における熱硬化性樹脂は、エステル結合、イミン結合、四級アンモニウム塩結合、オキサゾリン結合、スピロオルトエステル結合、ほう酸エステル結合、ジスルフィルド結合等を有する樹脂を使用することができる。機械的強度の観点から、硬化時にエステル結合を形成するモノマー、あるいはモノマー骨格としては、エステル結合を含む構造であることが望ましい。硬化時にエステル結合を形成するモノマーとしては、多官能のエポキシ基を有するエポキシ化合物、および、硬化剤としてカルボン酸無水物、あるいは多価カルボン酸から成ることが好ましい。さらに、エポキシ化合物としては、ビスフェノールA型樹脂、ノボラック型樹脂、脂環式樹脂、グリシジルアミン樹脂が好ましい。 熱 As the thermosetting resin in the present embodiment, a resin having an ester bond, an imine bond, a quaternary ammonium salt bond, an oxazoline bond, a spiro orthoester bond, a borate ester bond, a disulfide bond, or the like can be used. From the viewpoint of mechanical strength, a monomer or a monomer skeleton that forms an ester bond at the time of curing preferably has a structure containing an ester bond. The monomer that forms an ester bond during curing is preferably composed of an epoxy compound having a polyfunctional epoxy group, and a carboxylic anhydride or a polycarboxylic acid as a curing agent. Further, as the epoxy compound, a bisphenol A type resin, a novolak type resin, an alicyclic resin, and a glycidylamine resin are preferable.
 エポキシの例としては、ビスフェノールAジグリシジルエーテルフェノール、ビスフェノールFジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、レゾシノールジグリシジルエーテル、ヘキサヒドロビスフェノールAジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、フタル酸ジグリシジルエステル、ダイマー酸ジグリシジルエステル、トリグリシジルイソシアヌレート、テトラグリシジルジアミノジフェニルメタン、テトラグリシジルメタキシレンジアミン、クレゾールノボラックポリグリシジルエーテル、テトラブロムビスフェノールAジグリシジルエーテル、ビスフェノールヘキサフロロアセトンジグリシジルエーテル等が挙げられるが、これらに限定されるものではない。 Examples of epoxy include bisphenol A diglycidyl ether phenol, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, resorcinol diglycidyl ether, hexahydrobisphenol A diglycidyl ether, polypropylene glycol diglycidyl ether, and neopentyl glycol diglycidyl ether. Glycidyl ether, diglycidyl phthalate, diglycidyl dimer, triglycidyl isocyanurate, tetraglycidyl diaminodiphenylmethane, tetraglycidyl metaxylene diamine, cresol novolak polyglycidyl ether, tetrabromobisphenol A diglycidyl ether, bisphenol hexafluoroacetone di Glycidyl ether, etc. The present invention is not limited to.
 硬化剤であるカルボン酸無水物あるいは多価カルボン酸の例としては、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、3-ドデセニル無水コハク酸、オクテニルコハク酸無水物、メチルヘキサヒドロ無水フタル酸、無水メチルナジック酸、ドデシル無水コハク酸、無水クロレンディック酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸無水物、エチレングリコールビス(アンヒドロトリメート)、メチルシクロヘキセンテトラカルボン酸無水物、無水トリメリット酸、ポリアゼライン酸無水物、エチレングリコール ビスアンヒドロトリメリテート、1,2,3,4-ブタンテトラカルボン酸、4-シクロヘキセン-1,2-ジカルボン酸、多価脂肪酸等が挙げられるが、これらに限定されるものではない。 Examples of the carboxylic anhydride or polycarboxylic acid as a curing agent include phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, 3-dodecenylsuccinic anhydride, octenylsuccinic anhydride, Methylhexahydrophthalic anhydride, methylnadic anhydride, dodecylsuccinic anhydride, chlorendic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic anhydride, ethylene glycol bis (anhydrotrimate), methylcyclohexenetetracarboxylic acid Anhydride, trimellitic anhydride, polyazelain anhydride, ethylene glycol dibisanhydrotrimellitate, 1,2,3,4-butanetetracarboxylic acid, 4-cyclohexene-1,2-dicarboxylic acid, polyvalent fatty acid Etc. But it is not limited thereto.
 エステル交換反応触媒としては、混合物中で均一に分散するものであることが好ましい。例えば、エステル交換反応を促進する触媒としては、酢酸亜鉛(II)、亜鉛(II)アセチルアセトナート、ナフテン酸亜鉛(II)、アセチルアセトン鉄(III)、アセチルアセトンコバルト(II)、アルミニウムイソプロポキシド、チタニウムイソプロポキシド、メトキシド(トリフェニルホスフィン)銅(I)錯体、エトキシド(トリフェニルホスフィン)銅(I)錯体、プロポキシド(トリフェニルホスフィン)銅(I)錯体、イソプロポキシド(トリフェニルホスフィン)銅(I)錯体、メトキシドビス(トリフェニルホスフィン)銅(II)錯体、エトキシドビス(トリフェニルホスフィン)銅(II)錯体、プロポキシドビス(トリフェニルホスフィン)銅(II)錯体、イソプロポキシドビス(トリフェニルホスフィン)銅(II)錯体、トリス(2,4-ペンタンジオナト)コバルト(III)、二酢酸すず(II)、ジ(2-エチルヘキサン酸)すず(II)、N,N-ジメチル-4-アミノピリジン、ジアザビシクロウンデセン、ジアザビシクロノネン、トリアザビシクロデセン、トリフェニルホスフィン等が挙げられるが、これらに限定されるものではない。 The transesterification catalyst is preferably one that is uniformly dispersed in the mixture. For example, catalysts that promote the transesterification reaction include zinc (II) acetate, zinc (II) acetylacetonate, zinc (II) naphthenate, iron (III) acetylacetone, cobalt (II) acetylacetone, aluminum isopropoxide, Titanium isopropoxide, methoxide (triphenylphosphine) copper (I) complex, ethoxide (triphenylphosphine) copper (I) complex, propoxide (triphenylphosphine) copper (I) complex, isopropoxide (triphenylphosphine) Copper (I) complex, methoxide bis (triphenylphosphine) copper (II) complex, ethoxide bis (triphenylphosphine) copper (II) complex, propoxide bis (triphenylphosphine) copper (II) complex, isopropoxide bis (tri Phenyl phosphite ) Copper (II) complex, tris (2,4-pentanedionato) cobalt (III), tin (II) diacetate, tin (II) di (2-ethylhexanoate), N, N-dimethyl-4- Examples include, but are not limited to, aminopyridine, diazabicycloundecene, diazabicyclononene, triazabicyclodecene, triphenylphosphine, and the like.
 また、可逆的に解離、結合する共有結合を有する樹脂組成は、ヒドロキシル基、エステル結合基及び2つ以上のビニル基を有するビニルモノマと、重合開始触媒と、エステル交換反応触媒から構成されてもよい。 Further, the resin composition having a covalent bond that reversibly dissociates and bonds may be composed of a vinyl monomer having a hydroxyl group, an ester bonding group and two or more vinyl groups, a polymerization initiation catalyst, and a transesterification reaction catalyst. .
 ビニルモノマとして用いることができる具体例としては、2-ヒドロキシメタクリレート、ヒドロキシプロピルメタクリレート、4-ヒドロキシブチルアクリレート、ジビニルエチレングリコール、モノメチルフマレート、ヒドロキシプロピルアクリレート、エチル2-(ヒドロキシメチル)アクリレート、グリセロールジメタクリレート、アリルアクリレート、メチルクロトネート、メチルメタクリレート、メチル3,3-ジメタクリレート、ジエチレングリコールジメタクリラート、エチレングリコールジメタクリラート、トリエチレングリコールジメタクリラート、ジメチルフマレート、フマル酸、1,4-ブタンジオールジメタクリラート、1,6-ヘキサンジオールジメタクリラート、1,3-ブタンジオールジメタクリラート、テトラエチレングリコールジメタクリラート、テトラエチレングリコールジアクリラート、ビニルクロトネート、クロトン酸無水物、マレイン酸ジアリル、ネオペンチルグリコールジアクリラート、ネオペンチルグリコールジメタクリラート、トリメチロールプロパントリアクリラート、トリメチロールプロパントリメタクリラート等が挙げられるが、これらに限定されるものではない。 Specific examples that can be used as vinyl monomers include 2-hydroxy methacrylate, hydroxypropyl methacrylate, 4-hydroxybutyl acrylate, divinyl ethylene glycol, monomethyl fumarate, hydroxypropyl acrylate, ethyl 2- (hydroxymethyl) acrylate, glycerol dimethacrylate , Allyl acrylate, methyl crotonate, methyl methacrylate, methyl 3,3-dimethacrylate, diethylene glycol dimethacrylate, ethylene glycol dimethacrylate, triethylene glycol dimethacrylate, dimethyl fumarate, fumaric acid, 1,4-butanediol Dimethacrylate, 1,6-hexanediol dimethacrylate, 1,3-butanediol dimethacrylate Tetraethylene glycol dimethacrylate, tetraethylene glycol diacrylate, vinyl crotonate, crotonic anhydride, diallyl maleate, neopentyl glycol diacrylate, neopentyl glycol dimethacrylate, trimethylol propane triacrylate, trimethylol Examples include, but are not limited to, propane trimethacrylate.
 重合開始触媒としては、過酸化物系、アゾ系化合物等が考えられ、具体例として2,2’-アゾビスイソブチロニトリル、2 ,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2,4-ジメチル-4-メトキシバレロニトリル)、1,1’-アゾビス(シクロヘキサンカルボニトリル)、2,2’-アゾビス(2,4,4-トリメチルペンタン)等のアゾ化合物、ジ-t-ブチルパーオキサイド、ジ-t-ヘキシルパーオキサイド、ジクミルパーオキサイド等のジアルキルパーオキサイド類、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、2,2-ビス(4,4-ジ-t-ブチルパーオキシシクロヘキシル)プロパン等のパーオキシケタール類、t-ブチルパーオキシベンゾエート、t-ヘキシルパーオキシベンゾエート、t-ブチルパーオキシアセテート、t-ブチルパーオキシラウレート、t-ヘキシルパーオキシネオデカノエート等のパーオキシエステル類、ベンゾイルパーオキサイド、ラウロイルパーオキサイド等のジアシルパーオキサイド類、t-ブチルパーオキシイソプロピルモノカーボネート、t-ヘキシルペルオキシイソプロピルモノカーボネート、ジ-n-プロピルペルオキシジカーボネート、ジイソプロピルペルオキシジカーボネート、ジ-2-エチルヘキシルペルオキシジカーボネート等のペルオキシカーボネート等が挙げられるが、これらに限定されるものではない。 As the polymerization initiation catalyst, a peroxide-based compound, an azo-based compound, and the like are considered, and specific examples thereof include 2,2′-azobisisobutyronitrile, 2, 2′-azobis (2,4-dimethylvaleronitrile), 2,2'-azobis (2,4-dimethyl-4-methoxyvaleronitrile), 1,1'-azobis (cyclohexanecarbonitrile), 2,2'-azobis (2,4,4-trimethylpentane) and the like Azo compounds, dialkyl peroxides such as di-t-butyl peroxide, di-t-hexyl peroxide, dicumyl peroxide, 1,1-bis (t-butylperoxy) cyclohexane, 1,1-bis ( t-butylperoxy) -3,3,5-trimethylcyclohexane, 2,2-bis (4,4-di-t-butylperoxycyclohexyl) pro Peroxy ketals such as tert-butyl peroxybenzoate, t-hexyl peroxy benzoate, t-butyl peroxy acetate, t-butyl peroxy laurate, peroxy such as t-hexyl peroxy neodecanoate Esters, diacyl peroxides such as benzoyl peroxide and lauroyl peroxide, t-butylperoxyisopropyl monocarbonate, t-hexylperoxyisopropyl monocarbonate, di-n-propylperoxydicarbonate, diisopropylperoxydicarbonate, di- Examples include, but are not limited to, peroxycarbonates such as 2-ethylhexyl peroxydicarbonate.
 エステル交換反応触媒としては、混合物中で均一に分散し、エステル交換反応を促進するものであることが好ましい。例えば、酢酸亜鉛(II)、亜鉛(II)アセチルアセトナート、ナフテン酸亜鉛(II)、アセチルアセトン鉄(III)、アセチルアセトンコバルト(II)、アセチルアセトンコバルト(III)、アルミニウムイソプロポキシド、チタニウムイソプロポキシド、メトキシド(トリフェニルホスフィン)銅(I)錯体、エトキシド(トリフェニルホスフィン)銅(I)錯体、プロポキシド(トリフェニルホスフィン)銅(I)錯体、イソプロポキシド(トリフェニルホスフィン)銅(I)錯体、メトキシドビス(トリフェニルホスフィン)銅(II)錯体、エトキシドビス(トリフェニルホスフィン)銅(II)錯体、プロポキシドビス(トリフェニルホスフィン)銅(II)錯体、イソプロポキシドビス(トリフェニルホスフィン)銅(II)錯体、トリス(2,4-ペンタンジオナト)コバルト(III)、ナフテン酸コバルト(II)、ステアリン酸コバルト(II)、二酢酸すず(II)、ジ(2-エチルヘキサン酸)すず(II)、N,N-ジメチル-4-アミノピリジン、ジアザビシクロウンデセン、ジアザビシクロノネン、トリアザビシクロデセン、トリフェニルホスフィン、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2- ェニルイミダゾール等が挙げられるが、これらに限定されるものではない。 The transesterification catalyst is preferably one that is uniformly dispersed in the mixture to promote the transesterification reaction. For example, zinc (II) acetate, zinc (II) acetylacetonate, zinc (II) naphthenate, iron (III) acetylacetone, cobalt (II) acetylacetone, cobalt (III) acetylacetone, aluminum isopropoxide, titanium isopropoxide , Methoxide (triphenylphosphine) copper (I) complex, ethoxide (triphenylphosphine) copper (I) complex, propoxide (triphenylphosphine) copper (I) complex, isopropoxide (triphenylphosphine) copper (I) Complex, methoxide bis (triphenylphosphine) copper (II) complex, ethoxide bis (triphenylphosphine) copper (II) complex, propoxide bis (triphenylphosphine) copper (II) complex, isopropoxide bis (triphenylphosphine) (II) complex, tris (2,4-pentanedionato) cobalt (III), cobalt (II) naphthenate, cobalt (II) stearate, tin (II) diacetate, tin (2-ethylhexanoate) (II), N, N-dimethyl-4-aminopyridine, diazabicycloundecene, diazabicyclononene, triazabicyclodecene, triphenylphosphine, 2-phenylimidazole, 2-phenyl-4-methylimidazole, -Benzyl-2-phenylimidazole, 1-cyanoethyl-2-phenylimidazole, and the like, but are not limited thereto.
 また、可逆的に解離、結合する共有結合を有する樹脂組成は、可逆的に解離、結合する共有結合を有する架橋成分を導入した熱可塑型樹脂であってもよい。熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、ポリスチレン、ポリビニルクロライド、ポリエチレンテレフタレート、アクリル樹脂等が挙げられるが、これらに限定されるものではない。
 可逆的に解離、結合する共有結合を有する架橋成分としては、アルコキシアミン骨格、ジアリールビベンゾフラン骨格、ジオキサボラン骨格を有するものが挙げられるが、これらに限定されるものではない。
Further, the resin composition having a reversibly dissociable and bonded covalent bond may be a thermoplastic resin into which a cross-linking component having a reversibly dissociated and bonded covalent bond is introduced. Examples of the thermoplastic resin include, but are not limited to, polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyethylene terephthalate, and acrylic resin.
Examples of the cross-linking component having a covalent bond capable of reversibly dissociating and bonding include those having an alkoxyamine skeleton, a diarylbibenzofuran skeleton, and a dioxaborane skeleton, but are not limited thereto.
 <熱可塑性樹脂>
 熱可塑性樹脂層に用いる熱可塑性樹脂は、ポリエチレン、ポリプロピレン、ポリスチレン、ABS樹脂、アクリル樹脂、ポリ塩化ビニル、ポリアミド、ポリアセタール、ポリカーボネート、ポリエステル、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリフェニレンオキシド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリテトラフルオロエチレン等、加熱により軟化、流動する樹脂が挙げられる。中でも特に、化学構造中に-C(C=O)=O-という構造を有する、エステル結合やカーボネート基を有するものが望ましい。例えば、ポリエステル、ポリカーボネート、アクリル樹脂や、ポリアミドが望ましい。これらの樹脂では、熱硬化性樹脂のエステル結合と化学反応することで、層間の接着性を向上することができる。
<Thermoplastic resin>
The thermoplastic resin used for the thermoplastic resin layer includes polyethylene, polypropylene, polystyrene, ABS resin, acrylic resin, polyvinyl chloride, polyamide, polyacetal, polycarbonate, polyester, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyphenylene oxide. And resins which soften and flow by heating, such as polyamideimide, polyether ether ketone, polyphenylene sulfide, and polytetrafluoroethylene. Among them, those having an ester bond or a carbonate group having a structure of —C (C = O) = O— in the chemical structure are particularly desirable. For example, polyester, polycarbonate, acrylic resin, and polyamide are desirable. These resins can improve the adhesiveness between layers by chemically reacting with the ester bond of the thermosetting resin.
 <繊維>
 本実施形態における熱硬化性樹脂に用いられる繊維は、無機繊維及び有機繊維が使用できる。例えば、無機繊維としては、ガラス繊維、アスベスト繊維、炭素繊維、シリカ繊維、シリカ・アルミナ繊維、アルミナ繊維、ジルコニア繊維、チタン酸カリウム繊維、チラノ繊維、炭化ケイ素繊維、金属繊維等が挙げられる。有機繊維としては、高強度ポリエチレン繊維、ポリアセタール繊維、脂肪族または芳香族ポリアミド繊維、ポリアクリレート繊維、フッ素繊維、ボロン繊維、ポリアクリロニトリル繊維、アラミド繊維、PBO(ポリーp-フェニレンベンゾビスオキサゾール)繊維、ラミー、セルロース等、植物由来の繊維(植物繊維)等が挙げられる。これらの繊維は、単独または二種以上組み合わせて使用できる。これらの繊維のうち、機械的強度等の点から無機繊維、特に炭素繊維が好ましい。炭素繊維は、その原料により、合成高分子由来の炭素繊維(ポリアクリロニトリル系、ポリビニルアルコール系、レーヨン系炭素繊維等と鉱物由来の炭素繊維(ピッチ系炭素繊維等)とに分類できる。これらのうち、機械的強度の観点から合成高分子由来の炭素繊維が好ましい。
<Fiber>
As the fibers used for the thermosetting resin in the present embodiment, inorganic fibers and organic fibers can be used. For example, examples of the inorganic fiber include glass fiber, asbestos fiber, carbon fiber, silica fiber, silica / alumina fiber, alumina fiber, zirconia fiber, potassium titanate fiber, tyranno fiber, silicon carbide fiber, and metal fiber. Organic fibers include high-strength polyethylene fibers, polyacetal fibers, aliphatic or aromatic polyamide fibers, polyacrylate fibers, fluorine fibers, boron fibers, polyacrylonitrile fibers, aramid fibers, PBO (poly-p-phenylene benzobisoxazole) fibers, Fibers derived from plants (vegetable fibers) such as ramie, cellulose and the like. These fibers can be used alone or in combination of two or more. Among these fibers, inorganic fibers, particularly carbon fibers, are preferable in terms of mechanical strength and the like. Carbon fibers can be classified according to their raw materials into carbon fibers derived from synthetic polymers (polyacrylonitrile-based, polyvinyl alcohol-based, rayon-based carbon fibers, etc.) and mineral-derived carbon fibers (pitch-based carbon fibers, etc.). From the viewpoint of mechanical strength, carbon fibers derived from synthetic polymers are preferred.
 これらの繊維は、連続繊維、長繊維、短繊維、チョップド等の形状で、一方向材、平織り、不職布等の形状で用いられる。また樹脂中に直接添加して用いられることもあるが、本実施形態ではこれらの繊維形状、繊維状態に限定されるものではない。
 なお、本実施形態の樹脂積層体1は、例えば、自動車、鉄道車両、船舶、航空機等の移動体や風力発電機用ブレード、ファンブレード、ユニットバス、浄化槽、プリント基板、遊具、スキー板等、各種分野で使用される部品や本体に使用することができる。
These fibers are used in the form of a continuous fiber, a long fiber, a short fiber, chopped or the like, and are used in the form of a unidirectional material, a plain weave, a nonwoven cloth, or the like. In addition, it may be used by being directly added to a resin, but in the present embodiment, it is not limited to these fiber shapes and fiber states.
The resin laminate 1 of the present embodiment includes, for example, moving bodies such as automobiles, railway vehicles, ships, and aircraft, blades for wind power generators, fan blades, unit baths, septic tanks, printed boards, playground equipment, skis, and the like. It can be used for parts and bodies used in various fields.
 (第1具体例)
 熱硬化性樹脂シートが以下の手順で作製される。
 まず、製造者は、三菱ケミカル(株)製のエポキシ樹脂である「jER828(商品名)」100重量部に対して、エステル交換反応触媒である東京化成工業(株)製の亜鉛(II)アセチルアセトナートを14.2重量部加え、溶解させた。これに、硬化剤として日立化成(株)製の「HN-2200(商品名)」が44.8重量部加えられ、攪拌、混合された。この結果、生成される混合液を熱硬化性樹脂原料液と称する。
 そして、この熱硬化性樹脂原料液をテフロン(登録商標)シート上に約1mmの厚さで広げ、160℃で2時間加熱硬化することで、熱硬化性樹脂シート(繊維不含熱硬化性樹脂層11)を作製した。製造者は、作製した熱硬化性樹脂シート2枚でPETフィルム(繊維不含熱可塑性樹脂層21)1枚を挟み込み、減圧下、160℃でプレスすることで樹脂積層体1を得た。
 このようにして作成された樹脂積層体1は、繊維不含熱硬化性樹脂層11の間に繊維不含熱可塑性樹脂層21が存在する樹脂積層体1である。なお、第1具体例の樹脂積層体1は図1の樹脂積層体1aに相当する。
(First specific example)
A thermosetting resin sheet is prepared according to the following procedure.
First, 100 parts by weight of “jER828 (trade name)”, an epoxy resin manufactured by Mitsubishi Chemical Corporation, and zinc (II) acetyl manufactured by Tokyo Chemical Industry Co., Ltd. 14.2 parts by weight of acetonate was added and dissolved. To this, 44.8 parts by weight of "HN-2200 (trade name)" manufactured by Hitachi Chemical Co., Ltd. was added as a curing agent, followed by stirring and mixing. The resulting liquid mixture is referred to as a thermosetting resin raw material liquid.
Then, the thermosetting resin raw material liquid is spread on a Teflon (registered trademark) sheet with a thickness of about 1 mm, and heat-cured at 160 ° C. for 2 hours to form a thermosetting resin sheet (fiber-free thermosetting resin). Layer 11) was prepared. The manufacturer sandwiched one PET film (the fiber-free thermoplastic resin layer 21) between the two produced thermosetting resin sheets and pressed it at 160 ° C. under reduced pressure to obtain a resin laminate 1.
The resin laminate 1 thus produced is a resin laminate 1 in which the fiber-free thermoplastic resin layer 21 exists between the fiber-free thermosetting resin layers 11. Note that the resin laminate 1 of the first specific example corresponds to the resin laminate 1a of FIG.
 (第2具体例)
 製造者は、熱硬化性樹脂を含有する繊維含有樹脂体を以下の手順で作製した。
 製造者は、第1具体例に記載の熱硬化性樹脂原料液を調整し、この熱硬化性樹脂原料液を炭素繊維クロスである東レ(株)製の「CO6343(商品名)」に減圧下で含浸させた。そして、製造者は、含浸した炭素繊維クロスを、160℃で2時間加熱硬化することで、炭素繊維含有熱硬化性樹脂シート(繊維含有熱硬化性樹脂層12)を作製した。続いて、製造者は、作製した炭素繊維含有熱硬化性樹脂シート3枚の各層間にポリカーボネートフィルム(繊維不含熱可塑性樹脂層21)を1枚ずつ挟み込み、減圧下、160℃でプレスすることで、樹脂積層体1を得た。
 このようにして作成された樹脂積層体1は、繊維含有熱硬化性樹脂層12間に繊維不含熱可塑性樹脂層21を有する樹脂積層体1である。なお、第2具体例の樹脂積層体は図2の樹脂積層体1bに相当する。
(Second specific example)
The manufacturer produced a fiber-containing resin body containing a thermosetting resin by the following procedure.
The manufacturer prepares the thermosetting resin raw material liquid described in the first specific example, and converts the thermosetting resin raw material liquid to “CO6343 (trade name)” manufactured by Toray Industries, Inc., which is a carbon fiber cloth, under reduced pressure. For impregnation. The manufacturer heat-cured the impregnated carbon fiber cloth at 160 ° C. for 2 hours to produce a carbon fiber-containing thermosetting resin sheet (fiber-containing thermosetting resin layer 12). Subsequently, the manufacturer inserts a polycarbonate film (fiber-free thermoplastic resin layer 21) one by one between the three layers of the prepared carbon fiber-containing thermosetting resin sheet and presses it at 160 ° C. under reduced pressure. Thus, a resin laminate 1 was obtained.
The resin laminate 1 thus produced is a resin laminate 1 having a fiber-free thermoplastic resin layer 21 between the fiber-containing thermosetting resin layers 12. Note that the resin laminate of the second specific example corresponds to the resin laminate 1b of FIG.
 (第3具体例)
 製造者は、樹脂が半硬化状態である繊維含有熱硬化性樹脂シートを以下の手順で作製した。まず、製造者は、第2具体例に記載の方法と同様に、熱硬化性樹脂原料液を含浸した炭素繊維クロス(炭素繊維含有熱硬化性樹脂シート;繊維含有熱硬化性樹脂層12)を作製した。
 そして、製造者は、炭素繊維含有熱硬化性樹脂シートを、80℃で1時間加熱した。これによって、樹脂が半硬化状態の繊維含有熱硬化性樹脂シートが作製された。作製された樹脂が半硬化状態の繊維含有熱硬化性樹脂シート4枚の各層間にPETフィルム(繊維不含熱可塑性樹脂層21)を1枚ずつ挟み込み、減圧下、180℃でプレスした。このようにして、樹脂積層体1が得られた。
 このようにして作製された樹脂積層体1は、樹脂が半硬化の状態から作製された繊維含有熱硬化性樹脂層12の間に繊維不含熱可塑性樹脂層21が存在する樹脂積層体1である。第3具体例の樹脂積層体1は半硬化状態の繊維含有熱硬化性樹脂層12を用いて、図2の樹脂積層体1bを作製したものに相当する。
(Third specific example)
The manufacturer produced a fiber-containing thermosetting resin sheet in which the resin is in a semi-cured state by the following procedure. First, the manufacturer prepares a carbon fiber cloth (carbon fiber-containing thermosetting resin sheet; fiber-containing thermosetting resin layer 12) impregnated with a thermosetting resin raw material liquid in the same manner as described in the second specific example. Produced.
Then, the manufacturer heated the carbon fiber-containing thermosetting resin sheet at 80 ° C. for 1 hour. Thus, a fiber-containing thermosetting resin sheet in which the resin was in a semi-cured state was produced. A PET film (fiber-free thermoplastic resin layer 21) was sandwiched between each layer of four fiber-containing thermosetting resin sheets in a semi-cured state, and pressed at 180 ° C. under reduced pressure. Thus, a resin laminate 1 was obtained.
The resin laminate 1 produced in this manner is a resin laminate 1 in which the fiber-free thermoplastic resin layer 21 exists between the fiber-containing thermosetting resin layers 12 produced from a semi-cured state of the resin. is there. The resin laminate 1 of the third specific example corresponds to a resin laminate 1b shown in FIG. 2 manufactured using the fiber-containing thermosetting resin layer 12 in a semi-cured state.
 (第4具体例)
 第3具体例で作製した、樹脂が半硬化状態である繊維含有熱硬化性樹脂シート(繊維含有熱硬化性樹脂層12)4枚の各層間に、東レ(株)製の炭素繊維クロス1枚と、ポリカーボネートからなる一村産業(株)製の繊維含有熱可塑性樹脂シート(繊維含有熱可塑性樹脂層22)が1枚ずつ挟み込まれた。その後、これらの積層体が減圧下、180℃でプレスされることで、樹脂積層体1が得られた。
 このようにして作製された樹脂積層体1は、繊維含有熱硬化性樹脂層12の間に繊維含有熱可塑性樹脂層22が存在する樹脂積層体1である。第4具体例の樹脂積層体1は図8の樹脂積層体1hに相当する。
(Fourth specific example)
Between each of the four fiber-containing thermosetting resin sheets (fiber-containing thermosetting resin layer 12) in which the resin is in a semi-cured state, a carbon fiber cloth manufactured by Toray Industries, Inc. And a fiber-containing thermoplastic resin sheet (fiber-containing thermoplastic resin layer 22) made of polycarbonate and manufactured by Ichimura Sangyo Co., Ltd. was sandwiched one by one. Thereafter, these laminates were pressed at 180 ° C. under reduced pressure to obtain a resin laminate 1.
The resin laminate 1 manufactured in this manner is a resin laminate 1 in which the fiber-containing thermoplastic resin layer 22 exists between the fiber-containing thermosetting resin layers 12. The resin laminate 1 of the fourth specific example corresponds to the resin laminate 1h of FIG.
 (第5具体例)
 製造者は、硬化剤である日立化成(株)製の「HN-2200(商品名)」89.6重量部に対して、硬化促進剤である、四国化成製の「2E4MZ-CN(商品名)」0.3重量部を添加し、攪拌、混合した。この混合液にエポキシ樹脂である、三菱ケミカル製の「jER828(商品名)」100重量部が加えられ、攪拌、混合されることで、樹脂原料液が得られた。この混合比では、エポキシ樹脂と硬化剤とが等量比で混合されている。製造者は、得られた樹脂原料液を、第2具体例で用いた炭素繊維クロス1枚に減圧下で含浸させた。さらに、製造者は、含浸した炭素繊維クロスを、160℃で2時間加熱硬化した。製造者は、作製した炭素繊維含有熱硬化性樹脂シート(繊維含有熱硬化性樹脂層12)4枚の各層間にPETフィルムを1枚ずつ挟み込み、減圧下、180℃でプレスすることで、樹脂積層体1を得た。
(Fifth specific example)
The manufacturer provided 89.6 parts by weight of “HN-2200 (trade name)” manufactured by Hitachi Chemical Co., Ltd. as a curing agent, and “2E4MZ-CN” (trade name) manufactured by Shikoku Chemicals as a curing accelerator. ) "Was added, and the mixture was stirred and mixed. 100 parts by weight of “jER828 (trade name)” manufactured by Mitsubishi Chemical, which is an epoxy resin, was added to this mixed solution, and the mixture was stirred and mixed to obtain a resin raw material liquid. At this mixing ratio, the epoxy resin and the curing agent are mixed at an equal ratio. The manufacturer impregnated one carbon fiber cloth used in the second specific example with the obtained resin raw material liquid under reduced pressure. Further, the manufacturer heat-cured the impregnated carbon fiber cloth at 160 ° C. for 2 hours. The manufacturer inserts a PET film between the four layers of the prepared carbon fiber-containing thermosetting resin sheet (fiber-containing thermosetting resin layer 12) one by one, and presses it at 180 ° C. under reduced pressure to obtain a resin. The laminate 1 was obtained.
 このようにして作製された樹脂積層体1は、繊維含有熱硬化性樹脂層12の間に繊維不含熱可塑性樹脂層21が存在する樹脂積層体1である。ただし、第5具体例で作製される樹脂積層体1は、非動的共有結合の熱硬化性樹脂層を有する樹脂積層体1である。
 第5具体例の樹脂積層体1は図2の樹脂積層体1bにおいて、繊維含有熱硬化性樹脂層12が動的結合を有さないものに相当する。
The resin laminate 1 manufactured in this manner is a resin laminate 1 in which the fiber-free thermoplastic resin layer 21 exists between the fiber-containing thermosetting resin layers 12. However, the resin laminate 1 manufactured in the fifth specific example is a resin laminate 1 having a non-dynamic covalent bond thermosetting resin layer.
The resin laminate 1 of the fifth specific example corresponds to the resin laminate 1b of FIG. 2 in which the fiber-containing thermosetting resin layer 12 has no dynamic bond.
 (比較具体例)
 以下の手順で、比較具体例として図16の樹脂積層体1Zを作製した。
 第1具体例で作製した樹脂原料液に、第2具体例で使用した炭素繊維クロスが4枚重ねた状態で、減圧下で含浸された。そして、含浸させた炭素繊維クロス4枚が、160℃で2時間加熱硬化されることで、繊維含有熱硬化性樹脂層12のみからなる樹脂積層体1Zが得られた。
 このようにして作製された樹脂積層体1Zは、繊維含有熱硬化性樹脂層12のみが4層積層している樹脂積層体1Zである。
(Comparative example)
In the following procedure, a resin laminate 1Z of FIG. 16 was produced as a comparative example.
The resin raw material liquid prepared in the first specific example was impregnated under reduced pressure with four carbon fiber cloths used in the second specific example being stacked. Then, the four impregnated carbon fiber cloths were heated and cured at 160 ° C. for 2 hours, thereby obtaining a resin laminate 1 </ b> Z including only the fiber-containing thermosetting resin layer 12.
The resin laminate 1Z produced in this manner is a resin laminate 1Z in which only four fiber-containing thermosetting resin layers 12 are laminated.
 (比較結果)
 樹脂積層体1,1Zの再成形が以下の方法に従って実施された。
 第3具体例で得られた樹脂積層体1、比較具体例で得られた樹脂積層体1Zのそれぞれが、幅5cm、長さ20cmの板に切断加工された。ここで、前記したように、第3具体例の樹脂積層体1は、繊維含有熱可塑性樹脂層22間に樹脂が半硬化の状態から作製された繊維含有熱硬化性樹脂層12の間に繊維不含熱可塑性樹脂層21が存在する樹脂積層体1である。また、前記したように、比較具体例の樹脂積層体1Zは、図16に示す繊維含有熱硬化性樹脂層12のみが4層積層しているものである。
(Comparison result)
Reforming of the resin laminates 1 and 1Z was performed according to the following method.
Each of the resin laminate 1 obtained in the third specific example and the resin laminate 1Z obtained in the comparative specific example was cut into a plate having a width of 5 cm and a length of 20 cm. Here, as described above, the resin laminate 1 of the third specific example has a fiber between the fiber-containing thermosetting resin layers 12 prepared from a semi-cured state of the resin between the fiber-containing thermoplastic resin layers 22. The resin laminate 1 includes the non-containing thermoplastic resin layer 21. Further, as described above, the resin laminate 1Z of the comparative specific example has only four fiber-containing thermosetting resin layers 12 shown in FIG.
 そして、得られたそれぞれの板状の樹脂積層体1,1Zが恒温槽内で180℃に加熱された。また、上下に分離した曲率半径200mmのSUS性の金型が180℃に加熱された。そしてその上下金型間に、加熱した板状の第3具体例の樹脂積層体1と比較具体例の樹脂積層体1Zそれぞれが挟み込まれ、2時間放置された。2時間後、恒温槽から金型後が取り出され、放冷された。金型から取り出した、それぞれの樹脂積層体1,1Zを観察したところ、比較具体例の樹脂積層体1Zでは、凹部(曲げた部分の内側)に層間剥離が観察された。これは、曲げた際に発生した層間の応力によって生じる剥離である。一方、第3具体例の樹脂積層体1では剥離は観察されなかった。 {Circle around (1)} The obtained respective plate-shaped resin laminates 1 and 1Z were heated to 180 ° C. in a thermostat. In addition, a SUS mold having a radius of curvature of 200 mm separated vertically was heated to 180 ° C. The heated resin laminate 1 of the third specific example and the resin laminate 1Z of the comparative specific example were sandwiched between the upper and lower molds, and left for 2 hours. Two hours later, the mold was taken out of the thermostat and allowed to cool. When each of the resin laminates 1 and 1Z taken out of the mold was observed, delamination was observed in the concave portion (inside the bent portion) in the resin laminate 1Z of the comparative specific example. This is separation caused by stress between the layers generated when bending. On the other hand, no peeling was observed in the resin laminate 1 of the third specific example.
 次に、金型から取り出した板状の樹脂積層体1,1Zの湾曲部分の高さから、その曲げ角度が測定された。金型の曲げ角度θonと再成形後の樹脂積層体1,1Zの曲げ角度θoffの差をスプリングバック量Δθとした。 (5) Next, the bending angle was measured from the height of the curved portion of the plate-shaped resin laminates 1 and 1Z taken out of the mold. The difference between the bending angle θon of the mold and the bending angle θoff of the resin laminates 1 and 1Z after remolding was defined as the springback amount Δθ.
 次に、第4具体例の樹脂積層体1(動的共有結合あり)と第5具体例の樹脂積層体1(動的共有結合なし)のスプリングバック量が比較された。この結果、第4具体例の樹脂積層体1のスプリングバックが5°であるのに対し、第5具体例の樹脂積層体1のスプリングバックが15°であった。このように、第4具体例の樹脂積層体1(動的共有結合あり)の方が第5具体例の樹脂積層体1(動的共有結合なし)よりスプリングバック量を小さくすることができた。 Next, the amount of springback of the resin laminate 1 of the fourth specific example (with dynamic covalent bonds) was compared with the resin laminate 1 of the fifth specific example (without dynamic covalent bonds). As a result, the springback of the resin laminate 1 of the fourth specific example was 5 °, whereas the springback of the resin laminate 1 of the fifth specific example was 15 °. As described above, the amount of springback of the resin laminate 1 of the fourth specific example (with dynamic covalent bonds) was smaller than that of the resin laminate 1 of the fifth specific example (without dynamic covalent bonds). .
 (樹脂積層体製造システム100)
 図17は、本実施形態に係る樹脂積層体1を製造する樹脂積層体製造システム100の構成例を示す図である。
 樹脂積層体製造システム100は、2つの第1ロール101、第2ロール102、恒温槽111、カッタ112を有している。第1ロール101は、樹脂が半硬化状態である繊維含有熱硬化性樹脂シート(繊維含有熱硬化性樹脂層12)を、例えば、幅5cm、長さ1mに加工し、直径5cmの筒に巻回したものである。そして、第2ロール102は、例えば、幅5cm、長さ1mのPETフィルム(繊維不含熱可塑性樹脂層21)を直径5cmの筒に巻回したものである。なお、第1ロール101、第2ロール102における各シートの幅、長さ、巻回する筒の直径は、これらのサイズに限らない。ここで、繊維含有熱硬化性樹脂シートが半硬化状態であることによって、ロール状に巻回することができる。
 そして、図17に示すように、半硬化状態である繊維含有樹脂シートのロール2本と、PETフィルムのロール1本が交互に重ねられ、恒温槽111で加熱されることにより、樹脂積層体1が連続的に製造される。加熱によって製造された樹脂積層体1はカッタ112で適切な長さに切断される。
(Resin laminate manufacturing system 100)
FIG. 17 is a diagram illustrating a configuration example of a resin laminate manufacturing system 100 that manufactures the resin laminate 1 according to the present embodiment.
The resin laminate manufacturing system 100 includes two first rolls 101, a second roll 102, a thermostat 111, and a cutter 112. The first roll 101 processes a fiber-containing thermosetting resin sheet (fiber-containing thermosetting resin layer 12) in which the resin is in a semi-cured state into, for example, a width of 5 cm and a length of 1 m, and winds the sheet into a cylinder having a diameter of 5 cm. It is turned. The second roll 102 is formed, for example, by winding a PET film (fiber-free thermoplastic resin layer 21) having a width of 5 cm and a length of 1 m around a cylinder having a diameter of 5 cm. The width and length of each sheet in the first roll 101 and the second roll 102 and the diameter of the wound tube are not limited to these sizes. Here, when the fiber-containing thermosetting resin sheet is in a semi-cured state, it can be wound into a roll.
Then, as shown in FIG. 17, two rolls of the fiber-containing resin sheet in a semi-cured state and one roll of the PET film are alternately stacked and heated in the thermostat 111, whereby the resin laminate 1 is heated. Are manufactured continuously. The resin laminate 1 manufactured by heating is cut into an appropriate length by the cutter 112.
 なお、図17の例では、1層の繊維不含熱可塑性樹脂層21を繊維含有熱硬化性樹脂層12で挟んだ構成の樹脂積層体1(図2の樹脂積層体1bに相当)が製造されているが、これに限らない。つまり、図1、図3~図15に示す樹脂積層体1や、図1~図15に示す樹脂積層体1が、さらに積層された樹脂積層体1(ただし、熱硬化性樹脂層の間に必ず熱可塑性樹脂層が存在する)が製造されてもよい。
 また、図17の例では、半硬化状態の熱硬化性樹脂層がロール状に巻回されているが、硬化状態の熱硬化性樹脂層が恒温槽111に投入されてもよい。
In the example of FIG. 17, a resin laminate 1 (corresponding to the resin laminate 1b in FIG. 2) having a configuration in which one fiber-free thermoplastic resin layer 21 is sandwiched between fiber-containing thermosetting resin layers 12 is manufactured. But it is not limited to this. That is, the resin laminate 1 shown in FIGS. 1 and 3 to 15 and the resin laminate 1 shown in FIGS. 1 to 15 are further laminated with the resin laminate 1 (where the thermosetting resin layer is located between the thermosetting resin layers). (There is always a thermoplastic resin layer).
Further, in the example of FIG. 17, the thermosetting resin layer in the semi-cured state is wound in a roll shape, but the thermosetting resin layer in the cured state may be put into the thermostat 111.
 本発明は前記した実施形態に限定されるものではなく、さまざまな変形例が含まれる。例えば、前記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明したすべての構成を有するものに限定されるものではない。 The present invention is not limited to the above-described embodiment, and includes various modifications. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described above.
 1,1a~1q 樹脂積層体
 11  繊維不含熱硬化性樹脂層(熱硬化性樹脂の層)
 12  繊維含有熱硬化性樹脂層(繊維含有熱硬化性樹脂の層、熱硬化性樹脂の層)
 21  繊維不含熱可塑性樹脂層(熱可塑性樹脂の層)
 22  繊維含有熱可塑性樹脂層(繊維含有熱可塑性樹脂の層、熱可塑性樹脂の層)
 100 樹脂積層体製造システム
 101 第1ロール(半硬化状態の熱硬化性樹脂層)
 102 第2ロール
1, 1a to 1q Resin laminate 11 Fiber-free thermosetting resin layer (thermosetting resin layer)
12 Fiber-containing thermosetting resin layer (fiber-containing thermosetting resin layer, thermosetting resin layer)
21 Fiber-free thermoplastic resin layer (thermoplastic resin layer)
22 Fiber-containing thermoplastic resin layer (fiber-containing thermoplastic resin layer, thermoplastic resin layer)
REFERENCE SIGNS LIST 100 Resin laminate production system 101 First roll (thermosetting resin layer in semi-cured state)
102 2nd roll

Claims (11)

  1.  任意の2つの熱硬化性樹脂の層間に熱可塑性樹脂の層が密着して存在する
     ことを特徴とする樹脂積層体。
    A resin laminate, wherein a layer of a thermoplastic resin is in close contact between any two layers of a thermosetting resin.
  2.  前記熱硬化性樹脂の層の少なくとも1つにおいて、前記熱硬化性樹脂を構成する分子が可逆的に乖離及び結合する共有結合である動的共有結合を有する
     ことを特徴とする請求項1に記載の樹脂積層体。
    The molecule which comprises the said thermosetting resin has a dynamic covalent bond which is a covalent bond which detach | separates and couple | bonds reversibly in at least one of the layers of the said thermosetting resin. The Claim 1 characterized by the above-mentioned. Resin laminate.
  3.  前記動的共有結合を有する前記熱硬化性樹脂は、エステル結合を含む樹脂である
     ことを特徴とする請求項2に記載の樹脂積層体。
    The resin laminate according to claim 2, wherein the thermosetting resin having the dynamic covalent bond is a resin containing an ester bond.
  4.  前記熱硬化性樹脂の層の少なくとも1つが繊維含有熱硬化性樹脂の層である
     ことを特徴とする請求項1に記載の樹脂積層体。
    The resin laminate according to claim 1, wherein at least one of the thermosetting resin layers is a fiber-containing thermosetting resin layer.
  5.  前記繊維含有熱硬化性樹脂に含まれる繊維は、アラミド繊維、ガラス繊維、炭素繊維、植物繊維のうち、少なくとも1つを含む
     ことを特徴とする請求項4に記載の樹脂積層体。
    The resin laminate according to claim 4, wherein the fibers contained in the fiber-containing thermosetting resin include at least one of aramid fiber, glass fiber, carbon fiber, and plant fiber.
  6.  前記熱可塑性樹脂の層が複数存在する場合、当該熱可塑性樹脂の層の少なくとも1つが繊維含有熱可塑性樹脂の層である
     ことを特徴とする請求項1に記載の樹脂積層体。
    The resin laminate according to claim 1, wherein when a plurality of the thermoplastic resin layers are present, at least one of the thermoplastic resin layers is a fiber-containing thermoplastic resin layer.
  7.  前記繊維含有熱可塑性樹脂に含まれる繊維は、アラミド繊維、ガラス繊維、炭素繊維、植物繊維のうち、少なくとも1つを含む
     ことを特徴とする請求項6に記載の樹脂積層体。
    The resin laminate according to claim 6, wherein the fibers contained in the fiber-containing thermoplastic resin include at least one of an aramid fiber, a glass fiber, a carbon fiber, and a plant fiber.
  8.  前記熱可塑性樹脂は、-C(=O)-(O)-結合を有する樹脂である
     ことを特徴とする請求項1に記載の樹脂積層体。
    The resin laminate according to claim 1, wherein the thermoplastic resin is a resin having a -C (= O)-(O)-bond.
  9.  前記熱可塑性樹脂は、ポリエステル、ポリカーボネート、ポリアミド、アクリル樹脂のうちの1つである
     ことを特徴とする請求項1に記載の樹脂積層体。
    The resin laminate according to claim 1, wherein the thermoplastic resin is one of polyester, polycarbonate, polyamide, and acrylic resin.
  10.  任意の2つの熱硬化性樹脂の層間に熱可塑性樹脂が存在するよう前記熱硬化性樹脂の層及び前記熱可塑性樹脂の層を密着して配置する配置工程と、
     前記配置工程で配置された前記熱硬化性樹脂の層及び前記熱可塑性樹脂の層を所定の温度以上で加熱する加熱工程と、
     を含むことを特徴とする樹脂積層体の製造方法。
    An arranging step of closely arranging the layer of the thermosetting resin and the layer of the thermoplastic resin such that the thermoplastic resin is present between any two layers of the thermosetting resin,
    A heating step of heating the layer of the thermosetting resin and the layer of the thermoplastic resin arranged in the arrangement step at a predetermined temperature or higher,
    A method for producing a resin laminate, comprising:
  11.  前記配置工程において、
     前記熱硬化性樹脂の層は、半硬化の状態である
     ことを特徴とする請求項10に記載の樹脂積層体の製造方法。
    In the disposing step,
    The method for producing a resin laminate according to claim 10, wherein the thermosetting resin layer is in a semi-cured state.
PCT/JP2019/005319 2018-06-22 2019-02-14 Resin laminate and method of manufacturing resin laminate WO2019244395A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018118919A JP7038012B2 (en) 2018-06-22 2018-06-22 Method for manufacturing resin laminate and resin laminate
JP2018-118919 2018-06-22

Publications (1)

Publication Number Publication Date
WO2019244395A1 true WO2019244395A1 (en) 2019-12-26

Family

ID=68982851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005319 WO2019244395A1 (en) 2018-06-22 2019-02-14 Resin laminate and method of manufacturing resin laminate

Country Status (3)

Country Link
JP (1) JP7038012B2 (en)
TW (1) TWI743495B (en)
WO (1) WO2019244395A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114746237B (en) * 2019-12-23 2024-06-25 东丽株式会社 Composite prepreg and fiber-reinforced resin molded article
JP2022174379A (en) * 2021-05-11 2022-11-24 株式会社日立製作所 Resin composite, method for producing resin composite, and method for disassembling resin composite

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04250033A (en) * 1990-04-24 1992-09-04 General Electric Co <Ge> Laminate with base of plastic
JP2002105223A (en) * 2000-09-29 2002-04-10 Toho Tenax Co Ltd Paperless prepreg and manufacturing method
JP2014061640A (en) * 2012-09-21 2014-04-10 Nippon Kayaku Co Ltd Laminate having glass, curable resin layers, and transparent resin layer
EP2784106A1 (en) * 2013-03-28 2014-10-01 Siemens Aktiengesellschaft Composite structure
WO2015122485A1 (en) * 2014-02-17 2015-08-20 三菱瓦斯化学株式会社 Transparent resin laminate and front surface plate
WO2016132655A1 (en) * 2015-02-19 2016-08-25 住友理工株式会社 Fiber-reinforced resin molded body having damping properties and automobile part using same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017088739A (en) * 2015-11-11 2017-05-25 株式会社日立製作所 Composite, electrical machine, motor, transformer, structure, movable body and manufacturing method of composite

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04250033A (en) * 1990-04-24 1992-09-04 General Electric Co <Ge> Laminate with base of plastic
JP2002105223A (en) * 2000-09-29 2002-04-10 Toho Tenax Co Ltd Paperless prepreg and manufacturing method
JP2014061640A (en) * 2012-09-21 2014-04-10 Nippon Kayaku Co Ltd Laminate having glass, curable resin layers, and transparent resin layer
EP2784106A1 (en) * 2013-03-28 2014-10-01 Siemens Aktiengesellschaft Composite structure
WO2015122485A1 (en) * 2014-02-17 2015-08-20 三菱瓦斯化学株式会社 Transparent resin laminate and front surface plate
WO2016132655A1 (en) * 2015-02-19 2016-08-25 住友理工株式会社 Fiber-reinforced resin molded body having damping properties and automobile part using same

Also Published As

Publication number Publication date
TWI743495B (en) 2021-10-21
JP7038012B2 (en) 2022-03-17
JP2019217738A (en) 2019-12-26
TW202000460A (en) 2020-01-01

Similar Documents

Publication Publication Date Title
US8487052B2 (en) Resin composition for fiber-reinforced composite material, cured product thereof, fiber-reinforced composite material, molding of fiber-reinforced resin, and process for production thereof
WO2019026331A1 (en) Resin-metal composite, method for preparing resin-metal composite, and method for dismantling resin-metal composite
JP4872139B2 (en) RESIN COMPOSITION FOR FIBER-REINFORCED COMPOSITE MATERIAL, CURED PRODUCT, FIBER-REINFORCED COMPOSITE MATERIAL, FIBER-REINFORCED RESIN MOLDED ARTICLE, AND METHOD FOR PRODUCING SAME
WO2019244395A1 (en) Resin laminate and method of manufacturing resin laminate
JP2009120627A (en) Carbon fiber-reinforced prepreg having gas barrier property and carbon fiber-reinforced plastic, and method for producing them
CA1184106A (en) Process for producing cured, curved moulded articles
JPWO2012066805A1 (en) Method for producing fiber-reinforced plastic molded body, preform and method for producing the same, and adhesive film
JP4708797B2 (en) Process for producing fiber reinforced thermoplastic and fiber reinforced thermoplastic
JP2005298634A (en) Method for producing transparent composite substrate
CN114851638A (en) Transparent honeycomb core material, preparation method thereof and transparent honeycomb sandwich plate
JP4601973B2 (en) Method for molding fiber reinforced resin and covering sheet formed thereby
JP6240560B2 (en) Matrix material
JP5966969B2 (en) Manufacturing method of prepreg
JP6846927B2 (en) Manufacturing method of thermosetting sheet-shaped molding material and fiber reinforced plastic
JP2010196017A (en) Resin composition for fiber-reinforced composite material, cured product of the same, fiber-reinforced composite material, fiber-reinforced resin molded article, and method for producing the article
JP5002467B2 (en) Plate-shaped molded product and manufacturing method thereof
CN211493031U (en) Thermoplastic composite board
JP2023160676A (en) Metal resin composite material, vehicle using the same, and method for disassembling metal resin composite material
WO2022239463A1 (en) Resin composite, method for producing resin composite, and method for disassembling resin composite
CN108099330A (en) A kind of carbon fiber prepregs and preparation method thereof
JP2021080379A (en) Fiber-reinforced resin and method for producing fiber-reinforced resin
JPS6134390B2 (en)
TW202216825A (en) Method of processing composite material containing recycled short carbon fibers and articles made of the composite material wherein the recycled short carbon fibers are used as a reinforcement material
JPH06502278A (en) Manufacturing method for copper-coated substrates
JPS59176313A (en) Composite reinforced unsaturated polyester resin molding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19822692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19822692

Country of ref document: EP

Kind code of ref document: A1