WO2022239463A1 - Resin composite, method for producing resin composite, and method for disassembling resin composite - Google Patents

Resin composite, method for producing resin composite, and method for disassembling resin composite Download PDF

Info

Publication number
WO2022239463A1
WO2022239463A1 PCT/JP2022/011726 JP2022011726W WO2022239463A1 WO 2022239463 A1 WO2022239463 A1 WO 2022239463A1 JP 2022011726 W JP2022011726 W JP 2022011726W WO 2022239463 A1 WO2022239463 A1 WO 2022239463A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin member
covalent bond
resin composite
dynamic covalent
Prior art date
Application number
PCT/JP2022/011726
Other languages
French (fr)
Japanese (ja)
Inventor
剛資 近藤
尚平 寺田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2022239463A1 publication Critical patent/WO2022239463A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present disclosure relates to a resin composite, a resin composite manufacturing method, and a resin composite dismantling method.
  • Patent Document 1 states, "The core material is composed of a plurality of foamed beads, and the core is formed of the foamed beads in which the air bubbles inside the beads in the vicinity of the bonding surface are flattened. .” is stated.
  • Patent Literature 1 resin members are adhered to each other by using an adhesive to improve adhesion strength (paragraph 0014).
  • an adhesive to improve adhesion strength (paragraph 0014).
  • the present disclosure provides a resin composite that achieves both high adhesive strength and high recyclability, a method for producing the resin composite, and a method for dismantling the resin composite.
  • the resin composite of the present disclosure includes a first resin member having a dynamic covalent bond capable of reversibly dissociating or binding, and a resin different from the first resin member, and a target capable of binding to the dynamic covalent bond. a second resin member having at least a functional group on its surface, wherein the first resin member and the second resin member are bonded by the dynamic covalent bond and the covalent bond via the target functional group.
  • FIG. 1 is a cross-sectional view of a resin composite of the present disclosure
  • FIG. FIG. 4B is a diagram for explaining a dynamic covalent bond formed between a first functional group and a target functional group, and is a diagram showing bonding between the first resin member and the second resin member. It is a figure explaining the manufacturing method of the resin composite of this indication. It is a figure explaining the surface structure of a 1st resin member and a 2nd resin member.
  • FIG. 4 is a diagram illustrating a dismantling method of the resin composite of the present disclosure
  • FIG. 1 is a cross-sectional view of the resin composite 101 of the present disclosure.
  • the resin composite 101 includes a first resin member 1 and a second resin member.
  • the first resin member 1 has dynamic covalent bonds that can be reversibly dissociated or bonded.
  • the second resin member 2 is a resin different from that of the first resin member 1 and has target functional groups capable of bonding with dynamic covalent bonds of the first resin member 1 at least on its surface.
  • "Different" as used herein means that at least one of structure (type of unit monomer, etc.) or physical properties (molecular weight, etc.) is different.
  • FIG. 2 is a diagram for explaining the dynamic covalent bond formed between the first functional group and the target functional group, and is a diagram showing bonding between the first resin member 1 and the second resin member 2.
  • FIG. . The first resin member 1 and the second resin member 2 are bonded by dynamic covalent bonding of the first resin member 1 and covalent bonding via target functional groups of the second resin member 2 .
  • the dynamic covalent bond is, for example, an ester bond
  • the target functional group is, for example, a hydroxyl group, but neither is limited to these.
  • Ester bonds are formed, for example, by dehydration condensation between a carboxylic acid or a carboxylic acid anhydride that constitutes the first resin member 1 and a hydroxyl group.
  • a dynamic covalent bond is described with reference to formula (1).
  • Formula (1) is a chemical reaction formula that explains the dissociation and bonding of dynamic covalent bonds, and indicates a transesterification reaction.
  • the chemical formula shown in formula (1) is part of the structure obtained by the transesterification reaction.
  • R and R′′ are organic groups derived from the first resin member 1
  • R′ is an organic group derived from the second resin member 2 .
  • the first resin member 1 and the second resin member 2 are joined together by forming a dynamic covalent bond between functional groups present on the surface.
  • the first resin member 1 is not particularly limited as long as it is a resin having a dynamic covalent bond, and examples thereof include at least one of epoxy resin, phenol resin, polyester resin, and the like.
  • the first resin member 1 preferably contains the first resin, which is an epoxy resin.
  • the first resin which is an epoxy resin.
  • the first resin is not limited to the epoxy resin.
  • the epoxy resin is, for example, an epoxy compound having two or more epoxy groups in the molecule, at least one curing agent selected from a carboxylic acid or a carboxylic anhydride, and a transesterification reaction catalyst that promotes the transesterification reaction. obtained by curing a mixture comprising The mixture may further contain a polymerization initiation catalyst and the like.
  • an ester bond (ester group) and a hydroxyl group are generated as a result of the reaction between the epoxy compound and the curing agent during curing. Then, these ester bonds and hydroxyl groups initiate a transesterification reaction by heating with a transesterification reaction catalyst.
  • a transesterification reaction catalyst By setting the amounts of the ester bond, the hydroxyl group, and the transesterification reaction catalyst within a predetermined range and heating at an appropriate temperature, the transesterification reaction proceeds even after curing, resulting in a resin composite 101 with high bonding strength and easy peeling. is obtained.
  • epoxy compounds having two or more epoxy groups in the molecule bisphenol A type resins, novolac type resins, alicyclic resins, and glycidylamine resins are preferable.
  • epoxies include bisphenol A diglycidyl ether phenol, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, resocinol diglycidyl ether, hexahydrobisphenol A diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether.
  • Glycidyl ether diglycidyl phthalate, diglycidyl dimer acid, triglycidyl isocyanurate, tetraglycidyl diaminodiphenylmethane, tetraglycidyl metaxylene diamine, cresol novolac polyglycidyl ether, tetrabromobisphenol A diglycidyl ether, bisphenol hexafluoroacetone di At least one of glycidyl ether and the like may be used, but is not limited thereto.
  • carboxylic acids and acid anhydrides as curing agents include phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, 3-dodecenylsuccinic anhydride, octenylsuccinic anhydride, methylhexahydro Phthalic anhydride, methyl nadic anhydride, dodecyl succinic anhydride, chlorendic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, ethylene glycol bis(anhydrotrimate), methylcyclohexene tetracarboxylic anhydride, At least trimellitic anhydride, polyazelaic anhydride, ethylene glycol bisanhydrotrimellitate, 1,2,3,4-butanetetracarboxylic acid, 4-cyclohexene-1,2-dicarboxylic acid,
  • the amount of acid anhydride added is, for example, 30 mol % or more and 70 mol % or less with respect to the epoxy group. It is more preferably 40 mol % or more and 60 mol % or less.
  • amount of the acid anhydride is set within this range, hydroxyl groups are present after polymerization, so that the polymer structure can be efficiently rearranged by dynamic covalent bonding.
  • the amount is 30 mol % or more, curing can proceed sufficiently.
  • it 70 mol % or less it is possible to increase the production amount of hydroxyl groups and facilitate the progress of the transesterification reaction.
  • the first resin member 1 may contain a vinyl monomer having a hydroxyl group, an ester group and two or more vinyl groups, and a polymerization initiator that polymerizes the vinyl monomer.
  • vinyl monomers include 2-hydroxy methacrylate, hydroxypropyl methacrylate, 4-hydroxybutyl acrylate, divinyl ethylene glycol, monomethyl fumarate, hydroxypropyl acrylate, ethyl 2-(hydroxymethyl) acrylate, glycerol dimethacrylate, allyl acrylate.
  • methyl crotonate methyl methacrylate, methyl 3,3-dimethacrylate, diethylene glycol dimethacrylate, ethylene glycol dimethacrylate, triethylene glycol dimethacrylate, dimethyl fumarate, fumaric acid, 1,4-butanediol dimethacrylate , 1,6-hexanediol dimethacrylate, 1,3-butanediol dimethacrylate, tetraethylene glycol dimethacrylate, tetraethylene glycol diacrylate, vinyl crotonate, crotonic anhydride, diallyl maleate, neopentyl At least one of glycol diacrylate, neopentyl glycol dimethacrylate, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, bisphenol A glycerolate dimethacrylate, etc., but not limited thereto. do not have.
  • the polymerization initiation catalyst includes peroxide polymerization initiators, azo compound polymerization initiators, etc. Specific examples include 2,2′-azobisisobutyronitrile, 2,2′-azobis(2,4-dimethyl valeronitrile), 2,2′-azobis(2,4-dimethyl-4-methoxyvaleronitrile), 1,1′-azobis(cyclohexanecarbonitrile), 2,2′-azobis(2,4,4-trimethyl Pentane) and other azo compounds, di-t-butyl peroxide, di-t-hexyl peroxide, dialkyl peroxides such as dicumyl peroxide, 1,1-bis(t-butylperoxy)cyclohexane, 1, Peroxyketals such as 1-bis(t-butylperoxy)-3,3,5-trimethylcyclohexane, 2,2-bis(4,4-di-t-butylperoxycyclohexyl)propane, t-buty
  • diacyl peroxides t-butylperoxyisopropylmonocarbonate, t-hexylperoxyisopropylmonocarbonate, di-n-propylperoxydicarbonate, diisopropylperoxydicarbonate, di-2-ethylhexylperoxydicarbonate and other peroxycarbonates, etc. at least one of, but not limited to.
  • the transesterification reaction catalyst is preferably one that disperses uniformly in the mixture and promotes the transesterification reaction.
  • the first resin member 1 preferably contains at least one type of fiber. By including fibers, the strength of the first resin member 1 can be improved, and the strength and rigidity of the entire resin composite 101 including the second resin member 2 covalently bonded to the first resin member 1 can be improved.
  • fibers include inorganic fibers and organic fibers.
  • inorganic fibers include aramid fibers, glass fibers, asbestos fibers, carbon fibers, silica fibers, silica/alumina fibers, alumina fibers, zirconia fibers, potassium titanate fibers, tyranno fibers, silicon carbide fibers, and metal fibers.
  • organic fibers include high-strength polyethylene fibers, polyacetal fibers, aliphatic or aromatic polyamide fibers, polyacrylate fibers, fluorine fibers, boron fibers, polyacrylonitrile fibers, aramid fibers, PBO (poly-p-phenylenebenzobisoxazole ) fibers and the like. These fibers can be used singly or in combination of two or more.
  • organic fibers are preferable from the viewpoint of mechanical strength.
  • Carbon fibers can be classified into synthetic polymer-derived carbon fibers (polyacrylonitrile-based, polyvinyl alcohol-based, rayon-based carbon fibers, etc.) and mineral-derived carbon fibers (pitch-based carbon fibers, etc.) according to their raw materials.
  • synthetic polymer-derived carbon fibers are preferable from the viewpoint of mechanical strength.
  • These fibers are used in the form of continuous fibers, long fibers, short fibers, chopped fibers, etc., and in the form of unidirectional materials, plain weaves, non-woven fabrics and the like. Although it may be directly added to the first resin member 1 and used, the present embodiment is not limited to these fiber shapes and fiber states.
  • the method for producing the first resin member 1 containing fibers is not particularly limited. For example, a method of stacking fibers impregnated with the first resin and then pressurizing and heating them, a method of injecting the first resin into a mold in which the fibers are laid and heating them, and a method of kneading the fibers into the first resin and injecting them.
  • a molding method and the like can be mentioned.
  • the first resin member 1 may contain at least one inorganic filler.
  • Inorganic fillers include fused silica, crystalline silica, alumina, zircon, calcium silicate, calcium carbonate, potassium titanate, silicon carbide, aluminum nitride, boron nitride, beryllia, zircon, fosterite, stearite, spiral, mullite, titania, etc. powder, beads obtained by spheroidizing these, glass fibers, and the like.
  • the shape of the inorganic filler is not limited, and any shape such as a spherical shape or a scaly shape may be used.
  • the first resin member 1 contains at least one additive such as a curing accelerator, flame retardant, antioxidant, light stabilizer, dispersant, lubricant, plasticizer, antistatic agent, pigment, dye, etc. may include
  • the second resin member 2 has at least a target functional group capable of dynamic covalent bonding on its surface.
  • the method of forming the target functional group on the surface of the second resin member 2 is not particularly limited, the target functional group can be arranged on the surface of the second resin member 2 by surface modification, for example. Surface modification can be performed, for example, by oxidation.
  • the second resin member 2 preferably also has target functional groups inside.
  • the second resin member 2 can be easily formed because the second resin member 2 can be formed by, for example, molding a resin having the target functional group.
  • the second resin member 2 can be configured by containing, for example, at least one of urethane, epoxy resin, phenol resin, polyvinyl alcohol resin, and the like.
  • the second resin member 2 preferably contains a second resin that is urethane having a hydroxyl group as the target functional group.
  • the second resin which is urethane
  • the following effects can be obtained, for example. That is, when a conventional adhesive is used to adhere urethane, the urethane impregnates the adhesive, so the amount of adhesive used increases, and the resin composite 101 tends to become heavy. However, in the present disclosure, no adhesive is used or only a small amount of adhesive is used, so even when urethane is adhered, the weight of the resin composite 101 can be reduced. Urethane may be either foamed (foamed urethane) or non-foamed.
  • the second resin is not limited to urethane.
  • Urethane is obtained, for example, by polymerization of polyol and polyisocyanate. Any desired shape can be obtained by mixing these in a predetermined ratio and heat curing.
  • polyester polyols examples include polyethylene adipate diol, polybutylene adipate diol, polyethylene butylene adipate diol, polyhexamethylene isophthalate adipate diol, polyethylene succinate diol, polybutylene succinate diol, polyethylene sebacate diol, and polybutylene sebacate.
  • polyether polyols include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, random copolymers or block copolymers of ethylene oxide and propylene oxide, and random copolymers or block copolymers of ethylene oxide and butylene oxide. etc.
  • a polyether polyester polyol or the like having ether bonds and ester bonds can also be used.
  • Low molecular weight polyols are not particularly limited, and examples include ethylene glycol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,9 -nonanediol, 2-methyl-1,8-octanediol, 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanediol and the like.
  • low molecular weight polyhydric alcohols such as trimethylolpropane, pentaerythritol and sorbitol may be used. These can be used alone or in combination of two or more.
  • polyisocyanate is not particularly limited.
  • aromatic polyisocyanates such as polyphenylene polymethylene polyisocyanate, crude tolylene diisocyanate, aliphatic diisocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate, decamethylene diisocyanate and lysine diisocyanate, isophorone diisocyanate, hydrogenated tolylene diisocyanate , hydrogenated xylene diisocyanate, hydrogenated diphenylmethane diisocyanate, organic diisocyanates such as alicyclic diisocyanates such as tetramethylxylene diisocyanate, biuret-modified, uretdione-modified, carbodiimide-modified, isocyanurate-modified, and uretonimine-modified organic polyisocyanates and mixed modifications thereof. These can be used alone or in combination of two or more.
  • the same matters as those of the first resin member 1 can be applied as necessary, except for the above matters.
  • FIG. 3 is a diagram illustrating a method for manufacturing the resin composite 101 of the present disclosure.
  • the first resin member 1 having a dynamic covalent bond and the second resin member 2, which is a resin different from the first resin member 1 and have a target functional group are brought into contact with each other, and at least the contact portion can be produced by heating.
  • the first resin member 1 and the second resin member 2 are bonded by dynamic covalent bonding and covalent bonding via target functional groups.
  • the first resin member 1 and the second resin member 2 are flat plates in the illustrated example, their shapes are not limited to flat plates.
  • FIG. 4A and 4B are diagrams for explaining the surface structures of the first resin member 1 and the second resin member 2.
  • FIG. On the surface of the first resin member 1, there are a plurality of dynamic covalent bonds such as ester bonds.
  • the generated carbonyl group Since the generated carbonyl group has high reactivity, it easily bonds with the hydroxyl group existing on the surface of the second resin member 2 , and a new ester bond is generated with the second resin member 2 .
  • the resulting ester bond is a dynamic covalent bond that can be cleaved by heating again, as shown in FIG. By these reactions, the first resin member 1 and the second resin member 2 are joined by covalent bonds, and the joint strength between the first resin member 1 and the second resin member 2 can be improved.
  • Heating can be done by any method.”
  • the heating may be performed by heating the whole in a constant temperature bath or the like, or by irradiating a desired position with microwaves or infrared rays to heat partially.
  • heating may be performed by pressing a heated metal plate using an electric heater or the like to a desired position.
  • the heating may be performed while pressing (while applying a pressing force) in the contact direction (for example, the stacking direction) of the first resin member 1 and the second resin member 2, or may be performed without pressing.
  • pressing may be performed after heating and before cooling.
  • the heating temperature varies depending on the material composition and compounding ratio of the first resin member 1 and the second resin member 2.
  • the glass transition temperature (the temperature at which dynamic covalent bond recombination occurs) ) above and below the temperature at which the first resin and the second resin are not thermally decomposed.
  • the temperature can be set to, for example, 100° C. or higher, preferably 150° C. or higher, and the upper limit thereof, for example, 300° C. or lower, preferably 200° C. or lower.
  • the heating time can be, for example, 1 hour or more and 10 hours or less. The heating temperature and the heating time may be the same or different when joining the first resin member 1 and the second resin member 2 and when separating them.
  • FIG. 5 is a diagram for explaining a dismantling method for the resin composite 101 of the present disclosure.
  • the target functional group is dissociated from the dynamic covalent bond by heating at least the part of the resin composite 101 that has the dynamic covalent bond and the covalent bond via the target functional group, and the resin composite 101 becomes the first resin. It is dismantled into the member 1 and the second resin member 2 . As a result, it can be easily dismantled and the recyclability can be improved.
  • the heating can be performed under the same conditions as during the bonding described with reference to FIG.
  • the heating may be performed while applying a pulling force in the contact direction (for example, the stacking direction) between the first resin member 1 and the second resin member 2, or the heating may be performed without applying such a force.
  • a pulling force can be applied after heating to separate them.
  • a first resin member 1 (FIG. 1) was produced as follows. First, with respect to 100 parts by mass of a bisphenol A diglycidyl ether type epoxy compound (jER828, manufactured by Mitsubishi Chemical), 47 parts by mass of acid anhydride (MHAC-P, manufactured by Showa Denko Materials), manganese (III) acetylaceto 19 parts by mass of nate (transesterification reaction catalyst, manufactured by Tokyo Kasei Co., Ltd.) and 0.3 parts by mass of 2E4MZ-CN (manufactured by Shikoku Kasei Co., Ltd.) as a curing accelerator were stirred and mixed in the atmosphere to obtain a mixture.
  • a bisphenol A diglycidyl ether type epoxy compound jER828, manufactured by Mitsubishi Chemical
  • MHAC-P acid anhydride
  • MCA-P manganese
  • acetylaceto 19 parts by mass of nate transesterification reaction catalyst, manufactured by Tokyo Kasei Co., Ltd.
  • the amount of acid anhydride used is 50 mol% (half of the stoichiometric ratio) relative to the amount of epoxy compound used, and the amount of manganese (III) acetylacetonate used is 10 mol% relative to the amount of epoxy compound used. is.
  • the mixture was heated at 100° C. for 1 hour and then at 200° C. for 1 hour to cure the mixture and obtain a flat first resin member 1 .
  • the first resin member 1 has an ester bond formed by dehydration condensation between an acid anhydride and a hydroxyl group as a dynamic covalent bond on the surface and inside.
  • a second resin member 2 (Fig. 1) was produced as follows. First, 7 parts by mass of polyol (NIPPOLAN982R, manufactured by Nippon Polyurethane Co., Ltd.), 16 parts by mass of polyisocyanate (CORONATE HXR, manufactured by Nippon Polyurethane Co., Ltd.), and 3 parts by mass of amine (Polycat8, manufactured by Sun-Apro Co., Ltd.) are mixed to form a mixture. Obtained. Then, the mixture was heated at 80° C. for 1 hour to obtain a flat second resin member 2 .
  • the second resin member 2 is a resin different from the first resin member 1 and has hydroxyl groups as target functional groups on the surface and inside.
  • a flat plate-shaped first resin member 1 and a flat plate-shaped second resin member were superimposed, heat-pressed at 190° C. for 1 hour, and then cooled to room temperature to obtain a resin composite 101 (FIG. 1).
  • a resin composite 101 FOG. 1
  • grasping the first resin member 1 with one hand and grasping the second resin member 2 with the other hand an attempt was made to separate them. However, even if they were pulled with both hands, they were not peeled off, and it was confirmed that they were strongly bonded. It is considered that this is because the first resin member 1 and the second resin member 2 are bonded by dynamic covalent bonding.
  • the resin composite 101 was placed in a constant temperature bath, and the whole was heated in the air at 200°C for 1 hour. Immediately after heating for 1 hour, when an attempt was made to remove them by putting on gloves and pulling them with both hands, they could be removed with a slight force. Therefore, it was confirmed that the resin composite 101 can be easily disassembled by heating. This is probably because the dynamic covalent bond was recombined by heating, and the dynamic covalent bond formed between the first resin member 1 and the second resin member 2 was cut.
  • a resin composite 101 (FIG. 1) was produced in the same manner as in Example 1, except that a polyester resin (having a dynamic covalent bond) was used as the first resin member 1 (FIG. 1) instead of the epoxy resin. Then, when peeling was attempted in the same manner as in Example 1, the film could not be peeled off before heating, but was easily peeled off immediately after heating. As a result, high bonding strength and high recyclability were confirmed.
  • the polyester resin was obtained by curing a vinyl monomer containing an ester group and a hydroxyl group with a reaction initiator.
  • a resin composite 101 (Fig. 1) was used in the same manner as in Example 1 except that a phenol resin (having a hydroxyl group, which is a target functional group, on the surface and inside) was used instead of urethane as the second resin member 2 (Fig. 1). 1) was produced. Then, when peeling was attempted in the same manner as in Example 1, the film could not be peeled off before heating, but was easily peeled off immediately after heating. As a result, high bonding strength and high recyclability were confirmed.
  • the phenolic resin was obtained by curing DG-630 (manufactured by DIC) at 180° C. for 4 hours.
  • Example 1 A resin composite was produced in the same manner as in Example 1, except that the amount of acid anhydride used was 100 mol % (equivalent in stoichiometric ratio) with respect to the amount of epoxy compound used. In the first resin member of Comparative Example 1, the epoxy compound and the acid anhydride reacted according to the stoichiometric ratio during production, and the first resin member did not have dynamic covalent bonds.
  • Example 2 A resin composite was produced in the same manner as in Example 1, except that an acrylic resin without a hydroxyl group (an example of a target functional group) was used as the second resin member.
  • the first resin member 1 has a dynamic covalent bond, but the second resin member does not have a target functional group capable of bonding with the dynamic covalent bond.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

Provided are a resin composite which combines high adhesion strength and high recyclability, a method for producing the resin composite, and a method for disassembling the resin composite. In order to solve this problem, a resin composite (101) comprises a first resin member (1) having a dynamic covalent bond capable of reversibly dissociating or bonding, and a second resin member (2) which is a different resin than the first resin member (1) and has, at least on the surface thereof, a target functional group capable of bonding with the dynamic covalent bond. The first resin member (1) and the second resin member (2) are joined by covalent bonding through the dynamic covalent bond and the target functional group. The resin composite (101) can be produced by bringing the first resin member (1) and the second resin member (2) into contact, and heating at least the contact portion. The resin composite (101) can be disassembled by heating a portion of the covalent bond.

Description

樹脂複合体、樹脂複合体の製造方法、及び樹脂複合体の解体方法Resin composite, method for producing resin composite, and method for dismantling resin composite
 本開示は、樹脂複合体、樹脂複合体の製造方法、及び樹脂複合体の解体方法に関する。 The present disclosure relates to a resin composite, a resin composite manufacturing method, and a resin composite dismantling method.
 複数の機能を付与する目的で、複数の樹脂部材同士を組み合わせて使用することがある。例えば、環境規制及び省エネ対応に伴い、自動車、航空機、鉄道車両等の移動体の軽量化が進められ、例えば繊維、フィラー等を含有した樹脂部材で構成部材が作製され得る。樹脂複合体に関する技術として、特許文献1に記載の技術が知られている。特許文献1の要約書には「複数のビーズ発泡成形体で芯材を構成させ、しかも、接着面近傍のビーズの内部の気泡が扁平形状となっているビーズ発泡成形体で芯材を形成させる。」ことが記載されている。 In order to provide multiple functions, multiple resin members are sometimes used in combination. For example, along with environmental regulations and energy-saving measures, moving bodies such as automobiles, aircraft, and railroad vehicles are becoming lighter, and structural members can be made of resin members containing fibers, fillers, and the like. As a technique related to resin composites, the technique described in Patent Document 1 is known. The abstract of Patent Document 1 states, "The core material is composed of a plurality of foamed beads, and the core is formed of the foamed beads in which the air bubbles inside the beads in the vicinity of the bonding surface are flattened. .” is stated.
特開2020-163733号公報JP 2020-163733 A
 特許文献1に記載の技術では、接着強度向上のため、接着剤の使用により樹脂部材同士が接着される(段落0014)。ここで、樹脂複合体の例えば製造時に生じた不良品、使用後の樹脂複合体等、不要になった樹脂複合体を構成する樹脂部材はリサイクルされることが好ましい。しかし、特許文献1の技術では、接着剤の使用により樹脂部材同士が剥離し難く、樹脂部材のリサイクルが困難である。
 本開示は、高接着強度及び高リサイクル性を両立させた樹脂複合体、樹脂複合体の製造方法及び樹脂複合体の解体方法の提供である。
In the technique described in Patent Literature 1, resin members are adhered to each other by using an adhesive to improve adhesion strength (paragraph 0014). Here, it is preferable to recycle the resin members that make up the resin composite that is no longer needed, such as defective products produced during the production of the resin composite and the resin composite after use. However, in the technique disclosed in Patent Document 1, it is difficult to separate the resin members from each other due to the use of the adhesive, and it is difficult to recycle the resin members.
The present disclosure provides a resin composite that achieves both high adhesive strength and high recyclability, a method for producing the resin composite, and a method for dismantling the resin composite.
 本開示の樹脂複合体は、可逆的に解離又は結合可能な動的共有結合を有する第1樹脂部材と、前記第1樹脂部材とは異なる樹脂であり、前記動的共有結合と結合可能な目標官能基を少なくとも表面に有する第2樹脂部材と、を備え、前記第1樹脂部材と前記第2樹脂部材とは、前記動的共有結合及び前記目標官能基を介した共有結合により接合している。その他の解決手段は発明を実施するための形態において後記する。 The resin composite of the present disclosure includes a first resin member having a dynamic covalent bond capable of reversibly dissociating or binding, and a resin different from the first resin member, and a target capable of binding to the dynamic covalent bond. a second resin member having at least a functional group on its surface, wherein the first resin member and the second resin member are bonded by the dynamic covalent bond and the covalent bond via the target functional group. . Other solutions will be described later in the detailed description.
 本開示によれば、高接着強度及び高リサイクル性を両立させた樹脂複合体、樹脂複合体の製造方法及び樹脂複合体の解体方法を提供できる。 According to the present disclosure, it is possible to provide a resin composite that achieves both high adhesive strength and high recyclability, a method for manufacturing a resin composite, and a method for dismantling a resin composite.
本開示の樹脂複合体の断面図である。1 is a cross-sectional view of a resin composite of the present disclosure; FIG. 第1官能基と目標官能基との間に形成された動的共有結合を説明する図であり、第1樹脂部材と第2樹脂部材との接合時を示す図である。FIG. 4B is a diagram for explaining a dynamic covalent bond formed between a first functional group and a target functional group, and is a diagram showing bonding between the first resin member and the second resin member. 本開示の樹脂複合体の製造方法を説明する図である。It is a figure explaining the manufacturing method of the resin composite of this indication. 第1樹脂部材及び第2樹脂部材の表面構造を説明する図である。It is a figure explaining the surface structure of a 1st resin member and a 2nd resin member. 本開示の樹脂複合体の解体方法を説明する図である。FIG. 4 is a diagram illustrating a dismantling method of the resin composite of the present disclosure;
 以下、図面を参照しながら本開示を実施するための形態(実施形態と称する)を説明する。以下の一の実施形態の説明の中で、適宜、一の実施形態に適用可能な別の実施形態の説明も行う。本開示は以下の一の実施形態に限られず、異なる実施形態同士を組み合わせたり、本開示の効果を著しく損なわない範囲で任意に変形したりできる。また、同じ部材については同じ符号を付すものとし、重複する説明は省略する。更に、同じ機能を有するものは同じ名称を付すものとする。図示の内容は、あくまで模式的なものであり、図示の都合上、本開示の効果を著しく損なわない範囲で実際の構成から変更したり、図面間で一部の部材の図示を省略したり変形したりすることがある。 Hereinafter, a form (referred to as an embodiment) for carrying out the present disclosure will be described with reference to the drawings. In the following description of one embodiment, other embodiments applicable to the one embodiment will also be described as appropriate. The present disclosure is not limited to one embodiment below, and different embodiments can be combined or arbitrarily modified within a range that does not significantly impair the effects of the present disclosure. Also, the same members are denoted by the same reference numerals, and overlapping descriptions are omitted. Furthermore, those having the same function shall have the same name. The contents of the drawings are only schematic, and for the convenience of the drawings, the actual configuration may be changed within a range that does not significantly impair the effects of the present disclosure, or the illustration of some members may be omitted or modified between drawings. sometimes
 図1は、本開示の樹脂複合体101の断面図である。樹脂複合体101は、第1樹脂部材1と、第2樹脂部材とを備える。第1樹脂部材1は、可逆的に解離又は結合可能な動的共有結合を有する。第2樹脂部材2は、第1樹脂部材1とは異なる樹脂であり、第1樹脂部材1の動的共有結合と結合可能な目標官能基を少なくとも表面に有する。ここでいう「異なる」は、構造(単位モノマーの種類等)又は物性(分子量等)の少なくとも一方が異なることをいう。 FIG. 1 is a cross-sectional view of the resin composite 101 of the present disclosure. The resin composite 101 includes a first resin member 1 and a second resin member. The first resin member 1 has dynamic covalent bonds that can be reversibly dissociated or bonded. The second resin member 2 is a resin different from that of the first resin member 1 and has target functional groups capable of bonding with dynamic covalent bonds of the first resin member 1 at least on its surface. "Different" as used herein means that at least one of structure (type of unit monomer, etc.) or physical properties (molecular weight, etc.) is different.
 図2は、第1官能基と目標官能基との間に形成された動的共有結合を説明する図であり、第1樹脂部材1と第2樹脂部材2との接合時を示す図である。第1樹脂部材1と第2樹脂部材2とは、第1樹脂部材1の動的共有結合及び第2樹脂部材2の目標官能基を介した共有結合により、接合している。 FIG. 2 is a diagram for explaining the dynamic covalent bond formed between the first functional group and the target functional group, and is a diagram showing bonding between the first resin member 1 and the second resin member 2. FIG. . The first resin member 1 and the second resin member 2 are bonded by dynamic covalent bonding of the first resin member 1 and covalent bonding via target functional groups of the second resin member 2 .
 図示の例では、動的共有結合は例えばエステル結合であり、目標官能基は例えばヒドロキシル基であるが、いずれもこれらに限られない。エステル結合は、例えば、第1樹脂部材1を構成するカルボン酸又はカルボン酸無水物とヒドロキシル基との脱水縮合により形成される。動的共有結合について、式(1)を参照して説明する。 In the illustrated example, the dynamic covalent bond is, for example, an ester bond, and the target functional group is, for example, a hydroxyl group, but neither is limited to these. Ester bonds are formed, for example, by dehydration condensation between a carboxylic acid or a carboxylic acid anhydride that constitutes the first resin member 1 and a hydroxyl group. A dynamic covalent bond is described with reference to formula (1).
Figure JPOXMLDOC01-appb-M000001
 
Figure JPOXMLDOC01-appb-M000001
 
 式(1)は、動的共有結合の解離及び結合を説明する化学反応式であり、エステル交換反応を示す。式(1)に示した化学式はエステル交換反応で得られる構造の一部である。R及びR’’は第1樹脂部材1に由来する有機基であり、R’は第2樹脂部材2に由来する有機基である。例えば、表面に存在する官能基同士の結合により動的共有結合が形成されることで、第1樹脂部材1と第2樹脂部材2とが接合する。 Formula (1) is a chemical reaction formula that explains the dissociation and bonding of dynamic covalent bonds, and indicates a transesterification reaction. The chemical formula shown in formula (1) is part of the structure obtained by the transesterification reaction. R and R″ are organic groups derived from the first resin member 1 , and R′ is an organic group derived from the second resin member 2 . For example, the first resin member 1 and the second resin member 2 are joined together by forming a dynamic covalent bond between functional groups present on the surface.
 一方で、左辺の状態において、少なくとも接合部分の加熱により動的共有結合の組み換えが行われ、反応が右辺に進行する。これにより、第1樹脂部材1のROと、第2樹脂部材2のR’’OHとによって動的共有結合が形成され、右辺第1項に示す第1樹脂部材1及び右辺第2項に示す第2樹脂部材2が得られる。この結果、第1樹脂部材1と第2樹脂部材2との間で形成されていたエステル結合がA部で容易に切断されることで動的共有結合の組み換えが生じ、接合が解かれる。 On the other hand, in the state on the left side, dynamic covalent recombination occurs at least by heating the junction, and the reaction proceeds to the right side. As a result, a dynamic covalent bond is formed by RO of the first resin member 1 and R''OH of the second resin member 2, and the first resin member 1 shown in the first term on the right side and the second term on the right side A second resin member 2 is obtained. As a result, the ester bond formed between the first resin member 1 and the second resin member 2 is easily broken at the portion A, so that recombination of the dynamic covalent bond occurs and the bond is broken.
 第1樹脂部材1は、動的共有結合を有する樹脂であれば特に制限されず、例えばエポキシ樹脂、フェノール樹脂、ポリエステル樹脂等の少なくとも1種が挙げられる。 The first resin member 1 is not particularly limited as long as it is a resin having a dynamic covalent bond, and examples thereof include at least one of epoxy resin, phenol resin, polyester resin, and the like.
 中でも、第1樹脂部材1は、エポキシ樹脂である第1樹脂を含むことが好ましい。エポキシ樹脂を含むことにより、エポキシモノマーと硬化剤である酸無水物との組成比を調整することで、硬化反応により、容易に動的共有結合であるエステル基及びヒドロキシル基を導入できる。以下、一例として第1樹脂がエポキシ樹脂である場合を例示するが、第1樹脂はエポキシ樹脂に限定されない。 Above all, the first resin member 1 preferably contains the first resin, which is an epoxy resin. By including an epoxy resin, by adjusting the compositional ratio of the epoxy monomer and the acid anhydride that is the curing agent, the ester group and the hydroxyl group that are dynamic covalent bonds can be easily introduced by the curing reaction. Although the case where the first resin is an epoxy resin is exemplified below as an example, the first resin is not limited to the epoxy resin.
 エポキシ樹脂は、例えば、分子中に2個以上のエポキシ基を有するエポキシ化合物と、カルボン酸又はカルボン酸無水物から選択される少なくとも1種の硬化剤と、エステル交換反応を促進させるエステル交換反応触媒とを含む混合物の硬化により得られる。混合物は、更に、重合開始触媒等を含んでもよい。 The epoxy resin is, for example, an epoxy compound having two or more epoxy groups in the molecule, at least one curing agent selected from a carboxylic acid or a carboxylic anhydride, and a transesterification reaction catalyst that promotes the transesterification reaction. obtained by curing a mixture comprising The mixture may further contain a polymerization initiation catalyst and the like.
 例えば硬化促進剤(後記)の存在下、硬化によりエポキシ化合物と硬化剤とが反応した結果、エステル結合(エステル基)とヒドロキシル基が生成される。そして、エステル交換反応触媒により、これらエステル結合及びヒドロキシル基は、加熱によりエステル交換反応を開始する。エステル結合、ヒドロキシル基及びエステル交換反応触媒の量を所定の範囲に設定し、適正な温度で加熱することで、硬化後でもエステル交換反応が進行し、高接合強度及び剥離容易な樹脂複合体101が得られる。 For example, in the presence of a curing accelerator (described later), an ester bond (ester group) and a hydroxyl group are generated as a result of the reaction between the epoxy compound and the curing agent during curing. Then, these ester bonds and hydroxyl groups initiate a transesterification reaction by heating with a transesterification reaction catalyst. By setting the amounts of the ester bond, the hydroxyl group, and the transesterification reaction catalyst within a predetermined range and heating at an appropriate temperature, the transesterification reaction proceeds even after curing, resulting in a resin composite 101 with high bonding strength and easy peeling. is obtained.
 分子中に2個以上のエポキシ基を有するエポキシ化合物としては、ビスフェノールA型樹脂、ノボラック型樹脂、脂環式樹脂、グリシジルアミン樹脂が好ましい。エポキシの例としては、ビスフェノールAジグリシジルエーテルフェノール、ビスフェノールFジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、レゾシノールジグリシジルエーテル、ヘキサヒドロビスフェノールAジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、フタル酸ジグリシジルエステル、ダイマー酸ジグリシジルエステル、トリグリシジルイソシアヌレート、テトラグリシジルジアミノジフェニルメタン、テトラグリシジルメタキシレンジアミン、クレゾールノボラックポリグリシジルエーテル、テトラブロムビスフェノールAジグリシジルエーテル、ビスフェノールヘキサフロロアセトンジグリシジルエーテル等の少なくとも1種が挙げられるが、これらに限定されるものではない。 As epoxy compounds having two or more epoxy groups in the molecule, bisphenol A type resins, novolac type resins, alicyclic resins, and glycidylamine resins are preferable. Examples of epoxies include bisphenol A diglycidyl ether phenol, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, resocinol diglycidyl ether, hexahydrobisphenol A diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether. Glycidyl ether, diglycidyl phthalate, diglycidyl dimer acid, triglycidyl isocyanurate, tetraglycidyl diaminodiphenylmethane, tetraglycidyl metaxylene diamine, cresol novolac polyglycidyl ether, tetrabromobisphenol A diglycidyl ether, bisphenol hexafluoroacetone di At least one of glycidyl ether and the like may be used, but is not limited thereto.
 硬化剤であるカルボン酸、酸無水物の例としては、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、3-ドデセニル無水コハク酸、オクテニルコハク酸無水物、メチルヘキサヒドロ無水フタル酸、無水メチルナジック酸、ドデシル無水コハク酸、無水クロレンディック酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸無水物、エチレングリコールビス(アンヒドロトリメート)、メチルシクロヘキセンテトラカルボン酸無水物、無水トリメリット酸、ポリアゼライン酸無水物、エチレングリコールビスアンヒドロトリメリテート、1,2,3,4-ブタンテトラカルボン酸、4-シクロヘキセン-1,2-ジカルボン酸、多価脂肪酸等の少なくとも1種が挙げられるが、これらに限定されるものではない。 Examples of carboxylic acids and acid anhydrides as curing agents include phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, 3-dodecenylsuccinic anhydride, octenylsuccinic anhydride, methylhexahydro Phthalic anhydride, methyl nadic anhydride, dodecyl succinic anhydride, chlorendic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, ethylene glycol bis(anhydrotrimate), methylcyclohexene tetracarboxylic anhydride, At least trimellitic anhydride, polyazelaic anhydride, ethylene glycol bisanhydrotrimellitate, 1,2,3,4-butanetetracarboxylic acid, 4-cyclohexene-1,2-dicarboxylic acid, polyvalent fatty acid, etc. 1 type is mentioned, but it is not limited to these.
 酸無水物の添加量は、例えばエポキシ基に対して30モル%以上70モル%以下である。より好ましくは40モル%以上60モル%以下であることが望ましい。酸無水物の量をこの範囲にすることにより、重合後にヒドロキシル基が存在するため、動的共有結合による高分子構造の再編成を効率的に行うことができる。特に、30モル%以上にすることで、硬化を十分に進行できる。70モル%以下にすることで、ヒドロキシル基の生成量を増やし、エステル交換反応を進行し易くできる。 The amount of acid anhydride added is, for example, 30 mol % or more and 70 mol % or less with respect to the epoxy group. It is more preferably 40 mol % or more and 60 mol % or less. By setting the amount of the acid anhydride within this range, hydroxyl groups are present after polymerization, so that the polymer structure can be efficiently rearranged by dynamic covalent bonding. In particular, when the amount is 30 mol % or more, curing can proceed sufficiently. By making it 70 mol % or less, it is possible to increase the production amount of hydroxyl groups and facilitate the progress of the transesterification reaction.
 第1樹脂部材1は、ヒドロキシル基、エステル基及び2つ以上のビニル基を有するビニルモノマー、及び、そのビニルモノマーを重合させる重合開始剤を含んでもよい。ビニルモノマーの具体例としては、2-ヒドロキシメタクリレート、ヒドロキシプロピルメタクリレート、4-ヒドロキシブチルアクリレート、ジビニルエチレングリコール、モノメチルフマレート、ヒドロキシプロピルアクリレート、エチル2-(ヒドロキシメチル)アクリレート、グリセロールジメタクリレート、アリルアクリレート、メチルクロトネート、メチルメタクリレート、メチル3,3-ジメタクリレート、ジエチレングリコールジメタクリラート、エチレングリコールジメタクリラート、トリエチレングリコールジメタクリラート、ジメチルフマレート、フマル酸、1,4-ブタンジオールジメタクリラート、1,6-ヘキサンジオールジメタクリラート、1,3-ブタンジオールジメタクリラート、テトラエチレングリコールジメタクリラート、テトラエチレングリコールジアクリラート、ビニルクロトネート、クロトン酸無水物、マレイン酸ジアリル、ネオペンチルグリコールジアクリラート、ネオペンチルグリコールジメタクリラート、トリメチロールプロパントリアクリラート、トリメチロールプロパントリメタクリラート、ビスフェノールAグリセロラートジメタクリラート等の少なくとも1種が挙げられるが、これらに限定されるものではない。 The first resin member 1 may contain a vinyl monomer having a hydroxyl group, an ester group and two or more vinyl groups, and a polymerization initiator that polymerizes the vinyl monomer. Specific examples of vinyl monomers include 2-hydroxy methacrylate, hydroxypropyl methacrylate, 4-hydroxybutyl acrylate, divinyl ethylene glycol, monomethyl fumarate, hydroxypropyl acrylate, ethyl 2-(hydroxymethyl) acrylate, glycerol dimethacrylate, allyl acrylate. , methyl crotonate, methyl methacrylate, methyl 3,3-dimethacrylate, diethylene glycol dimethacrylate, ethylene glycol dimethacrylate, triethylene glycol dimethacrylate, dimethyl fumarate, fumaric acid, 1,4-butanediol dimethacrylate , 1,6-hexanediol dimethacrylate, 1,3-butanediol dimethacrylate, tetraethylene glycol dimethacrylate, tetraethylene glycol diacrylate, vinyl crotonate, crotonic anhydride, diallyl maleate, neopentyl At least one of glycol diacrylate, neopentyl glycol dimethacrylate, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, bisphenol A glycerolate dimethacrylate, etc., but not limited thereto. do not have.
 重合開始触媒としては、過酸化物重合開始剤、アゾ化合物重合開始剤等が挙げられ、具体例として2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2,4-ジメチル-4-メトキシバレロニトリル)、1,1’-アゾビス(シクロヘキサンカルボニトリル)、2,2’-アゾビス(2,4,4-トリメチルペンタン)等のアゾ化合物、ジ-t-ブチルパーオキサイド、ジ-t-ヘキシルパーオキサイド、ジクミルパーオキサイド等のジアルキルパーオキサイド類、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、2,2-ビス(4,4-ジ-t-ブチルパーオキシシクロヘキシル)プロパン等のパーオキシケタール類、t-ブチルパーオキシベンゾエート、t-ヘキシルパーオキシベンゾエート、t-ブチルパーオキシアセテート、t-ブチルパーオキシラウレート、t-ヘキシルパーオキシネオデカノエート等のパーオキシエステル類、ベンゾイルパーオキサイド、ラウロイルパーオキサイド等のジアシルパーオキサイド類、t-ブチルパーオキシイソプロピルモノカーボネート、t-ヘキシルペルオキシイソプロピルモノカーボネート、ジ-n-プロピルペルオキシジカーボネート、ジイソプロピルペルオキシジカーボネート、ジ-2-エチルヘキシルペルオキシジカーボネート等のペルオキシカーボネート等の少なくとも1種が挙げられるが、これらに限定されるものではない。 The polymerization initiation catalyst includes peroxide polymerization initiators, azo compound polymerization initiators, etc. Specific examples include 2,2′-azobisisobutyronitrile, 2,2′-azobis(2,4-dimethyl valeronitrile), 2,2′-azobis(2,4-dimethyl-4-methoxyvaleronitrile), 1,1′-azobis(cyclohexanecarbonitrile), 2,2′-azobis(2,4,4-trimethyl Pentane) and other azo compounds, di-t-butyl peroxide, di-t-hexyl peroxide, dialkyl peroxides such as dicumyl peroxide, 1,1-bis(t-butylperoxy)cyclohexane, 1, Peroxyketals such as 1-bis(t-butylperoxy)-3,3,5-trimethylcyclohexane, 2,2-bis(4,4-di-t-butylperoxycyclohexyl)propane, t-butyl Peroxyesters such as peroxybenzoate, t-hexyl peroxybenzoate, t-butyl peroxyacetate, t-butyl peroxylaurate, t-hexyl peroxyneodecanoate, benzoyl peroxide, lauroyl peroxide, etc. diacyl peroxides, t-butylperoxyisopropylmonocarbonate, t-hexylperoxyisopropylmonocarbonate, di-n-propylperoxydicarbonate, diisopropylperoxydicarbonate, di-2-ethylhexylperoxydicarbonate and other peroxycarbonates, etc. at least one of, but not limited to.
 エステル交換反応触媒としては、混合物中で均一に分散し、エステル交換反応を促進するものであることが好ましい。例えば、マンガン(III)アセチルアセトナート、酢酸亜鉛(II)、亜鉛(II)アセチルアセトナート、ナフテン酸亜鉛(II)、アセチルアセトン鉄(III)、アセチルアセトンコバルト(II)、アセチルアセトンコバルト(III)、アルミニウムイソプロポキシド、チタニウムイソプロポキシド、メトキシド(トリフェニルホスフィン)銅(I)錯体、エトキシド(トリフェニルホスフィン)銅(I)錯体、プロポキシド(トリフェニルホスフィン)銅(I)錯体、イソプロポキシド(トリフェニルホスフィン)銅(I)錯体、メトキシドビス(トリフェニルホスフィン)銅(II)錯体、エトキシドビス(トリフェニルホスフィン)銅(II)錯体、プロポキシドビス(トリフェニルホスフィン)銅(II)錯体、イソプロポキシドビス(トリフェニルホスフィン)銅(II)錯体、トリス(2,4-ペンタンジオナト)コバルト(III)、ナフテン酸コバルト(II)、ステアリン酸コバルト(II)、二酢酸すず(II)、ジ(2-エチルヘキサン酸)すず(II)、N,N-ジメチル-4-アミノピリジン、ジアザビシクロウンデセン、ジアザビシクロノネン、トリアザビシクロデセン、トリフェニルホスフィン、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾール等の少なくとも1種が挙げられるが、これらに限定されるものではない。 The transesterification reaction catalyst is preferably one that disperses uniformly in the mixture and promotes the transesterification reaction. For example, manganese (III) acetylacetonate, zinc (II) acetate, zinc (II) acetylacetonate, zinc (II) naphthenate, iron (III) acetylacetonate, cobalt (II) acetylacetonate, cobalt (III) acetylacetonate, aluminum isopropoxide, titanium isopropoxide, methoxide (triphenylphosphine) copper (I) complex, ethoxide (triphenylphosphine) copper (I) complex, propoxide (triphenylphosphine) copper (I) complex, isopropoxide ( triphenylphosphine)copper(I) complex, methoxide bis(triphenylphosphine)copper(II) complex, ethoxide bis(triphenylphosphine)copper(II) complex, propoxide bis(triphenylphosphine)copper(II) complex, isopropoxy dobis(triphenylphosphine)copper(II) complex, tris(2,4-pentanedionato)cobalt(III), cobalt(II) naphthenate, cobalt(II) stearate, tin(II) diacetate, di (2-ethylhexanoic acid) tin (II), N,N-dimethyl-4-aminopyridine, diazabicycloundecene, diazabicyclononene, triazabicyclodecene, triphenylphosphine, 2-phenylimidazole, 2- At least one of phenyl-4-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-phenylimidazole and the like can be mentioned, but not limited thereto.
 第1樹脂部材1は少なくとも1種の繊維を含むことが好ましい。繊維を含むことで、第1樹脂部材1の強度を向上でき、第1樹脂部材1と共有結合する第2樹脂部材2を備える樹脂複合体101全体の強度及び剛性を向上できる。 The first resin member 1 preferably contains at least one type of fiber. By including fibers, the strength of the first resin member 1 can be improved, and the strength and rigidity of the entire resin composite 101 including the second resin member 2 covalently bonded to the first resin member 1 can be improved.
 繊維としては、例えば、無機繊維及び有機繊維が挙げられる。例えば無機繊維として、アラミド繊維、ガラス繊維、アスベスト繊維、炭素繊維、シリカ繊維、シリカ・アルミナ繊維、アルミナ繊維、ジルコニア繊維、チタン酸カリウム繊維、チラノ繊維、炭化ケイ素繊維、金属繊維等が挙げられる。また、例えば有機繊維として、高強度ポリエチレン繊維、ポリアセタール繊維、脂肪族又は芳香族ポリアミド繊維、ポリアクリレート繊維、フッ素繊維、ボロン繊維、ポリアクリロニトリル繊維、アラミド繊維、PBO(ポリ-p-フェニレンベンゾビスオキサゾール)繊維等が挙げられる。これらの繊維は、単独又は二種以上組み合わせて使用できる。 Examples of fibers include inorganic fibers and organic fibers. Examples of inorganic fibers include aramid fibers, glass fibers, asbestos fibers, carbon fibers, silica fibers, silica/alumina fibers, alumina fibers, zirconia fibers, potassium titanate fibers, tyranno fibers, silicon carbide fibers, and metal fibers. Further, for example, organic fibers include high-strength polyethylene fibers, polyacetal fibers, aliphatic or aromatic polyamide fibers, polyacrylate fibers, fluorine fibers, boron fibers, polyacrylonitrile fibers, aramid fibers, PBO (poly-p-phenylenebenzobisoxazole ) fibers and the like. These fibers can be used singly or in combination of two or more.
 これらの繊維のうち、機械的強度等の点から、有機繊維、特に炭素繊維が好ましい。炭素繊維は、その原料により、合成高分子由来の炭素繊維(ポリアクリロニトリル系、ポリビニルアルコール系、レーヨン系炭素繊維等)と、鉱物由来の炭素繊維(ピッチ系炭素繊維等)とに分類できる。これらのうち、機械的強度の観点から合成高分子由来の炭素繊維が好ましい。これらの繊維は、連続繊維、長繊維、短繊維、チョップド等の形状で、一方向材、平織り、不職布等の形状で用いられる。また第1樹脂部材1中に直接添加して用いられることもあるが、本実施形態ではこれらの繊維形状、繊維状態に限定されるものではない。 Among these fibers, organic fibers, particularly carbon fibers, are preferable from the viewpoint of mechanical strength. Carbon fibers can be classified into synthetic polymer-derived carbon fibers (polyacrylonitrile-based, polyvinyl alcohol-based, rayon-based carbon fibers, etc.) and mineral-derived carbon fibers (pitch-based carbon fibers, etc.) according to their raw materials. Among these, synthetic polymer-derived carbon fibers are preferable from the viewpoint of mechanical strength. These fibers are used in the form of continuous fibers, long fibers, short fibers, chopped fibers, etc., and in the form of unidirectional materials, plain weaves, non-woven fabrics and the like. Although it may be directly added to the first resin member 1 and used, the present embodiment is not limited to these fiber shapes and fiber states.
 繊維を含む第1樹脂部材1を作製する方法としては、特に制限されない。例えば、第1樹脂を含浸させた繊維を重ねて加圧及び加熱する方法、繊維を敷いた金型内に第1樹脂を注入して加熱する方法、第1樹脂中に繊維を混練して射出成型する方法等が挙げられる。 The method for producing the first resin member 1 containing fibers is not particularly limited. For example, a method of stacking fibers impregnated with the first resin and then pressurizing and heating them, a method of injecting the first resin into a mold in which the fibers are laid and heating them, and a method of kneading the fibers into the first resin and injecting them. A molding method and the like can be mentioned.
 第1樹脂部材1は、少なくとも1種の無機フィラーを含んでもよい。無機フィラーとしては、溶融シリカ、結晶シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、チタン酸カリウム、炭化珪素、窒化アルミ、窒化ホウ素、ベリリア、ジルコン、フォステライト、ステアライト、スピレル、ムライト、チタニア等の粉体、また、これらを球形化したビーズ、ガラス繊維等が挙げられる。また、無機フィラーの形状に限定はなく、球状、鱗片状などどれを用いてもよい。 The first resin member 1 may contain at least one inorganic filler. Inorganic fillers include fused silica, crystalline silica, alumina, zircon, calcium silicate, calcium carbonate, potassium titanate, silicon carbide, aluminum nitride, boron nitride, beryllia, zircon, fosterite, stearite, spiral, mullite, titania, etc. powder, beads obtained by spheroidizing these, glass fibers, and the like. Moreover, the shape of the inorganic filler is not limited, and any shape such as a spherical shape or a scaly shape may be used.
 第1樹脂部材1は、必要に応じて、硬化促進剤、難燃剤、酸化防止剤、光安定剤、分散剤、滑剤、可塑剤、帯電防止剤、顔料、染料等の少なくとも1種の添加剤を含んでもよい。 If necessary, the first resin member 1 contains at least one additive such as a curing accelerator, flame retardant, antioxidant, light stabilizer, dispersant, lubricant, plasticizer, antistatic agent, pigment, dye, etc. may include
 第2樹脂部材2は、上記のように、動的共有結合可能な目標官能基を少なくとも表面に有する。目標官能基の第2樹脂部材2の表面への形成方法は特に制限されないが、例えば第2樹脂部材2の表面への表面改質によって目標官能基を配置できる。表面改質は例えば酸化により実行できる。 As described above, the second resin member 2 has at least a target functional group capable of dynamic covalent bonding on its surface. Although the method of forming the target functional group on the surface of the second resin member 2 is not particularly limited, the target functional group can be arranged on the surface of the second resin member 2 by surface modification, for example. Surface modification can be performed, for example, by oxidation.
 第2樹脂部材2は、更に、目標官能基を内部にも有することが好ましい。これにより、目標官能基を有する樹脂の例えば成形により第2樹脂部材2を形成すればよいため、第2樹脂部材2を容易に形成できる。第2樹脂部材2は、例えば、ウレタン、エポキシ樹脂、フェノール樹脂、ポリビニルアルコール樹脂等の少なくとも1種を含むことで構成できる。 The second resin member 2 preferably also has target functional groups inside. As a result, the second resin member 2 can be easily formed because the second resin member 2 can be formed by, for example, molding a resin having the target functional group. The second resin member 2 can be configured by containing, for example, at least one of urethane, epoxy resin, phenol resin, polyvinyl alcohol resin, and the like.
 中でも、第2樹脂部材2は、目標官能基としてのヒドロキシル基を有するウレタンである第2樹脂を含むことが好ましい。ウレタンである第2樹脂を含むことで、例えば以下の効果が得られる。即ち、従来の接着剤を使用してウレタンを接着する場合、ウレタンが接着剤を含侵するため、接着剤の使用量が増え、樹脂複合体101が重くなり易い。しかし、本開示では、接着剤を使用しないか又は使用しても少量で済むため、ウレタンを接着する場合であっても、樹脂複合体101を軽量化できる。ウレタンは、発泡させたもの(発泡ウレタン)でもよく、発泡させていないもののどちらでもよい。以下、一例として第2樹脂がウレタンである場合を例示するが、第2樹脂はウレタンに限定されない。 Above all, the second resin member 2 preferably contains a second resin that is urethane having a hydroxyl group as the target functional group. By including the second resin, which is urethane, the following effects can be obtained, for example. That is, when a conventional adhesive is used to adhere urethane, the urethane impregnates the adhesive, so the amount of adhesive used increases, and the resin composite 101 tends to become heavy. However, in the present disclosure, no adhesive is used or only a small amount of adhesive is used, so even when urethane is adhered, the weight of the resin composite 101 can be reduced. Urethane may be either foamed (foamed urethane) or non-foamed. Although the case where the second resin is urethane is exemplified below, the second resin is not limited to urethane.
 ウレタンは、例えば、ポリオールとポリイソシアネートとの重合により得られる。これらを所定の比率で混ぜ合わせ、加熱硬化させることで任意の形状で得ることができる。 Urethane is obtained, for example, by polymerization of polyol and polyisocyanate. Any desired shape can be obtained by mixing these in a predetermined ratio and heat curing.
 ポリオールの具体的な種類は、特に限定されない。例えば、ポリエステルポリオール、ポリエーテルポリオール、アクリルポリオール、低分子量のポリオール等の少なくとも1種が挙げられる。ポリエステルポリオールとしては、例えば、ポリエチレンアジペートジオール、ポリブチレンアジペートジオール、ポリエチレンブチレンアジペートジオール、ポリへキサメチレンイソフタレートアジペートジオール、ポリエチレンサクシネートジオール、ポリブチレンサクシネートジオール、ポリエチレンセバケートジオール、ポリブチレンセバケートジオール、ポリ-ε-カプロラクトンジオール、ポリ(3-メチル-1,5-ペンチレンアジペート)ジオール、1,6-へキサンジオールとダイマー酸との重縮合物等が挙げられる。ポリエーテルポリオールとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、エチレンオキシドとプロピレンオキシドとのランダム共重合体又はブロック共重合体、エチレンオキシドとブチレンオキシドとのランダム共重合体又はブロック共重合体等が挙げられる。さらに、エーテル結合とエステル結合とを有するポリエーテルポリエステルポリオール等を用いることもできる。低分子量ポリオールは、特に限定されず、例えば、エチレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、2-メチル-1,8-オクタンジオール、1,4-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジオール等が挙げられる。さらに、トリメチロールプロパン、ペンタエリスリトール、ソルビトール等の低分子量多価アルコールを用いてもよい。これらは単独、又は2種類以上を混合して使用することができる。 The specific type of polyol is not particularly limited. For example, at least one of polyester polyols, polyether polyols, acrylic polyols, low-molecular-weight polyols, and the like can be used. Examples of polyester polyols include polyethylene adipate diol, polybutylene adipate diol, polyethylene butylene adipate diol, polyhexamethylene isophthalate adipate diol, polyethylene succinate diol, polybutylene succinate diol, polyethylene sebacate diol, and polybutylene sebacate. diol, poly-ε-caprolactonediol, poly(3-methyl-1,5-pentylene adipate)diol, polycondensate of 1,6-hexanediol and dimer acid, and the like. Examples of polyether polyols include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, random copolymers or block copolymers of ethylene oxide and propylene oxide, and random copolymers or block copolymers of ethylene oxide and butylene oxide. etc. Furthermore, a polyether polyester polyol or the like having ether bonds and ester bonds can also be used. Low molecular weight polyols are not particularly limited, and examples include ethylene glycol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,9 -nonanediol, 2-methyl-1,8-octanediol, 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanediol and the like. Furthermore, low molecular weight polyhydric alcohols such as trimethylolpropane, pentaerythritol and sorbitol may be used. These can be used alone or in combination of two or more.
 ポリイソシアネートの具体的な種類は、特に限定されない。例えば、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、キシレン-1,4-ジイソシアネート、キシレン-1,3-ジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルエーテルジイソシアネート、2-ニトロジフェニル-4,4’-ジイソシアネート、2,2’-ジフェニルプロパン-4,4’-ジイソシアネート、3,3’-ジメチルジフェニルメタン-4,4’-ジイソシアネート、4,4’-ジフェニルプロパンジイソシアネート、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、ナフチレン-1,4-ジイソシアネート、ナフチレン-1,5-ジイソシアネート、3,3’-ジメトキシジフェニル-4,4’-ジイソシアネート等の芳香族ジイソシアネート、ポリフェニレンポリメチレンポリイソシアネート、クルードトリレンジイソシアネート等の芳香族ポリイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、デカメチレンジイソシアネート、リジンジイソシアネート等の脂肪族ジイソシアネート、イソホロンジイソシアネート、水素添加トリレンジイソシアネート、水素添加キシレンジイソシアネート、水素添加ジフェニルメタンジイソシアネート、テトラメチルキシレンジイソシアネート等の脂環族ジイソシアネート等の有機ジイソシアネート、及び有機ポリイソシアネートのビウレット変性体、ウレトジオン変性体、カルボジイミド変性体、イソシアヌレート変性体、ウレトンイミン変性体、これらの混合変性体が挙げられる。これらは単独、又は2種類以上を混合して使用することができる。 The specific type of polyisocyanate is not particularly limited. For example, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, xylene-1,4-diisocyanate, xylene-1,3-diisocyanate, 4,4′-diphenylmethane diisocyanate, 2,4′-diphenylmethane diisocyanate, 4,4'-diphenyl ether diisocyanate, 2-nitrodiphenyl-4,4'-diisocyanate, 2,2'-diphenylpropane-4,4'-diisocyanate, 3,3'-dimethyldiphenylmethane-4,4'-diisocyanate, 4,4'-diphenylpropane diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, naphthylene-1,4-diisocyanate, naphthylene-1,5-diisocyanate, 3,3'-dimethoxydiphenyl-4,4'-diisocyanate, etc. aromatic polyisocyanates such as polyphenylene polymethylene polyisocyanate, crude tolylene diisocyanate, aliphatic diisocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate, decamethylene diisocyanate and lysine diisocyanate, isophorone diisocyanate, hydrogenated tolylene diisocyanate , hydrogenated xylene diisocyanate, hydrogenated diphenylmethane diisocyanate, organic diisocyanates such as alicyclic diisocyanates such as tetramethylxylene diisocyanate, biuret-modified, uretdione-modified, carbodiimide-modified, isocyanurate-modified, and uretonimine-modified organic polyisocyanates and mixed modifications thereof. These can be used alone or in combination of two or more.
 第2樹脂部材2は、上記の事項以外は、必要に応じて、第1樹脂部材1と同様の事項を適用できる。 For the second resin member 2, the same matters as those of the first resin member 1 can be applied as necessary, except for the above matters.
 図3は、本開示の樹脂複合体101の製造方法を説明する図である。樹脂複合体101は、動的共有結合を有する第1樹脂部材1と、第1樹脂部材1とは異なる樹脂であり、目標官能基を有する第2樹脂部材2とを接触させ、少なくとも接触した部分の加熱により製造できる。加熱により、第1樹脂部材1と第2樹脂部材2とは、動的共有結合及び目標官能基を介した共有結合により接合する。第1樹脂部材1及び第2樹脂部材2は図示の例では平板状であるが、それぞれの形状は平板に限定されない。 FIG. 3 is a diagram illustrating a method for manufacturing the resin composite 101 of the present disclosure. In the resin composite 101, the first resin member 1 having a dynamic covalent bond and the second resin member 2, which is a resin different from the first resin member 1 and have a target functional group, are brought into contact with each other, and at least the contact portion can be produced by heating. By heating, the first resin member 1 and the second resin member 2 are bonded by dynamic covalent bonding and covalent bonding via target functional groups. Although the first resin member 1 and the second resin member 2 are flat plates in the illustrated example, their shapes are not limited to flat plates.
 図4は、第1樹脂部材1及び第2樹脂部材2の表面構造を説明する図である。第1樹脂部材1の表面には、動的共有結合としての例えばエステル結合が複数存在する。一方で、第2樹脂部材2の表面には、目標官能基としての例えばヒドロキシル基が複数存在する。そして、第1樹脂部材と第2樹脂部材とを接触させ(例えば重ね合わせ)、少なくとも接触部分(例えば全体でもよい)を加熱すると、エステル結合が切断され、不対電子を有するカルボニル基が生成する。生成したカルボニル基は反応性が高いため、第2樹脂部材2の表面に存在するヒドロキシル基と容易に結合し、第2樹脂部材2との間で新たなエステル結合が生成する。生成したエステル結合は、上記図2に示したように、再度の加熱により切断可能な動的共有結合である。これらの反応により、第1樹脂部材1と第2樹脂部材2とが共有結合で接合し、第1樹脂部材1と第2樹脂部材2との接合強度を向上できる。 4A and 4B are diagrams for explaining the surface structures of the first resin member 1 and the second resin member 2. FIG. On the surface of the first resin member 1, there are a plurality of dynamic covalent bonds such as ester bonds. On the other hand, on the surface of the second resin member 2, there are, for example, a plurality of hydroxyl groups as target functional groups. Then, when the first resin member and the second resin member are brought into contact (for example, superimposed) and at least the contact portion (for example, the entire portion) is heated, the ester bond is cut and a carbonyl group having an unpaired electron is generated. . Since the generated carbonyl group has high reactivity, it easily bonds with the hydroxyl group existing on the surface of the second resin member 2 , and a new ester bond is generated with the second resin member 2 . The resulting ester bond is a dynamic covalent bond that can be cleaved by heating again, as shown in FIG. By these reactions, the first resin member 1 and the second resin member 2 are joined by covalent bonds, and the joint strength between the first resin member 1 and the second resin member 2 can be improved.
 加熱は任意の方法で行うことができる。例えば、加熱は、恒温槽等で全体を加熱してもよいし、所望の位置にマイクロ波又は赤外線を照射して部分的に加熱してもよい。さらには、例えば、電気ヒータ等を用いて加熱した金属板を所望の位置に押しつけることで、加熱してもよい。加熱は、第1樹脂部材1と第2樹脂部材2との接触方向(例えば積層方向)にプレスしながら(押す力を加えながら)加熱してもよいし、プレスせずに加熱してもよい。また、プレスせずに加熱する場合には、例えば加熱後冷却前にプレスを行うこともできる。 "Heating can be done by any method." For example, the heating may be performed by heating the whole in a constant temperature bath or the like, or by irradiating a desired position with microwaves or infrared rays to heat partially. Furthermore, for example, heating may be performed by pressing a heated metal plate using an electric heater or the like to a desired position. The heating may be performed while pressing (while applying a pressing force) in the contact direction (for example, the stacking direction) of the first resin member 1 and the second resin member 2, or may be performed without pressing. . When heating without pressing, for example, pressing may be performed after heating and before cooling.
 加熱温度は、第1樹脂部材1及び第2樹脂部材2の材料組成及び配合比率によって異なるが、例えば、第1樹脂及び第2樹脂のそれぞれのガラス転移温度(動的共有結合の組み換えが生じる温度)以上、かつ、第1樹脂及び第2樹脂のそれぞれが熱分解しない温度以下にできる。具体的には例えば、第1樹脂がエポキシ樹脂、第2樹脂がウレタンの場合、例えば100℃以上、好ましくは150℃以上、その上限として例えば300℃以下、好ましくは200℃以下にできる。加熱時間は、例えば1時間以上10時間以下にできる。加熱温度及び加熱時間は、第1樹脂部材1と第2樹脂部材2とを接合させるときと、これらを分離するときとで、同じであってもよいし、異なっていてもよい。 The heating temperature varies depending on the material composition and compounding ratio of the first resin member 1 and the second resin member 2. For example, the glass transition temperature (the temperature at which dynamic covalent bond recombination occurs) ) above and below the temperature at which the first resin and the second resin are not thermally decomposed. Specifically, for example, when the first resin is epoxy resin and the second resin is urethane, the temperature can be set to, for example, 100° C. or higher, preferably 150° C. or higher, and the upper limit thereof, for example, 300° C. or lower, preferably 200° C. or lower. The heating time can be, for example, 1 hour or more and 10 hours or less. The heating temperature and the heating time may be the same or different when joining the first resin member 1 and the second resin member 2 and when separating them.
 図5は、本開示の樹脂複合体101の解体方法を説明する図である。樹脂複合体101のうち、少なくとも、動的共有結合及び目標官能基を介した共有結合の部分を加熱することで動的共有結合から目標官能基を解離させて、樹脂複合体101が第1樹脂部材1及び第2樹脂部材2に解体される。これにより、容易に解体でき、リサイクル性を向上できる。 FIG. 5 is a diagram for explaining a dismantling method for the resin composite 101 of the present disclosure. The target functional group is dissociated from the dynamic covalent bond by heating at least the part of the resin composite 101 that has the dynamic covalent bond and the covalent bond via the target functional group, and the resin composite 101 becomes the first resin. It is dismantled into the member 1 and the second resin member 2 . As a result, it can be easily dismantled and the recyclability can be improved.
 加熱は、図4を参照して説明した接合時と同条件で行うことができる。例えば、第1樹脂部材1と第2樹脂部材2との接触方向(例えば積層方向)に引く力を加えながら加熱してもよいし、そのような力を加えずに加熱してもよい。また、そのような力を加えずに加熱する場合には、加熱後に引く力を加えてこれらを分離することもできる。 The heating can be performed under the same conditions as during the bonding described with reference to FIG. For example, the heating may be performed while applying a pulling force in the contact direction (for example, the stacking direction) between the first resin member 1 and the second resin member 2, or the heating may be performed without applying such a force. Moreover, when heating is performed without applying such a force, a pulling force can be applied after heating to separate them.
 以下、実施例を挙げて本開示を更に具体的に説明するが、本開示は実施例に限定されない。 Hereinafter, the present disclosure will be described more specifically with examples, but the present disclosure is not limited to the examples.
<実施例1>
 第1樹脂部材1(図1)を以下のようにして作製した。まず、ビスフェノールAジグリシジルエーテル型のエポキシ化合物(jER828、三菱ケミカル社製)100質量部に対し、酸無水物(MHAC-P、昭和電工マテリアルズ社製)47質量部、マンガン(III)アセチルアセトナート(エステル交換反応触媒、東京化成社製)19質量部、硬化促進
剤としての2E4MZ-CN(四国化成製)0.3質量部大気中で攪拌及び混合し、混合物を得た。酸無水物の使用量は、エポキシ化合物の使用量に対して50モル%(化学両論比で半量)、マンガン(III)アセチルアセトナートの使用量は、エポキシ化合物の使用
量に対して10モル%である。次いで、混合物を100℃で1時間、200℃で1時間加熱し、混合物を硬化させ、平板状の第1樹脂部材1を得た。第1樹脂部材1は、酸無水物とヒドロキシル基との脱水縮合により生じたエステル結合を動的共有結合として表面及び内部に有する。
<Example 1>
A first resin member 1 (FIG. 1) was produced as follows. First, with respect to 100 parts by mass of a bisphenol A diglycidyl ether type epoxy compound (jER828, manufactured by Mitsubishi Chemical), 47 parts by mass of acid anhydride (MHAC-P, manufactured by Showa Denko Materials), manganese (III) acetylaceto 19 parts by mass of nate (transesterification reaction catalyst, manufactured by Tokyo Kasei Co., Ltd.) and 0.3 parts by mass of 2E4MZ-CN (manufactured by Shikoku Kasei Co., Ltd.) as a curing accelerator were stirred and mixed in the atmosphere to obtain a mixture. The amount of acid anhydride used is 50 mol% (half of the stoichiometric ratio) relative to the amount of epoxy compound used, and the amount of manganese (III) acetylacetonate used is 10 mol% relative to the amount of epoxy compound used. is. Next, the mixture was heated at 100° C. for 1 hour and then at 200° C. for 1 hour to cure the mixture and obtain a flat first resin member 1 . The first resin member 1 has an ester bond formed by dehydration condensation between an acid anhydride and a hydroxyl group as a dynamic covalent bond on the surface and inside.
 第2樹脂部材2(図1)を以下のようにして作製した。まず、ポリオール(NIPPOLAN982R、日本ポリウレタン社製)7質量部と、ポリイソシアネート(CORONATE HXR、日本ポリウレタン社製)16質量部と、アミン(Polycat8、サンアプロ社製)3質量部とを混合し、混合物を得た。次いで、混合物を80℃で、1時間加熱することで、平板状の第2樹脂部材2を得た。第2樹脂部材2は、第1樹脂部材1とは異なる樹脂であり、目標官能基としてのヒドロキシル基を表面及び内部に有する。 A second resin member 2 (Fig. 1) was produced as follows. First, 7 parts by mass of polyol (NIPPOLAN982R, manufactured by Nippon Polyurethane Co., Ltd.), 16 parts by mass of polyisocyanate (CORONATE HXR, manufactured by Nippon Polyurethane Co., Ltd.), and 3 parts by mass of amine (Polycat8, manufactured by Sun-Apro Co., Ltd.) are mixed to form a mixture. Obtained. Then, the mixture was heated at 80° C. for 1 hour to obtain a flat second resin member 2 . The second resin member 2 is a resin different from the first resin member 1 and has hydroxyl groups as target functional groups on the surface and inside.
 平板状の第1樹脂部材1と平板状の第2樹脂部材とを重ね合わせ、190℃で1時間加熱プレス及びその後室温に冷却することで、樹脂複合体101(図1)を得た。第1樹脂部材1を一方の手で掴むとともに第2樹脂部材2を他方の手で掴むことで、これらの剥離を試みた。しかし、両手で力をかけて引っ張ってもこれらは剥離されず、強固に接合していることが確認された。これは、第1樹脂部材1と第2樹脂部材2とが動的共有結合によって接合したためと考えられる。 A flat plate-shaped first resin member 1 and a flat plate-shaped second resin member were superimposed, heat-pressed at 190° C. for 1 hour, and then cooled to room temperature to obtain a resin composite 101 (FIG. 1). By grasping the first resin member 1 with one hand and grasping the second resin member 2 with the other hand, an attempt was made to separate them. However, even if they were pulled with both hands, they were not peeled off, and it was confirmed that they were strongly bonded. It is considered that this is because the first resin member 1 and the second resin member 2 are bonded by dynamic covalent bonding.
 次いで、樹脂複合体101を恒温槽に入れ、空気中で全体を200℃で1時間加熱した。1時間の加熱直後、手袋を装着して両手で引っ張ることで剥離を試みたところ、わずかな力でこれらを剥離できた。従って、加熱により樹脂複合体101を容易に解体できることが確認された。これは、加熱により動的共有結合の組み換えが行われ、第1樹脂部材1と第2樹脂部材2との間に形成された動的共有結合が切断されたためと考えられる。 Next, the resin composite 101 was placed in a constant temperature bath, and the whole was heated in the air at 200°C for 1 hour. Immediately after heating for 1 hour, when an attempt was made to remove them by putting on gloves and pulling them with both hands, they could be removed with a slight force. Therefore, it was confirmed that the resin composite 101 can be easily disassembled by heating. This is probably because the dynamic covalent bond was recombined by heating, and the dynamic covalent bond formed between the first resin member 1 and the second resin member 2 was cut.
<実施例2>
 第1樹脂部材1(図1)としてエポキシ樹脂に代えてポリエステル樹脂(動的共有結合有する)を使用したこと以外は実施例1と同様にして樹脂複合体101(図1)を作製した。そして、実施例1と同様に剥離を試みたところ、加熱前には剥離できず、加熱直後には容易に剥離できた。この結果、高接合強度及び高リサイクル性を確認できた。なお、ポリエステル樹脂は、エステル基とヒドロキシル基を含むビニルモノマーを反応開始剤により硬化させた。スチレン(東京化成工業社製)100重量部、ビスフェノールAグリセロラートジメタクリラート(シグマアルドリッチ社製)100重量部、2-ヒドロキシメタクリレート25.6重量部、ジエチルメトキシボラン(シグマアルドリッチ社製)6重量部、マンガン(III)アセチルアセトナート(エステル交換反応触媒、東京化成社製)19
質量部を撹拌し、120℃で4時間硬化させることで得た。
<Example 2>
A resin composite 101 (FIG. 1) was produced in the same manner as in Example 1, except that a polyester resin (having a dynamic covalent bond) was used as the first resin member 1 (FIG. 1) instead of the epoxy resin. Then, when peeling was attempted in the same manner as in Example 1, the film could not be peeled off before heating, but was easily peeled off immediately after heating. As a result, high bonding strength and high recyclability were confirmed. The polyester resin was obtained by curing a vinyl monomer containing an ester group and a hydroxyl group with a reaction initiator. 100 parts by weight of styrene (manufactured by Tokyo Chemical Industry Co., Ltd.), 100 parts by weight of bisphenol A glycerolate dimethacrylate (manufactured by Sigma-Aldrich), 25.6 parts by weight of 2-hydroxymethacrylate, 6 parts by weight of diethylmethoxyborane (manufactured by Sigma-Aldrich) part, manganese (III) acetylacetonate (transesterification reaction catalyst, manufactured by Tokyo Chemical Industry Co., Ltd.) 19
It was obtained by stirring mass parts and curing at 120° C. for 4 hours.
<実施例3>
 第2樹脂部材2(図1)としてウレタンに代えてフェノール樹脂(目標官能基であるヒドロキシル基を表面及び内部に有する)を使用したこと以外は実施例1と同様にして樹脂複合体101(図1)を作製した。そして、実施例1と同様に剥離を試みたところ、加熱前には剥離できず、加熱直後には容易に剥離できた。この結果、高接合強度及び高リサイクル性を確認できた。なお、フェノール樹脂は、DG-630(DIC製)を180℃で4時間硬化させることで得た。
<Example 3>
A resin composite 101 (Fig. 1) was used in the same manner as in Example 1 except that a phenol resin (having a hydroxyl group, which is a target functional group, on the surface and inside) was used instead of urethane as the second resin member 2 (Fig. 1). 1) was produced. Then, when peeling was attempted in the same manner as in Example 1, the film could not be peeled off before heating, but was easily peeled off immediately after heating. As a result, high bonding strength and high recyclability were confirmed. The phenolic resin was obtained by curing DG-630 (manufactured by DIC) at 180° C. for 4 hours.
<比較例1>
 酸無水物の使用量を、エポキシ化合物の使用量に対して100モル%(化学両論比で等量)にしたこと以外は実施例1と同様にして樹脂複合体を作製した。比較例1の第1樹脂部材では作製中にエポキシ化合物と酸無水物とが化学両論比通りに反応し、第1樹脂部材は動的共有結合を有していない。
<Comparative Example 1>
A resin composite was produced in the same manner as in Example 1, except that the amount of acid anhydride used was 100 mol % (equivalent in stoichiometric ratio) with respect to the amount of epoxy compound used. In the first resin member of Comparative Example 1, the epoxy compound and the acid anhydride reacted according to the stoichiometric ratio during production, and the first resin member did not have dynamic covalent bonds.
 実施例1と同様にして剥離を試みたところ、加熱前及び加熱直後のいずれにおいても、大きな力をかけることなく容易に剥離した。これは、第1樹脂部材が動的共有結合を有さず、第2樹脂部材2との間で動的共有結合を利用した接合が行われなかったためと考えられる。 When peeling was attempted in the same manner as in Example 1, it was easily peeled off without applying a large force both before and immediately after heating. It is considered that this is because the first resin member does not have a dynamic covalent bond and is not bonded to the second resin member 2 using a dynamic covalent bond.
<比較例2>
 ヒドロキシル基(目標官能基の一例)のないアクリル樹脂を第2樹脂部材として使用したこと以外は実施例1と同様にして樹脂複合体を作製した。比較例2では、第1樹脂部材1は動的共有結合を有するものの、第2樹脂部材は動的共有結合と結合可能な目標官能基を有しない。
<Comparative Example 2>
A resin composite was produced in the same manner as in Example 1, except that an acrylic resin without a hydroxyl group (an example of a target functional group) was used as the second resin member. In Comparative Example 2, the first resin member 1 has a dynamic covalent bond, but the second resin member does not have a target functional group capable of bonding with the dynamic covalent bond.
 実施例1と同様にして剥離を試みたところ、加熱前及び加熱直後のいずれにおいても、大きな力をかけることなく容易に剥離した。これは、第2樹脂部材が目標官能基を有さず、第1樹脂部材との間で動的共有結合を利用した接合が行われなかったためと考えられる。 When peeling was attempted in the same manner as in Example 1, it was easily peeled off without applying a large force both before and immediately after heating. It is considered that this is because the second resin member did not have the target functional group and was not bonded to the first resin member using dynamic covalent bonding.
 以上の結果から、動的共有結合を用いた異種樹脂同士の接合により、高接合強度及び高リサイクル性を図ることができる。 From the above results, it is possible to achieve high bonding strength and high recyclability by bonding dissimilar resins using dynamic covalent bonds.
1 第1樹脂部材
2 第2樹脂部材
101 樹脂複合体
1 first resin member 2 second resin member 101 resin composite

Claims (7)

  1.  可逆的に解離又は結合可能な動的共有結合を有する第1樹脂部材と、
     前記第1樹脂部材とは異なる樹脂であり、前記動的共有結合と結合可能な目標官能基を少なくとも表面に有する第2樹脂部材と、
     を備え、
     前記第1樹脂部材と前記第2樹脂部材とは、前記動的共有結合及び前記目標官能基を介した共有結合により接合している
     ことを特徴とする樹脂複合体。
    a first resin member having a reversibly dissociable or bondable dynamic covalent bond;
    a second resin member, which is a different resin from the first resin member and has at least on its surface a target functional group capable of bonding with the dynamic covalent bond;
    with
    The resin composite, wherein the first resin member and the second resin member are bonded to each other by a covalent bond via the dynamic covalent bond and the target functional group.
  2.  前記第2樹脂部材は、更に、前記目標官能基を内部にも有する
     ことを特徴とする請求項1に記載の樹脂複合体。
    The resin composite according to claim 1, wherein the second resin member further has the target functional group inside.
  3.  前記第2樹脂部材は、前記目標官能基としてのヒドロキシル基を有するウレタンである第2樹脂を含む
     ことを特徴とする請求項1又は2に記載の樹脂複合体。
    The resin composite according to claim 1 or 2, wherein the second resin member includes a second resin that is urethane having a hydroxyl group as the target functional group.
  4.  前記第1樹脂部材は、エポキシ樹脂である第1樹脂を含む
     ことを特徴とする請求項1又は2に記載の樹脂複合体。
    The resin composite according to claim 1 or 2, wherein the first resin member contains a first resin that is an epoxy resin.
  5.  前記第1樹脂部材は繊維を含む
     ことを特徴とする請求項1又は2に記載の樹脂複合体。
    The resin composite according to claim 1 or 2, wherein the first resin member contains fibers.
  6.  可逆的に解離又は結合可能な動的共有結合を有する第1樹脂部材と、前記第1樹脂部材とは異なる樹脂であり、前記動的共有結合と結合可能な目標官能基を少なくとも表面に有する第2樹脂部材と、を接触させ、少なくとも接触した部分を加熱することで、前記第1樹脂部材と前記第2樹脂部材とを、前記動的共有結合及び前記目標官能基を介した共有結合により接合させる
     ことを特徴とする樹脂複合体の製造方法。
    a first resin member having dynamic covalent bonds capable of reversibly dissociating or bonding; The first resin member and the second resin member are bonded by the dynamic covalent bond and the covalent bond via the target functional group by bringing the two resin members into contact and heating at least the contact portion. A method for producing a resin composite, characterized by:
  7.  可逆的に解離又は結合可能な動的共有結合を有する第1樹脂部材と、前記第1樹脂部材とは異なる樹脂であり、前記動的共有結合と結合可能な目標官能基を少なくとも表面に有する第2樹脂部材と、を備え、前記第1樹脂部材と前記第2樹脂部材とは、前記動的共有結合及び前記目標官能基を介した共有結合により接合している樹脂複合体のうち、少なくとも前記共有結合の部分を加熱することで前記動的共有結合から前記目標官能基を解離させて、前記樹脂複合体を前記第1樹脂部材及び前記第2樹脂部材に解体する
     ことを特徴とする樹脂複合体の解体方法。
    a first resin member having dynamic covalent bonds capable of reversibly dissociating or bonding; 2 resin members, wherein the first resin member and the second resin member are bonded to each other by the dynamic covalent bond and the covalent bond via the target functional group, and at least the The resin composite is disassembled into the first resin member and the second resin member by heating the covalent bond portion to dissociate the target functional group from the dynamic covalent bond. body dismantling method.
PCT/JP2022/011726 2021-05-11 2022-03-15 Resin composite, method for producing resin composite, and method for disassembling resin composite WO2022239463A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021080129A JP2022174379A (en) 2021-05-11 2021-05-11 Resin composite, method for producing resin composite, and method for disassembling resin composite
JP2021-080129 2021-05-11

Publications (1)

Publication Number Publication Date
WO2022239463A1 true WO2022239463A1 (en) 2022-11-17

Family

ID=84028188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011726 WO2022239463A1 (en) 2021-05-11 2022-03-15 Resin composite, method for producing resin composite, and method for disassembling resin composite

Country Status (2)

Country Link
JP (1) JP2022174379A (en)
WO (1) WO2022239463A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04250033A (en) * 1990-04-24 1992-09-04 General Electric Co <Ge> Laminate with base of plastic
JP2002105223A (en) * 2000-09-29 2002-04-10 Toho Tenax Co Ltd Paperless prepreg and manufacturing method
JP2017088739A (en) * 2015-11-11 2017-05-25 株式会社日立製作所 Composite, electrical machine, motor, transformer, structure, movable body and manufacturing method of composite
JP2019025842A (en) * 2017-08-01 2019-02-21 株式会社日立製作所 Resin metal composite, method for manufacturing resin metal composite, and method for dismantling resin metal composite
JP2019026781A (en) * 2017-08-01 2019-02-21 株式会社日立製作所 Fiber-reinforced resin and its production method
JP2019217738A (en) * 2018-06-22 2019-12-26 株式会社日立製作所 Resin laminate and method for producing resin laminate
JP2020023591A (en) * 2016-10-31 2020-02-13 株式会社日立製作所 Resin composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04250033A (en) * 1990-04-24 1992-09-04 General Electric Co <Ge> Laminate with base of plastic
JP2002105223A (en) * 2000-09-29 2002-04-10 Toho Tenax Co Ltd Paperless prepreg and manufacturing method
JP2017088739A (en) * 2015-11-11 2017-05-25 株式会社日立製作所 Composite, electrical machine, motor, transformer, structure, movable body and manufacturing method of composite
JP2020023591A (en) * 2016-10-31 2020-02-13 株式会社日立製作所 Resin composition
JP2019025842A (en) * 2017-08-01 2019-02-21 株式会社日立製作所 Resin metal composite, method for manufacturing resin metal composite, and method for dismantling resin metal composite
JP2019026781A (en) * 2017-08-01 2019-02-21 株式会社日立製作所 Fiber-reinforced resin and its production method
JP2019217738A (en) * 2018-06-22 2019-12-26 株式会社日立製作所 Resin laminate and method for producing resin laminate

Also Published As

Publication number Publication date
JP2022174379A (en) 2022-11-24

Similar Documents

Publication Publication Date Title
US9034982B2 (en) Formulations comprising isosorbide-modified unsaturated polyester resins and low profile additives which produce low shrinkage matrices
CN109415524B (en) Fiber-reinforced molding material and molded article using same
KR20140030181A (en) Impact-modified adhesives
JPS5918410B2 (en) Aged, moldable, thermoset dual polyester resin system
TW201434940A (en) Curable resin composition containing polymer particles
WO2019026331A1 (en) Resin-metal composite, method for preparing resin-metal composite, and method for dismantling resin-metal composite
US20210040283A1 (en) Prepreg and method for manufacturing molded prepreg article
WO2017208605A1 (en) Prepreg sheet, and process for producing fiber-reinforced composite material
JP6708312B2 (en) Fiber-reinforced molding material and molded product using the same
WO2022239463A1 (en) Resin composite, method for producing resin composite, and method for disassembling resin composite
JP6967674B2 (en) Thermoplastic resin material with primer and resin-resin bond
TWI743495B (en) Resin laminated body and manufacturing method of resin laminated body
WO2020213414A1 (en) Fiber-reinforced molding material and molded article using the same
JP7173734B2 (en) Molding materials and their molded products
JP2008133397A (en) Urethane adhesive composition
JP7029549B2 (en) Thermoplastic resin material with primer and resin-resin bond
JP6966026B2 (en) Fiber reinforced molding material and molded products using it
JP2023160676A (en) Metal resin composite material, vehicle using the same, and method for disassembling metal resin composite material
JP6923721B1 (en) Substrate with primer, its manufacturing method, and bonded body
US5354585A (en) Molding materials and molded products thereform
JP6967677B2 (en) Thermoplastic resin material with primer and resin-resin bond
JP7501803B2 (en) Method for manufacturing fiber-reinforced composite material, fiber-reinforced composite material, and method for manufacturing molded product
JPH02212544A (en) Impregnating resin composition, and production of both prepreg and laminate
KR100433339B1 (en) Epoxy Modified unsaturated polyester resin for lining adhesive of iron plate and steel and process for preparing the same
JPS6024810B2 (en) Method of manufacturing sheet molding compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807169

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22807169

Country of ref document: EP

Kind code of ref document: A1