WO2020213414A1 - Fiber-reinforced molding material and molded article using the same - Google Patents

Fiber-reinforced molding material and molded article using the same Download PDF

Info

Publication number
WO2020213414A1
WO2020213414A1 PCT/JP2020/015167 JP2020015167W WO2020213414A1 WO 2020213414 A1 WO2020213414 A1 WO 2020213414A1 JP 2020015167 W JP2020015167 W JP 2020015167W WO 2020213414 A1 WO2020213414 A1 WO 2020213414A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
molding material
resin
mass
members
Prior art date
Application number
PCT/JP2020/015167
Other languages
French (fr)
Japanese (ja)
Inventor
佳浩 安谷
健一 濱田
一迅 人見
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2021509230A priority Critical patent/JPWO2020213414A1/en
Publication of WO2020213414A1 publication Critical patent/WO2020213414A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/68Unsaturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic

Definitions

  • the present invention relates to a fiber reinforced molding material and a molded product thereof.
  • Fiber-reinforced resin composite materials reinforced with thermosetting resins such as epoxy resin and unsaturated polyester resin using carbon fiber as reinforced fibers are attracting attention for their excellent heat resistance and mechanical strength while being lightweight. Its use in various structural applications such as bodies and various members is expanding.
  • a method for molding a material using an epoxy resin in this fiber-reinforced resin composite material an autoclave method in which a material called prepreg is heated and cured by a pressurable autoclave is known, and an unsaturated polyester resin is used.
  • a method for molding a material there is known a method of curing and molding by a method such as press molding or injection molding using an intermediate material called a sheet molding compound (SMC) or a bulk molding compound (BMC). Particularly in recent years, the development of highly productive materials has been actively carried out.
  • SMC sheet molding compound
  • BMC bulk molding compound
  • molding materials include carbon fiber reinforced sheet-like molding containing unsaturated polyester resin, vinyl monomer, thermoplastic polymer, polyisocyanate, filler, conductive carbon black and wide carbon fiber bundle as essential components.
  • the material is known (see, for example, Patent Document 1). Although a molded product having an excellent appearance can be obtained from this molding material, since a highly volatile styrene monomer is used, the odor is strong and there is a problem in the working environment during the molding work.
  • the problem to be solved by the present invention is to obtain a molded product having excellent work environment during molding work, handleability including film peeling property and tackiness of the molding material, flexibility, and various physical properties such as bending strength. It is to provide a fiber-reinforced molding material and a molded product thereof.
  • the present inventors have specified fiber reinforced plastics containing vinyl ester resin, unsaturated monomer having a flammability of 100 ° C. or higher, polyisocyanate, polymerization initiator, and carbon fiber having a fiber length of 2.5 to 50 mm as essential components.
  • the present invention has been completed by finding that a molded product having excellent working environment, handleability and flexibility, and various physical properties such as bending strength can be obtained as a molding material.
  • the present invention relates to a fiber-reinforced molding material having a range of .06 and a molded product using the same.
  • the molded product obtained from the fiber-reinforced molding material of the present invention is excellent in bending strength, flexural modulus, etc., automobile members, railroad vehicle members, aerospace machine members, ship members, housing equipment members, sports members, etc. It can be suitably used for light vehicle members, building civil engineering members, housings for OA equipment, and the like.
  • the fiber-reinforced molding material of the present invention comprises a vinyl ester resin (A), an unsaturated monomer (B) having a flammability of 100 ° C. or higher, a polyisocyanate (C), a polymerization initiator (D), and a fiber length 2.
  • A vinyl ester resin
  • B unsaturated monomer
  • C polyisocyanate
  • D polymerization initiator
  • F fiber length 2
  • E a fiber-reinforced molding material containing, as essential raw materials, the ratio of the transmittance at 3490cm -1 and 3340cm -1 in ATR measurement of FT-IR (3490cm -1 / 3340cm -1 ) (Hereinafter, abbreviated as “transmittance ratio ⁇ ”) is in the range of 1.01 to 1.06.
  • the transmittance of the FT-IR in the ATR measurement of the present invention is obtained from the peak value of the transmission spectrum.
  • 3490 cm -1 is the peak derived from the OH bond
  • 3340 cm -1 is derived from the NH bond. Is the peak of.
  • the transmittance ratio ⁇ is in the range of 1.01 to 1.06 from the viewpoint of film peelability and the balance between tackiness and flexibility, but the film peelability and tackiness are further improved. Therefore, it is preferably 1.02 or more, and more preferably 1.05 or less because the flexibility is further improved.
  • the vinyl ester resin (A) can be obtained by reacting the epoxy resin (a1) with the (meth) acrylic acid (a2), and has the handleability and fluidity such as film peelability and tackiness during molding.
  • the molar ratio (COOH / EP) of the epoxy group (EP) of the epoxy resin (a1) to the carboxyl group (COOH) of the (meth) acrylic acid (a2) is 0.6 to 1 because of its excellent balance. It is preferable to react in the range of 1.
  • the epoxy equivalent of the epoxy resin (a1) is preferably in the range of 180 to 370, more preferably in the range of 180 to 250.
  • (meth) acrylic acid means one or both of acrylic acid and methacrylic acid
  • (meth) acrylate means one or both of acrylate and methacrylate.
  • Examples of the epoxy resin (a1) include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol fluorene type epoxy resin, biscresol fluorene type and other bisphenol type epoxy resins, phenol novolac type epoxy resin, and cresol novolac type epoxy.
  • Novolak type epoxy resin such as resin, oxodoridone modified epoxy resin, phenolic glycidyl ether such as brominated epoxy resin of these resins, dipropylene glycol diglycidyl ether, trimethylpropan triglycidyl ether, alkylene oxide adduct of bisphenol A Diglycidyl ether, glycidyl ether of polyhydric alcohols such as diglycidyl ether of bisphenol A hydride, 3,4-epoxy-6-methylcyclohexylmethyl-3,4-epoxy-6-methylcyclohexanecarboxylate, 1-epociethyl- Alicyclic epoxy resin such as 3,4-epoxycyclohexane, phthalic acid diglycidyl ester, tetrahydrophthalic acid diglycidyl ester, diglycidyl-p-oxybenzoic acid, glycidyl ester such as dimer acid glycidyl ester,
  • Examples include resin.
  • bifunctional aromatic epoxy resins are preferable, and bisphenol A type epoxy resins and bisphenol F type epoxy resins are more preferable because they are superior in the strength of the molded product, the handleability of the molding material, and the fluidity during molding of the molding material. preferable.
  • These epoxy resins may be used alone or in combination of two or more.
  • the epoxy resin (a1) may be used by increasing the molecular weight with a dibasic acid such as bisphenol A in order to adjust the epoxy equivalent.
  • the reaction between the epoxy resin and (meth) acrylic acid described above is preferably carried out at 60 to 140 ° C. using an esterification catalyst. Further, a polymerization inhibitor or the like can also be used.
  • the unsaturated monomer (B) has a flash point of 100 ° C. or higher. As a result, the odor during the molding work can be suppressed, and the work environment is excellent. Further, since the unsaturated monomer has a high boiling point, it has excellent moldability during high-temperature molding, enables high-temperature single-hour molding, and improves productivity.
  • the flash point in the present invention is the flash point measured by the Cleveland opening method specified in JIS K2265-4: 2007.
  • Examples of the unsaturated monomer (B) include benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, polyethylene glycol (meth) acrylate alkyl ether, and polypropylene glycol (meth) acrylate.
  • unsaturated monomers having an aromatic are preferable because a molding material having higher strength can be obtained, and benzyl methacrylate. , Phenoxyethyl methacrylate is more preferred.
  • these unsaturated monomers can be used alone or in combination of two or more.
  • the mass ratio ((A) / (B)) of the vinyl ester resin (A) to the unsaturated monomer (B) is determined by the resin impregnation property, handleability (tack property) and curability of the carbon fibers.
  • the range of 40/60 to 85/15 is preferable, and the range of 50/50 to 70/30 is more preferable, because the balance is further improved.
  • the viscosity of the mixture of the vinyl ester resin (A) and the unsaturated monomer (B) is The range of 200 to 8,000 mPa ⁇ s (25 ° C.) is preferable because the resin impregnation property of the carbon fiber is further improved.
  • the polyisocyanate (C) is, for example, a diphenylmethane diisocyanate (4,4'-form, 2,4'-form, or 2,2'-form, or a mixture thereof), a carbodiimide-modified product of diphenylmethane diisocyanate, or a nurate-modified product.
  • Diphenylmethane diisocyanate modified product such as body, bullet modified product, urethane imine modified product, polyol modified product modified with polyol having a number average molecular weight of 1,000 or less such as diethylene glycol and dipropylene glycol, tolylene diisocyanate, trizine diisocyanate, polymethylene poly Aromatic polyisocyanates such as phenyl polyisocyanate, xylylene diisocyanate, 1,5-naphthalenediocyanate, tetramethylxylene diisocyanate; alicyclic polyisocyanates such as isophorone diisocyanate, hydrogenated diphenylmethane diisocyanate, hydrogenated xylylene diisocyanate, norbornene diisocyanate; Hexamethylene diisocyanate, a nurate-modified product of hexamethylene diisocyanate, a bullet-modified product, an adduct-isocyanate, an
  • the molar ratio (NCO / OH) of the isocyanate group (NCO) of the polyisocyanate (C) to the hydroxyl group (OH) of the vinyl ester resin (A) has a transmittance ratio ⁇ of 1.01 to 1.06. Since the range can be easily controlled, the range of 0.5 to 0.95 is preferable, and further, the balance between handleability (film peeling property and tackiness) and flexibility is more excellent, so 0.55 to 0. 85 is more preferable.
  • the polymerization initiator (D) is not particularly limited, but an organic peroxide is preferable, and for example, a diacyl peroxide compound, a peroxy ester compound, a hydroperoxide compound, a ketone peroxide compound, an alkyl perester compound, and a par. Examples thereof include carbonate compounds and peroxyketal, which can be appropriately selected depending on the molding conditions.
  • these polymerization initiators (D) can be used alone or in combination of two or more.
  • a polymerization initiator having a temperature of 70 ° C. or higher and 110 ° C. or lower for obtaining a 10-hour half-life for the purpose of shortening the molding time.
  • the temperature is 70 ° C. or higher and 110 ° C. or lower, the life of the fiber-reinforced molding material at room temperature is long, and it can be cured in a short time by heating, which is preferable, and the balance between curability and moldability is more excellent.
  • Examples of such a polymerization initiator include 1,6-bis (t-butylperoxycarbonyloxy) hexane, 1,1-bis (t-butylperoxy) cyclohexane, and 1,1-bis (t-).
  • the content of the polymerization initiator (D) is 0 with respect to the total amount of the vinyl ester resin (A) and the unsaturated monomer (B) because both the curing characteristics and the storage stability are excellent.
  • the range of 3 to 3% by mass is preferable.
  • the carbon fiber (E) As the carbon fiber (E), a carbon fiber cut to a length of 2.5 to 50 mm is used, but since the fluidity in the mold at the time of molding, the appearance of the molded product and the mechanical properties are further improved. Carbon fibers cut to 5 to 40 mm are more preferable.
  • carbon fiber (E) various types such as polyacrylonitrile-based, pitch-based, rayon-based, etc. can be used, but among these, polyacrylonitrile-based ones because high-strength carbon fibers can be easily obtained. Is preferable.
  • the number of filaments of the fiber bundle used as the carbon fiber (E) is preferably 1,000 to 60,000 because the resin impregnation property and the mechanical physical properties of the molded product are further improved.
  • the content of the carbon fiber (E) in the components of the fiber-reinforced molded material of the present invention is preferably in the range of 20 to 80% by mass, preferably 40 to 80%, because the mechanical properties of the obtained molded product are further improved.
  • the range of 70% by mass is more preferable. If the carbon fiber content is low, a high-strength molded product may not be obtained, and if the carbon fiber content is high, the resin impregnation property of the fibers is insufficient, causing swelling of the molded product, which is also high. There is a possibility that a strong molded product cannot be obtained.
  • the carbon fiber (E) in the fiber-reinforced molding material of the present invention is impregnated with the resin in a state where the fiber direction is random.
  • the components of the fiber-reinforced molding material of the present invention include the vinyl ester resin (A), the unsaturated monomer (B), the polyisocyanate (C), the polymerization initiator (D), and the carbon fiber (E).
  • a thermosetting resin other than the vinyl ester resin (A) a thermoplastic resin, a polymerization inhibitor, a curing accelerator, a filler, a low shrinkage agent, a mold release agent, etc. It can contain a thickener, a thickener, a pigment, an antioxidant, a plasticizer, a flame retardant, an antibacterial agent, an ultraviolet stabilizer, a reinforcing material, a photocuring agent and the like.
  • thermosetting resin examples include vinyl urethane resin, unsaturated polyester resin, acrylic resin, epoxy resin, phenol resin, melamine resin, furan resin and the like. In addition, these thermosetting resins can be used alone or in combination of two or more.
  • thermoplastic resin examples include polyamide resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polycarbonate resin, urethane resin, polypropylene resin, polyethylene resin, polystyrene resin, acrylic resin, polybutadiene resin, polyisoprene resin, and copolymerization thereof. Examples thereof include those modified by the above. In addition, these thermoplastic resins can be used alone or in combination of two or more.
  • polymerization inhibitor examples include hydroquinone, trimethylhydroquinone, pt-butylcatechol, t-butylhydroquinone, toluhydroquinone, p-benzoquinone, naphthoquinone, hydroquinone monomethyl ether, phenothiazine, copper naphthenate, copper chloride and the like. Be done. These polymerization inhibitors may be used alone or in combination of two or more.
  • curing accelerator examples include metal soaps such as cobalt naphthenate, cobalt octate, vanazyl octate, copper naphthenate, and barium naphthenate, and metal chelates such as vanadylacetyl acetate, cobalt acetylacetate, and iron acetylacetonate. Examples include compounds.
  • These curing accelerators can be used alone or in combination of two or more.
  • the filler includes inorganic compounds and organic compounds, which can be used to adjust physical properties such as strength, elastic modulus, impact strength, and fatigue durability of molded products.
  • examples of the inorganic compound include calcium carbonate, magnesium carbonate, barium sulfate, mica, talc, kaolin, clay, celite, asbestos, burlite, baryta, silica, silica sand, dolomite limestone, gypsum, aluminum fine powder, hollow balloon, and the like.
  • examples thereof include alumina, glass powder, aluminum hydroxide, cold water stone, zirconium oxide, antimony trioxide, titanium oxide, molybdenum dioxide, and iron powder.
  • organic compound examples include natural polysaccharide powders such as cellulose and chitin, synthetic resin powders, and the like, and synthetic resin powders are composed of hard resins, soft rubbers, elastomers, polymers (copolymers), and the like.
  • Particles having a multilayer structure such as organic powder or core-shell type can be used. Specific examples thereof include particles made of butadiene rubber and / or acrylic rubber, urethane rubber, silicon rubber and the like, polyimide resin powder, fluororesin powder, phenol resin powder and the like. These fillers can be used alone or in combination of two or more.
  • release agent examples include zinc stearate, calcium stearate, paraffin wax, polyethylene wax, carnauba wax and the like.
  • paraffin wax, polyethylene wax, carnauba wax and the like can be mentioned.
  • These release agents may be used alone or in combination of two or more.
  • thickener examples include metal oxides such as magnesium oxide, magnesium hydroxide, calcium oxide and calcium hydroxide, acrylic resin-based fine particles such as metal hydroxides, and the fiber-reinforced molding material of the present invention. It can be selected as appropriate depending on the handleability of. These thickeners can be used alone or in combination of two or more.
  • the fiber-reinforced molding material of the present invention is a sheet molding compound (hereinafter abbreviated as "SMC") or a bulk molding compound (hereinafter, “BMC”) from the viewpoint of excellent productivity and moldability having design diversity. It is abbreviated as).
  • SMC sheet molding compound
  • BMC bulk molding compound
  • the vinyl ester resin (A) and the unsaturated monomer (B) are produced by using a mixer such as an ordinary mixer, an intermixer, a planetary mixer, a roll, a kneader, or an extruder.
  • a mixer such as an ordinary mixer, an intermixer, a planetary mixer, a roll, a kneader, or an extruder.
  • the polyisocyanate (C), the polymerization initiator (D) and the like are mixed and dispersed, and the obtained resin composition is applied to the carrier films placed on the upper and lower sides so as to have a uniform thickness.
  • the carbon fiber (E) is sandwiched between the resin compositions on the carrier films installed above and below, and then the whole is passed between the impregnated rolls and pressure is applied to the carbon fiber (E).
  • the aging step it is important to control the reaction between the vinyl ester resin (A) and the polyisocyanate (C). For example, by sealing the molding material with a metal-deposited film or the like, moisture or the like can be obtained. The side reaction of the above can be suppressed, and the transmittance ratio ⁇ of the molded material after aging can be controlled in the range of 1.01 to 1.06.
  • polyethylene film polyethylene film, polypropylene film, polyethylene and polypropylene laminated film, polyethylene terephthalate, nylon and the like can be used.
  • the vinyl ester resin (A) can be produced by using a mixer such as a normal mixer, an intermixer, a planetary mixer, a roll, a kneader, or an extruder, as in the method for producing the SMC.
  • a mixer such as a normal mixer, an intermixer, a planetary mixer, a roll, a kneader, or an extruder, as in the method for producing the SMC.
  • a mixer such as a normal mixer, an intermixer, a planetary mixer, a roll, a kneader, or an extruder, as in the method for producing the SMC.
  • a mixer such as a normal mixer, an intermixer, a planetary mixer, a roll, a kneader, or an extruder, as in the method for producing the SMC.
  • Each component such as the unsaturated monomer (B), the polyisocyanate (C), and the polymerization initiator (D) is
  • the molded product of the present invention can be obtained from the fiber-reinforced molding material, but from the viewpoint of excellent productivity and excellent design diversity, heat compression molding of SMC or BMC is preferable as the molding method.
  • a predetermined amount of a molding material such as SMC or BMC is weighed, put into a mold preheated to 110 to 180 ° C., molded by a compression molding machine, and the molding material is applied.
  • a manufacturing method is used in which a molding material is cured by molding and holding a molding pressure of 0.1 to 30 MPa, and then the molded product is taken out to obtain a molded product.
  • molding conditions in which the molding pressure of 1 to 15 MPa is maintained in the mold at a mold temperature of 120 to 160 ° C. for 1 to 5 minutes per 1 mm of thickness of the molded product is preferable, and the productivity is good. It is more preferable that the molding conditions are such that the molding pressure of 1 to 15 MPa is maintained for 1 to 3 minutes per 1 mm of the thickness of the molded product at a mold temperature of 140 to 160 ° C.
  • the molded product obtained from the fiber-reinforced molded material of the present invention is excellent in appearance, bending strength, flexural modulus, etc., it is an automobile member, a railroad vehicle member, an aerospace machine member, a ship member, a housing equipment member, a sports member. , Light vehicle members, building civil engineering members, housings for OA equipment, etc. can be suitably used.
  • the present invention will be described in more detail below with specific examples.
  • the number of milligrams (mgKOH / g) was measured.
  • Example 1 Preparation and evaluation of fiber-reinforced molding material (1)
  • Polyisocyanate (“Luplanate MI” manufactured by BASF, aromatic polyisocyanate) was added to 100 parts by mass of a resin solution prepared by dissolving 55 parts by mass of the vinyl ester resin (A-1) obtained in Synthesis Example 1 in 45 parts by mass of phenoxyethyl methacrylate.
  • polyisocyanate (C-1) (Hereinafter abbreviated as “polyisocyanate (C-1)") 22.0 parts by mass, and polymerization initiator ("Kayacarboxylic AIC-75” manufactured by Chemical Axo Co., Ltd., organic peroxide; hereinafter, “polymerization” Initiator (D-1) “is abbreviated.) 1.2 parts by mass and 0.035 parts by mass of a polymerization inhibitor (parabenzoquinone; hereinafter abbreviated as polymerization inhibitor (1)) are mixed to form a resin.
  • the composition (X-1) was obtained.
  • the molar ratio (NCO / OH) in this resin composition (X-1) was 0.83.
  • the resin composition (X-1) obtained above is applied onto a polyethylene and polypropylene laminated film so that the average coating amount is 0.5 kg / m 2, and carbon fiber roving (Toray Co., Ltd.) is applied thereto.
  • a carbon fiber (hereinafter abbreviated as carbon fiber (E-1)) obtained by cutting a product "T700SC-12000-50C”) to 25 mm has a uniform thickness and a carbon fiber content of 50% by mass without fiber directionality.
  • the resin composition (X-1) is similarly dropped from the air so as to be uniform, sandwiched between films coated at 0.5 kg / m 2 , carbon fibers are impregnated with resin, and then packed and sealed with an aluminum vapor-deposited film.
  • this sheet-shaped fiber-reinforced molding material (1) was 2 kg / m 2 .
  • the sheet-shaped fiber-reinforced molding material (1) obtained above was peeled from the film, three pieces cut into 265 cm ⁇ 265 cm were stacked, and set in the center of a 30 ⁇ 30 cm 2 flat plate mold, and pressed. Molding was performed at a mold temperature of 150 ° C., a pressing time of 5 minutes, and a pressing pressure of 12 MPa to obtain a flat molded product (1) having a thickness of 3 mm.
  • Example 2 Preparation and evaluation of fiber-reinforced molding material (2)
  • Polyisocyanate (“Lupranate M5S” manufactured by BASF, aromatic polyisocyanate) was added to 100 parts by mass of a resin solution prepared by dissolving 55 parts by mass of the vinyl ester resin (A-1) obtained in Synthesis Example 1 in 45 parts by mass of phenoxyethyl methacrylate.
  • polyisocyanate (C-2) 17.5 parts by mass, 1.2 parts by mass of polymerization initiator (D-1), and 0.035 parts by mass of polymerization inhibitor (E-1).
  • the parts were mixed to obtain a resin composition (X-2).
  • the molar ratio (NCO / OH) in this resin composition (X-2) was 0.63.
  • Example 3 Preparation and evaluation of fiber-reinforced molding material (3)
  • Polyisocyanate (“Cosmonate LL” manufactured by Mitsui Chemicals SKC Polyurethane Co., Ltd.) was added to 100 parts by mass of a resin solution prepared by dissolving 55 parts by mass of the vinyl ester resin (A-1) obtained in Synthesis Example 1 in 45 parts by mass of phenoxyethyl methacrylate.
  • the molar ratio (NCO / OH) in this resin composition (X-3) was 0.68.
  • Example 4 Preparation and evaluation of fiber-reinforced molding material (4)
  • a resin solution prepared by dissolving 55 parts by mass of the vinyl ester resin (A-1) obtained in Synthesis Example 1 in 45 parts by mass of phenoxyethyl methacrylate, 24 parts by mass of polyisocyanate (C-1) and a polymerization initiator ( D-1) 1.2 parts by mass and 0.035 parts by mass of the polymerization inhibitor (E-1) were mixed to obtain a resin composition (X-4).
  • the molar ratio (NCO / OH) in this resin composition (X-4) was 0.90.
  • Example 5 Preparation and evaluation of fiber-reinforced molding material (5)
  • a resin solution prepared by dissolving 55 parts by mass of the vinyl ester resin (A-1) obtained in Synthesis Example 1 in 45 parts by mass of phenoxyethyl methacrylate, 16 parts by mass of polyisocyanate (C-2) and a polymerization initiator ( D-1) 1.2 parts by mass and 0.035 parts by mass of the polymerization inhibitor (E-1) were mixed to obtain a resin composition (X-5).
  • the molar ratio (NCO / OH) in this resin composition (X-5) was 0.57.
  • Example 6 Preparation and evaluation of fiber-reinforced molding material (6)
  • Polymerization of polyisocyanate (C-2) was started in 100 parts by mass of a resin solution prepared by dissolving 58 parts by mass of the vinyl ester resin (A-2) obtained in Synthesis Example 2 in 42 parts by mass of phenoxyethyl methacrylate.
  • 1.2 parts by mass of the agent (D-1) and 0.035 parts by mass of the polymerization inhibitor (E-1) were mixed to obtain a resin composition (X-6).
  • the molar ratio (NCO / OH) in this resin composition (X-6) was 0.73.
  • Example 7 Preparation and evaluation of fiber-reinforced molding material (7)
  • D-1) 1.2 parts by mass and 0.035 parts by mass of the polymerization inhibitor (E-1) were mixed to obtain a resin composition (X-7).
  • the molar ratio (NCO / OH) in this resin composition (X-7) was 0.61.
  • Example 2 The same operation as in Example 1 was performed except that the resin composition (X-1) used in Example 1 was changed to the resin compositions (X-2) to (X-7), and the fiber reinforced molding material (2) was operated. )-(7) were prepared and each evaluation was performed.
  • Example 2 The same operation as in Example 1 was performed except that the resin composition (X-1) used in Example 1 was changed to the resin composition (RX-1) or (RX-2), and the fiber reinforced molding material (R1) was operated. ) Or (R2) was prepared and each evaluation was performed. Since the handleability was poor, the bending strength and flexural modulus of the molded product were not evaluated.
  • Tables 1 and 2 show the evaluation results of the fiber-reinforced molding materials (1) to (7), (R1) and (R2) obtained above.
  • the fiber-reinforced molding materials of the present invention of Examples 1 to 7 are excellent in handleability such as film peelability and tackiness, and flexibility, and the obtained molded product is excellent in bending strength and flexural modulus. It was.
  • Comparative Example 1 although the ratio of the transmittance at 3490cm -1 and 3340cm -1 in ATR measurement of FT-IR (transmittance ratio alpha) is 1.06 greater example, that flexibility is inferior confirmed.
  • Comparative Example 2 is an example in which the transmittance ratio ⁇ is smaller than 1.01, but it was confirmed that the film peelability and tackiness were inferior.

Abstract

A fiber-reinforced molding material having as essential ingredients thereof a vinyl ester resin (A), an unsaturated monomer (B) having a flash point of at least 100°C, a polyisocyanate (C), a polymerization initiator (D), and carbon fiber (E) having a fiber length of 2.5–50 mm. The fiber-reinforced molding material is characterized by the ratio (3,490 cm-1/3,340 cm-1) between the transmittance at 3,490 cm-1 and 3,340 cm-1 in a FT–IR ATR measurement being 1.01–1.06. This fiber-reinforced molding material has excellent handling and flexibility, including the work environment during molding work, molding material film peeling characteristics, and tackiness, and molded articles having excellent physical properties such as bending strength, etc., can be obtained. As a result, this molding material can be suitably used in automobile members, railway vehicle members, aerospace machinery members, ship members, housing equipment members, sports members, non-motorized vehicle members, construction and civil engineering members, and cases for OA devices, etc.

Description

繊維強化成形材料及びそれを用いた成形品Fiber reinforced molding material and molded products using it
 本発明は、繊維強化成形材料及びその成形品に関する。 The present invention relates to a fiber reinforced molding material and a molded product thereof.
 炭素繊維を強化繊維としてエポキシ樹脂や不飽和ポリエステル樹脂等の熱硬化性樹脂を強化した繊維強化樹脂複合材料は、軽量でありながら耐熱性や機械強度に優れる特徴が注目され、自動車や航空機の筐体或いは各種部材をはじめ、様々な構造体用途での利用が拡大している。この繊維強化樹脂複合材料で、エポキシ樹脂を使用した材料の成形方法としては、プリプレグと呼ばれる材料を加圧可能なオートクレーブで加熱し硬化させるオートクレーブ法が知られており、不飽和ポリエステル樹脂を使用した材料の成形方法としては、シートモールディングコンパウンド(SMC)、バルクモールディングコンパウンド(BMC)と呼ばれる中間材料を用いて、プレス成形、射出成形等の手法により、硬化、成形させる方法が知られている。特に近年では、生産性に優れる材料開発が活発に行われている。 Fiber-reinforced resin composite materials reinforced with thermosetting resins such as epoxy resin and unsaturated polyester resin using carbon fiber as reinforced fibers are attracting attention for their excellent heat resistance and mechanical strength while being lightweight. Its use in various structural applications such as bodies and various members is expanding. As a method for molding a material using an epoxy resin in this fiber-reinforced resin composite material, an autoclave method in which a material called prepreg is heated and cured by a pressurable autoclave is known, and an unsaturated polyester resin is used. As a method for molding a material, there is known a method of curing and molding by a method such as press molding or injection molding using an intermediate material called a sheet molding compound (SMC) or a bulk molding compound (BMC). Particularly in recent years, the development of highly productive materials has been actively carried out.
 このような成形材料としては、例えば、不飽和ポリエステル樹脂、ビニル単量体、熱可塑性ポリマー、ポリイソシアネート、充填材、導電性カーボンブラック及び幅広炭素繊維束を必須成分として含む炭素繊維強化シート状成形材料が知られている(例えば、特許文献1参照。)。この成形材料からは、外観に優れる成形品が得られるものの、揮発性の高いスチレンモノマーを使用していることから、臭気が強く、成形作業時の作業環境に問題があった。 Examples of such molding materials include carbon fiber reinforced sheet-like molding containing unsaturated polyester resin, vinyl monomer, thermoplastic polymer, polyisocyanate, filler, conductive carbon black and wide carbon fiber bundle as essential components. The material is known (see, for example, Patent Document 1). Although a molded product having an excellent appearance can be obtained from this molding material, since a highly volatile styrene monomer is used, the odor is strong and there is a problem in the working environment during the molding work.
 また、成形材料を製造又は梱包時使用するフィルムは、成形時に材料から取り除く必要があるため、フィルムの剥がしやすさが求められる。材料の増粘工程が不十分な材料は、このフィルム剥ぎ性が悪化するだけでなく、成形時にバリが多く発生し成形性が悪化することが知られている。一方で、増粘工程が過度に進行した材料では、金型等の形状に沿わせて材料を設置することが困難になる上、プレス成形時等に材料の型内流動性が著しく低下するといった問題が発生する。このため、フィルム剥ぎ性と成形材料の適度な柔軟性を両立した材料が求められていた。 In addition, since the film used for manufacturing or packing the molding material needs to be removed from the material at the time of molding, the film is required to be easily peeled off. It is known that a material in which the thickening step of the material is insufficient not only deteriorates the film peeling property but also causes a lot of burrs during molding to deteriorate the moldability. On the other hand, with a material in which the thickening process has progressed excessively, it becomes difficult to install the material along the shape of the mold or the like, and the fluidity of the material in the mold is significantly reduced during press molding or the like. Problems occur. For this reason, there has been a demand for a material that has both film peelability and appropriate flexibility of the molding material.
特開2009-13306号公報JP-A-2009-13306
 本発明が解決しようとする課題は、成形作業時の作業環境、成形材料のフィルム剥ぎ性やタック性を含む取り扱い性及び柔軟性に優れ、曲げ強さ等の各種物性に優れる成形品が得られる繊維強化成形材料及びその成形品を提供することである。 The problem to be solved by the present invention is to obtain a molded product having excellent work environment during molding work, handleability including film peeling property and tackiness of the molding material, flexibility, and various physical properties such as bending strength. It is to provide a fiber-reinforced molding material and a molded product thereof.
 本発明者等は、ビニルエステル樹脂、引火点が100℃以上の不飽和単量体、ポリイソシアネート、重合開始剤、及び繊維長2.5~50mmの炭素繊維を必須成分とする特定の繊維強化成形材料が、作業環境、取り扱い性及び柔軟性に優れ、曲げ強さ等の各種物性に優れる成形品を得られることを見出し、本発明を完成した。 The present inventors have specified fiber reinforced plastics containing vinyl ester resin, unsaturated monomer having a flammability of 100 ° C. or higher, polyisocyanate, polymerization initiator, and carbon fiber having a fiber length of 2.5 to 50 mm as essential components. The present invention has been completed by finding that a molded product having excellent working environment, handleability and flexibility, and various physical properties such as bending strength can be obtained as a molding material.
 すなわち、ビニルエステル樹脂(A)、引火点が100℃以上の不飽和単量体(B)、ポリイソシアネート(C)、重合開始剤(D)、及び繊維長2.5~50mmの炭素繊維(E)を必須原料とする繊維強化成形材料であって、FT-IRのATR測定における3490cm-1及び3340cm-1での透過率の比(3490cm-1/3340cm-1)が1.01~1.06の範囲であることを特徴とする繊維強化成形材料及びそれを用いた成形品に関する。 That is, vinyl ester resin (A), unsaturated monomer (B) having a ignition point of 100 ° C. or higher, polyisocyanate (C), polymerization initiator (D), and carbon fiber having a fiber length of 2.5 to 50 mm ( E) the a fiber-reinforced molding material containing, as essential raw materials, the ratio of the transmittance at 3490cm -1 and 3340cm -1 in ATR measurement of FT-IR (3490cm -1 / 3340cm -1) is 1.01 to 1 The present invention relates to a fiber-reinforced molding material having a range of .06 and a molded product using the same.
 本発明の繊維強化成形材料から得られる成形品は、曲げ強さ、及び曲げ弾性率等に優れることから、自動車部材、鉄道車両部材、航空宇宙機部材、船舶部材、住宅設備部材、スポーツ部材、軽車両部材、建築土木部材、OA機器等の筐体等に好適に用いることができる。 Since the molded product obtained from the fiber-reinforced molding material of the present invention is excellent in bending strength, flexural modulus, etc., automobile members, railroad vehicle members, aerospace machine members, ship members, housing equipment members, sports members, etc. It can be suitably used for light vehicle members, building civil engineering members, housings for OA equipment, and the like.
 本発明の繊維強化成形材料は、ビニルエステル樹脂(A)、引火点が100℃以上の不飽和単量体(B)、ポリイソシアネート(C)、重合開始剤(D)、及び繊維長2.5~50mmの炭素繊維(E)を必須原料とする繊維強化成形材料であって、FT-IRのATR測定における3490cm-1及び3340cm-1での透過率の比(3490cm-1/3340cm-1)(以下、「透過率比α」と略記する。)が1.01~1.06の範囲であるものである。 The fiber-reinforced molding material of the present invention comprises a vinyl ester resin (A), an unsaturated monomer (B) having a flammability of 100 ° C. or higher, a polyisocyanate (C), a polymerization initiator (D), and a fiber length 2. 5 ~ 50 mm carbon fiber of (E) a fiber-reinforced molding material containing, as essential raw materials, the ratio of the transmittance at 3490cm -1 and 3340cm -1 in ATR measurement of FT-IR (3490cm -1 / 3340cm -1 ) (Hereinafter, abbreviated as “transmittance ratio α”) is in the range of 1.01 to 1.06.
 本発明のFT-IRのATR測定における透過率は、透過スペクトルのピーク値より得られるものであるが、3490cm-1はO-H結合由来のピークであり、3340cm-1はN-H結合由来のピークである。 The transmittance of the FT-IR in the ATR measurement of the present invention is obtained from the peak value of the transmission spectrum. 3490 cm -1 is the peak derived from the OH bond, and 3340 cm -1 is derived from the NH bond. Is the peak of.
 前記透過率比αは、フィルム剥離性及びタック性と柔軟性とのバランスの観点から1.01~1.06の範囲であることが重要であるが、フィルム剥離性及びタック性がより向上することから、1.02以上であることが好ましく、柔軟性がより向上することから、1.05以下であることが好ましい。 It is important that the transmittance ratio α is in the range of 1.01 to 1.06 from the viewpoint of film peelability and the balance between tackiness and flexibility, but the film peelability and tackiness are further improved. Therefore, it is preferably 1.02 or more, and more preferably 1.05 or less because the flexibility is further improved.
 前記ビニルエステル樹脂(A)は、エポキシ樹脂(a1)と(メタ)アクリル酸(a2)とを反応させることにより得られるが、成形時のフィルム剥離性やタック性等の取扱性と流動性とのバランスに優れることから、前記エポキシ樹脂(a1)のエポキシ基(EP)と前記(メタ)アクリル酸(a2)のカルボキシル基(COOH)とのモル比(COOH/EP)を0.6~1.1の範囲で反応させることが好ましい。また、この観点から、前記エポキシ樹脂(a1)のエポキシ当量は180~370の範囲が好ましく、180~250の範囲がより好ましい。 The vinyl ester resin (A) can be obtained by reacting the epoxy resin (a1) with the (meth) acrylic acid (a2), and has the handleability and fluidity such as film peelability and tackiness during molding. The molar ratio (COOH / EP) of the epoxy group (EP) of the epoxy resin (a1) to the carboxyl group (COOH) of the (meth) acrylic acid (a2) is 0.6 to 1 because of its excellent balance. It is preferable to react in the range of 1. From this viewpoint, the epoxy equivalent of the epoxy resin (a1) is preferably in the range of 180 to 370, more preferably in the range of 180 to 250.
 なお、本発明において、「(メタ)アクリル酸」とは、アクリル酸とメタクリル酸の一方又は両方をいい、「(メタ)アクリレート」とは、アクリレートとメタクリレートの一方又は両方をいう。 In the present invention, "(meth) acrylic acid" means one or both of acrylic acid and methacrylic acid, and "(meth) acrylate" means one or both of acrylate and methacrylate.
 前記エポキシ樹脂(a1)としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールフルオレン型エポキシ樹脂、ビスクレゾールフルオレン型等のビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂、オキゾドリドン変性エポキシ樹脂、これらの樹脂の臭素化エポキシ樹脂等のフェノールのグリシジルエーテル、ジプロピレングリコールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ビスフェノールAのアルキレンオキサイド付加物のジグリシジルエーテル、水素化ビスフェノールAのジグリシジルエーテル等の多価アルコールのグリシジルエーテル、3,4-エポキシ-6-メチルシクロヘキシルメチル-3,4-エポキシ-6-メチルシクロヘキサンカルボキシレート、1-エポシエチル-3,4-エポキシシクロヘキサン等の脂環式エポキシ樹脂、フタル酸ジグリシジルエステル、テトラヒドロフタル酸ジグリシジルエステル、ジグリシジル-p-オキシ安息香酸、ダイマー酸グリシジルエステルなどのグリシジルエステル、テトラグリシジルジアミノジフェニルメタン、テトラグリシジル-m-キシレンジアミン、トリグリシジル-p一アミノフェノール、N,N-ジグリシジルアニリンなどのグリシジルアミン、1,3-ジグリシジル-5,5-ジメチルヒダントイン、トリグリシジルイソシアヌレートなどの複素環式エポキシ樹脂などが挙げられる。これらの中でも、成形品強度と成形材料の取り扱い性、成形材料の成形時の流動性により優れることから2官能性芳香族系エポキシ樹脂が好ましく、ビスフェノールA型エポキシ樹脂およびビスフェノールF型エポキシ樹脂がより好ましい。なお、これらのエポキシ樹脂は、単独で用いることも2種以上併用することもできる。 Examples of the epoxy resin (a1) include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol fluorene type epoxy resin, biscresol fluorene type and other bisphenol type epoxy resins, phenol novolac type epoxy resin, and cresol novolac type epoxy. Novolak type epoxy resin such as resin, oxodoridone modified epoxy resin, phenolic glycidyl ether such as brominated epoxy resin of these resins, dipropylene glycol diglycidyl ether, trimethylpropan triglycidyl ether, alkylene oxide adduct of bisphenol A Diglycidyl ether, glycidyl ether of polyhydric alcohols such as diglycidyl ether of bisphenol A hydride, 3,4-epoxy-6-methylcyclohexylmethyl-3,4-epoxy-6-methylcyclohexanecarboxylate, 1-epociethyl- Alicyclic epoxy resin such as 3,4-epoxycyclohexane, phthalic acid diglycidyl ester, tetrahydrophthalic acid diglycidyl ester, diglycidyl-p-oxybenzoic acid, glycidyl ester such as dimer acid glycidyl ester, tetraglycidyldiaminodiphenylmethane, tetra Glycidyl amines such as glycidyl-m-xylene diamine, triglycidyl-p monoaminophenol, N, N-diglycidyl aniline, heterocyclic epoxies such as 1,3-diglycidyl-5,5-dimethylhydantoin, triglycidyl isocyanurate. Examples include resin. Among these, bifunctional aromatic epoxy resins are preferable, and bisphenol A type epoxy resins and bisphenol F type epoxy resins are more preferable because they are superior in the strength of the molded product, the handleability of the molding material, and the fluidity during molding of the molding material. preferable. These epoxy resins may be used alone or in combination of two or more.
 また、前記エポキシ樹脂(a1)としては、エポキシ当量を調整するために、ビスフェノールA等の二塩基酸により高分子量化し使用してもよい。 Further, the epoxy resin (a1) may be used by increasing the molecular weight with a dibasic acid such as bisphenol A in order to adjust the epoxy equivalent.
 前記したエポキシ樹脂と(メタ)アクリル酸との反応は、エステル化触媒を用い、60~140℃において行われることが好ましい。また、重合禁止剤等を使用することもできる。 The reaction between the epoxy resin and (meth) acrylic acid described above is preferably carried out at 60 to 140 ° C. using an esterification catalyst. Further, a polymerization inhibitor or the like can also be used.
 前記不飽和単量体(B)は、引火点が100℃以上であることが重要である。これにより、成形作業時の臭気を抑制でき、作業環境に優れる。さらに、不飽和単量体の沸点が高いことから、高温成形時の成形性に優れ、高温単時間成形が可能となり、生産性が向上する。 It is important that the unsaturated monomer (B) has a flash point of 100 ° C. or higher. As a result, the odor during the molding work can be suppressed, and the work environment is excellent. Further, since the unsaturated monomer has a high boiling point, it has excellent moldability during high-temperature molding, enables high-temperature single-hour molding, and improves productivity.
 なお、本発明における引火点は、JISK2265-4:2007に規定されたクリーブランド開放法により測定した引火点とする。 The flash point in the present invention is the flash point measured by the Cleveland opening method specified in JIS K2265-4: 2007.
 前記不飽和単量体(B)としては、例えば、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレートアルキルエーテル、ポリプロピレングリコール(メタ)アクリレートアルキルエーテル、2-エチルヘキシルメタクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソトリデシル(メタ)アクリレート、n-ステアリル(メタ)アクリレート、テトラヒドロフルフリルメタクリレート、イソボルニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニルメタクリレート等の単官能(メタ)アクリレート化合物;エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ビスフェノールジ(メタ)アクリレート、1,4-シクロヘキサンジメタノールジ(メタ)アクリレート等のジ(メタ)アクリレート化合物;ジアリルフタレート、ジビニルベンゼンなどが挙げられるが、これらの中でも、より高強度の成形材料が得られることから、芳香族を有する不飽和単量体が好ましく、ベンジルメタクリレート、フェノキシエチルメタクリレートがより好ましい。なお、これらの不飽和単量体は単独で用いることも、2種以上併用することもできる。 Examples of the unsaturated monomer (B) include benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, polyethylene glycol (meth) acrylate alkyl ether, and polypropylene glycol (meth) acrylate. Alkyl ether, 2-ethylhexyl methacrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, isotridecyl (meth) acrylate, n-stearyl (meth) acrylate, tetrahydrofurfuryl methacrylate, isobornyl (meth) acrylate, dicyclopentenyloxyethyl Monofunctional (meth) acrylate compounds such as (meth) acrylate and dicyclopentanyl methacrylate; ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1, 3-Butandiol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, bisphenol di (meth) acrylate, 1,4-cyclohexanedimethanol di (meth) acrylate Di (meth) acrylate compounds such as, diallyl phthalate, divinyl benzene, etc. Among these, unsaturated monomers having an aromatic are preferable because a molding material having higher strength can be obtained, and benzyl methacrylate. , Phenoxyethyl methacrylate is more preferred. In addition, these unsaturated monomers can be used alone or in combination of two or more.
 前記ビニルエステル樹脂(A)と前記不飽和単量体(B)との質量比((A)/(B))は、炭素繊維への樹脂含浸性、取り扱い性(タック性)と硬化性のバランスがより向上することから、40/60~85/15の範囲が好ましく、50/50~70/30の範囲がより好ましい。 The mass ratio ((A) / (B)) of the vinyl ester resin (A) to the unsaturated monomer (B) is determined by the resin impregnation property, handleability (tack property) and curability of the carbon fibers. The range of 40/60 to 85/15 is preferable, and the range of 50/50 to 70/30 is more preferable, because the balance is further improved.
 また、前記ビニルエステル樹脂(A)と前記不飽和単量体(B)との混合物の粘度は、
炭素繊維への樹脂含浸性がより向上することから、200~8,000mPa・s(25℃)の範囲が好ましい。
The viscosity of the mixture of the vinyl ester resin (A) and the unsaturated monomer (B) is
The range of 200 to 8,000 mPa · s (25 ° C.) is preferable because the resin impregnation property of the carbon fiber is further improved.
 前記ポリイソシアネート(C)は、例えば、ジフェニルメタンジイソシアネート(4,4’-体、2,4’-体、又は2,2’-体、若しくはそれらの混合物)、ジフェニルメタンジイソシアネートのカルボジイミド変性体、ヌレート変性体、ビュレット変性体、ウレタンイミン変性体、ジエチレングリコールやジプロピレングリコール等の数平均分子量1,000以下のポリオールで変性したポリオール変性体等のジフェニルメタンジイソシアネート変性体、トリレンジイソシアネート、トリジンジイソシアネート、ポリメチレンポリフェニルポリイソシアネート、キシリレンジイソシアネート、1,5-ナフタレンジイソシアネート、テトラメチルキシレンジイソシアネート等の芳香族ポリイソシアネート;イソホロンジイソシアネート、水添ジフェニルメタンジイソシアネート、水添キシリレンジイソシアネート、ノルボルネンジイソシアネート等の脂環式ポリイソシアネート;ヘキサメチレンジイソシアネート、ヘキサメチレンジイソシアネートのヌレート変性体、ビュレット変性体、アダクト体、ダイマー酸ジイソシアネート等の脂肪族ポリイソシアネートなどを用いることができる。これらの中でも、取り扱い性(フィルム剥離性・タック性)に優れる成形材料が得られることから、芳香族ポリイソシアネートが好ましい。なお、これらのポリイソシアネート(C)は、単独で用いることも2種以上併用することもできる。 The polyisocyanate (C) is, for example, a diphenylmethane diisocyanate (4,4'-form, 2,4'-form, or 2,2'-form, or a mixture thereof), a carbodiimide-modified product of diphenylmethane diisocyanate, or a nurate-modified product. Diphenylmethane diisocyanate modified product such as body, bullet modified product, urethane imine modified product, polyol modified product modified with polyol having a number average molecular weight of 1,000 or less such as diethylene glycol and dipropylene glycol, tolylene diisocyanate, trizine diisocyanate, polymethylene poly Aromatic polyisocyanates such as phenyl polyisocyanate, xylylene diisocyanate, 1,5-naphthalenediocyanate, tetramethylxylene diisocyanate; alicyclic polyisocyanates such as isophorone diisocyanate, hydrogenated diphenylmethane diisocyanate, hydrogenated xylylene diisocyanate, norbornene diisocyanate; Hexamethylene diisocyanate, a nurate-modified product of hexamethylene diisocyanate, a bullet-modified product, an adduct-isocyanate, an aliphatic polyisocyanate such as diisocyanate dimerate, or the like can be used. Among these, aromatic polyisocyanates are preferable because a molding material having excellent handleability (film peelability / tackiness) can be obtained. In addition, these polyisocyanates (C) can be used alone or in combination of 2 or more types.
 前記ポリイソシアネート(C)のイソシアネート基(NCO)と前記ビニルエステル樹脂(A)の水酸基(OH)とのモル比(NCO/OH)は、前記透過率比αを1.01~1.06の範囲に容易に制御できることから、0.5~0.95の範囲が好ましく、さらに、取り扱い性(フィルム剥ぎ性とタック性)と柔軟性とのバランスがより優れることから、0.55~0.85がより好ましい。 The molar ratio (NCO / OH) of the isocyanate group (NCO) of the polyisocyanate (C) to the hydroxyl group (OH) of the vinyl ester resin (A) has a transmittance ratio α of 1.01 to 1.06. Since the range can be easily controlled, the range of 0.5 to 0.95 is preferable, and further, the balance between handleability (film peeling property and tackiness) and flexibility is more excellent, so 0.55 to 0. 85 is more preferable.
 前記重合開始剤(D)としては、特に限定されないが、有機過酸化物が好ましく、例えば、ジアシルパーオキサイド化合物、パーオキシエステル化合物、ハイドロパーオキサイド化合物、ケトンパーオキサイド化合物、アルキルパーエステル化合物、パーカーボネート化合物、パーオキシケタール等が挙げられ、成形条件に応じて適宜選択できる。なお、これらの重合開始剤(D)は、単独で用いることも2種以上併用することもできる。 The polymerization initiator (D) is not particularly limited, but an organic peroxide is preferable, and for example, a diacyl peroxide compound, a peroxy ester compound, a hydroperoxide compound, a ketone peroxide compound, an alkyl perester compound, and a par. Examples thereof include carbonate compounds and peroxyketal, which can be appropriately selected depending on the molding conditions. In addition, these polymerization initiators (D) can be used alone or in combination of two or more.
 また、これらの中でも、成形時間を短縮する目的で10時間半減期を得るための温度が70℃以上110℃以下の重合開始剤を使用するのが好ましい。70℃以上110℃以下であれば繊維強化成形材料の常温でのライフが長く、また加熱により短時間で硬化ができるため好ましく、硬化性と成形性のバランスがより優れる。このような重合開始剤としては、例えば、1,6-ビス(t-ブチルパーオキシカルボニロキシ)ヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、1,1-ビス(t-アミルパーオキシ)シクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、t-ブチルパーオキシジエチルアセテート、t-ブチルパーオキシイソプロピルカーボネート、t-アミルパーオキシイソプロピルカーボネート、t-ヘキシルパーオキシイソプロピルカーボネート、ジーtert-ブチルパーオキシヘキサハイドロテレフタレート、t-アミルパーオキシトリメチルヘキサノエート等が挙げられる。 Among these, it is preferable to use a polymerization initiator having a temperature of 70 ° C. or higher and 110 ° C. or lower for obtaining a 10-hour half-life for the purpose of shortening the molding time. When the temperature is 70 ° C. or higher and 110 ° C. or lower, the life of the fiber-reinforced molding material at room temperature is long, and it can be cured in a short time by heating, which is preferable, and the balance between curability and moldability is more excellent. Examples of such a polymerization initiator include 1,6-bis (t-butylperoxycarbonyloxy) hexane, 1,1-bis (t-butylperoxy) cyclohexane, and 1,1-bis (t-). Amylperoxy) cyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane, t-butylperoxydiethylacetate, t-butylperoxyisopropyl carbonate, t-amylperoxyisopropylcarbonate, t-hexylperoxyisopropyl Examples thereof include carbonate, di-tert-butylperoxyhexahydroterephthalate, t-amylperoxytrimethylhexanoate and the like.
前記重合開始剤(D)の含有量としては、硬化特性と保存安定性が共に優れることから、前記ビニルエステル樹脂(A)と前記不飽和単量体(B)との総量に対して、0.3~3質量%の範囲が好ましい。 The content of the polymerization initiator (D) is 0 with respect to the total amount of the vinyl ester resin (A) and the unsaturated monomer (B) because both the curing characteristics and the storage stability are excellent. The range of 3 to 3% by mass is preferable.
 前記炭素繊維(E)としては、2.5~50mmの長さにカットした炭素繊維が用いられるが、成形時の金型内流動性、成形品の外観及び機械的物性がより向上することから、5~40mmにカットした炭素繊維がより好ましい。 As the carbon fiber (E), a carbon fiber cut to a length of 2.5 to 50 mm is used, but since the fluidity in the mold at the time of molding, the appearance of the molded product and the mechanical properties are further improved. Carbon fibers cut to 5 to 40 mm are more preferable.
 前記炭素繊維(E)としては、 ポリアクリロニトリル系、ピッチ系、レーヨン系等の各種のものが使用できるが、これらの中でも、容易に高強度の炭素繊維が得られることから、ポリアクリロニトリル系のものが好ましい。 As the carbon fiber (E), various types such as polyacrylonitrile-based, pitch-based, rayon-based, etc. can be used, but among these, polyacrylonitrile-based ones because high-strength carbon fibers can be easily obtained. Is preferable.
 また、前記炭素繊維(E)として使用される繊維束のフィラメント数は、樹脂含浸性及び成形品の機械的物性がより向上することから、1,000~60,000が好ましい。 Further, the number of filaments of the fiber bundle used as the carbon fiber (E) is preferably 1,000 to 60,000 because the resin impregnation property and the mechanical physical properties of the molded product are further improved.
 本発明の繊維強化成形材料の成分中の、前記炭素繊維(E)の含有率は、得られる成形品の機械的物性がより向上することから、20~80質量%の範囲が好ましく、40~70質量%の範囲がより好ましい。炭素繊維含有率が低いと、高強度な成形品が得られない可能性があり、炭素繊維含有率が高いと、繊維への樹脂含浸性が不十分で、成形品に膨れが生じ、やはり高強度な成形品が得られない可能性がある。 The content of the carbon fiber (E) in the components of the fiber-reinforced molded material of the present invention is preferably in the range of 20 to 80% by mass, preferably 40 to 80%, because the mechanical properties of the obtained molded product are further improved. The range of 70% by mass is more preferable. If the carbon fiber content is low, a high-strength molded product may not be obtained, and if the carbon fiber content is high, the resin impregnation property of the fibers is insufficient, causing swelling of the molded product, which is also high. There is a possibility that a strong molded product cannot be obtained.
 また、本発明の繊維強化成形材料中の前記炭素繊維(E)は、繊維方向がランダムな状態で樹脂に含浸している。 Further, the carbon fiber (E) in the fiber-reinforced molding material of the present invention is impregnated with the resin in a state where the fiber direction is random.
 本発明の繊維強化成形材料の成分としては、前記ビニルエステル樹脂(A)、前記不飽和単量体(B)、前記ポリイソシアネート(C)、前記重合開始剤(D)、前記炭素繊維(E)以外のものを使用してもよく、例えば、前記ビニルエステル樹脂(A)以外の熱硬化性樹脂、熱可塑性樹脂、重合禁止剤、硬化促進剤、充填剤、低収縮剤、離型剤、増粘剤、減粘剤、顔料、酸化防止剤、可塑剤、難燃剤、抗菌剤、紫外線安定剤、補強材、光硬化剤等を含有することができる。 The components of the fiber-reinforced molding material of the present invention include the vinyl ester resin (A), the unsaturated monomer (B), the polyisocyanate (C), the polymerization initiator (D), and the carbon fiber (E). ) May be used, for example, a thermosetting resin other than the vinyl ester resin (A), a thermoplastic resin, a polymerization inhibitor, a curing accelerator, a filler, a low shrinkage agent, a mold release agent, etc. It can contain a thickener, a thickener, a pigment, an antioxidant, a plasticizer, a flame retardant, an antibacterial agent, an ultraviolet stabilizer, a reinforcing material, a photocuring agent and the like.
 前記熱硬化性樹脂としては、例えば、ビニルウレタン樹脂、不飽和ポリエステル樹脂、アクリル樹脂、エポキシ樹脂、フェノール樹脂、メラミン樹脂、フラン樹脂等が挙げられる。また、これらの熱硬化性樹脂は、単独で用いることも2種以上併用することもできる。 Examples of the thermosetting resin include vinyl urethane resin, unsaturated polyester resin, acrylic resin, epoxy resin, phenol resin, melamine resin, furan resin and the like. In addition, these thermosetting resins can be used alone or in combination of two or more.
 前記熱可塑性樹脂としては、例えば、ポリアミド樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリカーボネート樹脂、ウレタン樹脂、ポリプロピレン樹脂、ポリエチレン樹脂、ポリスチレン樹脂、アクリル樹脂、ポリブタジエン樹脂、ポリイソプレン樹脂およびこれらを共重合等により変性させたものが挙げられる。また、これらの熱可塑性樹脂は、単独で用いることも2種以上併用することもできる。 Examples of the thermoplastic resin include polyamide resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polycarbonate resin, urethane resin, polypropylene resin, polyethylene resin, polystyrene resin, acrylic resin, polybutadiene resin, polyisoprene resin, and copolymerization thereof. Examples thereof include those modified by the above. In addition, these thermoplastic resins can be used alone or in combination of two or more.
 前記重合禁止剤としては、例えば、ハイドロキノン、トリメチルハイドロキノン、p-t-ブチルカテコール、t-ブチルハイドロキノン、トルハイドロキノン、p-ベンゾキノン、ナフトキノン、ハイドロキノンモノメチルエーテル、フェノチアジン、ナフテン酸銅、塩化銅等が挙げられる。これらの重合禁止剤は、単独で用いることも、2種以上を併用することもできる。 Examples of the polymerization inhibitor include hydroquinone, trimethylhydroquinone, pt-butylcatechol, t-butylhydroquinone, toluhydroquinone, p-benzoquinone, naphthoquinone, hydroquinone monomethyl ether, phenothiazine, copper naphthenate, copper chloride and the like. Be done. These polymerization inhibitors may be used alone or in combination of two or more.
 前記硬化促進剤としては、例えば、ナフテン酸コバルト、オクテン酸コバルト、オクテン酸バナジル、ナフテン酸銅、ナフテン酸バリウム等の金属石鹸類、バナジルアセチルアセテート、コバルトアセチルアセテート、鉄アセチルアセトネート等の金属キレート化合物が挙げられる。またアミン類として、N,N-ジメチルアミノ-p-ベンズアルデヒド、N,N-ジメチルアニリン、N,N-ジエチルアニリン、N,N-ジメチル-p-トルイジン、N-エチル-m-トルイジン、トリエタノールアミン、m-トルイジン、ジエチレントリアミン、ピリジン、フェニルモルホリン、ピペリジン、ジエタノールアニリン等が挙げられる。これらの硬化促進剤は、単独で用いることも、2種以上を併用することもできる。 Examples of the curing accelerator include metal soaps such as cobalt naphthenate, cobalt octate, vanazyl octate, copper naphthenate, and barium naphthenate, and metal chelates such as vanadylacetyl acetate, cobalt acetylacetate, and iron acetylacetonate. Examples include compounds. As amines, N, N-dimethylamino-p-benzaldehyde, N, N-dimethylaniline, N, N-diethylaniline, N, N-dimethyl-p-toluidine, N-ethyl-m-toluidine, triethanol Examples include amines, m-toluidine, diethylenetriamine, pyridine, phenylmorpholine, piperidine, diethanolaniline and the like. These curing accelerators can be used alone or in combination of two or more.
 前記充填剤としては、無機化合物、有機化合物があり、成形品の強度、弾性率、衝撃強度、疲労耐久性等の物性を調整するために使用できる。 The filler includes inorganic compounds and organic compounds, which can be used to adjust physical properties such as strength, elastic modulus, impact strength, and fatigue durability of molded products.
 前記無機化合物としては、例えば、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、マイカ、タルク、カオリン、クレー、セライト、アスベスト、バーライト、バライタ、シリカ、ケイ砂、ドロマイト石灰石、石こう、アルミニウム微粉、中空バルーン、アルミナ、ガラス粉、水酸化アルミニウム、寒水石、酸化ジルコニウム、三酸化アンチモン、酸化チタン、二酸化モリブデン、鉄粉等が挙げられる。 Examples of the inorganic compound include calcium carbonate, magnesium carbonate, barium sulfate, mica, talc, kaolin, clay, celite, asbestos, burlite, baryta, silica, silica sand, dolomite limestone, gypsum, aluminum fine powder, hollow balloon, and the like. Examples thereof include alumina, glass powder, aluminum hydroxide, cold water stone, zirconium oxide, antimony trioxide, titanium oxide, molybdenum dioxide, and iron powder.
 前記有機化合物としては、セルロース、キチン等の天然多糖類粉末や、合成樹脂粉末等があり、合成樹脂粉末としては、硬質樹脂、軟質ゴム、エラストマーまたは重合体(共重合体)などから構成される有機物の粉体やコアシェル型などの多層構造を有する粒子を使用できる。具体的には、ブタジエンゴムおよび/またはアクリルゴム、ウレタンゴム、シリコンゴム等からなる粒子、ポリイミド樹脂粉末、フッ素樹脂粉末、フェノール樹脂粉末などが挙げられる。これらの充填剤は、単独で用いることも、2種以上を併用することもできる。 Examples of the organic compound include natural polysaccharide powders such as cellulose and chitin, synthetic resin powders, and the like, and synthetic resin powders are composed of hard resins, soft rubbers, elastomers, polymers (copolymers), and the like. Particles having a multilayer structure such as organic powder or core-shell type can be used. Specific examples thereof include particles made of butadiene rubber and / or acrylic rubber, urethane rubber, silicon rubber and the like, polyimide resin powder, fluororesin powder, phenol resin powder and the like. These fillers can be used alone or in combination of two or more.
 前記離型剤としては、例えば、ステアリン酸亜鉛、ステアリン酸カルシウム、パラフィンワックス、ポリエチレンワックス、カルナバワックスなどが挙げられる。好ましくは、パラフィンワックス、ポリエチレンワックス、カルナバワックス等が挙げられる。これらの離型剤は、単独で用いることも、2種以上を併用することもできる。 Examples of the release agent include zinc stearate, calcium stearate, paraffin wax, polyethylene wax, carnauba wax and the like. Preferably, paraffin wax, polyethylene wax, carnauba wax and the like can be mentioned. These release agents may be used alone or in combination of two or more.
 前記増粘剤としては、例えば、酸化マグネシウム、水酸化マグネシウム、酸化カルシウム、水酸化カルシウム等の金属酸化物や金属水酸化物など、アクリル樹脂系微粒子などが挙げられ、本発明の繊維強化成形材料の取り扱い性によって適宜選択できる。これらの増粘剤は、単独で用いることも、2種以上を併用することもできる。 Examples of the thickener include metal oxides such as magnesium oxide, magnesium hydroxide, calcium oxide and calcium hydroxide, acrylic resin-based fine particles such as metal hydroxides, and the fiber-reinforced molding material of the present invention. It can be selected as appropriate depending on the handleability of. These thickeners can be used alone or in combination of two or more.
 本発明の繊維強化成形材料は、生産性に優れる観点及びデザイン多様性を有する成形性の観点から、シートモールディングコンパウンド(以下、「SMC」と略記する。)又はバルクモールディングコンパウンド(以下、「BMC」と略記する。)であることが好ましい。 The fiber-reinforced molding material of the present invention is a sheet molding compound (hereinafter abbreviated as "SMC") or a bulk molding compound (hereinafter, "BMC") from the viewpoint of excellent productivity and moldability having design diversity. It is abbreviated as).
 前記SMCの製造方法としては、通常のミキサー、インターミキサー、プラネタリーミキサー、ロール、ニーダー、押し出し機などの混合機を用いて、前記ビニルエステル樹脂(A)、前記不飽和単量体(B)、前記ポリイソシアネート(C)、前記重合開始剤(D)等の各成分を混合・分散し、得られた樹脂組成物を上下に設置されたキャリアフィルムに均一な厚さになるように塗布し、前記炭素繊維(E)を前記上下に設置されたキャリアフィルム上の樹脂組成物で挟み込み、次いで、全体を含浸ロールの間に通して、圧力を加えて前記炭素繊維(E)に樹脂組成物を含浸させた後、ロール状に巻き取る又はつづら折りに畳む方法等が挙げられる。さらに、この後に10~60℃の温度で、2~48時間熟成を行うことが好ましい。 As a method for producing the SMC, the vinyl ester resin (A) and the unsaturated monomer (B) are produced by using a mixer such as an ordinary mixer, an intermixer, a planetary mixer, a roll, a kneader, or an extruder. , The polyisocyanate (C), the polymerization initiator (D) and the like are mixed and dispersed, and the obtained resin composition is applied to the carrier films placed on the upper and lower sides so as to have a uniform thickness. , The carbon fiber (E) is sandwiched between the resin compositions on the carrier films installed above and below, and then the whole is passed between the impregnated rolls and pressure is applied to the carbon fiber (E). After impregnating the resin, a method of winding it into a roll or folding it into a zigzag fold can be mentioned. Further, after this, it is preferable to carry out aging at a temperature of 10 to 60 ° C. for 2 to 48 hours.
 熟成工程においては、前記ビニルエステル樹脂(A)と前記ポリイソシアネート(C)との反応を制御することが重要であるが、例えば、成形材料を金属蒸着フィルム等で密閉することで、水分等との副反応を抑制し、熟成後の成形材料の透過率比αを1.01~1.06の範囲に制御することができる。 In the aging step, it is important to control the reaction between the vinyl ester resin (A) and the polyisocyanate (C). For example, by sealing the molding material with a metal-deposited film or the like, moisture or the like can be obtained. The side reaction of the above can be suppressed, and the transmittance ratio α of the molded material after aging can be controlled in the range of 1.01 to 1.06.
 前記キャリアフィルムとしては、ポリエチレンフィルム、ポリプロピレンフィルム、ポリエチレンとポリプロピレンのラミネートフィルム、ポリエチレンテレフタレート、ナイロン等を用いることができる。 As the carrier film, polyethylene film, polypropylene film, polyethylene and polypropylene laminated film, polyethylene terephthalate, nylon and the like can be used.
 前記BMCの製造方法としては、前記SMCの製造方法と同様に、通常のミキサー、インターミキサー、プラネタリーミキサー、ロール、ニーダー、押し出し機などの混合機を用いて、前記ビニルエステル樹脂(A)、前記不飽和単量体(B)、前記ポリイソシアネート(C)、前記重合開始剤(D)等の各成分を混合・分散し、得られた樹脂組成物に前記炭素繊維(E)を混合・分散させる方法等が挙げられる。さらに、この後にSMCと同様の方法で熟成することが好ましい。 As the method for producing the BMC, the vinyl ester resin (A) can be produced by using a mixer such as a normal mixer, an intermixer, a planetary mixer, a roll, a kneader, or an extruder, as in the method for producing the SMC. Each component such as the unsaturated monomer (B), the polyisocyanate (C), and the polymerization initiator (D) is mixed and dispersed, and the carbon fiber (E) is mixed with the obtained resin composition. Examples include a method of dispersing. Further, after this, it is preferable to mature in the same manner as SMC.
 本発明の成形品は、前記繊維強化成形材料より得られるが、生産性に優れる点とデザイン多様性に優れる観点からその成形方法としては、SMC又はBMCの加熱圧縮成形が好ましい。 The molded product of the present invention can be obtained from the fiber-reinforced molding material, but from the viewpoint of excellent productivity and excellent design diversity, heat compression molding of SMC or BMC is preferable as the molding method.
 前記加熱圧縮成形としては、例えば、SMC、BMC等の成形材料を所定量計量し、予め110~180℃に加熱した金型に投入し、圧縮成形機にて型締めを行い、成形材料を賦型させ、0.1~30MPaの成形圧力を保持することによって、成形材料を硬化させ、その後成形品を取り出し成形品を得る製造方法が用いられる。具体的な成形条件としては、金型内で金型温度120~160℃にて、成形品の厚さ1mm当たり1~5分間、1~15MPaの成形圧力を保持する成形条件が好ましく、生産性がより向上することから、金型温度140~160℃にて、成形品の厚さ1mm当たり1~3分間、1~15MPaの成形圧力を保持する成形条件がより好ましい。 In the heat compression molding, for example, a predetermined amount of a molding material such as SMC or BMC is weighed, put into a mold preheated to 110 to 180 ° C., molded by a compression molding machine, and the molding material is applied. A manufacturing method is used in which a molding material is cured by molding and holding a molding pressure of 0.1 to 30 MPa, and then the molded product is taken out to obtain a molded product. As specific molding conditions, molding conditions in which the molding pressure of 1 to 15 MPa is maintained in the mold at a mold temperature of 120 to 160 ° C. for 1 to 5 minutes per 1 mm of thickness of the molded product is preferable, and the productivity is good. It is more preferable that the molding conditions are such that the molding pressure of 1 to 15 MPa is maintained for 1 to 3 minutes per 1 mm of the thickness of the molded product at a mold temperature of 140 to 160 ° C.
 本発明の繊維強化成形材料から得られる成形品は、外観、曲げ強さ、曲げ弾性率等に優れることから、自動車部材、鉄道車両部材、航空宇宙機部材、船舶部材、住宅設備部材、スポーツ部材、軽車両部材、建築土木部材、OA機器等の筐体等に好適に用いることができる。 Since the molded product obtained from the fiber-reinforced molded material of the present invention is excellent in appearance, bending strength, flexural modulus, etc., it is an automobile member, a railroad vehicle member, an aerospace machine member, a ship member, a housing equipment member, a sports member. , Light vehicle members, building civil engineering members, housings for OA equipment, etc. can be suitably used.
 以下に本発明を具体的な実施例を挙げてより詳細に説明する。なお、水酸基価は、樹脂試料1gをJIS K-0070の規定の方法に基づきアセチル化剤を用いて、規定温度及び時間で反応させた時に生成した酢酸を中和するのに要する水酸化カリウムのミリグラム数(mgKOH/g)を測定した。 The present invention will be described in more detail below with specific examples. The hydroxyl value of potassium hydroxide required to neutralize acetic acid produced when 1 g of a resin sample was reacted at a specified temperature and time using an acetylating agent based on the method specified in JIS K-0070. The number of milligrams (mgKOH / g) was measured.
(合成例1:ビニルエステル樹脂(A-1)の合成)
 温度計、窒素導入管、撹拌機を設けた2Lフラスコに、エポキシ樹脂(DIC株式会社製「エピクロン860」、ビスフェノールA型エポキシ樹脂、エポキシ当量 220) 725質量部、メタクリル酸 284質量部、及びt-ブチルハイドロキノン 0.28質量部を仕込み、窒素と空気とを1対1で混合したガス流通下で、90℃まで昇温した。ここに2-メチルイミダゾール 0.60質量部を入れ、110℃に昇温して10時間反応させると、酸価が6以下になったので、反応を終了した。60℃付近まで冷却した後、反応容器より取り出し、水酸基価 215mgKOH/gのビニルエステル樹脂(A-1)を得た。
(Synthesis Example 1: Synthesis of Vinyl Ester Resin (A-1))
In a 2L flask equipped with a thermometer, a nitrogen introduction tube, and a stirrer, 725 parts by mass of epoxy resin ("Epiclon 860" manufactured by DIC Corporation, bisphenol A type epoxy resin, epoxy equivalent 220), 284 parts by mass of methacrylic acid, and t. -Butylhydroquinone 0.28 parts by mass was charged, and the temperature was raised to 90 ° C. under a gas flow in which nitrogen and air were mixed 1: 1. When 0.60 parts by mass of 2-methylimidazole was added thereto, the temperature was raised to 110 ° C. and the reaction was carried out for 10 hours, the acid value became 6 or less, and the reaction was terminated. After cooling to around 60 ° C., the mixture was taken out from the reaction vessel to obtain a vinyl ester resin (A-1) having a hydroxyl value of 215 mgKOH / g.
(合成例2:ビニルエステル樹脂(A-2)の合成)
 温度計、窒素導入管、撹拌機を設けた2Lフラスコに、エポキシ樹脂(DIC株式会社製「エピクロン850」、ビスフェノールA型エポキシ樹脂、エポキシ当量 188) 677質量部、メタクリル酸 310質量部、及びt-ブチルハイドロキノン 0.29質量部を仕込み、窒素と空気とを1対1で混合したガス流通下で、90℃まで昇温した。ここに2-メチルイミダゾール 0.60質量部を入れ、110℃に昇温して10時間反応させると、酸価が6以下になったので、反応を終了した。60℃付近まで冷却した後、反応容器より取り出し、水酸基価 217mgKOH/gのビニルエステル樹脂(A-2)を得た。
(Synthesis Example 2: Synthesis of Vinyl Ester Resin (A-2))
Epoxy resin ("Epiclon 850" manufactured by DIC Corporation, bisphenol A type epoxy resin, epoxy equivalent 188) 677 parts by mass, 310 parts by mass of methacrylic acid, and t in a 2L flask equipped with a thermometer, a nitrogen introduction tube, and a stirrer. -Butylhydroquinone 0.29 parts by mass was charged, and the temperature was raised to 90 ° C. under a gas flow in which nitrogen and air were mixed 1: 1. When 0.60 parts by mass of 2-methylimidazole was added thereto, the temperature was raised to 110 ° C. and the reaction was carried out for 10 hours, the acid value became 6 or less, and the reaction was terminated. After cooling to around 60 ° C., the mixture was taken out from the reaction vessel to obtain a vinyl ester resin (A-2) having a hydroxyl value of 217 mgKOH / g.
(合成例3:ビニルエステル樹脂(A-3)の合成)
温度計、窒素導入管、撹拌機を設けた2Lフラスコに、エポキシ樹脂(DIC株式会社製「エピクロン850」、ビスフェノールA型エポキシ樹脂、エポキシ当量188)656質量部、ビスフェノールA 147質量部、及び2-メチルイミダゾール0.4質量部を仕込み、120℃に昇温して3時間反応させ、エポキシ当量を測定した。エポキシ当量が設定通り365になったことを確認後、60℃付近まで冷却した後、メタクリル酸185質量部、及びt-ブチルハイドロキノン0.29質量部を仕込み、窒素と空気とを1対1で混合したガス流通下で、90℃まで昇温した。ここに2-メチルイミダゾール0.18質量部を入れ、110℃に昇温して10時間反応させると、酸価が6以下になったので、反応を終了した。60℃付近まで冷却した後、反応容器より取り出し、水酸基価209mgKOH/gのビニルエステル樹脂(A-3)を得た。
(Synthesis Example 3: Synthesis of Vinyl Ester Resin (A-3))
656 parts by mass of epoxy resin ("Epiclon 850" manufactured by DIC Co., Ltd., bisphenol A type epoxy resin, epoxy equivalent 188), 147 parts by mass of bisphenol A, and 2 in a 2L flask equipped with a thermometer, a nitrogen introduction tube, and a stirrer. -0.4 parts by mass of methylimidazole was charged, the temperature was raised to 120 ° C. and the reaction was carried out for 3 hours, and the epoxy equivalent was measured. After confirming that the epoxy equivalent was 365 as set, after cooling to around 60 ° C., 185 parts by mass of methacrylic acid and 0.29 parts by mass of t-butyl hydroquinone were charged, and nitrogen and air were mixed 1: 1. The temperature was raised to 90 ° C. under the mixed gas flow. When 0.18 parts by mass of 2-methylimidazole was added thereto, the temperature was raised to 110 ° C. and the reaction was carried out for 10 hours, the acid value became 6 or less, and the reaction was terminated. After cooling to around 60 ° C., the mixture was taken out from the reaction vessel to obtain a vinyl ester resin (A-3) having a hydroxyl value of 209 mgKOH / g.
(実施例1:繊維強化成形材料(1)の作製及び評価)
 合成例1で得たビニルエステル樹脂(A-1)55質量部をフェノキシエチルメタクリレート45質量部に溶解させた樹脂溶液100質量部に、ポリイソシアネート(BASF社製「ルプラネートMI」、芳香族ポリイソシアネート;以下、「ポリイソシアネート(C-1)」と略記する。)22.0質量部、及び重合開始剤(化薬アクゾ株式会社製「カヤカルボンAIC-75」、有機過酸化物;以下、「重合開始剤(D-1)」と略記する。)1.2質量部、及び重合禁止剤(パラベンゾキノン;以下、重合禁止剤(1)と略記する。)0.035質量部を混合し、樹脂組成物(X-1)を得た。この樹脂組成物(X-1)におけるモル比(NCO/OH)は0.83であった。
(Example 1: Preparation and evaluation of fiber-reinforced molding material (1))
Polyisocyanate (“Luplanate MI” manufactured by BASF, aromatic polyisocyanate) was added to 100 parts by mass of a resin solution prepared by dissolving 55 parts by mass of the vinyl ester resin (A-1) obtained in Synthesis Example 1 in 45 parts by mass of phenoxyethyl methacrylate. (Hereinafter abbreviated as "polyisocyanate (C-1)") 22.0 parts by mass, and polymerization initiator ("Kayacarboxylic AIC-75" manufactured by Chemical Axo Co., Ltd., organic peroxide; hereinafter, "polymerization" Initiator (D-1) "is abbreviated.) 1.2 parts by mass and 0.035 parts by mass of a polymerization inhibitor (parabenzoquinone; hereinafter abbreviated as polymerization inhibitor (1)) are mixed to form a resin. The composition (X-1) was obtained. The molar ratio (NCO / OH) in this resin composition (X-1) was 0.83.
 上記で得られた樹脂組成物(X-1)を、ポリエチレンとポリプロピレンのラミネートフィルム上に塗布量が平均0.5kg/mとなるよう塗布し、この上に、炭素繊維ロービング(東レ株式会社製「T700SC-12000-50C」)を25mmにカットした炭素繊維(以下、炭素繊維(E-1)と略記する。)を繊維方向性が無く厚みが均一で炭素繊維含有率が50質量%になるよう空中から均一落下させ、同様に樹脂組成物(X-1)を0.5kg/mとなるよう塗布したフィルムで挟み込み炭素繊維に樹脂を含浸させた後、アルミ蒸着フィルムで梱包、密閉し、40℃恒温機中に20時間放置し、シート状の繊維強化成形材料(1)を得た。このシート状の繊維強化成形材料(1)の目付け量は、2kg/mであった。 The resin composition (X-1) obtained above is applied onto a polyethylene and polypropylene laminated film so that the average coating amount is 0.5 kg / m 2, and carbon fiber roving (Toray Co., Ltd.) is applied thereto. A carbon fiber (hereinafter abbreviated as carbon fiber (E-1)) obtained by cutting a product "T700SC-12000-50C") to 25 mm has a uniform thickness and a carbon fiber content of 50% by mass without fiber directionality. The resin composition (X-1) is similarly dropped from the air so as to be uniform, sandwiched between films coated at 0.5 kg / m 2 , carbon fibers are impregnated with resin, and then packed and sealed with an aluminum vapor-deposited film. Then, it was left in a constant temperature machine at 40 ° C. for 20 hours to obtain a sheet-shaped fiber-reinforced molding material (1). The basis weight of this sheet-shaped fiber-reinforced molding material (1) was 2 kg / m 2 .
[透過率比α]
 上記で得られた繊維強化成形材料(1)を10mm×10mmサイズに切り取り、前記ポリエチレンとポリプロピレンのラミネートフィルムを剥がした。このフィルムと接していた面を測定面として、下記測定条件により測定を行い、3490cm-1及び3340cm-1での透過率の比を算出した。
測定装置:パーキンエルマー製「FT-IR Spectrometer Frontier T」
ATR測定ユニット:Specac製「Golden Gate ダイヤモンド」
測定法:1回反射ATR法
クリスタル:Type IIIaダイヤモンド(2mm×2mm)
ATR侵入長(n=1.5, 1000cm-1):2um
光源:MIR(8000~30cm-1
入射角:45°
検出器:MIR TGS(15000~370cm-1
測定範囲:4000~400cm-1
分解能:4cm-1
積算回数:8回
[Transmittance ratio α]
The fiber-reinforced molding material (1) obtained above was cut into a size of 10 mm × 10 mm, and the polyethylene-polypropylene laminate film was peeled off. The surface in contact with this film was used as the measurement surface, and the measurement was performed under the following measurement conditions, and the ratio of the transmittances at 3490 cm -1 and 3340 cm -1 was calculated.
Measuring device: "FT-IR Spectrometer Frontier T" manufactured by PerkinElmer
ATR measurement unit: "Golden Gate diamond" made by Specac
Measurement method: 1-reflection ATR method Crystal: Type IIIa diamond (2 mm x 2 mm)
ATR penetration depth (n = 1.5, 1000 cm -1 ): 2 um
Light source: MIR (8000-30 cm -1 )
Incident angle: 45 °
Detector: MIR TGS (15000-370cm -1 )
Measuring range: 4000-400 cm -1
Resolution: 4 cm -1
Accumulation number: 8 times
[取り扱い性(フィルム剥離性)の評価]
 上記で得られた繊維強化成形材料(1)を25℃でポリエチレンとポリプロピレンのラミネートフィルムから剥がす際の剥離性を、下記の基準に従って評価した。
 ○:成形材料にべたつきがなく、フィルムに付着物が残らない。
 △:成形材料にべたつきがあり、フィルムに一部付着物が残る。
 ×:成形材料とフィルムが密着しており、フィルムに多量の付着物が残る。
[Evaluation of handleability (film peelability)]
The peelability of the fiber-reinforced molding material (1) obtained above when peeled from the polyethylene-polypropylene laminate film at 25 ° C. was evaluated according to the following criteria.
◯: The molding material is not sticky and no deposits remain on the film.
Δ: The molding material is sticky, and some deposits remain on the film.
X: The molding material and the film are in close contact with each other, and a large amount of deposits remain on the film.
[取り扱い性(タック性)の評価]
 上記で得られた繊維強化成形材料(1)を25℃でポリエチレンとポリプロピレンのラミネートフィルムから剥がした後のタック性を下記の基準に従って評価した。
 ○:指に成形材料の付着がなし
 △:指に成形材料の付着が少しあり
 ×:指に成形材料の付着があり
[Evaluation of handleability (tackability)]
The tackiness of the fiber-reinforced molding material (1) obtained above after being peeled from the polyethylene and polypropylene laminated film at 25 ° C. was evaluated according to the following criteria.
◯: No molding material adhered to the finger △: Molding material adhered slightly to the finger ×: Molding material adhered to the finger
[成形品の作製]
 上記で得られたシート状の繊維強化成形材料(1)をフィルムから剥離し、265cm×265cmにカットしたものを3枚重ね、30×30cmの平板金型の中央部にセットし、プレス金型温度150℃、プレス時間5分間、プレス圧力12MPaで成形し、厚み3mmの平板状の成形品(1)を得た。
[Manufacturing of molded products]
The sheet-shaped fiber-reinforced molding material (1) obtained above was peeled from the film, three pieces cut into 265 cm × 265 cm were stacked, and set in the center of a 30 × 30 cm 2 flat plate mold, and pressed. Molding was performed at a mold temperature of 150 ° C., a pressing time of 5 minutes, and a pressing pressure of 12 MPa to obtain a flat molded product (1) having a thickness of 3 mm.
[柔軟性の評価]
 ○:成形時に容易に金型の形状に沿わせて設置することができる。
 △:成形時にやや弾性(反発)が働くが、金型の形状に沿わせて設置することができる。
 ×:成形時に強く弾性が働き、金型の形状に沿わせて設置することができない。
[Evaluation of flexibility]
◯: Can be easily installed along the shape of the mold during molding.
Δ: Slight elasticity (repulsion) works during molding, but it can be installed along the shape of the mold.
X: Strong elasticity acts during molding, and it cannot be installed along the shape of the mold.
[曲げ強さ・曲げ弾性率の評価]
上記で得られた成形品(1)から水平方向及び垂直方向にサンプル5本ずつ切り出し、JIS K7074に準拠し、3点曲げ試験を行い、曲げ強さ、曲げ弾性率を測定した。
[Evaluation of flexural strength and flexural modulus]
Five samples were cut out from the molded product (1) obtained above in the horizontal and vertical directions, and a three-point bending test was performed in accordance with JIS K7074 to measure the bending strength and flexural modulus.
(実施例2:繊維強化成形材料(2)の作製及び評価)
 合成例1で得たビニルエステル樹脂(A-1)55質量部をフェノキシエチルメタクリレート45質量部に溶解させた樹脂溶液100質量部に、ポリイソシアネート(BASF社製「ルプラネートM5S」、芳香族ポリイソシアネート;以下、「ポリイソシアネート(C-2)」と略記する。)17.5質量部、重合開始剤(D-1)1.2質量部、及び重合禁止剤(E-1)0.035質量部を混合し、樹脂組成物(X-2)を得た。この樹脂組成物(X-2)におけるモル比(NCO/OH)は0.63であった。
(Example 2: Preparation and evaluation of fiber-reinforced molding material (2))
Polyisocyanate (“Lupranate M5S” manufactured by BASF, aromatic polyisocyanate) was added to 100 parts by mass of a resin solution prepared by dissolving 55 parts by mass of the vinyl ester resin (A-1) obtained in Synthesis Example 1 in 45 parts by mass of phenoxyethyl methacrylate. In the following, it is abbreviated as "polyisocyanate (C-2)") 17.5 parts by mass, 1.2 parts by mass of polymerization initiator (D-1), and 0.035 parts by mass of polymerization inhibitor (E-1). The parts were mixed to obtain a resin composition (X-2). The molar ratio (NCO / OH) in this resin composition (X-2) was 0.63.
(実施例3:繊維強化成形材料(3)の作製及び評価)
 合成例1で得たビニルエステル樹脂(A-1)55質量部をフェノキシエチルメタクリレート45質量部に溶解させた樹脂溶液100質量部に、ポリイソシアネート(三井化学SKCポリウレタン社製「コスモネートLL」、芳香族ポリイソシアネート;以下、「ポリイソシアネート(C-3)」と略記する。)21質量部、重合開始剤(D-1)1.2質量部、及び重合禁止剤(E-1)0.035質量部を混合し、樹脂組成物(X-3)を得た。この樹脂組成物(X-3)におけるモル比(NCO/OH)は0.68であった。
(Example 3: Preparation and evaluation of fiber-reinforced molding material (3))
Polyisocyanate (“Cosmonate LL” manufactured by Mitsui Chemicals SKC Polyurethane Co., Ltd.) was added to 100 parts by mass of a resin solution prepared by dissolving 55 parts by mass of the vinyl ester resin (A-1) obtained in Synthesis Example 1 in 45 parts by mass of phenoxyethyl methacrylate. Aromatic polyisocyanate; hereinafter abbreviated as "polyisocyanate (C-3)") 21 parts by mass, polymerization initiator (D-1) 1.2 parts by mass, and polymerization inhibitor (E-1) 0. 035 parts by mass was mixed to obtain a resin composition (X-3). The molar ratio (NCO / OH) in this resin composition (X-3) was 0.68.
(実施例4:繊維強化成形材料(4)の作製及び評価)
 合成例1で得たビニルエステル樹脂(A-1)55質量部をフェノキシエチルメタクリレート45質量部に溶解させた樹脂溶液100質量部に、ポリイソシアネート(C-1)24質量部、重合開始剤(D-1)1.2質量部、及び重合禁止剤(E-1)0.035質量部を混合し、樹脂組成物(X-4)を得た。この樹脂組成物(X-4)におけるモル比(NCO/OH)は0.90であった。
(Example 4: Preparation and evaluation of fiber-reinforced molding material (4))
In 100 parts by mass of a resin solution prepared by dissolving 55 parts by mass of the vinyl ester resin (A-1) obtained in Synthesis Example 1 in 45 parts by mass of phenoxyethyl methacrylate, 24 parts by mass of polyisocyanate (C-1) and a polymerization initiator ( D-1) 1.2 parts by mass and 0.035 parts by mass of the polymerization inhibitor (E-1) were mixed to obtain a resin composition (X-4). The molar ratio (NCO / OH) in this resin composition (X-4) was 0.90.
(実施例5:繊維強化成形材料(5)の作製及び評価)
 合成例1で得たビニルエステル樹脂(A-1)55質量部をフェノキシエチルメタクリレート45質量部に溶解させた樹脂溶液100質量部に、ポリイソシアネート(C-2)16質量部、重合開始剤(D-1)1.2質量部、及び重合禁止剤(E-1)0.035質量部を混合し、樹脂組成物(X-5)を得た。この樹脂組成物(X-5)におけるモル比(NCO/OH)は0.57であった。
(Example 5: Preparation and evaluation of fiber-reinforced molding material (5))
In 100 parts by mass of a resin solution prepared by dissolving 55 parts by mass of the vinyl ester resin (A-1) obtained in Synthesis Example 1 in 45 parts by mass of phenoxyethyl methacrylate, 16 parts by mass of polyisocyanate (C-2) and a polymerization initiator ( D-1) 1.2 parts by mass and 0.035 parts by mass of the polymerization inhibitor (E-1) were mixed to obtain a resin composition (X-5). The molar ratio (NCO / OH) in this resin composition (X-5) was 0.57.
(実施例6:繊維強化成形材料(6)の作製及び評価)
 合成例2で得たビニルエステル樹脂(A-2)58質量部をフェノキシエチルメタクリレート42質量部に溶解させた樹脂溶液100質量部に、ポリイソシアネート(C-2)21.5質量部、重合開始剤(D-1)1.2質量部、及び重合禁止剤(E-1)0.035質量部を混合し、樹脂組成物(X-6)を得た。この樹脂組成物(X-6)におけるモル比(NCO/OH)は0.73であった。
(Example 6: Preparation and evaluation of fiber-reinforced molding material (6))
Polymerization of polyisocyanate (C-2) was started in 100 parts by mass of a resin solution prepared by dissolving 58 parts by mass of the vinyl ester resin (A-2) obtained in Synthesis Example 2 in 42 parts by mass of phenoxyethyl methacrylate. 1.2 parts by mass of the agent (D-1) and 0.035 parts by mass of the polymerization inhibitor (E-1) were mixed to obtain a resin composition (X-6). The molar ratio (NCO / OH) in this resin composition (X-6) was 0.73.
(実施例7:繊維強化成形材料(7)の作製及び評価)
 合成例3で得たビニルエステル樹脂(A-3)46質量部をフェノキシエチルメタクリレート54質量部に溶解させた樹脂溶液100質量部に、ポリイソシアネート(C-1)13質量部、重合開始剤(D-1)1.2質量部、及び重合禁止剤(E-1)0.035質量部を混合し、樹脂組成物(X-7)を得た。この樹脂組成物(X-7)におけるモル比(NCO/OH)は0.61であった。
(Example 7: Preparation and evaluation of fiber-reinforced molding material (7))
In 100 parts by mass of a resin solution prepared by dissolving 46 parts by mass of the vinyl ester resin (A-3) obtained in Synthesis Example 3 in 54 parts by mass of phenoxyethyl methacrylate, 13 parts by mass of polyisocyanate (C-1) and a polymerization initiator (polymerization initiator). D-1) 1.2 parts by mass and 0.035 parts by mass of the polymerization inhibitor (E-1) were mixed to obtain a resin composition (X-7). The molar ratio (NCO / OH) in this resin composition (X-7) was 0.61.
 実施例1で用いた樹脂組成物(X-1)を樹脂組成物(X-2)~(X-7)に変更した以外は、実施例1と同様に操作し、繊維強化成形材料(2)~(7)を作製し、各評価を行った。 The same operation as in Example 1 was performed except that the resin composition (X-1) used in Example 1 was changed to the resin compositions (X-2) to (X-7), and the fiber reinforced molding material (2) was operated. )-(7) were prepared and each evaluation was performed.
(比較例1:繊維強化成形材料(R1)の作製及び評価)
 合成例1で得たビニルエステル樹脂(A-1)55質量部をフェノキシエチルメタクリレート45質量部に溶解させた樹脂溶液100質量部に、ポリイソシアネート(C-1)27質量部、重合開始剤(D-1)1.2質量部、及び重合禁止剤(E-1)0.035質量部を混合し、樹脂組成物(RX-1)を得た。この樹脂組成物(RX-1)におけるモル比(NCO/OH)は1.00であった。
(Comparative Example 1: Preparation and Evaluation of Fiber Reinforced Molding Material (R1))
In 100 parts by mass of a resin solution prepared by dissolving 55 parts by mass of the vinyl ester resin (A-1) obtained in Synthesis Example 1 in 45 parts by mass of phenoxyethyl methacrylate, 27 parts by mass of polyisocyanate (C-1) and a polymerization initiator (polymerization initiator). D-1) 1.2 parts by mass and 0.035 parts by mass of the polymerization inhibitor (E-1) were mixed to obtain a resin composition (RX-1). The molar ratio (NCO / OH) in this resin composition (RX-1) was 1.00.
(比較例2:繊維強化成形材料(R2)の作製及び評価)
 合成例1で得たビニルエステル樹脂(A-1)55質量部をフェノキシエチルメタクリレート45質量部に溶解させた樹脂溶液100質量部に、ポリイソシアネート(C-2)12質量部、重合開始剤(D-1)1.2質量部、及び重合禁止剤(E-1)0.035質量部を混合し、樹脂組成物(RX-2)を得た。この樹脂組成物(RX-2)におけるモル比(NCO/OH)は0.43であった。
(Comparative Example 2: Preparation and Evaluation of Fiber Reinforced Molding Material (R2))
In 100 parts by mass of a resin solution prepared by dissolving 55 parts by mass of the vinyl ester resin (A-1) obtained in Synthesis Example 1 in 45 parts by mass of phenoxyethyl methacrylate, 12 parts by mass of polyisocyanate (C-2) and a polymerization initiator ( D-1) 1.2 parts by mass and 0.035 parts by mass of the polymerization inhibitor (E-1) were mixed to obtain a resin composition (RX-2). The molar ratio (NCO / OH) in this resin composition (RX-2) was 0.43.
 実施例1で用いた樹脂組成物(X-1)を樹脂組成物(RX-1)又は(RX-2)に変更した以外は、実施例1と同様に操作し、繊維強化成形材料(R1)又は(R2)を作製し、各評価を行った。取り扱い性が不良であったため、成形品の曲げ強さ・曲げ弾性率の評価は行わなかった。 The same operation as in Example 1 was performed except that the resin composition (X-1) used in Example 1 was changed to the resin composition (RX-1) or (RX-2), and the fiber reinforced molding material (R1) was operated. ) Or (R2) was prepared and each evaluation was performed. Since the handleability was poor, the bending strength and flexural modulus of the molded product were not evaluated.
 上記で得られた繊維強化成形材料(1)~(7)、(R1)及び(R2)の評価結果を表1及び2に示す。 Tables 1 and 2 show the evaluation results of the fiber-reinforced molding materials (1) to (7), (R1) and (R2) obtained above.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~7の本発明の繊維強化成形材料は、フィルム剥離性、タック性等の取扱い性、及び柔軟性に優れ、得られる成形品は曲げ強さ及び曲げ弾性率に優れることが確認された。 It was confirmed that the fiber-reinforced molding materials of the present invention of Examples 1 to 7 are excellent in handleability such as film peelability and tackiness, and flexibility, and the obtained molded product is excellent in bending strength and flexural modulus. It was.
 一方、比較例1は、FT-IRのATR測定における3490cm-1及び3340cm-1での透過率の比(透過率比α)が1.06より大きい例であるが、柔軟性が劣ることが確認された。 On the other hand, Comparative Example 1, although the ratio of the transmittance at 3490cm -1 and 3340cm -1 in ATR measurement of FT-IR (transmittance ratio alpha) is 1.06 greater example, that flexibility is inferior confirmed.
 比較例2は、透過率比αが1.01より小さい例であるが、フィルム剥離性及びタック性が劣ることが確認された。 Comparative Example 2 is an example in which the transmittance ratio α is smaller than 1.01, but it was confirmed that the film peelability and tackiness were inferior.

Claims (4)

  1.  ビニルエステル樹脂(A)、引火点が100℃以上の不飽和単量体(B)、ポリイソシアネート(C)、重合開始剤(D)、及び繊維長2.5~50mmの炭素繊維(E)を必須原料とする繊維強化成形材料であって、FT-IRのATR測定における3490cm-1及び3340cm-1での透過率の比(3490cm-1/3340cm-1)が1.01~1.06の範囲であることを特徴とする繊維強化成形材料。 Vinyl ester resin (A), unsaturated monomer (B) having a ignition point of 100 ° C. or higher, polyisocyanate (C), polymerization initiator (D), and carbon fiber (E) having a fiber length of 2.5 to 50 mm. the a fiber-reinforced molding material containing, as essential raw materials, the transmittance ratio (3490cm -1 / 3340cm -1) is 1.01 to 1.06 at 3490cm -1 and 3340cm -1 in ATR measurement of FT-IR A fiber-reinforced molding material characterized by being in the range of.
  2.  前記ビニルエステル樹脂(A)が、エポキシ当量が180~370の範囲であるエポキシ樹脂(a1)と(メタ)アクリル酸(a2)との反応物である請求項1記載の繊維強化成形材料。 The fiber-reinforced molding material according to claim 1, wherein the vinyl ester resin (A) is a reaction product of an epoxy resin (a1) having an epoxy equivalent in the range of 180 to 370 and (meth) acrylic acid (a2).
  3.  前記ポリイソシアネート(C)が、芳香族ポリイソシアネートである請求項1又は2記載の繊維強化成形材料。 The fiber-reinforced molding material according to claim 1 or 2, wherein the polyisocyanate (C) is an aromatic polyisocyanate.
  4.  請求項1~3のいずれか1項記載の繊維強化成形材料を用いた成形品。 A molded product using the fiber-reinforced molding material according to any one of claims 1 to 3.
PCT/JP2020/015167 2019-04-16 2020-04-02 Fiber-reinforced molding material and molded article using the same WO2020213414A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021509230A JPWO2020213414A1 (en) 2019-04-16 2020-04-02 Fiber reinforced molding material and molded products using it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019077772 2019-04-16
JP2019-077772 2019-04-16

Publications (1)

Publication Number Publication Date
WO2020213414A1 true WO2020213414A1 (en) 2020-10-22

Family

ID=72837771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015167 WO2020213414A1 (en) 2019-04-16 2020-04-02 Fiber-reinforced molding material and molded article using the same

Country Status (2)

Country Link
JP (1) JPWO2020213414A1 (en)
WO (1) WO2020213414A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3971232A4 (en) * 2019-05-16 2022-12-07 DIC Corporation Fiber-reinforced molding material and molded article using same
WO2023089999A1 (en) * 2021-11-18 2023-05-25 Dic株式会社 Radical curable resin composition, fiber-reinforced molding material, and molded article using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018070076A1 (en) * 2016-10-11 2018-04-19 Dic株式会社 Fiber-reinforced molding material and molded article using same
JP2019085508A (en) * 2017-11-08 2019-06-06 Dic株式会社 Fiber-reinforced molding material and molded article using the same
JP2019099609A (en) * 2017-11-29 2019-06-24 Dic株式会社 Fiber-reinforced molding material and molded article using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018070076A1 (en) * 2016-10-11 2018-04-19 Dic株式会社 Fiber-reinforced molding material and molded article using same
JP2019085508A (en) * 2017-11-08 2019-06-06 Dic株式会社 Fiber-reinforced molding material and molded article using the same
JP2019099609A (en) * 2017-11-29 2019-06-24 Dic株式会社 Fiber-reinforced molding material and molded article using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3971232A4 (en) * 2019-05-16 2022-12-07 DIC Corporation Fiber-reinforced molding material and molded article using same
WO2023089999A1 (en) * 2021-11-18 2023-05-25 Dic株式会社 Radical curable resin composition, fiber-reinforced molding material, and molded article using same
JP7298800B1 (en) 2021-11-18 2023-06-27 Dic株式会社 Radical-curable resin composition, fiber-reinforced molding material, and molded article using the same

Also Published As

Publication number Publication date
JPWO2020213414A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
EP3395869B1 (en) Prepreg and molded article
CN109415524B (en) Fiber-reinforced molding material and molded article using same
JP6260754B1 (en) Prepregs and molded products
JP6241583B1 (en) Fiber-reinforced molding material and molded product using the same
JP6708312B2 (en) Fiber-reinforced molding material and molded product using the same
WO2020213414A1 (en) Fiber-reinforced molding material and molded article using the same
JP7087358B2 (en) Fiber reinforced molding material and molded products using it
JP6150034B1 (en) Prepregs and molded products
JP7003583B2 (en) Fiber reinforced molding material and molded products using it
JP6966026B2 (en) Fiber reinforced molding material and molded products using it
JPWO2020085075A1 (en) Resin composition for molding, fiber reinforced molding material and molded products using it
JP7298800B1 (en) Radical-curable resin composition, fiber-reinforced molding material, and molded article using the same
JP2021059661A (en) Molding material and method for producing molding
JP7136393B2 (en) Radical-curable resin composition, fiber-reinforced molding material, and molded article using the same
JP2022180095A (en) Radically curable resin composition, molding material and molded product using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20791335

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021509230

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20791335

Country of ref document: EP

Kind code of ref document: A1