JP2020023591A - Resin composition - Google Patents
Resin composition Download PDFInfo
- Publication number
- JP2020023591A JP2020023591A JP2016212452A JP2016212452A JP2020023591A JP 2020023591 A JP2020023591 A JP 2020023591A JP 2016212452 A JP2016212452 A JP 2016212452A JP 2016212452 A JP2016212452 A JP 2016212452A JP 2020023591 A JP2020023591 A JP 2020023591A
- Authority
- JP
- Japan
- Prior art keywords
- resin composition
- resin
- thermoplastic resin
- ester
- composition according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C67/00—Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/20—Compounding polymers with additives, e.g. colouring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
- C08L101/02—Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
- C08L101/06—Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
Description
本発明は、樹脂組成物、その樹脂組成物を用いて成形した樹脂硬化物を用いた製品に関する。 The present invention relates to a resin composition, and a product using a resin cured product molded using the resin composition.
熱溶融型造形装置向け樹脂として、ABS樹脂やPLA樹脂等の熱可塑性樹脂が使用されている。これらの成形品の用途は、熱可塑性樹脂の特性(耐熱性、強度)に対応し、決まっている。近年、工業向けプロトタイピングの試作に適した熱溶融型造形装置技術の適用範囲を広げるため、熱溶融型造形装置用樹脂の改善が求められている。 Thermoplastic resins such as ABS resin and PLA resin are used as resins for hot-melt molding devices. The use of these molded products is determined according to the characteristics (heat resistance and strength) of the thermoplastic resin. In recent years, in order to expand the application range of the hot-melt molding apparatus technology suitable for prototyping for industrial prototyping, improvement of resin for the hot-melt molding apparatus has been demanded.
従来の熱溶融型造形装置用樹脂の課題について記載する。ABS樹脂は、熱による変形が激しく、高温で溶融した場合、冷却後の硬化収縮が大きい。そのため、大きい形状の成形品は作成途中で歪みが生じやすく、変形する恐れがあった。また、ABS樹脂の強度は高くないため、強度が必要な成形物の加工には適さない。PLA樹脂は、耐衝撃性と柔軟性が低い。そのため、ABS樹脂のように研磨などの加工作業が非常に困難で、塗料もうまく馴染なまい。さらに、造形する際の温度が低いため、造形物自体が熱に弱く、その利用用途や使用場所に制限がある。 The problems of the conventional resin for a hot-melt molding apparatus will be described. ABS resin undergoes severe deformation due to heat, and when melted at a high temperature, has a large curing shrinkage after cooling. For this reason, a molded article having a large shape is likely to be distorted during production, and may be deformed. Further, since the strength of the ABS resin is not high, it is not suitable for processing a molded product requiring strength. PLA resin has low impact resistance and flexibility. Therefore, processing work such as polishing is very difficult like ABS resin, and the paint does not mix well. Furthermore, since the temperature at the time of molding is low, the molded article itself is weak to heat, and there are restrictions on its use purpose and place of use.
本発明では、ヒドロキシルを有する熱可塑性樹脂とエステル結合を有する熱可塑性樹脂を用いて、エステル交換反応による架橋を導入し、熱溶融型造形装置用熱可塑性樹脂材料の課題である強度・耐熱性の不足を解決する。 In the present invention, using a thermoplastic resin having a hydroxyl and a thermoplastic resin having an ester bond, cross-linking by a transesterification reaction is introduced, and the strength and heat resistance, which are issues of a thermoplastic resin material for a hot-melt molding apparatus, are used. Resolve the shortage.
本発明の樹脂組成物を使用した熱溶融型造形装置による樹脂成形物は、耐熱、強度が向上する。 The heat resistance and strength of the resin molded product obtained by the hot-melt molding apparatus using the resin composition of the present invention are improved.
近年、共有結合でありながら可逆的な解離−結合が容易に実現できる共有結合の平衡反応へ関心が高まっており、これを活用する化学を動的共有結合化学という。動的共有結合化学に基づいて形成される構造体は、熱力学的に安定な構造をもつ一方で、温度、光、圧力、触媒や鋳型の有無等の特定の外部刺激によりその構造を変化させることができる。このような「動的」な共有結合を利用することで、これまで実現不可能だった超分子形成や高分子構築が可能になる。特に注目すべき点は、関与する結合が共有結合であるため、形成される結合が、従来の超分子やそのポリマーにみられる水素結合などの弱い結合に比べて格段に強く、この活用は、新規な構造体構築の重要な手段となりうることだ。特許文献1は、このような動的共有結合を利用した高分子として、高分子鎖中にアルコキシアミン骨格を導入した高分子の研究に関する特許である。 In recent years, there has been an increasing interest in equilibrium reactions of covalent bonds that can easily achieve reversible dissociation-bonding even though they are covalent bonds. Chemistry utilizing this is called dynamic covalent chemistry. A structure formed based on dynamic covalent chemistry has a thermodynamically stable structure, but changes its structure due to specific external stimuli such as temperature, light, pressure, and the presence or absence of a catalyst or template. be able to. By utilizing such “dynamic” covalent bonds, it is possible to form supramolecules and build polymers, which were not possible until now. Of particular note is that the bond involved is a covalent bond, so the bond formed is much stronger than the weaker bonds, such as the hydrogen bonds found in conventional supramolecules and their polymers. It can be an important tool for building new structures. Patent Document 1 is a patent relating to a study of a polymer in which an alkoxyamine skeleton is introduced into a polymer chain as a polymer utilizing such a dynamic covalent bond.
特許文献2には、「本発明は熱変形が可能な熱硬化性樹脂とそれを含む熱硬化性複合材料に関するものであり、この組成物は少なくとも一つのエステル交換触媒の存在下で酸無水物から選択される少なくとも一つの硬化剤を少なくとも一つの熱硬化性樹脂前駆物質と接触させて得られる」と記載されている。この公報では、硬化後に熱変形可能な熱硬化性樹脂を開発することを目的とし、動的共結合としてエステル結合交換反応を利用している。 Patent Document 2 discloses that "The present invention relates to a thermosetting resin capable of being thermally deformed and a thermosetting composite material containing the thermosetting resin, and the composition comprises an acid anhydride in the presence of at least one transesterification catalyst. And at least one curing agent selected from the group consisting of a thermosetting resin precursor and a thermosetting resin precursor. " This publication aims to develop a thermosetting resin that can be thermally deformed after curing, and utilizes an ester bond exchange reaction as a dynamic co-bond.
本実施形態の樹脂組成物は、このエステル交換反応による動的共有結合を利用し、熱溶融型造形装置向けに開発されたものである。 The resin composition of the present embodiment has been developed for a hot-melt molding apparatus by utilizing dynamic covalent bonding by this transesterification reaction.
本実施形態の樹脂組成物は、ヒドロキシル基を含む熱可塑性樹脂組成物と、エステル結合を含む熱可塑性樹脂組成物と、エステル交換反応触媒を含む樹脂組成物であることを特徴とする。ここで、ヒドロキシル基は−OH基を指し、水酸基を含む意味で用いる。 The resin composition of the present embodiment is characterized in that it is a thermoplastic resin composition containing a hydroxyl group, a thermoplastic resin composition containing an ester bond, and a resin composition containing a transesterification catalyst. Here, the hydroxyl group refers to an -OH group, and is used in a meaning including a hydroxyl group.
ヒドロキシル基を含む熱可塑性樹脂組成物としては、ポリビニルアルコールや水酸基を有するアクリルモノマー重合体が挙げられる。水酸基を有するアクリルモノマーとは、2−ヒドロキシメタクリレート、ヒドロキシプロピルメタクリレート、4−ヒドロキシブチルアクリレート、ヒドロキシプロピルアクリレート、エチル2−(ヒドロキシメチル)アクリレート等である。ヒドロキシル基を有するモノマーを含んでいれば、他のビニルモノマーとの共重合体も使用することができる。 Examples of the thermoplastic resin composition containing a hydroxyl group include polyvinyl alcohol and an acrylic monomer polymer having a hydroxyl group. The acrylic monomer having a hydroxyl group is 2-hydroxy methacrylate, hydroxypropyl methacrylate, 4-hydroxybutyl acrylate, hydroxypropyl acrylate, ethyl 2- (hydroxymethyl) acrylate, or the like. Copolymers with other vinyl monomers can be used as long as they contain a monomer having a hydroxyl group.
エステル結合を含む熱可塑性樹脂組成物としては、ポリエステル系樹脂が代表として挙げられる。具体的には、ポリエチレンテレフタラート、ポリトリメチレンテレフタラート、ポリブチレンテレフタラート等が挙げられる。また、メタクリル系樹脂も使用が可能であり、メタクリル酸ビニルモノマーの重合体や、他のビニルモノマーとの共重合体が挙げられる。 A typical example of the thermoplastic resin composition containing an ester bond is a polyester-based resin. Specific examples include polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, and the like. In addition, a methacrylic resin can be used, and examples thereof include a polymer of a vinyl methacrylate monomer and a copolymer with another vinyl monomer.
熱可塑性樹脂組成物に含まれる全エステル結合に対し、エステル交換反応触媒の割合が2.5〜20mol%であることが好ましく、特に5〜10mol%が好ましい。この割合でエステル交換反応触媒を含むことで、エステル交換反応が生じる条件を満たすことができる。後に説明する表1のエステル交換反応触媒の割合は、この範囲に含まれる。 The proportion of the transesterification catalyst is preferably from 2.5 to 20 mol%, particularly preferably from 5 to 10 mol%, based on all the ester bonds contained in the thermoplastic resin composition. By including the transesterification catalyst at this ratio, the conditions under which transesterification occurs can be satisfied. The ratio of the transesterification catalyst in Table 1 described later is included in this range.
エステル交換反応触媒の割合を5〜10mol%に設定することで、成形後、熱硬化性樹脂となった後でも加熱により再溶融できる利点がある。 By setting the ratio of the transesterification catalyst to 5 to 10 mol%, there is an advantage that the resin can be re-melted by heating even after it becomes a thermosetting resin after molding.
エステル交換反応触媒としては、酢酸亜鉛(II)、亜鉛(II)アセチルアセトナート、ナフテン酸亜鉛(II)、アセチルアセトン鉄(III)、アセチルアセトンコバルト(II)、アルミニウムイソプロポキシド、チタニウムイソプロポキシド、メトキシド(トリフェニルホスフィン)銅(I)錯体、エトキシド(トリフェニルホスフィン)銅(I)錯体、プロポキシド(トリフェニルホスフィン)銅(I)錯体、イソプロポキシド(トリフェニルホスフィン)銅(I)錯体、メトキシドビス(トリフェニルホスフィン)銅(II)錯体、エトキシドビス(トリフェニルホスフィン)銅(II)錯体、プロポキシドビス(トリフェニルホスフィン)銅(II)錯体、イソプロポキシドビス(トリフェニルホスフィン)銅(II)錯体、トリス(2,4-ペンタンジオナト)コバルト(III)、二酢酸すず(II)、ジ(2-エチルヘキサン酸)すず(II)、N,N-ジメチル-4-アミノピリジン、ジアザビシクロウンデセン、ジアザビシクロノネン、トリアザビシクロデセン、トリフェニルホスフィンが挙げられる。本実施形態の樹脂組成物は、無機フィラーと組合せても良く、適用できる無機フィラーとしては、溶融シリカ、結晶シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、チタン酸カリウム、炭化珪素、窒化アルミ、窒化ホウ素、ベリリア、ジルコン、フォステライト、ステアライト、スピレル、ムライト、チタニア等の粉体、また、これらを球形化したビーズ、ガラス繊維等が挙げられる。また、無機フィラーの形状に限定はなく、球状、鱗片状などどれを用いてもよい。 As the transesterification catalyst, zinc acetate (II), zinc (II) acetylacetonate, zinc (II) naphthenate, iron (III) acetylacetone, cobalt (II) acetylacetone, aluminum isopropoxide, titanium isopropoxide, Methoxide (triphenylphosphine) copper (I) complex, ethoxide (triphenylphosphine) copper (I) complex, propoxide (triphenylphosphine) copper (I) complex, isopropoxide (triphenylphosphine) copper (I) complex , Methoxide bis (triphenylphosphine) copper (II) complex, ethoxide bis (triphenylphosphine) copper (II) complex, propoxide bis (triphenylphosphine) copper (II) complex, isopropoxide bis (triphenylphosphine) copper ( II) complex, tris (2,4-pentanedionato) cobalt (II I), tin (II) diacetate, tin (II) di (2-ethylhexanoate), N, N-dimethyl-4-aminopyridine, diazabicycloundecene, diazabicyclononene, triazabicyclodecene, Triphenylphosphine. The resin composition of the present embodiment may be combined with an inorganic filler, and as the applicable inorganic filler, fused silica, crystalline silica, alumina, zircon, calcium silicate, calcium carbonate, potassium titanate, silicon carbide, aluminum nitride, Examples include powders of boron nitride, beryllia, zircon, fosterite, stearite, spirel, mullite, titania, etc., and spherical beads and glass fibers thereof. Further, the shape of the inorganic filler is not limited, and any shape such as a sphere and a scale may be used.
本実施形態の樹脂組成物は、熱溶融により流動性を発現し、冷却後、熱硬化性樹脂組成物となることを特徴とする。本実施形態の樹脂組成物は、ヒドロキシル基を含む熱可塑性樹脂組成物とエステル結合を含む熱可塑性樹脂組成物とエステル交換反応触媒を含み、熱可塑性樹脂の溶融温度において、流動性を発現する。流動性を発現する温度範囲は、使用する熱可塑性樹脂の融点に依存し、約90〜260℃である。この流動性を発現している間、エステル交換反応触媒を介し、樹脂組成物中のヒドロキシル基とエステル結合は、エステル交換反応を生じる。これにより、樹脂組成物中の一部では、エステル結合による架橋が形成され、冷却時は、熱硬化性樹脂となる。この反応の模式図と、熱溶融型造形装置の模式図を図1、2に示す。 The resin composition of the present embodiment is characterized in that it exhibits fluidity by thermal melting and becomes a thermosetting resin composition after cooling. The resin composition of the present embodiment includes a thermoplastic resin composition containing a hydroxyl group, a thermoplastic resin composition containing an ester bond, and a transesterification catalyst, and exhibits fluidity at the melting temperature of the thermoplastic resin. The temperature range in which the fluidity is exhibited depends on the melting point of the thermoplastic resin used, and is about 90 to 260 ° C. While the fluidity is being developed, the hydroxyl group and the ester bond in the resin composition undergo transesterification via the transesterification catalyst. Thereby, a part of the resin composition is crosslinked by an ester bond, and becomes a thermosetting resin when cooled. FIGS. 1 and 2 show a schematic diagram of this reaction and a schematic diagram of a hot-melt molding apparatus.
図2の熱溶融型造形装置は、樹脂加熱炉201、ノズル202を有する。溶融した本実施形態の樹脂組成物203が台205の上に積層され、冷却後の熱硬化性樹脂成形物204が出来上がる。本実施形態では、ヒドロキシル基を含む第1の熱可塑性樹脂と、エステル結合を含む第2の熱可塑性樹脂と、エステル交換反応触媒を有する樹脂組成物を用いて、積層造形物を製造する。
2 includes a
本実施形態の樹脂組成物は、熱溶融型造形装置向けに使用できることを特徴とし、成形され、熱硬化性樹脂成形物になることを特徴とする。本実施形態の熱硬化性樹脂組成物は、外部刺激により流動性を発現することを特徴とする。外部刺激により、熱硬化性樹脂成形物中のエステル交換反応触媒とエステル基とヒドロキシル基が、再びエステル交換反応を生じ、流動性を発現する。この特徴により、一度冷却した樹脂成形物において、熱や光による積層面の修正が可能となる。また、熱溶融型造形装置で、個別に成形した分品同士を、熱や光により、接着/接合することが可能になり、接着剤を必要としない、接着/接合が可能となる。本実施形態の樹脂成形物は、異部材による接着/接合界面が存在しないため、強度が高い。さらに、エステル交換反応触媒とエステル基とヒドロキシル基が、再びエステル交換反応を生じる特徴により、成形物の一部が破壊されても、熱や光による修復が可能である。さらに、本実施形態の樹脂組成物による樹脂成形物は、リサイクルが可能である。 The resin composition of the present embodiment is characterized in that it can be used for a hot-melt molding apparatus, and is formed into a thermosetting resin molded product. The thermosetting resin composition of the present embodiment is characterized by exhibiting fluidity by an external stimulus. By the external stimulus, the transesterification reaction catalyst, ester group and hydroxyl group in the thermosetting resin molded product again cause a transesterification reaction and exhibit fluidity. Due to this feature, it is possible to correct the laminated surface of the resin molded product once cooled by heat or light. In addition, it is possible to bond / join the separately molded products by heat or light using the hot-melt molding apparatus, and it is possible to perform the bonding / joining without using an adhesive. The resin molded product of the present embodiment has high strength because there is no bonding / joining interface between different members. Further, the transesterification catalyst, the ester group and the hydroxyl group cause a transesterification reaction again, so that even if a part of the molded product is destroyed, it can be repaired by heat or light. Furthermore, the resin molded product of the resin composition of the present embodiment can be recycled.
本実施形態では従来の樹脂組成物と比較して、エステル交換反応触媒の割合を多くしている。これは、上述したように加熱、冷却、外部刺激というながれで、少なくとも2回のエステル交換反応が生じることに対応した樹脂組成物を提供するためである。触媒が少ない場合には冷却後の外部刺激の際にエステル交換反応が十分にないことが想定される。 In this embodiment, the proportion of the transesterification catalyst is increased as compared with the conventional resin composition. This is to provide a resin composition corresponding to the occurrence of at least two transesterification reactions by the flow of heating, cooling, and external stimulation as described above. When the amount of the catalyst is small, it is assumed that the transesterification is not sufficient at the time of external stimulation after cooling.
以下、実施例及び比較例を用いて、本実施形態の効果を説明する。 Hereinafter, the effects of the present embodiment will be described using examples and comparative examples.
<樹脂組成物(A)の作製>
ヒドロキシル基を含む熱可塑性樹脂硬化物を作製する。2−ヒドロキシメタクリレート(東京化成)100g(0.77mol)とCT50(日立化成)1.6gを室温で混合し、アルミカップに液体を流した。アルミカップを120℃の恒温槽に移し、2時間大気中で加熱し、ヒドロキシル基を含む熱可塑性樹脂硬化物を作製した。その後、硬化物をボールミルで粉砕し、100〜600μmの樹脂粉末にした。
<Preparation of resin composition (A)>
A cured thermoplastic resin containing a hydroxyl group is prepared. 100 g (0.77 mol) of 2-hydroxymethacrylate (Tokyo Kasei) and 1.6 g of CT50 (Hitachi Chemical) were mixed at room temperature, and the liquid was poured into an aluminum cup. The aluminum cup was transferred to a thermostat at 120 ° C. and heated in the air for 2 hours to produce a cured thermoplastic resin containing a hydroxyl group. Thereafter, the cured product was pulverized with a ball mill to obtain a resin powder of 100 to 600 μm.
エステル結合を含む熱可塑性樹脂硬化物を作製する。メタクリル酸メチル(東京化成)100g(0.1mol)CT50(日立化成)1.6gを室温で混合し、アルミカップに液体を流した。アルミカップを120℃の恒温槽に移し、2時間大気中で加熱し、ヒドロキシル基を含む熱可塑性樹脂硬化物を作製した。その後、硬化物をボールミルで粉砕し、100〜600μmの樹脂粉末にした。 A cured thermoplastic resin containing an ester bond is prepared. 100 g (0.1 mol) of methyl methacrylate (Tokyo Kasei) and 1.6 g of CT50 (Hitachi Chemical) were mixed at room temperature, and the liquid was poured into an aluminum cup. The aluminum cup was transferred to a thermostat at 120 ° C. and heated in the air for 2 hours to produce a cured thermoplastic resin containing a hydroxyl group. Thereafter, the cured product was pulverized with a ball mill to obtain a resin powder of 100 to 600 μm.
上述のように作製したヒドロキシル基を含む熱可塑性樹脂硬化物である樹脂粉末80g、上述のように作製したエステル結合を含む熱可塑性樹脂硬化物である樹脂粉末62g及び亜鉛(II)アセチルアセトナート16.2g(0.06mol、全樹脂中のエステル結合の5mol%)を混合し、粉末状の樹脂組成物を作製した。 80 g of a resin powder which is a cured thermoplastic resin containing a hydroxyl group produced as described above, 62 g of a resin powder which is a cured thermoplastic resin containing an ester bond produced as described above, and zinc (II) acetylacetonate 16 .2 g (0.06 mol, 5 mol% of ester bonds in all resins) were mixed to prepare a powdery resin composition.
本実施例では、ヒドロキシル基を含む熱可塑性樹脂硬化物とエステル結合を含む熱可塑性樹脂硬化物それぞれを合成して用いたが、市販されている熱可塑性樹脂をもちいることも可能である。本実施例で検討した樹脂組成を表1に示す。 In the present embodiment, each of a cured thermoplastic resin containing a hydroxyl group and a cured thermoplastic resin containing an ester bond was synthesized and used, but a commercially available thermoplastic resin can also be used. Table 1 shows the resin compositions studied in this example.
<樹脂組成物(B)〜(D)の作製>
表1に示す成分量にて、樹脂組成物(B)〜(D)を作製した。樹脂組成物(B)ではエステル交換反応触媒を、エステル結合を含む熱可塑性樹脂中のエステル結合の5mol%含む。樹脂組成物(C)ではエステル交換反応触媒を、エステル結合を含む熱可塑性樹脂中のエステル結合の4.5mol%含む。樹脂組成物(D)ではエステル交換反応触媒を全樹脂中のエステル結合の5mol%含んでいる。
<Preparation of resin compositions (B) to (D)>
Resin compositions (B) to (D) were prepared with the component amounts shown in Table 1. In the resin composition (B), the ester exchange reaction catalyst contains 5 mol% of the ester bonds in the thermoplastic resin containing the ester bonds. In the resin composition (C), the ester exchange reaction catalyst contains 4.5 mol% of the ester bond in the thermoplastic resin containing the ester bond. The resin composition (D) contains a transesterification catalyst in an amount of 5 mol% of ester bonds in the whole resin.
<溶融粘度の確認>
キャピラリーレオメータ(Dynisco社製)を使用して、溶融粘度を測定し熱溶融型造形装置に適用可能か確認を行った。キャピラリーレオメーの模式図を図3に示す。キャピラリーレオメータ306は、ロードセル301、ピストン302、キャピラリー304、シリンダー305を備え、溶融状態の樹脂303の溶融粘度を測定する。樹脂組成物(A)における結果を図4に示す。また、樹脂組成物(B)〜(D)もほぼ同等の結果が得られ、射出成形において目安となる100〜1000(/sec)のせん断速度を得た。これより、本実施形態の樹脂組成物は、熱溶融型造形装置にも適用できると考えられる。
<Confirmation of melt viscosity>
Using a capillary rheometer (manufactured by Dynisco), the melt viscosity was measured to confirm whether the melt viscosity was applicable to a hot-melt molding apparatus. FIG. 3 shows a schematic diagram of the capillary rheome. The
<成形物の作製>
樹脂組成物(A)を使い、射出成形機を用いて、平板(10×100×100mm)を作製した。射出成形温度条件は、280℃とした。樹脂組成物(B)〜(D)においても同様に平板を作製した。
<Preparation of molded product>
Using the resin composition (A), a flat plate (10 × 100 × 100 mm) was produced using an injection molding machine. The injection molding temperature condition was 280 ° C. Flat plates were similarly prepared for the resin compositions (B) to (D).
<耐熱評価>
示差熱走査熱量(DSC)測定により、ガラス転移温度の測定を行った。測定装置は、ティー・エイ・インスツルメント社製を使用した。評価結果を表2に示す通り、汎用の熱溶融型造形装置用樹脂であるABS樹脂である樹脂組成物(E)に比べ、本発明の樹脂組成物(A)はガラス転移温度が向上し、高耐熱化していることが確認された。樹脂組成物(B)〜(D)についても同様の結果が得られた。
<Heat resistance evaluation>
Glass transition temperature was measured by differential scanning calorimetry (DSC). The measuring device used was manufactured by TA Instruments. As shown in Table 2, the resin composition (A) of the present invention has an improved glass transition temperature as compared with the resin composition (E) which is an ABS resin which is a resin for a general-purpose hot-melt molding apparatus, as shown in Table 2. It was confirmed that the heat resistance was increased. Similar results were obtained for the resin compositions (B) to (D).
<線膨張係数の評価>
樹脂組成物(A)を5×20×0.5tmmのサイズに切り出し、熱機械分析装置(TMA)を用いて、線膨張係数を求めた。測定装置は、ティー・エイ・インスツルメント社製を使用した。評価結果を表2に示した通り、汎用の熱溶融型造形装置用樹脂であるABS樹脂である樹脂組成物(E)に比べ、本発明の樹脂組成物(A)は、線膨張係数が小さく、冷却後の硬化収縮が小さく、寸法安定性に優れた成形物を得ることができる。樹脂組成物(B)〜(D)についても同様の結果が得られた。
<Evaluation of linear expansion coefficient>
The resin composition (A) was cut into a size of 5 × 20 × 0.5 tmm, and the coefficient of linear expansion was determined using a thermomechanical analyzer (TMA). The measuring device used was manufactured by TA Instruments. As shown in Table 2, the resin composition (A) of the present invention has a smaller coefficient of linear expansion than the resin composition (E) which is an ABS resin which is a resin for a general-purpose hot-melt molding apparatus as shown in Table 2. In addition, it is possible to obtain a molded product having a small curing shrinkage after cooling and having excellent dimensional stability. Similar results were obtained for the resin compositions (B) to (D).
<曲げ強度の評価>
樹脂組成物(A)をプレス成型により板状に加工し、JIS7171に準拠して、曲げ試験片を作製し、曲げ特性を評価した。測定装置は島津製作所社製のオートグラフを使用した。評価結果を表2に示す通り、汎用の熱溶融型造形装置用樹脂であるABS樹脂である樹脂組成物(E)に比べ、本発明の樹脂組成物(A)は曲げ強度が高く、強度が高いことを示せた。樹脂組成物(B)〜(D)についても同様の結果が得られた。
<Evaluation of bending strength>
The resin composition (A) was processed into a plate shape by press molding, and a bending test piece was prepared in accordance with JIS7171 to evaluate bending characteristics. The measuring device used was an autograph manufactured by Shimadzu Corporation. As shown in Table 2, the resin composition (A) of the present invention has a higher bending strength and a higher strength than the resin composition (E) which is an ABS resin which is a resin for a general-purpose hot-melt molding apparatus. It was shown to be expensive. Similar results were obtained for the resin compositions (B) to (D).
<熱硬化性樹脂の確認>
実施例2で作製した平板の成形物から5×5×5mmの樹脂片を切り出し、テトラヒドロフラン10mlへの溶解性を確認した。樹脂組成物(A)〜(D)いずれも、テトラヒドロフランへ溶解しないことを確認した。
<Confirmation of thermosetting resin>
A 5 × 5 × 5 mm resin piece was cut out from the flat molded product prepared in Example 2 and its solubility in 10 ml of tetrahydrofuran was confirmed. It was confirmed that none of the resin compositions (A) to (D) was dissolved in tetrahydrofuran.
<接着/接合の確認>
成形した平板を切断し、破断面を着き合わせ、ヒートガンを用いて界面付近を集中的に加熱すると、破断面は再び接着した。これより、本実施形態の樹脂組成物は、熱硬化性樹脂でありながら、熱により、接着/接合が可能であることを確認した。
<Confirmation of adhesion / joining>
When the formed flat plate was cut, the fracture surfaces were joined together, and the vicinity of the interface was intensively heated using a heat gun, and the fracture surfaces adhered again. From this, it was confirmed that the resin composition of the present embodiment was capable of bonding / joining by heat while being a thermosetting resin.
<比較例>
比較例として、樹脂組成物(E)に汎用の熱溶融型造形装置用樹脂であるABS樹脂を用いた。また、樹脂組成物(F)〜(H)は、表1に示す配合で調整し、樹脂を作製した。
<Comparative example>
As a comparative example, an ABS resin, which is a general-purpose resin for a hot-melt molding apparatus, was used for the resin composition (E). Further, the resin compositions (F) to (H) were adjusted with the formulations shown in Table 1 to prepare resins.
実施例2と同様の方法で、溶融粘度を測定した。ABS樹脂である樹脂組成物(E)及び(F)〜(H)も、射出成形において目安となる100〜1000(/sec)のせん断速度を得た。 The melt viscosity was measured in the same manner as in Example 2. The resin compositions (E) and (F) to (H), which are ABS resins, also obtained a shear rate of 100 to 1000 (/ sec) which is a standard in injection molding.
実施例3と同様の方法で、樹脂組成物(E)〜(H)において、樹脂の平板を作製した。 In the same manner as in Example 3, resin flat plates were prepared from the resin compositions (E) to (H).
実施例4と同様の方法で、樹脂組成物(E)〜(H)のガラス転移温度、線膨張係数及び曲げ強度を測定し、結果を表2に示す。 The glass transition temperature, the coefficient of linear expansion, and the bending strength of the resin compositions (E) to (H) were measured in the same manner as in Example 4, and the results are shown in Table 2.
実施例5と同様の方法で、樹脂組成物(E)〜(H)のテトラヒドロフランへの溶解性を確認した。その結果、いずれの樹脂もテトラヒドロフランへ溶解性を示し、熱可塑性樹脂であることを確認した。 In the same manner as in Example 5, the solubility of the resin compositions (E) to (H) in tetrahydrofuran was confirmed. As a result, all of the resins showed solubility in tetrahydrofuran and were confirmed to be thermoplastic resins.
実施例6と同様の方法で、接着/接合の確認を行った結果、熱により、接着/接合が可能である従来の熱可塑性樹脂の特性を確認した。 As a result of checking adhesion / bonding in the same manner as in Example 6, characteristics of a conventional thermoplastic resin capable of bonding / joining by heat were confirmed.
以上、実施例及び比較例により、本発明の樹脂成形物は、熱溶融型樹脂でありながら、従来樹脂よりも耐熱、強度、加工性に優れることを示せた。 As described above, the Examples and Comparative Examples show that the resin molded product of the present invention is superior in heat resistance, strength, and workability to a conventional resin while being a hot-melt resin.
101:ヒドロキシル基を含む熱可塑性樹脂の模式図
102:エステル結合を含む熱可塑性樹脂の模式図
103:本実施形態の熱硬化性樹脂の模式図
201:樹脂加熱炉
202:ノズル
203:溶融した本実施形態の樹脂組成物
204:冷却後の熱硬化性樹脂成形物
205:台
301:ロードセル
302:ピストン
303:溶融状態の樹脂
304:キャピラリー
305:シリンダー
101: Schematic diagram of a thermoplastic resin containing a hydroxyl group 102: Schematic diagram of a thermoplastic resin containing an ester bond 103: Schematic diagram of the thermosetting resin of this embodiment 201: Resin heating furnace 202: Nozzle 203: Molten
Claims (13)
エステル結合を含む第2の熱可塑性樹脂と、
エステル交換反応触媒を有することを特徴とする樹脂組成物。 A first thermoplastic resin containing hydroxyl groups;
A second thermoplastic resin containing an ester bond;
A resin composition comprising a transesterification catalyst.
前記樹脂組成物に含まれる全てのエステル結合に対し、前記エステル交換反応触媒を2.5〜20mol%含むことを特徴とする樹脂組成物。 The resin composition according to claim 1,
A resin composition comprising 2.5 to 20 mol% of the transesterification catalyst with respect to all ester bonds contained in the resin composition.
前記樹脂組成物に含まれる全てのエステル結合に対し、前記エステル交換反応触媒を5〜10mol%含むことを特徴とする樹脂組成物。 The resin composition according to claim 1,
A resin composition comprising the ester exchange reaction catalyst in an amount of 5 to 10 mol% with respect to all ester bonds contained in the resin composition.
熱溶融により流動性を発現し、冷却すると熱硬化性樹脂成形物となることを特徴とする樹脂組成物。 The resin composition according to claim 1,
A resin composition which exhibits fluidity by heat melting and becomes a thermosetting resin molded article when cooled.
熱溶融により流動性を発現し、前記第1の熱可塑性樹脂に含まれるヒドロキシル基と、前記第2の熱可塑性樹脂に含まれるエステル結合によるエステル交換反応を生じることを特徴とする樹脂組成物。 The resin composition according to claim 1,
A resin composition which develops fluidity by thermal melting and causes transesterification by a hydroxyl group contained in the first thermoplastic resin and an ester bond contained in the second thermoplastic resin.
前記エステル交換反応が生じた後に冷却すると、熱硬化性樹脂成形物となることを特徴とする樹脂組成物。 The resin composition according to claim 5,
A resin composition which, when cooled after the transesterification reaction occurs, becomes a thermosetting resin molded product.
前記熱硬化性樹脂成形物は、外部刺激により流動性を発現することを特徴とする樹脂組成物。 The resin composition according to claim 4,
The resin composition, wherein the thermosetting resin molded product exhibits fluidity by an external stimulus.
前記熱硬化性樹脂成形物は、外部刺激により流動性を発現することを特徴とする樹脂組成物。 The resin composition according to claim 6,
The resin composition, wherein the thermosetting resin molded product exhibits fluidity by an external stimulus.
積層造形物の製造に用いられることを特徴とする樹脂組成物。 It is a resin composition according to any one of claims 1 to 8,
A resin composition, which is used for manufacturing a layered product.
前記樹脂組成物に含まれる全てのエステル結合に対し、前記エステル交換反応触媒を2.5〜20mol%含むことを特徴とする積層造形物の製造方法。 The method for manufacturing a layered object according to claim 11,
A method for manufacturing a layered product, comprising the ester exchange reaction catalyst in an amount of 2.5 to 20 mol% with respect to all ester bonds contained in the resin composition.
前記樹脂組成物に含まれる全てのエステル結合に対し、前記エステル交換反応触媒を5〜10mol%含むことを特徴とする積層造形物の製造方法。 The method for manufacturing a layered object according to claim 11,
A method for producing a layered product, comprising the ester exchange reaction catalyst in an amount of 5 to 10 mol% with respect to all ester bonds contained in the resin composition.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016212452A JP2020023591A (en) | 2016-10-31 | 2016-10-31 | Resin composition |
PCT/JP2017/038266 WO2018079516A1 (en) | 2016-10-31 | 2017-10-24 | Resin composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016212452A JP2020023591A (en) | 2016-10-31 | 2016-10-31 | Resin composition |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2020023591A true JP2020023591A (en) | 2020-02-13 |
Family
ID=62024906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016212452A Pending JP2020023591A (en) | 2016-10-31 | 2016-10-31 | Resin composition |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2020023591A (en) |
WO (1) | WO2018079516A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022080469A1 (en) | 2020-10-16 | 2022-04-21 | 東洋紡株式会社 | Crosslinked aromatic polyester resin composition and production method therefor |
WO2022239463A1 (en) * | 2021-05-11 | 2022-11-17 | 株式会社日立製作所 | Resin composite, method for producing resin composite, and method for disassembling resin composite |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220148194A (en) * | 2020-02-28 | 2022-11-04 | 교에이샤 케미칼 주식회사 | Thermosetting resin composition and transesterification catalyst |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4220709B2 (en) * | 2002-03-07 | 2009-02-04 | 株式会社カネカ | Thermoplastic elastomer composition |
JP5169037B2 (en) * | 2006-06-30 | 2013-03-27 | 東レ株式会社 | Thermoplastic resin composition, method for producing the same, and molded article comprising the same |
JP2007100108A (en) * | 2007-01-22 | 2007-04-19 | Dainippon Ink & Chem Inc | Hardenable resin composition |
KR102264949B1 (en) * | 2013-12-27 | 2021-06-14 | 에이지씨 가부시키가이샤 | Resin composition |
-
2016
- 2016-10-31 JP JP2016212452A patent/JP2020023591A/en active Pending
-
2017
- 2017-10-24 WO PCT/JP2017/038266 patent/WO2018079516A1/en active Application Filing
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022080469A1 (en) | 2020-10-16 | 2022-04-21 | 東洋紡株式会社 | Crosslinked aromatic polyester resin composition and production method therefor |
KR20230088439A (en) | 2020-10-16 | 2023-06-19 | 도요보 가부시키가이샤 | Crosslinked aromatic polyester resin composition and method for producing the same |
WO2022239463A1 (en) * | 2021-05-11 | 2022-11-17 | 株式会社日立製作所 | Resin composite, method for producing resin composite, and method for disassembling resin composite |
Also Published As
Publication number | Publication date |
---|---|
WO2018079516A1 (en) | 2018-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6440823B2 (en) | Fiber-reinforced plastic molding material, method for producing the same, and molded product | |
WO2018079516A1 (en) | Resin composition | |
CN110382618B (en) | Use of thermosetting polymer powder compositions | |
KR20210049813A (en) | Bio-based reactive polyurethane hot melt adhesive | |
JP4962554B2 (en) | One-part epoxy resin composition and use thereof | |
JP2021091920A (en) | Sheet molding compound and fiber-reinforced composite material | |
CN101974304A (en) | Vinylester resin stone adhesive and preparation method thereof | |
US20180094171A1 (en) | High thermally conductive low pressure mouldable hotmelt | |
CN103571422A (en) | Novel marble adhesive | |
CA3055862A1 (en) | Use of a thermosetting polymeric powder composition | |
CN102040936A (en) | Sealant composition for liquid crystal display device | |
JP2018145280A (en) | Crystalline radically polymerizable composition for sealing electric/electronic component, sealing body for electric/electronic component using the composition, and method of manufacturing the sealing body | |
CN102190985A (en) | Method for producing general-purpose hot melt adhesive | |
US10899897B2 (en) | Resin composition, cured product thereof, and friction stir welding method | |
JP7036122B2 (en) | Manufacturing method of sheet molding compound | |
CN105949859A (en) | Luster-enhancing agent for powder coating as well as preparation method and application of luster-enhancing agent | |
CN104312507A (en) | High-temperature-resistant adhesive and preparation method thereof | |
JPH0391524A (en) | Polyhydroxy ester containing terminal carboxyl group and method of using it | |
JP2005272647A (en) | Structural adhesive composition | |
TWI676651B (en) | A white epoxy moulding compound | |
CN104403092A (en) | Polyester curing agent with hyperbranched structure and synthetic method of polyester curing agent | |
CN103361016B (en) | A kind of Underfill adhesive composition | |
JP2017082144A (en) | Thermosetting multilayer adhesive sheet and adhesive method | |
CN103951909B (en) | A kind of heat-resisting impact-resistant complex plastic and preparation method thereof | |
KR20130084728A (en) | Environment-friendly acrylic copolymer latex having excellent storage stability and impact strength and acryl sol comprising the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20170126 |