WO2019244348A1 - 無線通信システム、端末装置、基地局装置、及び無線通信方法 - Google Patents

無線通信システム、端末装置、基地局装置、及び無線通信方法 Download PDF

Info

Publication number
WO2019244348A1
WO2019244348A1 PCT/JP2018/023838 JP2018023838W WO2019244348A1 WO 2019244348 A1 WO2019244348 A1 WO 2019244348A1 JP 2018023838 W JP2018023838 W JP 2018023838W WO 2019244348 A1 WO2019244348 A1 WO 2019244348A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
terminal device
base station
communication
received
Prior art date
Application number
PCT/JP2018/023838
Other languages
English (en)
French (fr)
Inventor
英之 中溝
田島 賢一
彰浩 岡崎
内田 繁
福井 範行
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201880094709.9A priority Critical patent/CN112335185A/zh
Priority to PCT/JP2018/023838 priority patent/WO2019244348A1/ja
Priority to EP18923569.0A priority patent/EP3796567A4/en
Priority to JP2020525205A priority patent/JP6775713B2/ja
Publication of WO2019244348A1 publication Critical patent/WO2019244348A1/ja
Priority to US17/107,245 priority patent/US20210083731A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the present invention relates to a radio communication system, a terminal device, a base station device, and a radio communication method for performing communication using a beam forming technique.
  • a wireless communication system for performing communication between a base station device and a plurality of terminal devices
  • a wireless communication system in which a base station device transmits a wide-angle beam that can cover a predetermined area and the plurality of terminal devices receive.
  • a wireless communication system for the purpose of increasing capacity and speeding up, a wireless communication system has been proposed in which communication is performed using a beam forming technology capable of reducing radio interference between a base station device and a terminal device and delivering radio waves to a greater distance.
  • the beam forming technology is a technology in which radio waves (beams) are narrowed down and emitted intensively in a specific direction.
  • the base station device forms a plurality of beams having different maximum radiation directions and performs transmission.
  • the terminal device receives a plurality of beams from the base station device, selects an optimal beam from among them, and receives the beam.
  • selection criteria at this time, (1) a signal having the maximum received signal strength is selected and received among the signals of the arriving beams, and (2) a signal-to-noise ratio of the received signal among the signals of the arriving beams It is described that a signal having a maximum ratio (SN ratio) is selected and received.
  • Patent Literature 1 discloses a technique of selecting a terminal device that maximizes a received signal strength or maximizes an SN ratio. However, if the terminal device is close to the base station device and the terminal device selects and receives power higher than the upper limit of the terminal allowable power value based on the selection criterion, the terminal device saturates and the desired communication performance is obtained. Is not obtained.
  • the present invention solves the above-described problems, and a beam having a received power value higher than an upper limit of a terminal allowable power value reaches a terminal device, a receiving unit in the terminal device is saturated, and communication performance is deteriorated. It is an object of the present invention to obtain a wireless communication system capable of avoiding this.
  • a radio communication system forms a plurality of beams necessary for covering an entire service area, and transmits a communication signal in a time-division manner with each of the plurality of beams, and radiates from the base station device.
  • a wireless communication system including a terminal device that receives a received beam, and communication from the base station device to the terminal device is performed using the beamforming technique, the terminal device receives a plurality of beams from the received base station device.
  • the received power value of the communication signal for each beam is compared with the terminal allowable power value of the terminal device, and a specific signal for selecting a beam from a plurality of beams is transmitted to the base station device based on the comparison result.
  • the base station apparatus receives a specific signal from the terminal apparatus, and, based on the received specific signal, selects a beam from a plurality of beams by using a beam selection signal. Transmitting communication signals-option and time to split.
  • the receiving unit in the terminal device does not saturate the communication signal in the beam radiated from the base station device, and as a result, the terminal device can transmit to the base station without impairing the communication performance as the terminal device. It can communicate effectively with the station equipment.
  • FIG. 1 is a schematic configuration diagram illustrating a wireless communication system according to Embodiment 1 of the present invention.
  • Example 1 it is a schematic diagram showing a state in which a beam TB11 is emitted in a time slot T1 and a beam TB12 is stopped.
  • Example 1 a schematic diagram showing a state in which a beam TB12 is emitted in a time slot T2 and a beam TB11 is stopped.
  • FIG. 3 is a diagram showing a time chart of radiating a beam TB11 and a beam TB12 in a time division manner twice in the wireless communication system according to the first embodiment of the present invention in the first embodiment.
  • FIG. 5 is a diagram illustrating a relationship between a reception power value of the terminal device 2 and a beam TB11 and a beam TB12 in Example 1 in the wireless communication system according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic diagram showing, as Example 2, a state in which a beam TB21 is emitted in a time slot T1 and a beam TB22 is stopped in the wireless communication system according to Embodiment 1 of the present invention.
  • FIG. 1 is a diagram showing a time chart of radiating a beam TB11 and a beam TB12 in a time division manner twice in the wireless communication system according to the first embodiment of the present invention in the first embodiment.
  • FIG. 5 is a diagram illustrating a relationship between a reception power value of the
  • FIG. 9 is a schematic diagram showing, as Example 2, a state in which a beam TB22 is emitted in a time slot T2 and the beam TB21 is stopped in the wireless communication system according to Embodiment 1 of the present invention.
  • FIG. 9 is a schematic diagram showing, as Example 2, a state in which a beam TB21 and a beam TB22 are simultaneously emitted in a time slot T3 in the wireless communication system according to Embodiment 1 of the present invention.
  • FIG. 6 is a diagram showing a time chart of radiating a beam TB11 and a beam TB12 in a time-division manner three times in Example 2 in the wireless communication system according to Embodiment 1 of the present invention.
  • FIG. 8 is a diagram illustrating a relationship between a reception power value of the terminal device 2a and a beam TB11 and a beam TB12 in Example 2 in the wireless communication system according to Embodiment 1 of the present invention.
  • FIG. 9 is a diagram illustrating a relationship between a reception power value of the terminal device 2b and a beam TB11 and a beam TB12 in Example 2 in the wireless communication system according to Embodiment 1 of the present invention.
  • FIG. 8 is a diagram illustrating a relationship between a reception power value of the terminal device 2c and a beam TB12 in Example 2 in the wireless communication system according to Embodiment 1 of the present invention.
  • FIG. 7 is a schematic configuration diagram showing a wireless communication system according to Embodiment 2 of the present invention.
  • Embodiment 1 A wireless communication system according to Embodiment 1 of the present invention will be described with reference to FIG.
  • the wireless communication system includes a base station device 1 and a plurality of terminal devices 2. Communication from the base station device 1 to the plurality of terminal devices 2 is performed using a beamforming technique.
  • the base station apparatus 1 forms a plurality (M) of beams TB required to cover the entire service area in the service area to be covered, and transmits communication signals in a time-division manner using the beam TB.
  • M plurality
  • the formation of a plurality (M) of beams TB required to cover the entire service area is performed by N beams that can be radiated simultaneously.
  • N the irradiation is performed by a single beam.
  • the base station device 1 includes a beam antenna unit 11, a modulation unit 12, a beam control unit 13, a specific signal demodulation unit 15, and an ID reception antenna 14.
  • the beam antenna unit 11 has a transmission antenna that radiates a plurality of beams TB covering different areas in the service area in a time-division manner.
  • a plurality of beams TB cannot be formed at the same time, a plurality of beams TB are formed individually in a time division manner.
  • a plurality of beams TB can be formed simultaneously, the plurality of beams TB are formed individually and simultaneously in a time division manner.
  • FIG. 1 shows one beam TB as a representative.
  • the communication signal in each beam TB includes communication data and an identification signal ID indicating individual information given to each beam TB.
  • the beam antenna unit 11 receives the communication data from the modulation unit 12, and adds an identification signal ID corresponding to the beam TB to be formed to the input communication data. Further, the beam antenna unit 11 selects a beam TB to be formed from the plurality of beams TB according to the input beam selection signal, and includes communication data by the selected beam TB and an identification signal ID corresponding to the selected beam TB. Send a communication signal.
  • the beam antenna unit 11 forms a plurality of quality measurement beams TB in a time division manner with respect to all of the plurality of beams TB necessary to cover the entire service area.
  • a communication quality measurement signal and an identification signal ID corresponding to the plurality of beams TB are transmitted by each of the plurality of quality measurement beams TB.
  • the communication quality measurement signal does not need to be a dedicated signal, and may be communication data from the modulator 12. In this case, a code bit for indicating a communication quality measurement signal may be added.
  • the terminal device 2 is set to perform communication quality measurement at the time of starting communication with the base station device 1, the base station device 1 does not need to do anything special as communication quality measurement.
  • the beam TB for quality measurement will be described as a normal beam TB.
  • the modulation section 12 is normally used in this type of technical field, and the configuration at the preceding stage of the modulation section 12 is also normally used in this type of technical field.
  • the beam control unit 13 receives the demodulated beam identification signal from the specific signal demodulation unit 15 and outputs a beam selection signal based on the demodulated beam identification signal to the beam antenna unit 11. That is, the beam control unit 13 controls the beam antenna unit 11 to selectively control the beam TB to be formed.
  • the ID receiving antenna 14 receives the modulated specific signal transmitted from the terminal device 2.
  • the specific signal demodulation unit 15 demodulates the modulated specific signal received via the ID receiving antenna 14.
  • the demodulated specific signal is output to the beam control unit 13.
  • the validity determination signal indicating that the specific signal is valid for communication is: This is a signal added to the identification signal corresponding to the received beam TB for quality measurement.
  • the invalidation determination signal indicating that the specific signal is invalid for communication is received. This is a signal added to the identification signal corresponding to the beam TB for quality measurement.
  • the beam control unit 13 selects the beam TB corresponding to the identification signal for the beam TB included in the specific signal, and deselects the other beams TB. Is output to the beam antenna unit 11.
  • the beam antenna unit 11 forms a beam TB selected by the beam selection signal.
  • the beam control unit 13 selects a beam TB that selects all the beams TB corresponding to the identification signals for the plurality of beams TB included in each of the plurality of specific signals.
  • a signal may be used, or a beam selection signal that selects one or a plurality of beams from the beams TB corresponding to the identification signals for the plurality of beams TB and deselects the other beams TB.
  • the beam control unit 13 outputs one or more of the beams TB other than the beam TB corresponding to the identification signal for the beam TB included in the specific signal.
  • a beam selection signal for selecting a plurality of beams and deselecting other beams TB is output to the beam antenna unit 11.
  • the beam antenna unit 11 forms a beam TB selected by the beam selection signal.
  • the terminal device 2 is a mobile terminal device, and includes a beam reception antenna 21, a demodulation unit 22, a level detection unit 23, a specific signal control unit 24, a specific signal modulation unit 25, and an ID transmission antenna 26.
  • the beam receiving antenna 21 receives the beam TB formed by the beam antenna unit 11 of the base station device 1.
  • the demodulation unit 22 demodulates the communication data with the received beam TB. Note that the demodulation unit 22 is normally used in this type of technical field, and the configuration at the subsequent stage of the demodulation unit 22 is also normally used in this type of technical field, and thus the description is omitted.
  • a communication quality measurement period is provided.
  • the beam receiving antenna 21 receives the beam TB formed in a time-division manner by the beam antenna unit 11 of the base station device 1. Since the base station apparatus 1 has not received the specific signal from the terminal apparatus 2 at the beginning of the communication quality measurement period, the base station apparatus 1 forms and radiates a plurality of beams TB necessary to cover the entire service area in a time division manner.
  • the level detection unit 23 measures the value of the received power of the communication signal for each of the plurality of beams TB radiated from the beam antenna unit 11 and required for covering the entire service area. , The reception power value corresponding to each of the plurality of beams TB and the identification signal ID corresponding to the beam TB, and outputting them to the specific signal control unit 24.
  • the specific signal control unit 24 compares the received power value corresponding to the input beam TB with the terminal allowable power value of the terminal device 2 to cover the entire service area formed by the base station device 1. A specific signal for selecting a beam TB from a plurality of necessary beams TB is generated. The comparison between the received power value and the terminal allowable power value is performed for all of the plurality of beams TB necessary to cover the entire service area formed by the base station device 1.
  • the specific signal is a signal obtained by adding a validity determination signal indicating that the signal is valid for communication when the received power value is equal to or less than the terminal allowable power value to the identification signal for the received beam TB.
  • the specific signal is a signal in which an invalidity determination signal indicating that the signal is invalid for communication is added to the received identification signal for the quality measurement beam TB.
  • the terminal individual signal of the terminal device 2 is added to the specific signal.
  • the specific signal to which the validity determination signal is added or the specific signal to which the invalidity determination signal is added, generated by the specific signal control unit 24, is modulated by the specific signal modulation unit 25 and radiated from the ID transmission antenna 26 as a beam RB.
  • the modulated specific signal is received by the ID receiving antenna 14 of the base station device 1.
  • the specific signal is transmitted from the terminal device 2, and the base station device 1 that has received the specific signal uses a beam based on the specific signal from among a plurality of beams TB necessary to cover the entire service area.
  • the beam TB is selected and formed by the selection signal, and a communication signal is transmitted to the terminal device 2 by the formed beam TB. Therefore, the receiving unit in the terminal device 2 does not saturate with respect to the beam TB radiated from the base station device 1, and as a result, the terminal device 2 1 can be effectively communicated.
  • Embodiment 1 FIG.
  • the first embodiment will be described with reference to FIGS.
  • the number M of beams TB required to cover the entire service area is set to 2
  • the number N of beams that can be radiated at the same time is set to 1
  • one terminal device exists in the service area Will be described.
  • one of the two beams is represented by a beam TB11 and the other is represented by a beam TB12.
  • the base station device 1 radiates the beam TB11, in other words, the terminal device.
  • the time slot received by the terminal device 2 is represented by a time slot T1
  • the time slot received by the terminal device 2 is represented by a time slot T2.
  • the beam TB11 and the beam TB12 are radiated from the base station apparatus 1 repeatedly in a time division manner of the time slot T1 and the time slot T2 twice in the communication quality measurement period.
  • FIG. 2 is a schematic diagram illustrating a state in which the beam TB11 is emitted in the time slot T1 and the beam TB12 is stopped.
  • FIG. 3 is a diagram illustrating the state in which the beam TB12 is emitted in the time slot T2 and the beam TB11 is stopped.
  • the operation will be described.
  • the time slot T1 only the beam TB11 is formed from the base station apparatus 1, and communication data and a communication signal including the identification signal ID11 indicating the individual information given to the beam TB11 are transmitted by the beam TB11.
  • the reception signal level which is the reception power value of the communication signal in the beam TB11 is changed to the terminal device 2 because the distance from the radiation source of the beam TB11 from the base station device 1 is appropriate.
  • the power range where the receiving unit 2 does not saturate is determined, the communication with the base station apparatus 1 is determined to be valid, and the specific signal to which the validity determination signal is added is transmitted to the base station apparatus 1.
  • the terminal individual signal of the terminal device 2 is added to the specific signal.
  • the terminal device 2 when the terminal device 2 receives the beam TB11 from the base station device 1 with the beam receiving antenna 21, the terminal device 2 measures the value of the received power of the communication signal in the beam TB11 received by the level detection unit 23, and The corresponding reception power value and the identification signal ID corresponding to the beam TB11 are linked. With the linked information, the specific signal control unit 24 compares the received power value corresponding to the beam TB11 with the terminal allowable power value PW0 of the terminal device 2, and generates a specific signal based on the comparison result. As shown in FIG. 5, the received power value of the terminal device 2 with respect to the distance from the radiation source of the beam TB11 to the beam receiving antenna 21 of the terminal device 2 is a value indicating PW11 shown in FIG.
  • the specific signal control unit 24 generates a specific signal Y11 added to the identification signal ID11 for the received beam TB11 by adding a validity determination signal indicating that the communication is valid for communication.
  • the terminal individual signal of the terminal device 2 is added to the specific signal Y11.
  • the specific signal Y11 is modulated by the specific signal modulator 25, radiated from the ID transmission antenna 26 as a beam RB11, and the modulated specific signal Y11 is received by the ID reception antenna 14 of the base station device 1.
  • the specific signal demodulation unit 15 demodulates the modulated specific signal Y11 received via the ID reception antenna 14, and the beam control unit 13 performs beam selection based on the demodulated specific signal Y11.
  • S11 is output to the beam antenna unit 11.
  • the beam antenna unit 11 forms a beam TB11 in the time slot T1 based on the beam selection signal S11, and transmits a communication signal using the beam TB11.
  • the reception signal level which is the reception power value of the communication signal in the beam TB12 is changed to the terminal device 2 because the distance from the radiation source of the beam TB12 from the base station device 1 is too short. It is determined that the power range in which the receiving unit is saturated is degraded, and the communication quality with the base station apparatus 1 is degraded, and no specific signal is output to the base station apparatus 1.
  • the terminal device 2 when the terminal device 2 receives the beam TB12 from the base station device 1 with the beam receiving antenna 21, the terminal device 2 measures the value of the reception power of the communication signal in the beam TB12 received by the level detection unit 23, and The corresponding reception power value and the identification signal ID corresponding to the beam TB12 are linked.
  • the linked information is compared by the specific signal control unit 24 with the received power value corresponding to the beam TB 12 and the terminal allowable power value of the terminal device 2.
  • the received power value of the terminal device 2 with respect to the distance from the radiation source of the beam TB12 to the beam receiving antenna 21 of the terminal device 2 is a value indicating the PW12 shown in FIG. Exceeds the terminal allowable power value PW0, determines that the communication quality is degraded, and the specific signal control unit 24 does not generate the specific signal.
  • the beam control unit 13 since the ID receiving antenna 14 does not receive the specific signal for the beam TB12 transmitted in the time slot T2, the beam control unit 13 does not output the beam selection signal forming the beam TB12 to the beam antenna unit 11. As a result, the beam TB12 is not radiated from the beam antenna unit 11 to the time slot T2. Even during the communication period with the terminal device 2 after the elapse of the communication quality measurement period, the base station apparatus 1 forms only the beam TB11 in the time slot T1, transmits a communication signal by the beam TB11, and transmits the beam TB in the time slot T2. Stop radiation.
  • the terminal device 2 compares the received power value of the beam TB from the base station device 1 with the terminal allowable power value, and determines that the received power value is equal to or less than the terminal allowable power value. If there is, a validity determination signal indicating that it is valid for communication outputs a specific signal added to the identification signal ID for the received beam TB, and if the received power value exceeds the terminal allowable power value, the specific signal is output. No output.
  • the base station apparatus 1 receives the specific signal from the terminal apparatus 2, it generates a beam selection signal, forms a beam TB, transmits communication data by the beam TB, and generates a beam selection signal when the specific signal is not received. And does not emit a beam TB.
  • the base station apparatus 1 radiates a beam TB whose received power value of the beam TB received by the terminal apparatus 2 is equal to or less than the terminal allowable power value, and outputs a beam TB exceeding the terminal allowable power value to the base station apparatus 1.
  • the communication with the base station apparatus 1 in the terminal apparatus 2 can be performed by the receiving unit in the terminal apparatus 2 without changing the shape, direction, and output power of each beam TB formed by the base station apparatus 1. There is an effect that high quality communication can be performed without saturation.
  • the terminal device 2 when the received power value of the received beam TB is equal to or less than the terminal allowable power value PW0, the terminal device 2 outputs the specific signal Y11 to which the validity determination signal is added, and If the specific power exceeds the allowable power value, the specific signal is not output.
  • the specific signal Y11 from the terminal device 2 is received, the base station apparatus 1 generates a beam selection signal, forms a beam TB, and outputs the specific signal.
  • the beam selection signal is not generated and the beam TB12 is not radiated unless it is received, the following may be used.
  • a specific signal to which a determination signal is added that the received power value of the beam TB received by the terminal device 2 exceeds the terminal allowable power value is output, and if the received power value is equal to or less than the terminal allowable power value, the specific signal is output. Is not output, the base station apparatus 1 does not generate a beam selection signal when receiving the specific signal from the terminal apparatus 2, does not emit the beam TB12, and generates a beam selection signal when the specific signal is not received. , Beam TB, and emits beam TB.
  • the specific signal control unit 24 determines that the received power value PW11 corresponding to the beam TB11 is equal to or less than the terminal allowable power value PW0 and is valid for communication, and does not generate a specific signal. .
  • the beam control unit 13 since the specific signal is not received, the beam control unit 13 generates the beam selection signal S11, and the beam antenna unit 11 forms the beam TB11 in the time slot T1 based on the beam selection signal S11. Send a communication signal.
  • the specific signal control unit 24 determines that the reception power value corresponding to the beam TB12 exceeds the terminal allowable power value PW0, that is, the power range in which the reception unit of the terminal device 2 is saturated. It is determined that the quality of the communication deteriorates in the communication with No. 1 and an invalidation determination signal for invalidating the communication generates a specific signal N11 added to the identification signal ID11 for the received beam TB11.
  • the specific signal N11 is modulated by the specific signal modulation unit 25, radiated from the ID transmission antenna 26 as a beam RB11, and the modulated specific signal N11 is received by the ID reception antenna 14 of the base station device 1.
  • the specific signal demodulation unit 15 demodulates the modulated specific signal N11 received via the ID reception antenna 14, and the beam control unit 13 performs beam selection signal S11 based on the demodulated specific signal N11. Does not generate Since the beam antenna unit 11 does not receive the beam selection signal, it does not transmit the beam TB12 in the time slot T2.
  • the base station apparatus 1 also forms only the beam TB11 in the time slot T1, transmits a communication signal by the beam TB11, and transmits the communication signal by the beam TB12 in the communication period with the terminal apparatus 2 after the elapse of the communication quality measurement period. Stop radiation.
  • the time slot T1 and the time slot T2 in the time division from the base station apparatus 1 are equally divided after the communication quality measurement period has elapsed, but the effective beam TB11 is radiated.
  • the time slot T1 to be used may be longer than the time slot T2 for stopping the beam TB12, that is, the ratio of the time slot T1 to the time slot T2 may be increased.
  • the ratio of the time slot T1 to the beam TB11 is high, there is an effect that communication of the terminal device 2 to the base station device 1 has high quality and can be performed at a high rate.
  • Embodiment 2 FIG. The second embodiment will be described with reference to FIGS.
  • the number M of beams TB required to cover the entire service area is set to 2
  • the number N of beams that can be radiated at the same time is set to 2
  • three terminal devices 2a are provided in the service area.
  • the case where 2c exists will be described.
  • Each of the terminal devices 2a to 2c has the same configuration as the terminal device 2 shown in FIG.
  • the base station apparatus 1 radiates the beam TB21, in other words, the time slot received by the terminal apparatus 2 is set to the time slot T1, and the base station apparatus 1 radiates the beam TB22.
  • the time slot received by the terminal device 2 is referred to as a time slot T2, and the base station device 1 simultaneously radiates the beam TB21 and the beam TB22.
  • the time slot received simultaneously by the terminal device 2 is referred to as a time slot T3. .
  • the beam TB1 alone, the beam TB2 alone, and the beam TB1 and the beam TB2 are simultaneously radiated from the base station apparatus 1 in the communication quality measurement period by dividing the time slot T1 to the time slot T3 into three times in a time division manner.
  • FIG. 6 is a schematic diagram illustrating a state in which the beam TB21 is emitted in the time slot T1 and the beam TB22 is stopped.
  • FIG. 7 is a diagram illustrating the state in which the beam TB22 is emitted in the time slot T2 and the beam TB21 is stopped.
  • FIG. 8 is a schematic diagram illustrating a state in which the beam TB11 and the beam TB12 are simultaneously emitted in the time slot T3.
  • the reception signal level which is the reception power value of the beam TB21, changes the reception signal level of the terminal device 2a due to, for example, an appropriate distance from the radiation source of the beam TB21 from the base station device 1.
  • the power range is such that the section does not saturate, communication with the base station apparatus 1 is determined to be valid, and a specific signal to which a validity determination signal is added is transmitted to the base station apparatus 1.
  • the terminal individual signal a of the terminal device 2a is added to the specific signal.
  • the terminal device 2a when the terminal device 2a receives the beam TB21 from the base station device 1 by the beam receiving antenna 21, the terminal device 2a measures the value of the received power of the communication signal in the beam TB21 received by the level detection unit 23, and outputs the value to the beam TB21.
  • the corresponding reception power value and the identification signal ID corresponding to the beam TB21 are linked.
  • the linked information is compared by the specific signal control unit 24 with the received power value corresponding to the beam TB21 and the terminal allowable power value PW0a of the terminal device 2, and generates a specific signal based on the comparison result.
  • the received power value of the terminal device 2a with respect to the distance from the radiation source of the beam TB21 to the beam receiving antenna 21 of the terminal device 2a is a value indicating the PW21a shown in FIG. 10, and this received power value PW21a Is not more than the terminal allowable power value PW0a, and the specific signal control unit 24 generates a specific signal Y21a added to the identification signal ID21 for the received beam TB21 with a validity determination signal indicating that the communication is valid.
  • the specific signal control unit 24 adds the terminal individual signal a of the terminal device 2a to the specific signal Y21a.
  • the specific signal Y21a is modulated by the specific signal modulator 25, and is emitted from the ID transmission antenna 26 as a beam RB21a.
  • the specific signal demodulation unit 15 demodulates the modulated specific signal Y21a received via the ID receiving antenna 14, and the beam control unit 13 uses the beam selection signal based on the demodulated specific signal Y21a.
  • S21a is output to the beam antenna unit 11.
  • the beam antenna unit 11 forms a beam TB21 in the time slot T1 based on the beam selection signal S21a, and transmits a communication signal to the terminal device 2a using the beam TB21.
  • the reception signal level which is the received power value of the beam TB21, saturates the reception unit of the terminal device 2b due to the distance from the radiation source of the beam TB21 from the base station device 1 and the angle ⁇ 1 from the front.
  • the power range is determined so that the communication with the base station apparatus 1 is valid, and the specific signal to which the validity determination signal is added is transmitted to the base station apparatus 1.
  • the terminal individual signal b of the terminal device 2b is added to the specific signal.
  • the terminal device 2b when receiving the beam TB21 from the base station device 1 with the beam receiving antenna 21, the terminal device 2b measures the value of the received power of the communication signal in the beam TB21 received by the level detection unit 23, and The corresponding reception power value and the identification signal ID corresponding to the beam TB21 are linked.
  • the linked information is compared by the specific signal control unit 24 with the received power value corresponding to the beam TB21 and the terminal allowable power value PW0b of the terminal device 2b, and generates a specific signal based on the comparison result.
  • the terminal device 2b has a short distance from the radiation source of the beam TB12 from the base station device 1
  • the reception power of the terminal device 2b is affected by the angle ⁇ 1 from the beam TB12 to the terminal device 2b.
  • the value PW21b is equal to or smaller than the terminal allowable power value PW0b
  • the specific signal control unit 24 generates a specific signal Y21b added to the identification signal ID21 for the received beam TB21 with a validity determination signal indicating that the communication is valid for communication.
  • the specific signal control unit 24 adds the terminal individual signal b of the terminal device 2b to the specific signal Y21b.
  • the specific signal Y21b is modulated by the specific signal modulator 25, and is radiated from the ID transmission antenna 26 as a beam RB21b.
  • the specific signal demodulation unit 15 demodulates the modulated specific signal Y21b received via the ID receiving antenna 14, and the beam control unit 13 performs beam selection on the basis of the demodulated specific signal Y21b.
  • S21b is output to the beam antenna unit 11.
  • the beam antenna unit 11 forms a beam TB21 in the time slot T1 based on the beam selection signal S21b, and transmits a communication signal to the terminal device 2b using the beam TB21.
  • the received signal level corresponding to the beam TB21 has a power range in which the S / N ratio of the receiving unit of the terminal device 2 cannot be satisfied. It is determined that communication with the base station apparatus 1 cannot be performed, the beam TB21 is determined to be invalid for communication, and no specific signal is output to the base station apparatus 1.
  • the beam control unit 13 transmits a beam selection signal for forming the beam TB21 to the beam antenna 2c. No output to the unit 11. As a result, the beam TB 21 is not emitted from the beam antenna unit 11 to the terminal device 2c in the time slot T1.
  • the reception signal level which is the reception power value of the beam TB22, changes the reception signal level of the terminal device 2a because the distance from the radiation source of the beam TB22 from the base station apparatus 1 is appropriate.
  • the power range is such that the section does not saturate, communication with the base station apparatus 1 is determined to be valid, and a specific signal to which a validity determination signal is added is transmitted to the base station apparatus 1.
  • the terminal individual signal a of the terminal device 2a is added to the specific signal.
  • the terminal device 2a operates in the same manner as in the time slot T1, and as shown in FIG. 10, the received power value PW22a is equal to or less than the terminal allowable power value PW0a, and the validity determination signal indicating that the communication is valid OK is
  • the specific signal control unit 24 generates a specific signal Y22a added to the identification signal ID22 for the received beam TB22.
  • the specific signal Y22a is modulated by the specific signal modulator 25, and is emitted from the ID transmission antenna 26 as a beam RB22a.
  • the specific signal demodulation unit 15 demodulates the modulated specific signal Y22a received via the ID receiving antenna 14, and the beam control unit 13 performs a beam selection signal based on the demodulated specific signal Y22a.
  • S22a is output to the beam antenna unit 11.
  • the beam antenna unit 11 forms a beam TB22 in the time slot T1 based on the beam selection signal S22a, and transmits a communication signal using the beam TB22.
  • the reception signal level which is the reception power value of the beam TB22, saturates the reception unit of the terminal device 2a due to the distance from the radiation source of the beam TB22 from the base station device 1 and the angle ⁇ 2 from the front direction.
  • the power range is reached, and it is determined that the quality of communication for communication with the base station apparatus 1 is degraded, and no specific signal is output to the base station apparatus 1.
  • the terminal device 2b when receiving the beam TB22 from the base station apparatus 1 with the beam receiving antenna 21, the terminal device 2b measures the value of the received power of the communication signal in the beam TB22 received by the level detection unit 23, and The corresponding reception power value and the identification signal ID corresponding to the beam TB22 are linked.
  • the linked information is compared by the specific signal control unit 24 with the received power value PW22b corresponding to the beam TB22 and the terminal allowable power value PW0b of the terminal device 2b.
  • the terminal device 2b has a short distance from the radiation source of the beam TB22 from the base station device 1 and is hardly affected by the angle ⁇ 2 from the beam TB22 with respect to the terminal device 2b. Is higher than the terminal allowable power value PW0b, the specific signal control unit 24 determines that the communication quality is degraded, and the specific signal control unit 24 does not generate the specific signal.
  • the beam control unit 13 Since the ID receiving antenna 14 does not receive a specific signal for the beam TB22 transmitted in the time slot T2, the beam control unit 13 does not output a beam selection signal for forming the beam TB22 to the beam antenna unit 11. As a result, the beam TB22 is not emitted from the beam antenna unit 11 to the terminal device 2b in the time slot T2.
  • the reception signal level which is the reception power value of the beam TB22, saturates the reception unit of the terminal device 2c due to the distance from the radiation source of the beam TB22 from the base station device 1 and the angle ⁇ 3 from the front direction.
  • the power range is determined so that the communication with the base station apparatus 1 is valid, and the specific signal to which the validity determination signal is added is transmitted to the base station apparatus 1.
  • the terminal individual signal c of the terminal device 2c is added to the specific signal.
  • the terminal device 2c when receiving the beam TB22 from the base station device 1 with the beam receiving antenna 21, the terminal device 2c measures the value of the received power of the communication signal in the beam TB22 received by the level detection unit 23, and The corresponding reception power value and the identification signal ID corresponding to the beam TB22 are linked.
  • the linked information compares the received power value corresponding to the beam TB22 with the terminal allowable power value PW0c of the terminal device 2c by the specific signal control unit 24, and generates a specific signal based on the comparison result.
  • the terminal device 2c has a short distance from the radiation source of the beam TB22 from the base station device 1
  • the reception power of the terminal device 2c is affected by the angle ⁇ 3 from the beam TB22 to the terminal device 2c.
  • the value PW22c is equal to or less than the terminal allowable power value PW0c
  • the specific signal control unit 24 generates a specific signal Y22c added to the identification signal ID22 for the received beam TB22 with a validity determination signal indicating that the communication is valid.
  • the specific signal control unit 24 adds the terminal individual signal c of the terminal device 2c to the specific signal Y22c.
  • the specific signal Y22c is modulated by the specific signal modulation unit 25, and is emitted from the ID transmission antenna 26 as a beam RB22c.
  • the specific signal demodulation unit 15 demodulates the modulated specific signal Y22c received via the ID receiving antenna 14, and the beam control unit 13 performs a beam selection signal based on the demodulated specific signal Y22c.
  • S22c is output to the beam antenna unit 11.
  • the beam antenna unit 11 forms a beam TB22 in the time slot T2 based on the beam selection signal S22c, and transmits a communication signal to the terminal device 2c using the beam TB22.
  • a beam TB21 and a beam TB22 are formed from the base station apparatus 1, and a communication signal including communication data and an identification signal ID22 indicating individual information given to the beam TB21 and the beam TB22 is transmitted to the beam TB21 and the beam TB22.
  • the terminal device 2a transmits the beam TB21 and the beam TB22 from the base station device 1 to the beam TB21 and the beam TB22 as described in the period of the time slot T1 and the time slot T2.
  • the reception signal level which is the reception power value of the communication signal in the beam TB22, is in a power range where the reception unit of the terminal device 2a does not saturate, and it is determined that communication with the base station device 1 is effective.
  • the specific signal to which the validity determination signal is added is transmitted to the station device 1.
  • the terminal individual signal a of the terminal device 2a is added to the specific signal.
  • the terminal device 2a uses the level detection unit 23 to transmit the communication signal in the beam TB21 and the beam TB22 with the level detection unit 23. Is measured, and the received power value corresponding to the beam TB21 and the beam TB22 is associated with the identification signal ID corresponding to the beam TB21 and the beam TB22.
  • the linked information compares the reception power values PW21a and PW22a corresponding to the beams TB21 and TB22 with the terminal allowable power value PW0a of the terminal device 2 by the specific signal control unit 24, and the comparison result A specific signal is generated based on That is, the specific signal control unit 24 generates the specific signal Y23a added to the identification signal ID21 and the identification signal ID22 for the received beam TB21 and the beam TB22, based on the validity determination signal indicating that the communication is valid. At the same time, the specific signal control unit 24 adds the terminal individual signal a of the terminal device 2a to the specific signal Y23a.
  • the specific signal Y23a is modulated by the specific signal modulator 25, and is emitted from the ID transmission antenna 26 as a beam RB23a.
  • the specific signal demodulation unit 15 demodulates the modulated specific signal Y23a received via the ID receiving antenna 14, and the beam control unit 13 performs beam selection on the basis of the demodulated specific signal Y23a.
  • S23a is output to the beam antenna unit 11.
  • the beam antenna unit 11 simultaneously forms the beam TB21 and the beam TB22 in the time slot T3 based on the beam selection signal S23a, and transmits a communication signal using the beam TB21 and the beam TB22.
  • the reception signal level which is the reception power value of the beam TB21 is in the power range where the reception unit of the terminal device 2b does not saturate.
  • the specific signal is not output to the base station device 1.
  • the base station apparatus 1 does not emit the beam TB21 and the beam TB22 from the beam antenna unit 11 to the terminal apparatus 2b in the time slot T3.
  • the terminal device 2c does not exist in the area covered by the beam TB21 as described in the period of the time slot T1, but receives the received signal which is the received power value of the beam TB22 as described in the period of the time slot T2.
  • the level is a power range where the receiving unit of the terminal device 2c does not saturate. Therefore, the following three methods are conceivable, and any method may be used.
  • the terminal device 2c does not output a specific signal to the base station device 1.
  • the base station apparatus 1 does not emit the beam TB21 and the beam TB22 from the beam antenna unit 11 to the terminal apparatus 2c in the time slot T3.
  • the terminal device 2c Second, the terminal device 2c generates the identification signal ID21 for the received beam TB21 and the received beam TB22 and the specific signal Y23c added to the identification signal ID22, from the validity determination signal indicating that the communication device is valid for communication. At the same time, the terminal individual signal c of the terminal device 2c is added to the specific signal Y23c. As a result, the base station apparatus 1 simultaneously forms the beam TB21 and the beam TB22 in the time slot T3 for the terminal apparatus 2c, and transmits a communication signal by the beam TB22.
  • the terminal device 2c generates a specific signal Y23c in which the validity determination signal indicating that the communication is valid for communication is added to the identification signal ID22 for the received beam TB22.
  • the terminal individual signal c of the terminal device 2c is added to the specific signal Y23c.
  • the base station device 1 forms the beam TB22 in the time slot T3 for the terminal device 2c, and transmits a communication signal by the beam TB22.
  • the beam TB21 is not formed, and stops emitting the beam TB21.
  • the third method has an effect that communication with the base station device 1 in the terminal device 2c has high quality and can be performed at a high rate.
  • the beam TB21 and the beam TB22 are effective beams for the terminal device 2a during the communication period between the terminal device 2a and the base station device 1 after the elapse of the communication quality measurement period.
  • the base station apparatus 1 can emit the beam TB21 in the time slot T1, emit the beam TB22 in the time slot T2, and simultaneously emit the beam TB21 and the beam TB22 in the time slot T3. There is an effect that communication with the base station device 1 can be performed with high quality without saturation in the receiving unit of the terminal device 2a.
  • the beam TB21 is a valid beam for the terminal device 2b.
  • the beam TB21 can be radiated, and the radiation of the beam TB can be stopped in the time slot T2 and the time slot T3, so that the communication with the base station device 1 in the terminal device 2b can be performed without saturation in the receiving unit in the terminal device 2b. This provides an effect that high-quality communication can be performed.
  • the beam TB22 is a valid beam and does not exist in the area covered by the beam TB21.
  • the base station apparatus 1 stops emitting the beam TB21 in the time slot T1, emits the beam TB22 in the time slot T2, stops emitting the beam TB21 and the beam TB22 in the time slot T3, and stops the beam TB21 and the beam TB22.
  • an effective beam TB is selected from a plurality of beams TB based on the positional relationship of the terminal device 2a to the terminal device 2c with respect to the base station device 1, and the base station device 1 and the terminal device
  • a plurality of terminal devices within the service area of the base station device 1 without changing the shape, direction, and output power of each beam TB formed by the base station device 1. It is possible to prevent the receiving units of the terminal devices 2a to 2c from being saturated, and to perform high-quality communication between the base station device 1 and the terminal devices 2a to 2c.
  • the specific signal Y21a, the specific signal Y21b, the specific signal Y22a, the specific signal Y22c, the specific signal Y23a, and the specific signal Y2 ** to which the validity determination signal is added are used as the specific signal Y23c.
  • the specific signal N2 ** to which the invalidation determination signal is added may be used as in the first embodiment. In this case, the same effect can be obtained.
  • FIG. A wireless communication system according to Embodiment 2 of the present invention will be described with reference to FIG.
  • the wireless communication system according to the second embodiment differs from the wireless communication system according to the first embodiment in the following points.
  • the radio communication system according to the first embodiment includes a specific signal demodulation unit 15 and an ID reception antenna 14 in the base station device 1, whereas the radio communication system according to the second embodiment
  • the system assumes that the beam antenna unit 11 also serves as the ID receiving antenna 14 in the base station device 1 and provides the function relating to the specific signal demodulation unit 15 to the demodulation unit 16 normally used in the base station device 1 in this kind of technical field. It is what was given to.
  • the wireless communication system according to Embodiment 1 includes a specific signal control unit 24, a specific signal modulation unit 25, and an ID transmission antenna 26 in the terminal device 2.
  • the radio communication system according to the second embodiment is a beam transmitting / receiving antenna 29 having both a beam receiving antenna 21 and an ID transmitting antenna 26, and has a function related to a specific signal control unit 24 and a specific signal modulation unit 25 in a terminal device of this kind in the technical field. 2 is provided to a control unit 27 and a modulation unit 28 which are normally used.
  • the beam antenna unit 1 transmits and receives a beam by time division duplex (TDD) or frequency division duplex (FDD).
  • the demodulation unit 16 demodulates the reception beam received via the beam antenna unit 11 in the base station apparatus 1 during normal operation, which is normally performed in this type of technical field. Further, the demodulation unit 16 demodulates the modulated specific signal received via the beam antenna unit 11 and outputs the demodulated specific signal to the beam control unit 13 in addition to the demodulation performed normally.
  • the beam transmitting / receiving antenna 29 transmits and receives a beam by time division duplex (TDD) or frequency division duplex (FDD).
  • the control unit 27 performs control that is normally performed in this type of technical field in the terminal device 2 during normal operation. Further, the control unit 27 compares the reception power value corresponding to the beam TB input from the level detection unit 23 with the terminal allowable power value of the terminal device 2 along with the control of the normal operation, and Generates a specific signal for selecting a beam TB from a plurality of beams TB necessary to cover the entire service area formed by.
  • the modulation unit 28 performs the modulation normally performed in this type of technical field in the terminal device 2 during normal operation. Further, the modulator 28 modulates the specific signal generated by the controller 27 and outputs the modulated signal to the beam transmitting / receiving antenna 29.
  • the wireless communication system according to the second embodiment configured as described above has the same advantages as the wireless communication system according to the first embodiment.
  • the demodulation unit 16 normally used in this kind of technical field has a function of demodulating a modulated specific signal received via the beam antenna unit 11, so that the software There is an effect that it can be dealt with only by changing.
  • the control unit 27 normally used in this kind of technical field has a function of generating a specific signal for selecting the beam TB, so that the effect can be achieved only by changing the software. To play.
  • a plurality of beams required to cover the entire service area are formed as base station apparatus 1, and each of the plurality of beams transmits a communication signal in a time-division manner.
  • each of the plurality of beams transmits a communication signal in a time-division manner.
  • not only a single base station device that emits a plurality of beams but also an aggregate having a plurality of base station devices that emit one beam may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

サービスエリア全体をカバーするために必要な複数のビームTBを形成し、複数のビームTBによりそれぞれが通信信号を時分割で送信する基地局装置(1)と、基地局装置(1)から放射されたビームTBを受信する端末装置(2)を備える。基地局装置(1)から端末装置(2)への通信がビームフォーミング技術を使用して行われる。端末装置(2)は、受信した基地局装置(1)からの複数のビームTBそれぞれに対して、ビームTB毎の通信信号の受信電力値と端末装置(2)の端末許容電力値を比較し、比較結果に基づき、複数のビームTBの中からビームTBを選択するための特定信号を基地局装置(1)に送信する。基地局装置(1)は、端末装置(2)からの特定信号を受信し、受信した特定信号に基づいたビーム選択信号により、複数のビームTBの中からビームTBを選択して時分割で通信信号を送信する。

Description

無線通信システム、端末装置、基地局装置、及び無線通信方法
 この発明は、ビームフォーミング技術を使用して通信を行う無線通信システム、端末装置、基地局装置、及び無線通信方法に関する。
 基地局装置と複数の端末装置の通信を行う無線通信システムとして、基地局装置が所定のエリアをカバーできるような広角なビームを送信し、複数の端末装置が受信するものが知られている。
 一方、大容量化、高速化を目的に、基地局装置と端末装置の間の電波干渉を減らし、より遠くまで電波を届けられるビームフォーミング技術を使用して通信を行う無線通信システムが提案されている。ビームフォーミング技術とは電波(ビーム)を細く絞って、特定の方向に向けて集中的に発射する技術である。
 ビームフォーミング技術を使用して通信を行う無線通信システムとして、例えば、先行技術文献1に示されている。
 この先行技術文献1に示された無線通信システムは、基地局装置が、最大放射方向の異なる複数のビームを形成して送信を行なう。端末装置は、基地局装置から複数のビームを受信し、その中から最適なもの選択して受信する。このときの選択基準として、(1)到達したビームの信号の中で受信信号強度が最大となるものを選択して受信する、(2)到達したビームの信号の中で受信信号の信号対雑音比(SN比)が最大となるものを選択して受信する、とされている。
特開平9-74375公報
 特許文献1に示された無線通信システムは、端末装置において、受信信号強度が最大となるもの、又はSN比が最大となるものを選択する技術が示されている。しかし、基地局装置に対し端末装置が近接し、端末装置として端末許容電力値の上限値よりも高い電力を、選択基準に基づき選択して受信した場合、端末装置が飽和し、所望の通信性能が得られないという問題が生じる。
 この発明は、上記した問題点を解決するもので、端末装置に受信電力値が端末許容電力値の上限値よりも高いビームが到達し、端末装置における受信部が飽和し、通信性能が劣化することを回避できる無線通信システムを得ることを目的とする。
 この発明に係る無線通信システムは、サービスエリア全体をカバーするために必要な複数のビームを形成し、複数のビームによりそれぞれが通信信号を時分割で送信する基地局装置と、基地局装置から放射されたビームを受信する端末装置を備え、基地局装置から端末装置への通信がビームフォーミング技術を使用して行われる無線通信システムにおいて、端末装置は、受信した基地局装置からの複数のビームそれぞれに対して、ビーム毎の通信信号の受信電力値と端末装置の端末許容電力値を比較し、比較結果に基づき、複数のビームの中からビームを選択するための特定信号を基地局装置に送信し、基地局装置は、端末装置からの特定信号を受信し、受信した特定信号に基づいたビーム選択信号により、複数のビームの中からビームを選択して時分割で通信信号を送信する。
 この発明によれば、端末装置における受信部は基地局装置から放射されたビームにおける通信信号に対して飽和することはなく、その結果、端末装置としての通信性能を損なうことなく、端末装置が基地局装置と有効に通信できる。
この発明の実施の形態1に係る無線通信システムを示す概略構成図である。 この発明の実施の形態1に係る無線通信システムにおいて、実施例1として、時間スロットT1に、ビームTB11が放射され、ビームTB12が停止されている状態を示す模式図である。 この発明の実施の形態1に係る無線通信システムにおいて、実施例1として、時間スロットT2に、ビームTB12が放射され、ビームTB11が停止されている状態示す模式図である。 この発明の実施の形態1に係る無線通信システムにおいて、実施例1における、時分割で2回に分けてビームTB11及びビームTB12を放射するタイムチャートを示す図である。 この発明の実施の形態1に係る無線通信システムにおいて、実施例1における、ビームTB11及びビームTB12に対する端末装置2の受信電力値の関係を示す図である。 この発明の実施の形態1に係る無線通信システムにおいて、実施例2として、時間スロットT1に、ビームTB21が放射され、ビームTB22が停止されている状態を示す模式図である。 この発明の実施の形態1に係る無線通信システムにおいて、実施例2として、時間スロットT2に、ビームTB22が放射され、ビームTB21が停止されている状態を示す模式図である。 この発明の実施の形態1に係る無線通信システムにおいて、実施例2として、時間スロットT3に、ビームTB21及びビームTB22が同時に放射されている状態を示す模式図である。 この発明の実施の形態1に係る無線通信システムにおいて、実施例2における、時分割で3回に分けてビームTB11及びビームTB12を放射するタイムチャートを示す図である。 この発明の実施の形態1に係る無線通信システムにおいて、実施例2における、ビームTB11及びビームTB12に対する端末装置2aの受信電力値の関係を示す図である。 この発明の実施の形態1に係る無線通信システムにおいて、実施例2における、ビームTB11及びビームTB12に対する端末装置2bの受信電力値の関係を示す図である。 この発明の実施の形態1に係る無線通信システムにおいて、実施例2における、ビームTB12に対する端末装置2cの受信電力値の関係を示す図である。 この発明の実施の形態2に係る無線通信システムを示す概略構成図である。
 以下、この発明をより詳細に説明するため、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 この発明の実施の形態1に係る無線通信システムを図1に基づいて説明する。無線通信システムは、基地局装置1と複数の端末装置2を備える。基地局装置1から複数の端末装置2への通信はビームフォーミング技術を使用して行われる。基地局装置1は、カバーするサービスエリア内に、サービスエリア全体をカバーするために必要な複数(M個)のビームTBを形成し、ビームTBにより通信信号を時分割で送信する。
 サービスエリア全体をカバーするために必要な複数(M個)のビームTBの形成は、同時に放射可能なN個のビームによって行なう。Nが1の時は単独、Nが2以上の場合は単独又は同時に複数のビームによって行なう。
 基地局装置1は、ビームアンテナ部11と、変調部12と、ビーム制御部13と、特定信号復調部15と、ID受信アンテナ14を備える。
 ビームアンテナ部11は、サービスエリア内にて異なるエリアをカバーする複数のビームTBを時分割に放射する送信アンテナを有する。複数のビームTBを同時に形成できない場合は、複数のビームTBを個々に時分割に形成し、複数のビームTBを同時に形成できる場合は、複数のビームTBを個々及び同時に時分割に形成する。図1においては代表として1つのビームTBを記載している。
 ビームTBそれぞれにおける通信信号は、通信データと、ビームTBそれぞれに与えられた個別情報を示す識別信号IDが含まれる。
 ビームアンテナ部11は、変調部12からの通信データが入力され、入力された通信データに、形成するビームTBに対応した識別信号IDを付加する。さらに、ビームアンテナ部11は、入力されたビーム選択信号に従い、複数のビームTBから、形成するビームTBを選択し、選択したビームTBにより通信データと選択したビームTBに対応した識別信号IDを含む通信信号を送信する。
 また、ビームアンテナ部11は、通信品質測定時、サービスエリア全体をカバーするために必要な複数のビームTB全てに対して複数の品質測定用のビームTBを時分割に形成する。複数の品質測定用のビームTBそれぞれにより通信品質測定用信号と複数のビームTBに対応した識別信号IDを送信する。通信品質測定用信号は専用の信号とする必要はなく、変調部12からの通信データでよい。この場合、通信品質測定用信号を意味させるための符号ビットを付加すればよい。また、端末装置2側にて、基地局装置1との通信開始時に通信品質測定を行なう設定とすれば、基地局装置1側では、通信品質測定として特別なことをする必要はない。この実施の形態1では端末装置2側で、通信開始時に通信品質測定期間を設けたものを例にとり、品質測定用のビームTBも通常時のビームTBとして説明する。
 なお、変調部12はこの種の技術分野で通常使用されるものであり、変調部12の前段の構成もこの種の技術分野で通常使用されるものであるので、説明は省略する。
 ビーム制御部13は、特定信号復調部15からの復調されたビーム特定信号が入力されて、復調されたビーム特定信号に基づいたビーム選択信号をビームアンテナ部11に出力する。すなわち、ビーム制御部13は、ビームアンテナ部11に対して、形成されるビームTBを選択制御させる。
 ID受信アンテナ14は、端末装置2から送信された変調された特定信号を受信する。
 特定信号復調部15は、ID受信アンテナ14を介して受信された変調された特定信号を復調する。復調された特定信号はビーム制御部13に出力される。
 特定信号は、通信品質測定時、端末装置2が受信した品質測定用のビームTBの電力値が端末装置2の端末許容電力値以下であると、通信に有効であるとの有効判断信号が、受信した品質測定用のビームTBに対応する識別信号に付加された信号である。もしくは、特定信号は、端末装置2が受信した品質測定用のビームTBの電力値が端末装置2の端末許容電力値を超えていると、通信に無効であるとの無効判断信号が、受信した品質測定用のビームTBに対応する識別信号に付加された信号である。
 特定信号が、有効判断信号が付加された信号であると、ビーム制御部13は、当該特定信号に含まれるビームTBに対する識別信号に対応するビームTBを選択し、それ以外のビームTBを非選択とするビーム選択信号をビームアンテナ部11に出力する。ビームアンテナ部11はビーム選択信号によって選択されたビームTBを形成する。
 この時、有効判断信号が付加された特定信号が複数ある場合、ビーム制御部13は、当該複数の特定信号それぞれに含まれる複数のビームTBに対する識別信号に対応するビームTBを全て選択するビーム選択信号でもよく、また、当該複数のビームTBに対する識別信号に対応するビームTBの中から一つ又は複数のビームを選択し、それ以外のビームTBを非選択とするビーム選択信号でも良い。
 一方、特定信号が、無効判断信号が付加された信号であると、ビーム制御部13は、当該特定信号に含まれるビームTBに対する識別信号に対応するビームTB以外のビームTBの中から一つ又は複数のビームを選択し、それ以外のビームTBを非選択とするビーム選択信号をビームアンテナ部11に出力する。ビームアンテナ部11はビーム選択信号によって選択されたビームTBを形成する。
 端末装置2は、移動端末装置であり、ビーム受信アンテナ21と、復調部22と、レベル検出部23と、特定信号制御部24と、特定信号変調部25と、ID送信アンテナ26を備える。
 ビーム受信アンテナ21は、基地局装置1のビームアンテナ部11にて形成されたビームTBを受信する。受信されたビームTBにて、復調部22は通信データを復調する。
 なお、復調部22はこの種の技術分野で通常使用されるものであり、復調部22の後段の構成もこの種の技術分野で通常使用されるものであるので、説明は省略する。
 この実施の形態1では、端末装置2が基地局装置1と通信を開始する時、通信品質測定期間が設けられている。
 通信品質測定期間において、ビーム受信アンテナ21は、基地局装置1のビームアンテナ部11にて時分割にて形成されたビームTBを受信する。基地局装置1は、通信品質測定期間の初期において端末装置2からの特定信号を受けていないので、サービスエリア全体をカバーするために必要な複数のビームTBを時分割に形成し、放射する。
 レベル検出部23は、ビームアンテナ部11から放射された、サービスエリア全体をカバーするために必要な複数のビームTB全てに対して、複数のビームTBごとに通信信号の受信電力の値を測定し、複数のビームTBそれぞれに対応する受信電力値とビームTBに対応した識別信号IDとを紐付けして特定信号制御部24に出力する。
 特定信号制御部24は、入力されたビームTBに対応する受信電力値と、端末装置2の端末許容電力値とを比較し、基地局装置1にて形成されるサービスエリア全体をカバーするために必要な複数のビームTBの中からビームTBを選択するための特定信号を生成する。受信電力値と端末許容電力値との比較は、基地局装置1にて形成されるサービスエリア全体をカバーするために必要な複数のビームTB全てに対して行なわれる。
 特定信号は、受信電力値が端末許容電力値以下であると、通信に有効であるとの有効判断信号が、受信したビームTBに対する識別信号に付加された信号である。もしくは、特定信号は、受信電力値が端末許容電力値を超えていると、通信に無効であるとの無効判断信号が、受信した品質測定用のビームTBに対する識別信号に付加された信号である。併せて、端末装置2の端末個別信号が特定信号に付加される。
 特定信号制御部24により生成された、有効判断信号が付加された特定信号もしくは無効判断信号が付加された特定信号は、特定信号変調部25にて変調され、ID送信アンテナ26からビームRBとして放射され、変調された特定信号が基地局装置1のID受信アンテナ14にて受信される。
 このようにして、端末装置2から特定信号が送信され、特定信号を受けた基地局装置1にて、サービスエリア全体をカバーするために必要な複数のビームTBの中から特定信号に基づいたビーム選択信号によりビームTBを選択して形成し、形成したビームTBにより端末装置2に向けて通信信号を送信する。そのため、端末装置2における受信部は基地局装置1から放射されたビームTBに対して飽和することはなく、その結果、端末装置2としての通信性能を損なうことなく、端末装置2が基地局装置1と有効に通信できる。
 次に、この実施の形態1に係る通信システムについて、より理解をし易くするため、特に、通信品質測定期間における動作を、簡単に模式化した2つの実施例に基づいて説明する。
 実施例1.
 この実施例1を図2から図5を用いて説明する。
 この実施例1においては、サービスエリア全体をカバーするために必要なビームTBの数Mを2とし、同時に放射可能なビーム数Nを1とし、サービスエリア内に1台の端末装置が存在する場合について説明する。
 図2から図5において、2つのビームに対して、一方をビームTB11とし、他方をビームTB12として表し、図4に示すように、ビームTB11を基地局装置1が放射する、言い換えれば、端末装置2が受信する時間スロットを時間スロットT1とし、ビームTB12を基地局装置1が放射する、言い換えれば、端末装置2が受信する時間スロットを時間スロットT2として表している。ビームTB11とビームTB12が、通信品質測定期間において、時間スロットT1と時間スロットT2の時分割で2回に分けて繰り返して、基地局装置1から放射される。
 図2は、時間スロットT1に、ビームTB11が放射され、ビームTB12が停止されている状態を示す模式図であり、図3は、時間スロットT2に、ビームTB12が放射され、ビームTB11が停止されている状態を示す模式図である。
 次に動作について説明する。
 時間スロットT1では、基地局装置1から、ビームTB11のみを形成し、通信データと、ビームTB11に与えられた個別情報を示す識別信号ID11を含む通信信号をビームTB11により送信する。
 この時、端末装置2は、基地局装置1からのビームTB11の放射元からの距離が適切であることなどの理由により、ビームTB11における通信信号の受信電力値である受信信号レベルが、端末装置2の受信部が飽和することのない電力範囲となり、基地局装置1との間の通信が有効であると判断し、基地局装置1へ有効判断信号が付加された特定信号を送信する。併せて、端末装置2の端末個別信号が特定信号に付加される。
 すなわち、端末装置2は、ビーム受信アンテナ21にて基地局装置1からのビームTB11を受信すると、レベル検出部23にて受信したビームTB11における通信信号の受信電力の値を測定し、ビームTB11に対応する受信電力値とビームTB11に対応した識別信号IDとを紐付けする。
 紐付けされた情報は、特定信号制御部24にてビームTB11に対応する受信電力値と、端末装置2の端末許容電力値PW0とを比較し、その比較結果に基づき特定信号を生成する。図5に示すように、ビームTB11の放射元から端末装置2のビーム受信アンテナ21までの距離に対する端末装置2の受信電力値は、図5に示すPW11を示す値であり、この受信電力値PW11は端末許容電力値PW0以下であり、通信に有効OKであるとの有効判断信号が、受信したビームTB11に対する識別信号ID11に付加された特定信号Y11を特定信号制御部24が生成する。併せて、端末装置2の端末個別信号が特定信号Y11に付加される。
 特定信号Y11は、特定信号変調部25にて変調され、ID送信アンテナ26からビームRB11として放射され、変調された特定信号Y11が基地局装置1のID受信アンテナ14にて受信される。
 基地局装置1では、特定信号復調部15が、ID受信アンテナ14を介して受信された変調された特定信号Y11を復調し、ビーム制御部13が復調された特定信号Y11に基づいたビーム選択信号S11をビームアンテナ部11に出力する。ビームアンテナ部11は、ビーム選択信号S11に基づき、時間スロットT1にビームTB11を形成し、ビームTB11により通信信号を送信する。
 続いて、時間スロットT2では、基地局装置1から、ビームTB12のみが形成され、通信データと、ビームTB12に与えられた個別情報を示す識別信号ID12を含む通信信号がビームTB12により送信される。
 この時、端末装置2は、基地局装置1からのビームTB12の放射元からの距離が近すぎることなどの理由により、ビームTB12における通信信号の受信電力値である受信信号レベルが、端末装置2の受信部が飽和する電力範囲となり、基地局装置1との間の通信に通信の品質が劣化すると判断し、基地局装置1へ特定信号を出力しない。
 すなわち、端末装置2は、ビーム受信アンテナ21にて基地局装置1からのビームTB12を受信すると、レベル検出部23にて受信したビームTB12における通信信号の受信電力の値を測定し、ビームTB12に対応する受信電力値とビームTB12に対応した識別信号IDとを紐付けする。
 紐付けされた情報は、特定信号制御部24にてビームTB12に対応する受信電力値と、端末装置2の端末許容電力値と比較される。図5に示すように、ビームTB12の放射元から端末装置2のビーム受信アンテナ21までの距離に対する端末装置2の受信電力値は、図5に示すPW12を示す値であり、この受信電力値PW12は端末許容電力値PW0を超えており、通信の品質が劣化すると判断し、特定信号制御部24が特定信号を生成しない。
 基地局装置1では、時間スロットT2で送信したビームTB12に対する特定信号をID受信アンテナ14が受信しないため、ビーム制御部13はビームTB12を形成するビーム選択信号をビームアンテナ部11に出力しない。その結果、ビームアンテナ部11から時間スロットT2にビームTB12を放射しない。
 基地局装置1は、通信品質測定期間経過後の端末装置2との通信期間においても、時間スロットT1にビームTB11のみを形成してビームTB11により通信信号を送信し、時間スロットT2にビームTBの放射を停止する。
 このように、実施例1では、通信品質測定期間において、端末装置2が基地局装置1からのビームTBの受信電力値を端末許容電力値と比較し、受信電力値が端末許容電力値以下であると、通信に有効であるとの有効判断信号が、受信したビームTBに対する識別信号IDに付加された特定信号を出力し、受信電力値が端末許容電力値を超えていると、特定信号を出力しないものとする。基地局装置1が端末装置2からの特定信号を受信すると、ビーム選択信号を生成し、ビームTBを形成し、ビームTBにより通信データを送信し、特定信号を受信しないとビーム選択信号を生成せず、ビームTBを放射しない。
 その結果、端末装置2が受信したビームTBの受信電力値が端末許容電力値以下であるビームTBに対して基地局装置1が放射し、端末許容電力値を超えたビームTBを基地局装置1が放射しないので、基地局装置1が形成する各ビームTBの形状、向き、出力電力を変更することなしに、端末装置2における基地局装置1との通信が、端末装置2における受信部での飽和がなく、高品質な通信が行えるという効果を奏する。
 上記した実施例1では、端末装置2が、受信したビームTBの受信電力値が端末許容電力値PW0以下であると、有効判断信号を付加された特定信号Y11を出力し、受信電力値が端末許容電力値を超えていると特定信号を出力しないものとし、基地局装置1が、端末装置2からの特定信号Y11を受信すると、ビーム選択信号を生成し、ビームTBを形成し、特定信号を受信しないとビーム選択信号を生成せず、ビームTB12を放射しないものを示したが、次のようにしたものでも良い。
 すなわち、端末装置2が受信したビームTBの受信電力値が端末許容電力値を超えていると判断信号を付加された特定信号を出力し、受信電力値が端末許容電力値以下であると特定信号を出力しないものとし、基地局装置1が端末装置2からの特定信号を受信すると、ビーム選択信号を生成せず、ビームTB12を放射しないものとし、特定信号を受信しないとビーム選択信号を生成し、ビームTBを形成し、ビームTBを放射する。
 具体的には、時間スロットT1では、特定信号制御部24は、ビームTB11に対応する受信電力値PW11が端末許容電力値PW0以下であり、通信に有効であると判断し、特定信号は生成しない。基地局装置1では、特定信号を受信しないので、ビーム制御部13がビーム選択信号S11を生成し、ビームアンテナ部11はビーム選択信号S11に基づき時間スロットT1にビームTB11を形成し、ビームTB11により通信信号を送信する。
 時間スロットT2では、特定信号制御部24が、ビームTB12に対応する受信電力値が、端末許容電力値PW0を超えている、つまり、端末装置2の受信部が飽和する電力範囲となり、基地局装置1との間の通信に通信の品質が劣化すると判断し、通信を無効とする無効判断信号が、受信したビームTB11に対する識別信号ID11に付加された特定信号N11を生成する。
 特定信号N11は、特定信号変調部25にて変調され、ID送信アンテナ26からビームRB11として放射され、変調された特定信号N11が基地局装置1のID受信アンテナ14にて受信される。
 基地局装置1では、特定信号復調部15が、ID受信アンテナ14を介して受信された変調された特定信号N11を復調し、ビーム制御部13が復調された特定信号N11に基づきビーム選択信号S11を生成しない。ビームアンテナ部11は、ビーム選択信号を受けないため、時間スロットT2にビームTB12を送信しない。
 基地局装置1は、通信品質測定期間経過後の端末装置2との通信期間においても、時間スロットT1にビームTB11のみを形成し、ビームTB11により通信信号を送信し、時間スロットT2にビームTB12の放射を停止する。
 従って、無効判断信号を付加された特定信号N11を用いた場合も、有効判断信号を付加された特定信号Y11を用いた場合と同様な効果を奏する。
 また、上記実施例1では、通信品質測定期間経過後も、基地局装置1からの時間分割における時間スロットT1と時間スロットT2が等分されている場合について示したが、有効なビームTB11を放射する時間スロットT1がビームTB12を停止する時間スロットT2に対して長くする、つまり、時間スロットT1が時間スロットT2に対する比率を高めてもよい。この場合、ビームTB11に対する時間スロットT1の比率が高いことにより、端末装置2における基地局装置1に対する通信が高品質になり、しかも高レートで実施できるという効果を奏する。
 さらに、上記した実施例1では、サービスエリア全体をカバーするために必要なビームTBの数を2本の場合について示したが、サービスエリア全体をカバーするビーム数Mが3本以上の場合についても同様な効果を得ることができる。
 実施例2.
  この実施例2を図6から図12を用いて説明する。
 この実施例2においては、サービスエリア全体をカバーするために必要なビームTBの数Mを2とし、同時に放射可能なビーム数Nを2とし、サービスエリア内に3台の端末装置2aから端末装置2cが存在する場合について説明する。
 端末装置2aから端末装置2cそれぞれは、図1に示した端末装置2と同じ構成である。
 また、図9に示すように、ビームTB21を基地局装置1が放射する、言い換えれば、端末装置2が受信する時間スロットを時間スロットT1とし、ビームTB22を基地局装置1が放射する、言い換えれば、端末装置2が受信する時間スロットを時間スロットT2とし、ビームTB21及びビームTB22を基地局装置1が同時に放射する、言い換えれば、端末装置2が同時に受信する時間スロットを時間スロットT3として表している。ビームTB1単独とビームTB2単独とビームTB1及びビームTB2同時が、通信品質測定期間において、時間スロットT1から時間スロットT3の時分割で3回に分けて繰り返して、基地局装置1から放射される。
 図6は、時間スロットT1に、ビームTB21が放射され、ビームTB22が停止されている状態を示す模式図であり、図7は、時間スロットT2に、ビームTB22が放射され、ビームTB21が停止されている状態を示す模式図であり、図8は、時間スロットT3に、ビームTB11及びビームTB12が同時に放射されている状態を示す模式図である。
 次に動作について説明する。
 時間スロットT1では、基地局装置1から、ビームTB21のみを形成し、通信データと、ビームTB21に与えられた個別情報を示す識別信号ID11を含む通信信号をビームTB21により送信する。
 この時、端末装置2aは、基地局装置1からのビームTB21の放射元からの距離が適切であることなどの理由により、ビームTB21の受信電力値である受信信号レベルが、端末装置2aの受信部が飽和することのない電力範囲となり、基地局装置1との間の通信が有効であると判断し、基地局装置1へ有効判断信号が付加された特定信号を送信する。併せて、端末装置2aの端末個別信号aが特定信号に付加される。
 すなわち、端末装置2aは、ビーム受信アンテナ21にて基地局装置1からのビームTB21を受信すると、レベル検出部23にて受信したビームTB21における通信信号の受信電力の値を測定し、ビームTB21に対応する受信電力値とビームTB21に対応した識別信号IDとを紐付けする。
 紐付けされた情報は、特定信号制御部24にてビームTB21に対応する受信電力値と、端末装置2の端末許容電力値PW0aと比較され、その比較結果に基づき特定信号を生成する。図10に示すように、ビームTB21の放射元から端末装置2aのビーム受信アンテナ21までの距離に対する端末装置2aの受信電力値は、図10に示すPW21aを示す値であり、この受信電力値PW21aは端末許容電力値PW0a以下であり、通信に有効OKであるとの有効判断信号が、受信したビームTB21に対する識別信号ID21に付加された特定信号Y21aを特定信号制御部24が生成する。併せて、特定信号制御部24が端末装置2aの端末個別信号aを特定信号Y21aに付加する。
 特定信号Y21aは、特定信号変調部25にて変調され、ID送信アンテナ26からビームRB21aとして放射される。
 基地局装置1では、特定信号復調部15が、ID受信アンテナ14を介して受信された変調された特定信号Y21aを復調し、ビーム制御部13が復調された特定信号Y21aに基づいたビーム選択信号S21aをビームアンテナ部11に出力する。ビームアンテナ部11は、ビーム選択信号S21aに基づき、時間スロットT1にビームTB21を形成し、ビームTB21により通信信号を端末装置2aに対して送信する。
 端末装置2bは、基地局装置1からのビームTB21の放射元からの距離及び正面方向からの角度θ1により、ビームTB21の受信電力値である受信信号レベルが、端末装置2bの受信部が飽和することのない電力範囲となり、基地局装置1との間の通信が有効であると判断し、基地局装置1へ有効判断信号が付加された特定信号を送信する。併せて、端末装置2bの端末個別信号bが特定信号に付加される。
 すなわち、端末装置2bは、ビーム受信アンテナ21にて基地局装置1からのビームTB21を受信すると、レベル検出部23にて受信したビームTB21における通信信号の受信電力の値を測定し、ビームTB21に対応する受信電力値とビームTB21に対応した識別信号IDとを紐付けする。
 紐付けされた情報は、特定信号制御部24にてビームTB21に対応する受信電力値と、端末装置2bの端末許容電力値PW0bと比較され、その比較結果に基づき特定信号を生成する。図11に示すように、端末装置2bは、基地局装置1からのビームTB12の放射元からの距離が近いものの、端末装置2bに対するビームTB12からの角度θ1の影響により、端末装置2bの受信電力値PW21bは端末許容電力値PW0b以下であり、通信に有効OKであるとの有効判断信号が、受信したビームTB21に対する識別信号ID21に付加された特定信号Y21bを特定信号制御部24が生成する。併せて、特定信号制御部24が端末装置2bの端末個別信号bを特定信号Y21bに付加する。
 特定信号Y21bは、特定信号変調部25にて変調され、ID送信アンテナ26からビームRB21bとして放射される。
 基地局装置1では、特定信号復調部15が、ID受信アンテナ14を介して受信された変調された特定信号Y21bを復調し、ビーム制御部13が復調された特定信号Y21bに基づいたビーム選択信号S21bをビームアンテナ部11に出力する。ビームアンテナ部11は、ビーム選択信号S21bに基づき、時間スロットT1にビームTB21を形成し、ビームTB21により通信信号を端末装置2bに対して送信する。
 端末装置2cは、基地局装置1からのビームTB21がカバーするエリアに存在しないため、ビームTB21に対応する受信信号レベルが端末装置2の受信部のSN比を満たせない電力範囲となり、基地局装置1との間の通信ができないと判断し、ビームTB21が通信に無効と判断し、基地局装置1へ特定信号を出力しない。
 基地局装置1では、端末装置2cに対して、時間スロットT1で送信したビームTB21に対する特定信号をID受信アンテナ14が受信しないため、ビーム制御部13はビームTB21を形成するビーム選択信号をビームアンテナ部11に出力しない。その結果、ビームアンテナ部11から時間スロットT1にビームTB21を端末装置2cに対して放射しない。
 続いて、時間スロットT2では、基地局装置1から、ビームTB22のみが形成され、通信データと、ビームTB22に与えられた個別情報を示す識別信号ID22を含む通信信号がビームTB22により送信される。
 この時、端末装置2aは、基地局装置1からのビームTB22の放射元からの距離が適切であることなどの理由により、ビームTB22の受信電力値である受信信号レベルが、端末装置2aの受信部が飽和することのない電力範囲となり、基地局装置1との間の通信が有効であると判断し、基地局装置1へ有効判断信号が付加された特定信号を送信する。併せて、端末装置2aの端末個別信号aが特定信号に付加される。
 端末装置2aは、時間スロットT1の時と同様に動作し、図10に示すように、受信電力値PW22aは端末許容電力値PW0a以下であり、通信に有効OKであるとの有効判断信号が、受信したビームTB22に対する識別信号ID22に付加された特定信号Y22aを特定信号制御部24が生成する。
 特定信号Y22aは、特定信号変調部25にて変調され、ID送信アンテナ26からビームRB22aとして放射される。
 基地局装置1では、特定信号復調部15が、ID受信アンテナ14を介して受信された変調された特定信号Y22aを復調し、ビーム制御部13が復調された特定信号Y22aに基づいたビーム選択信号S22aをビームアンテナ部11に出力する。ビームアンテナ部11は、ビーム選択信号S22aに基づき、時間スロットT1にビームTB22を形成し、ビームTB22により通信信号を送信する。
 端末装置2bは、基地局装置1からのビームTB22の放射元からの距離及び正面方向からの角度θ2により、ビームTB22の受信電力値である受信信号レベルが、端末装置2aの受信部が飽和する電力範囲となり、基地局装置1との間の通信に通信の品質が劣化すると判断し、基地局装置1へ特定信号を出力しない。
 すなわち、端末装置2bは、ビーム受信アンテナ21にて基地局装置1からのビームTB22を受信すると、レベル検出部23にて受信したビームTB22における通信信号の受信電力の値を測定し、ビームTB22に対応する受信電力値とビームTB22に対応した識別信号IDとを紐付けする。
 紐付けされた情報は、特定信号制御部24にてビームTB22に対応する受信電力値PW22bと、端末装置2bの端末許容電力値PW0bと比較される。図11に示すように、端末装置2bは、基地局装置1からのビームTB22の放射元からの距離が近く、端末装置2bに対するビームTB22からの角度θ2の影響をほとんど受けないことにより、ビームTB22に対応する受信電力値PW22bは端末許容電力値PW0bを超えており、通信の品質が劣化すると判断し、特定信号制御部24が特定信号を生成しない
 基地局装置1では、端末装置2bに対して、時間スロットT2で送信したビームTB22に対する特定信号をID受信アンテナ14が受信しないため、ビーム制御部13はビームTB22を形成するビーム選択信号をビームアンテナ部11に出力しない。その結果、ビームアンテナ部11から時間スロットT2にビームTB22を端末装置2bに対して放射しない。
 端末装置2cは、基地局装置1からのビームTB22の放射元からの距離及び正面方向からの角度θ3により、ビームTB22の受信電力値である受信信号レベルが、端末装置2cの受信部が飽和することのない電力範囲となり、基地局装置1との間の通信が有効であると判断し、基地局装置1へ有効判断信号が付加された特定信号を送信する。併せて、端末装置2cの端末個別信号cが特定信号に付加される。
 すなわち、端末装置2cは、ビーム受信アンテナ21にて基地局装置1からのビームTB22を受信すると、レベル検出部23にて受信したビームTB22における通信信号の受信電力の値を測定し、ビームTB22に対応する受信電力値とビームTB22に対応した識別信号IDとを紐付けする。
 紐付けされた情報は、特定信号制御部24にてビームTB22に対応する受信電力値と、端末装置2cの端末許容電力値PW0cとを比較し、その比較結果に基づき特定信号を生成する。図12に示すように、端末装置2cは、基地局装置1からのビームTB22の放射元からの距離が近いものの、端末装置2cに対するビームTB22からの角度θ3の影響により、端末装置2cの受信電力値PW22cは端末許容電力値PW0c以下であり、通信に有効OKであるとの有効判断信号が、受信したビームTB22に対する識別信号ID22に付加された特定信号Y22cを特定信号制御部24が生成する。併せて、特定信号制御部24が端末装置2cの端末個別信号cを特定信号Y22cに付加する。
 特定信号Y22cは、特定信号変調部25にて変調され、ID送信アンテナ26からビームRB22cとして放射される。
 基地局装置1では、特定信号復調部15が、ID受信アンテナ14を介して受信された変調された特定信号Y22cを復調し、ビーム制御部13が復調された特定信号Y22cに基づいたビーム選択信号S22cをビームアンテナ部11に出力する。ビームアンテナ部11は、ビーム選択信号S22cに基づき、時間スロットT2にビームTB22を形成し、ビームTB22により通信信号を端末装置2cに対して送信する。
 時間スロットT3では、基地局装置1から、ビームTB21及びビームTB22が形成され、通信データと、ビームTB21及びビームTB22に与えられた個別情報を示す識別信号ID22を含む通信信号がビームTB21及びビームTB22により送信される。
 この時、端末装置2aは、基地局装置1からのビームTB21及びビームTB22に対し、時間スロットT1及び時間スロットT2の期間にて説明したように、ビームTB21及びビームTB22に対して、ビームTB21及びビームTB22における通信信号の受信電力値である受信信号レベルが、端末装置2aの受信部が飽和することのない電力範囲となり、基地局装置1との間の通信が有効であると判断し、基地局装置1へ有効判断信号が付加された特定信号を送信する。併せて、端末装置2aの端末個別信号aが特定信号に付加される。
 すなわち、端末装置2aは、ビーム受信アンテナ21にて基地局装置1からのビームTB21及びビームTB22を受信すると、受信したビームTB21及びビームTB22をレベル検出部23にてビームTB21及びビームTB22における通信信号の受信電力の値をそれぞれ測定し、ビームTB21及びビームTB22に対応する受信電力値とビームTB21及びビームTB22に対応した識別信号IDとを紐付けする。
 紐付けされた情報は、特定信号制御部24にてビームTB21及びビームTB22に対応する受信電力値PW21a及び受信電力値PW22aと、端末装置2の端末許容電力値PW0aとを比較し、その比較結果に基づき特定信号を生成する。つまり、通信に有効OKであるとの有効判断信号が、受信したビームTB21及びビームTB22に対する識別信号ID21及び識別信号ID22に付加された特定信号Y23aを特定信号制御部24が生成する。併せて、特定信号制御部24が端末装置2aの端末個別信号aを特定信号Y23aに付加する。
 特定信号Y23aは、特定信号変調部25にて変調され、ID送信アンテナ26からビームRB23aとして放射される。
 基地局装置1では、特定信号復調部15が、ID受信アンテナ14を介して受信された変調された特定信号Y23aを復調し、ビーム制御部13が復調された特定信号Y23aに基づいたビーム選択信号S23aをビームアンテナ部11に出力する。ビームアンテナ部11は、ビーム選択信号S23aに基づき、時間スロットT3にビームTB21及びビームTB22を同時に形成し、ビームTB21及びビームTB22により通信信号を送信する。
 端末装置2bは、時間スロットT1の期間にて説明したように、ビームTB21の受信電力値である受信信号レベルが、端末装置2bの受信部が飽和することのない電力範囲であるものの、時間スロットT2の期間にて説明したように、ビームTB22の受信電力値である受信信号レベルが、端末装置2bの受信部が飽和する電力範囲であるため、基地局装置1へ特定信号を出力しない。
 基地局装置1では、端末装置2bに対してビームアンテナ部11から時間スロットT3にビームTB21及びビームTB22を放射しない。
 端末装置2cは、時間スロットT1の期間にて説明したように、ビームTB21がカバーするエリアに存在しないものの、時間スロットT2の期間にて説明したように、ビームTB22の受信電力値である受信信号レベルが、端末装置2cの受信部が飽和することのない電力範囲である。
 従って、次の3通りの対応が考えられ、いずれの場合にて対応しても良い。
 第1として、端末装置2cは基地局装置1へ特定信号を出力しない。
 基地局装置1では、端末装置2cに対してビームアンテナ部11から時間スロットT3にビームTB21及びビームTB22を放射しない。
 第2として、端末装置2cは、通信に有効OKであるとの有効判断信号が、受信したビームTB21及びビームTB22に対する識別信号ID21及び識別信号ID22に付加された特定信号Y23cを生成する。併せて、端末装置2cの端末個別信号cを特定信号Y23cに付加する。
 その結果、基地局装置1では、端末装置2cに対して時間スロットT3にビームTB21及びビームTB22を同時に形成し、ビームTB22により通信信号を送信する。
 第3として、端末装置2cは、通信に有効OKであるとの有効判断信号が、受信したビームTB22に対する識別信号ID22に付加された特定信号Y23cを生成する。併せて、端末装置2cの端末個別信号cを特定信号Y23cに付加する。
 その結果、基地局装置1では、端末装置2cに対して時間スロットT3にビームTB22を形成し、ビームTB22により通信信号を送信する。ビームTB21は形成されず、ビームTB21の放射を停止する。
 この第3の方法が、端末装置2cにおける基地局装置1に対する通信が高品質になり、しかも高レートで実施できるという効果を奏する。
 このように、実施例1において、端末装置2aに対して、通信品質測定期間経過後の端末装置2aと基地局装置1の通信期間においてに、ビームTB21及びビームTB22が有効なビームであるため、基地局装置1から、時間スロットT1にてビームTB21を放射させ、時間スロットT2にてビームTB22を放射させ、時間スロットT3にてビームTB21及びビームTB22を同時に放射させることができ、端末装置2aにおける基地局装置1との通信が、端末装置2aにおける受信部での飽和がなく、高品質な通信が行えるという効果を奏する。
 また、端末装置2bに対して、通信品質測定期間経過後の端末装置2bと基地局装置1の通信期間において、ビームTB21が有効なビームであるため、基地局装置1から、時間スロットT1にてビームTB21を放射させ、時間スロットT2及び時間スロットT3にてビームTBの放射を停止させることができ、端末装置2bにおける基地局装置1との通信が、端末装置2bにおける受信部での飽和がなく、高品質な通信が行えるという効果を奏する。
 さらに、端末装置2cに対して、通信品質測定期間経過後の端末装置2cと基地局装置1の通信期間においてに、ビームTB22が有効なビームであり、ビームTB21がカバーするエリアに存在しないため、基地局装置1から、時間スロットT1にてビームTB21の放射を停止させ、時間スロットT2にてビームTB22を放射させ、時間スロットT3にてビームTB21及びビームTB22の放射を停止、ビームTB21及びビームTB22を同時に放射、もしくはビームTB22を単独に放射させることができ、端末装置2cにおける基地局装置1との通信が、端末装置2cにおける受信部での飽和がなく、高品質な通信が行えるという効果を奏する。
 以上のように、実施例2では、基地局装置1に対する端末装置2aから端末装置2cの位置関係により、複数のビームTBの中から有効なビームTBを選択して、基地局装置1と端末装置2aから端末装置2cとの通信を行うため、基地局装置1が形成する各ビームTBの形状、向き、出力電力を変更することなしに、基地局装置1のサービスエリア内にある複数の端末装置2aから端末装置2cの受信部が飽和することを回避し、基地局装置1と端末装置2aから端末装置2cとの間で高品質の通信を行うことができる。 
 なお、上記実施例2では、特定信号Y21a、特定信号Y21b、特定信号Y22a、特定信号Y22c、特定信号Y23a、及び特定信号Y23cとして有効判断信号を付加された特定信号Y2**を用いた場合を説明したが、実施例1と同様に無効判断信号を付加された特定信号N2**を用いた場合でも良い。この場合でも同様の効果を奏する。
 また、上記実施例2では、通信品質測定期間経過後も、基地局装置1からの時間分割における時間スロットT1から時間スロットT3が等分されている場合について示したが、有効なビームTB**を放射する時間スロットT*がビームTB**を停止する時間スロットT*に対して長くするようにしてもよい。この場合、ビームTB**に対する時間スロットT*の比率がビームTB**を停止する時間スロットT*に対して高いことにより、端末装置2aから端末装置2cにおける基地局装置1に対する通信が高品質になり、しかも高レートで実施できるという効果を奏する。
 さらに、上記した実施例1では、サービスエリア全体をカバーするために必要なビームTBの数を2本の場合について示したが、サービスエリア全体をカバーするビーム数Mが3本以上の場合についても同様な効果を得ることができる。
 実施の形態2.
 この発明の実施の形態2に係る無線通信システムを図13に基づいて説明する。
 実施の形態2に係る無線通信システムは、実施の形態1に係る無線通信システムに対して次の点で相違する。
 第1に、実施の形態1に係る無線通信システムは、基地局装置1において、特定信号復調部15と、ID受信アンテナ14を備えるものとしているのに対して、実施の形態2に係る無線通信システムは、基地局装置1において、ビームアンテナ部11がID受信アンテナ14を兼ねるものとし、特定信号復調部15に関する機能を、この種の技術分野で基地局装置1において通常使用される復調部16に持たせたものである。
 第2に、実施の形態1に係る無線通信システムは、端末装置2において、特定信号制御部24と、特定信号変調部25と、ID送信アンテナ26を備えるものとしているのに対して、実施の形態2に係る無線通信システムは、ビーム受信アンテナ21とID送信アンテナ26を兼ね備えたビーム送受信アンテナ29とし、特定信号制御部24と特定信号変調部25に関する機能を、この種の技術分野で端末装置2において通常使用される制御部27及び変調部28に持たせたものである。
 以下に、実施の形態1に係る無線通信システムの相違点を中心に説明する。なお、図13において、図1と同一符号は同一又は相当部分を示す。
 ビームアンテナ部1は、時分割復信(TDD)又は周波数分割復信(FDD)によって、ビームの送受信が行なわれる。
 復調部16は、基地局装置1において、通常の運用時に、この種の技術分野で通常実施される、ビームアンテナ部11を介して受信された受信ビームを復調する。さらに、復調部16は、通常実施の復調に併せて、ビームアンテナ部11を介して受信された、変調された特定信号を復調し、復調された特定信号はビーム制御部13に出力する。
 ビーム送受信アンテナ29は、時分割復信(TDD)又は周波数分割復信(FDD)によって、ビームの送受信が行なわれる。
 制御部27は、端末装置2において、通常の運用時に、この種の技術分野で通常実施される制御を行なう。さらに、制御部27は、通常実施の制御に併せて、レベル検出部23から入力されたビームTBに対応する受信電力値と、端末装置2の端末許容電力値とを比較し、基地局装置1にて形成されるサービスエリア全体をカバーするために必要な複数のビームTBの中からビームTBを選択するための特定信号を生成する。
 変調部28は、端末装置2において、通常の運用時に、この種の技術分野で通常実施される変調を行なう。さらに、変調部28は、制御部27により生成された特定信号を変調し、ビーム送受信アンテナ29に出力する。
 このように構成された実施の形態2に係る無線通信システムにおいても、実施の形態1に係る無線通信システムと同様な効果を奏する。
 さらに、基地局装置1において、この種の技術分野で通常使用される復調部16に、ビームアンテナ部11を介して受信された、変調された特定信号を復調する機能を持たせたので、ソフトの変更だけで対応できるという効果を奏する。
 また、端末装置2において、この種の技術分野で通常使用される制御部27に、ビームTBを選択するための特定信号を生成する機能を持たせたので、ソフトの変更だけで対応できるという効果を奏する。
 なお、上記実施の形態1及び実施の形態2において、基地局装置1として、サービスエリア全体をカバーするために必要な複数のビームを形成し、複数のビームによりそれぞれが通信信号を時分割で送信するために、複数のビームを放射する単独の基地局装置にて構成するものだけではなく、一つのビームを放射する基地局装置を複数有する集合体として構成しても良い。
 なお、本発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 1 基地局装置、2,2aから2c 端末装置、11 ビームアンテナ部、13 ビーム制御部、14 ID受信アンテナ、15 特定信号復調部、16 復調部、21 ビーム受信アンテナ、23 レベル検出部、24 特定信号制御部、25 特定信号変調部、26 ID送信アンテナ、27 制御部、28 変調部、29 送受信アンテナ、TB11,TB12,TB21,TB22 ビーム。

Claims (13)

  1.  サービスエリア全体をカバーするために必要な複数のビームを形成し、前記複数のビームによりそれぞれが通信信号を時分割で送信する基地局装置と、前記基地局装置から放射されたビームを受信する端末装置を備え、前記基地局装置から前記端末装置への通信がビームフォーミング技術を使用して行われる無線通信システムにおいて、
     前記端末装置は、受信した前記基地局装置からの複数のビームそれぞれに対して、ビーム毎の通信信号の受信電力値と前記端末装置の端末許容電力値を比較し、比較結果に基づき、前記複数のビームの中からビームを選択するための特定信号を前記基地局装置に送信し、
     前記基地局装置は、前記端末装置からの特定信号を受信し、受信した特定信号に基づいたビーム選択信号により、前記複数のビームの中からビームを選択して時分割で通信信号を送信することを特徴とする無線通信システム。
  2.  前記基地局装置からの複数のビームにおける通信信号は、通信データと、前記複数のビームそれぞれに与えられた個別情報を示す識別信号を含み、
     前記端末装置からの特定信号は、前記端末装置が受信したビームの通信信号の受信電力値が前記端末装置の端末許容電力値以下であると、通信に有効であるとの有効判断信号が、受信したビームに対応する識別信号に付加された信号であり、
     前記基地局装置におけるビーム選択信号は、前記基地局装置が受信した特定信号に含まれる識別信号に対応するビームを選択する信号であることを特徴とする請求項1記載の無線通信システム。
  3.  前記ビーム選択信号にて選択されたビームに対する時間スロットは、前記ビーム選択信号にて選択されなかったビームに対する時間スロットよりも長い時間であることを特徴とする請求項2記載の無線通信システム。
  4.  前記基地局装置からの複数のビームにおける通信信号は、通信データと、前記複数のビームそれぞれに与えられた個別情報を示す識別信号を含み、
     前記端末装置からの特定信号は、前記端末装置が受信したビームの通信信号の受信電力値が前記端末装置の端末許容電力値を超えていると、通信に無効であるとの無効判断信号が、受信したビームに対応する識別信号に付加された信号であり、
     前記基地局装置におけるビーム選択信号は、前記基地局装置が受信した特定信号に含まれる識別信号に対応するビームを非選択とする信号であることを特徴とする請求項1記載の無線通信システム。
  5.  前記ビーム選択信号にて非選択されたビームに対する時間スロットは、前記ビーム選択信号にて選択されたビームに対する時間スロットよりも短い時間であることを特徴とする請求項4記載の無線通信システム。
  6.  基地局装置からの複数のビームにより、通信がビームフォーミング技術を使用して行われる端末装置において、
     受信した前記基地局装置からの複数のビームそれぞれに対して、ビーム毎の通信信号の受信電力値を測定するレベル検出部と、
     前記レベル検出部にて測定された受信電力値と前記端末装置の端末許容電力値を比較し、比較結果に基づき、前記複数のビームの中からビームを選択するための特定信号を生成する制御部と、
     前記制御部により生成された特定信号を変調する変調部と、
     前記変調部にて変調された特定信号をビームとして放射する送信アンテナを備えたことを特徴とする端末装置。
  7.  前記特定信号は、前記受信したビームの通信信号の受信電力値が前記端末装置の端末許容電力値以下であると、通信に有効であるとの有効判断信号が、受信したビームに対応する識別信号に付加された信号であることを特徴とする請求項6記載の端末装置。
  8.  前記特定信号は、前記受信したビームの通信信号の受信電力値が前記端末装置の端末許容電力値を超えていると、通信に無効であるとの無効判断信号が、受信したビームに対応する識別信号に付加された信号であることを特徴とする請求項6記載の端末装置。
  9.  端末装置との通信がビームフォーミング技術を使用して行なわれる基地局装置において、
     サービスエリア全体をカバーするために必要な複数のビームの中からビーム選択信号に基づき特定されたビームを形成し、前記特定されたビームにより通信信号を時分割で送信するビームアンテナ部と、
     前記端末装置が受信したビームの通信信号の受信電力値と前記端末装置の端末許容電力値を比較し、比較結果に基づき、ビームを選択するための、前記端末装置から送信された、変調された特定信号を受信する受信アンテナと、
     前記受信アンテナにて受信された特定信号を復調する復調部と、
     前記復調部からの復調された特定信号を受け、復調されたビーム特定信号に基づいたビーム選択信号を前記ビームアンテナ部に出力するビーム制御部を備えたことを特徴とする基地局装置。
  10.  前記特定信号は、前記受信したビームの通信信号の受信電力値が前記端末装置の端末許容電力値以下であると、通信に有効であるとの有効判断信号が、受信したビームに対応する識別信号に付加された信号であり、
     前記選択信号は、前記受信した特定信号に含まれる識別信号に対応するビームを選択する信号であることを特徴とする請求項9記載の基地局装置。
  11.  前記特定信号は、前記受信したビームの通信信号の受信電力値が前記端末装置の端末許容電力値を超えていると、通信に無効であるとの無効判断信号が、受信したビームに対応する識別信号に付加された信号であり、
     前記ビーム選択信号は、前記受信した特定信号に含まれる識別信号に対応するビームを非選択とする信号であることを特徴とする請求項9記載の基地局装置。
  12.  サービスエリア全体をカバーするために必要な複数のビームを形成し、前記複数のビームによりそれぞれが通信信号を時分割で送信する基地局装置から放射されたビームを受信する端末装置への通信がビームフォーミング技術を使用して行われる無線通信方法において、
     前記端末装置が、受信した前記基地局装置からの複数のビームそれぞれに対して、ビーム毎の通信信号の受信電力値と前記端末装置の端末許容電力値を比較し、比較結果により前記端末装置の受信部が飽和しないビームを有効と判定する判定ステップと、
     前記判定ステップにて有効と判定されたビームの識別信号を前記基地局装置に通知する通知ステップと、
     前記基地局装置が、前記通知ステップにて前記識別信号が通知された端末装置に対し、前記識別信号に対応したビームを選択して時分割で通信信号を送信する選択及び送信ステップを備えた無線通信方法。
  13.  サービスエリア全体をカバーするために必要な複数のビームを形成し、前記複数のビームによりそれぞれが通信信号を時分割で送信する基地局装置から放射されたビームを受信する端末装置への通信がビームフォーミング技術を使用して行われる無線通信方法において、
     前記端末装置が、受信した前記基地局装置からの複数のビームそれぞれに対して、ビーム毎の通信信号の受信電力値と前記端末装置の端末許容電力値を比較し、比較結果により前記端末装置の受信部が飽和するビームを無効と判定する判定ステップと、
     前記判定ステップにて無効と判定されたビームの識別信号を前記基地局装置に通知する通知ステップと、
     前記基地局装置が、前記通知ステップにて前記識別信号が通知された端末装置に対し、前記識別信号に対応したビームを非選択とし、非選択とされないビームの中から時分割で通信信号を送信する非選択及び送信ステップを備えた無線通信方法。
PCT/JP2018/023838 2018-06-22 2018-06-22 無線通信システム、端末装置、基地局装置、及び無線通信方法 WO2019244348A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880094709.9A CN112335185A (zh) 2018-06-22 2018-06-22 无线通信系统、终端装置、基站装置以及无线通信方法
PCT/JP2018/023838 WO2019244348A1 (ja) 2018-06-22 2018-06-22 無線通信システム、端末装置、基地局装置、及び無線通信方法
EP18923569.0A EP3796567A4 (en) 2018-06-22 2018-06-22 WIRELESS COMMUNICATION SYSTEM, TERMINAL DEVICE, BASE STATION DEVICE AND WIRELESS COMMUNICATION METHOD
JP2020525205A JP6775713B2 (ja) 2018-06-22 2018-06-22 無線通信システム、端末装置、基地局装置、及び無線通信方法
US17/107,245 US20210083731A1 (en) 2018-06-22 2020-11-30 Wireless communication system, terminal device, and base station device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/023838 WO2019244348A1 (ja) 2018-06-22 2018-06-22 無線通信システム、端末装置、基地局装置、及び無線通信方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/107,245 Continuation US20210083731A1 (en) 2018-06-22 2020-11-30 Wireless communication system, terminal device, and base station device

Publications (1)

Publication Number Publication Date
WO2019244348A1 true WO2019244348A1 (ja) 2019-12-26

Family

ID=68983310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023838 WO2019244348A1 (ja) 2018-06-22 2018-06-22 無線通信システム、端末装置、基地局装置、及び無線通信方法

Country Status (5)

Country Link
US (1) US20210083731A1 (ja)
EP (1) EP3796567A4 (ja)
JP (1) JP6775713B2 (ja)
CN (1) CN112335185A (ja)
WO (1) WO2019244348A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022205055A1 (en) * 2021-03-31 2022-10-06 Qualcomm Incorporated Transport block specific beam configuration for multiple transport block transmission

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102622030B1 (ko) 2018-11-26 2024-01-08 삼성전자 주식회사 인공신경망 기반의 수신 빔 선택 방법 및 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0974375A (ja) 1995-09-06 1997-03-18 Toshiba Corp 無線通信システム
JP2009182441A (ja) * 2008-01-29 2009-08-13 Mitsubishi Electric Corp 通信装置およびキャリブレーション方法
JP2010536308A (ja) * 2007-08-10 2010-11-25 クゥアルコム・インコーポレイテッド 近隣ノードに関する送信電力の適応化
WO2017119026A1 (ja) * 2016-01-07 2017-07-13 パナソニックIpマネジメント株式会社 通信装置及び通信方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6445917B1 (en) * 1999-05-19 2002-09-03 Telefonaktiebolaget Lm Ericsson (Publ) Mobile station measurements with event-based reporting
JP4143011B2 (ja) * 2003-09-17 2008-09-03 松下電器産業株式会社 キャリアセンス多重アクセス方法、無線基地局装置及び無線端末装置
US8400305B2 (en) * 2009-10-12 2013-03-19 Motorola Solutions, Inc. Method and apparatus for determining range information of a node in a wireless system
US9532366B2 (en) * 2011-06-15 2016-12-27 Telefonaktiebolaget L M Ericsson Method and node for scheduling in a wireless communications network
US20150072719A1 (en) * 2011-12-13 2015-03-12 Kyocera Corporation Mobile terminal, wireless communication system and wireless communication method
US9998199B2 (en) * 2013-03-14 2018-06-12 Massachusetts Institute Of Technology Method and apparatus for smart adaptive dynamic range multiuser detection radio receiver
US10623115B2 (en) * 2016-09-01 2020-04-14 Qualcomm Incorporated Transmitter beamforming for self-interference cancellation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0974375A (ja) 1995-09-06 1997-03-18 Toshiba Corp 無線通信システム
JP2010536308A (ja) * 2007-08-10 2010-11-25 クゥアルコム・インコーポレイテッド 近隣ノードに関する送信電力の適応化
JP2009182441A (ja) * 2008-01-29 2009-08-13 Mitsubishi Electric Corp 通信装置およびキャリブレーション方法
WO2017119026A1 (ja) * 2016-01-07 2017-07-13 パナソニックIpマネジメント株式会社 通信装置及び通信方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MITSUBISHI ELECTRIC 0: "Beam control operation for common channels/signals in NR", 3GPP TSG-RAN WG1 #86 R1- 166228, vol. RAN WG1, 10 August 2016 (2016-08-10), Gothenburg, Sweden, pages 1 - 10, XP051141862 *
See also references of EP3796567A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022205055A1 (en) * 2021-03-31 2022-10-06 Qualcomm Incorporated Transport block specific beam configuration for multiple transport block transmission

Also Published As

Publication number Publication date
EP3796567A4 (en) 2021-06-09
JPWO2019244348A1 (ja) 2020-12-17
CN112335185A (zh) 2021-02-05
JP6775713B2 (ja) 2020-10-28
EP3796567A1 (en) 2021-03-24
US20210083731A1 (en) 2021-03-18

Similar Documents

Publication Publication Date Title
JP6900426B2 (ja) ビームフォーミング通信システムのデータ送受信方法及び装置
US8736491B2 (en) Communication apparatus and communication method, computer program, and communication system
CN104303428B (zh) 用于控制无线通信系统中的自适应波束成形增益的装置和方法
JP5266413B2 (ja) 高周波無線ネットワークにおける全方向性通信および指向性通信の組み合わせ
CN111769853B (zh) 通信装置和通信方法
US20120122392A1 (en) Communication apparatus and communication method, computer program, and communication system
US11695534B2 (en) Base station, terminal, wireless communication system, and transmission/reception method
CN108834156B (zh) 电子装置、波束调整方法以及相关产品
JP2019531641A5 (ja)
CN102326338A (zh) 用于功能受限装置的波束成形训练
CN103687018B (zh) 一种控制信道处理方法
WO2019244348A1 (ja) 無線通信システム、端末装置、基地局装置、及び無線通信方法
WO2016129417A1 (ja) 通信装置
CN109937540A (zh) 由接入节点确定精细波束索引(bl)与逻辑bl之间的关联
JP7147756B2 (ja) ビームフォーミング・トレーニングを用いる通信デバイス及び方法
CN108024376B (zh) 无线局域网中的调度方法、接入点和站点
WO2021255836A1 (ja) ローカル無線通信システム、エリア内受信品質制御方法、制御装置、及びプログラム
WO2017006470A1 (ja) 通信装置およびビーム選択方法
CN113454921A (zh) 用于在nr物理信道上适配波束的波束宽度的方法和系统
CN109152006B (zh) 一种上行波束的确认方法及终端
CN114424631A (zh) 用于在组播通信中进行功率控制的第一通信设备和第二通信设备
CN108736930B (zh) 传输数据的方法和网络设备
CN106998558B (zh) 通信的方法、接入点和站点
JP3995925B2 (ja) 画像表示装置
CN114070372B (zh) 通信方法与通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923569

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525205

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018923569

Country of ref document: EP

Effective date: 20201218