WO2019244322A1 - エアロゾル生成装置並びにこれを動作させる方法及びプログラム - Google Patents

エアロゾル生成装置並びにこれを動作させる方法及びプログラム Download PDF

Info

Publication number
WO2019244322A1
WO2019244322A1 PCT/JP2018/023731 JP2018023731W WO2019244322A1 WO 2019244322 A1 WO2019244322 A1 WO 2019244322A1 JP 2018023731 W JP2018023731 W JP 2018023731W WO 2019244322 A1 WO2019244322 A1 WO 2019244322A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
value
sensor
aerosol
temperature
Prior art date
Application number
PCT/JP2018/023731
Other languages
English (en)
French (fr)
Inventor
山田 学
剛志 赤尾
一真 水口
将之 辻
創 藤田
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to JP2020525184A priority Critical patent/JP6792907B2/ja
Priority to RU2021101168A priority patent/RU2754843C1/ru
Priority to EP18923523.7A priority patent/EP3811801B1/en
Priority to CN201880095846.4A priority patent/CN112469295B/zh
Priority to PCT/JP2018/023731 priority patent/WO2019244322A1/ja
Publication of WO2019244322A1 publication Critical patent/WO2019244322A1/ja
Priority to US17/128,231 priority patent/US11337462B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/53Monitoring, e.g. fault detection
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors

Definitions

  • the present disclosure relates to an aerosol generation device that generates an aerosol to be sucked by a user, and a method and a program for operating the same.
  • an aerosol generation device for generating an aerosol to be sucked by a user, such as a general electronic cigarette, a heated tobacco, a nebulizer, etc.
  • a user when the aerosol source which becomes an aerosol by being atomized is insufficient, the user is required.
  • suction is performed, a sufficient aerosol cannot be supplied to the user.
  • an electronic cigarette or a heated tobacco there is a problem that an aerosol having an unintended flavor may be released.
  • Patent Literature 1 discloses a technique for detecting exhaustion of an aerosol source based on a time required for a heater temperature to decrease from one temperature to another temperature when cooling the heater. I have. Patent Literatures 2 to 5 also disclose various techniques for solving the above problem or possibly contributing to solving the above problem.
  • a first problem to be solved by the present disclosure is that a cooling process of a heater can be observed with low cost and high accuracy, and furthermore, a shortage or depletion of an aerosol source can be detected with low cost and high accuracy.
  • An aerosol generation device, and a method and program for operating the same are provided.
  • a second problem to be solved by the present disclosure is to provide an aerosol generation device capable of detecting shortage or depletion of an aerosol source with low cost and high accuracy, and a method and a program for operating the same.
  • 3A third problem to be solved by the present disclosure is to provide an aerosol generation device capable of detecting shortage or depletion of an aerosol source at low cost and with high accuracy, and a method and a program for operating the same.
  • the storage unit that stores the aerosol source or the aerosol base material that holds the aerosol source, and the heat generated by power supply from a power supply
  • a load that atomizes the aerosol source and changes the value of electrical resistance according to temperature
  • a sensor that detects the value of the electrical resistance of the load or an electrical value related to the electrical resistance, and is detected by the sensor. Based on the time-series change of the value, the cooling process of the load after the load is raised to a temperature or higher at which the aerosol source can be atomized, the time-series of the value detected by the sensor.
  • An aerosol generation device is provided that includes a controller configured to monitor in a manner that the change and the decrease in temperature of the load maintain a correlation.
  • control unit is configured to control power supply from the power supply to the load based on a request for aerosol generation.
  • a request for aerosol generation Of the time from the end of the power supply to the start of monitoring of the cooling process, and the period during which the sensor detects the value of the electric resistance or the electric value related to the electric resistance during monitoring of the cooling process. At least one is greater than the minimum achievable by the control.
  • control unit is configured to determine occurrence of depletion of the aerosol source in the storage unit or the aerosol base material based on the cooling process.
  • control unit may provide a dead zone where the monitoring of the cooling process is not performed or the occurrence of the depletion based on the monitored cooling process is not determined. Be composed.
  • control unit is configured to control power supply from the power supply to the load based on a request for aerosol generation.
  • the dead zone is provided until at least one of a residual current and a surge current generated at the end of the power supply becomes a threshold value or less.
  • the length of time of the dead zone is shorter than the length of time until the cooling process is completed when the depletion of the aerosol source does not occur.
  • the control unit controls power supply from the power supply to the load, and at least one of a residual current and a surge current generated at the end of the power supply is equal to or less than a threshold value.
  • a threshold value Is configured to detect a value related to the electrical resistance value by the sensor during monitoring of the cooling process at a period longer than a time required for the cooling operation.
  • control unit is configured to gradually shorten a cycle of detecting the value of the electric resistance or the electric value related to the electric resistance by the sensor during monitoring of the cooling process. .
  • control unit is configured to, when the temperature of the load corresponding to the value detected by the sensor is lower, relate to the value of the electric resistance or the electric resistance by the sensor during monitoring of the cooling process. It is configured to shorten the cycle of detecting the electric value.
  • control unit corrects the value detected by the sensor at or immediately after the start of the cooling process by smoothing a time-series change in the value detected by the sensor. And monitoring the cooling process based on the corrected value.
  • control unit is configured to correct a value detected by the sensor using at least one of an averaging process and a low-pass filter.
  • control unit is configured to determine occurrence of depletion of the aerosol source based on the cooling process until the value detected by the sensor becomes a steady state.
  • control unit controls power supply from the power supply to the load based on a request for aerosol generation, and a value detected by the sensor before executing the power supply, It is configured to determine whether the value detected by the sensor has reached a steady state based on a comparison with the value detected by the sensor.
  • control unit is detected by the sensor based on a comparison between a value detected by the sensor corresponding to a temperature higher than a room temperature by a predetermined value and a value detected by the sensor in the cooling process. Is configured to determine whether a value has reached a steady state.
  • the predetermined value is greater than an error in the temperature of the load resulting from a value detected by the sensor due to an error in the sensor.
  • control unit is configured to determine whether a value detected by the sensor has reached a steady state based on a time derivative of a value detected by the sensor.
  • control unit is configured to determine whether a value detected by the sensor has reached a steady state based on a deviation or variance of a value detected by the sensor.
  • a method of operating an aerosol generation device comprising the steps of atomizing an aerosol source by heat generated by power supply to a load whose electric resistance changes according to temperature. Detecting a value of an electric resistance of the load or an electric value related to the electric resistance, and a temperature at which the aerosol source can be atomized based on a time-series change of the detected value. Monitoring the cooling process after the load has risen to a temperature in a manner that the time series change of the value detected by the sensor and the decrease in the temperature of the load maintain a correlation. Is provided.
  • a storage unit that stores an aerosol source or an aerosol base material that holds the aerosol source, and the aerosol source is atomized by heat generated by power supply from a power supply, and the temperature is reduced.
  • a load whose electric resistance value changes accordingly, a sensor for detecting an electric value related to the electric resistance value or electric resistance of the load, and a time-series change in a value detected by the sensor,
  • a control unit configured to monitor a cooling process after the load is heated to a temperature at which the aerosol source can be atomized or higher.
  • the controller the timing of the temperature of the load and the value of the electrical resistance or the electrical value related to the electrical resistance does not deviate, or at a frequency that does not hinder the cooling of the load in the cooling process, the cooling process.
  • the sensor is configured to detect the value.
  • a method of operating an aerosol generation device comprising the steps of atomizing an aerosol source by heat generated by power supply to a load whose electric resistance changes according to temperature. Detecting a value of an electric resistance of the load or an electric value related to the electric resistance, and a temperature at which the aerosol source can be atomized based on a time-series change of the detected value. Monitoring the cooling process after the load is heated up to the timing, the temperature of the load and the value of the electrical resistance or the electrical value related to the electrical resistance does not deviate, or in the cooling process A method is provided wherein the value is detected during monitoring of the cooling process at a frequency that does not impede cooling of the load.
  • a storage unit that stores an aerosol source or an aerosol base material that holds the aerosol source, and the aerosol source is atomized by heat generated by power supply from the power supply, and the temperature is reduced.
  • a load whose electric resistance value changes according to a sensor that detects the value of the electric resistance of the load or an electric value related to the electric resistance, based on a time-series change in the value detected by the sensor
  • a control unit configured to monitor a cooling process after the load is heated to a temperature at which the aerosol source can be atomized or higher.
  • the control unit may include a time-series change in a value detected by the sensor during or after the start of cooling the load and before the load reaches room temperature in the cooling process. Is configured to determine the occurrence of depletion of the aerosol source in the storage unit.
  • control unit determines whether the value detected by the sensor has reached a steady state based on a value detected by the sensor or a time-series change in the value, and detects the value by the sensor. It is configured to determine the occurrence of the depletion based on the cooling process until the value to be reached reaches a steady state.
  • a method of operating an aerosol generation device comprising the steps of atomizing an aerosol source by heat generated by power supply to a load whose electric resistance changes according to temperature. Detecting a value of an electric resistance of the load or an electric value related to the electric resistance, and a temperature at which the aerosol source can be atomized based on a time-series change of the detected value. Monitoring the cooling process after the load has warmed up. In the cooling process, at the time of starting the cooling of the load or immediately after the start of the cooling, and before the load reaches room temperature, based on a time-series change in the detected value, The occurrence of depletion is determined.
  • the storage unit that stores the aerosol source or the aerosol base material that holds the aerosol source, and the heat generated by power supply from a power supply,
  • a load for atomizing the aerosol source a sensor for outputting a value related to the temperature of the load, and the sensor in a cooling process after the load is heated to a temperature at which the aerosol source can be atomized or higher.
  • a control unit configured to determine the occurrence of depletion of the aerosol source in the storage unit or the aerosol base material based on a cooling rate derived from the output value of the aerosol.
  • a difference between the cooling rate when the aerosol source is depleted and the cooling rate when the depletion does not occur in the cooling process is equal to or greater than a threshold value. It is configured to determine occurrence of the depletion based on the cooling rate in a time zone.
  • control unit determines the occurrence of the depletion based on the cooling rate in a time zone in which the temperature of the load belongs to a temperature range that can be reached only when the depletion occurs in the cooling process. It is configured to
  • control unit derives the cooling rate from a plurality of output values of the sensor, and at least the earliest value on the time axis among the plurality of output values of the sensor, in the cooling process,
  • the load is acquired in a time zone in which the temperature of the load belongs to a temperature range that can be reached only when the exhaustion occurs.
  • control unit acquires a plurality of output values of the sensor in a time zone in which the temperature of the load belongs to a temperature range that can be reached only when the depletion occurs in the cooling process. Be composed.
  • the load has an electrical resistance value that changes according to a temperature
  • the sensor outputs a value related to the electrical resistance value as a value related to the temperature of the load.
  • control unit is configured to provide a dead zone in which a value related to the electric resistance value is not obtained by the sensor or immediately after the start of the cooling process or the cooling rate is not derived.
  • control unit corrects the cooling rate based on the output value of the sensor at or immediately after the start of the cooling process, which is corrected so that a time-series change in the output value of the sensor is smoothed. It is configured to derive.
  • control unit is configured to control the power supply from the power supply to the load such that the power supplied from the power supply to the load decreases or gradually decreases before the cooling process. Is done.
  • control unit is configured to control power supply from the power supply to the load based on a request for aerosol generation.
  • the dead zone is provided so as to continue until at least one of a residual current and a surge current generated at the end of the power supply becomes a threshold value or less.
  • the dead zone is shorter than the length of time when the cooling process is completed when the depletion has not occurred.
  • the aerosol generation device is further connected in series between the power supply and the load, a first circuit having a first switch, and connected in series between the power supply and the load, A second circuit, which is connected in parallel with the circuit, has a second switch, and has a higher electrical resistance than the first circuit.
  • the control unit controls the first switch and the second switch, and of the sensor while only the second switch is on among the first switch and the second switch. It is configured to derive the cooling rate based on the output value.
  • control unit is configured to turn on the second switch just before the cooling process.
  • At least one of the time from the end of the power supply to the start of the acquisition of the value related to the electric resistance value by the sensor and the cycle at which the sensor acquires the value related to the electric resistance value is controlled by the control. Part is greater than the minimum achievable.
  • a method of operating an aerosol generation device comprising the steps of: atomizing an aerosol source by heat generated by power supply to a load; and setting a value related to a temperature of the load. Detecting, and in a cooling process after the load is heated to a temperature or higher at which the aerosol source can be atomized, based on a cooling rate derived from the detected value, based on a cooling rate derived from the detected value. Determining the occurrence.
  • a program that, when executed by a processor, causes the processor to execute the above-described method.
  • the storage unit that stores the aerosol source or the aerosol base material that holds the aerosol source, and the heat generated by power supply from a power supply, Atomization of an aerosol source, and a load that changes its physical properties when heated at a temperature that can be reached only when depletion of the aerosol source in the storage section or the aerosol base material is related to the physical properties of the load
  • a sensor configured to output a value
  • a control unit configured to determine the occurrence of the depletion based on an output value of the sensor after the load has been heated to a temperature or higher at which the aerosol source can be atomized.
  • control unit is configured to generate the depletion based on a steady-state value that is an output value of the sensor in a steady state after the temperature of the load is increased to a temperature at which the aerosol source can be atomized or higher. Is determined.
  • control unit is capable of acquiring a request for aerosol generation, and is configured to acquire the steady-state value in response to the acquisition of the request.
  • control unit determines the occurrence of the depletion based on an amount of change in an output value of the sensor before and after raising the load to a temperature at which the aerosol source can be atomized or higher. Be composed.
  • control unit determines the occurrence of the depletion based on a difference between output values of the sensor in a steady state before and after raising the load to a temperature at which the aerosol source can be atomized or higher. It is configured to
  • control unit after the temperature of the load is raised to a temperature or more that can atomize the aerosol source, until the output value of the sensor reaches a steady state, the aerosol source by the load of the aerosol source. It is configured to prohibit atomization.
  • an output value of the sensor before reaching a steady state Based on a comparison with a value obtained by adding a default value to a value related to the physical properties of the load in a steady state when a value has occurred, or a value obtained by subtracting a default value from the output value of the sensor before reaching a steady state.
  • the system is configured to determine the occurrence of the depletion based on a comparison with a value related to the physical properties of the load in a steady state when the depletion occurs.
  • the load has an electrical resistance value that changes according to temperature.
  • the sensor outputs a value related to an electrical resistance value of the load as a value related to a physical property of the load.
  • control unit may include an output value of the sensor after the load is heated to a temperature equal to or higher than a temperature at which the aerosol source can be atomized, and a case where a protective film is formed on a surface of the load. And determining the occurrence of the depletion based on a comparison with a value related to the resistance value of the load.
  • control unit includes a change amount of an output value of the sensor before and after raising the load to a temperature at which the aerosol source can be atomized or more, and formation of a protective film on a surface of the load. Is configured to determine the occurrence of the exhaustion based on a comparison with a change in a value related to the resistance value of the load.
  • the load includes a metal having a redox potential equal to or lower than the redox potential of copper.
  • the load has no passivation coating.
  • the load includes NiCr.
  • the aerosol generation device is further connected in series between the power supply and the load, a first circuit having a first switch, and connected in series between the power supply and the load, A second circuit, which is connected in parallel with the circuit, has a second switch, and has a higher electrical resistance than the first circuit.
  • the control unit controls the first switch and the second switch, and of the sensor while only the second switch is on among the first switch and the second switch. It is configured to determine the occurrence of the depletion based on the output value.
  • a method of operating an aerosol generation device including a load whose physical properties change when heated at a temperature that can be reached only when the aerosol source is depleted, Detecting a value associated with the physical properties of the load, and generating an aerosol source depletion based on the detected value after the load has been heated to a temperature above which the aerosol source can be atomized. Determining the following.
  • the first embodiment of the present disclosure it is possible to observe the cooling process of the heater with low cost and high accuracy, and it is possible to detect shortage or depletion of the aerosol source with low cost and high accuracy.
  • An aerosol generation device and a method and a program for operating the same can be provided.
  • an aerosol generation device capable of detecting shortage or depletion of an aerosol source at low cost and with high accuracy, and a method and a program for operating the same.
  • an aerosol generation device capable of detecting shortage or depletion of an aerosol source at low cost and with high accuracy, and a method and a program for operating the same.
  • FIG. 1 is a schematic block diagram of a configuration of an aerosol generation device according to an embodiment of the present disclosure.
  • 1 is a schematic block diagram of a configuration of an aerosol generation device according to an embodiment of the present disclosure.
  • FIG. 2 illustrates an exemplary circuit configuration for a portion of an aerosol generation device, according to one embodiment of the present disclosure.
  • 4 schematically shows a cooling process of the load after power supply to the load is stopped when the aerosol source in the storage unit or the aerosol base material is sufficient and when the aerosol source is depleted.
  • 5 is a flowchart of a process for monitoring a load cooling process and determining whether an aerosol source is depleted according to an embodiment of the present disclosure. This shows that the measured resistance of the load can fluctuate significantly due to the occurrence of a surge current.
  • FIG. 5 is a flowchart illustrating a process according to an embodiment of the present disclosure.
  • 1 schematically illustrates an embodiment of the present disclosure for reducing the influence of the occurrence of a surge current.
  • 8 is a flowchart of a process according to an embodiment of the present disclosure related to FIG. 7.
  • 1 schematically illustrates an embodiment of the present disclosure for reducing the influence of the occurrence of a surge current.
  • 10 is a flowchart of a process according to an embodiment of the present disclosure related to FIG. 9.
  • 4 schematically illustrates timing of measurement of a value for monitoring a cooling process of a load according to an embodiment of the present disclosure.
  • 4 schematically illustrates timing of measurement of a value for monitoring a cooling process of a load according to an embodiment of the present disclosure.
  • FIG. 13 is a flowchart of a process according to an embodiment of the present disclosure related to FIG. 12; 4 schematically illustrates timing of measurement of a value for monitoring a cooling process of a load according to an embodiment of the present disclosure.
  • 19 is a flowchart of a process according to an embodiment of the present disclosure related to FIG. 18.
  • FIG. 1 schematically illustrates a method of monitoring a cooling process of a load according to an embodiment of the present disclosure.
  • 21 is a flowchart of a process according to an embodiment of the present disclosure related to FIG. 20.
  • 21 is a flowchart of a process according to an embodiment of the present disclosure related to FIG. 20. It is a graph which shows roughly the cooling process of the load after stopping supply of power to a load in an aerosol generation device. It is a figure showing the cooling rate of the actual load. It is a figure explaining the timing suitable for measuring the cooling rate of a load.
  • 4 is a flowchart of a process for detecting depletion of an aerosol source according to an embodiment of the present disclosure.
  • FIG. 4 is a flowchart of a process for detecting depletion of an aerosol source according to an embodiment of the present disclosure.
  • 1 schematically illustrates a circuit included in an aerosol generation device according to an embodiment of the present disclosure.
  • 1 conceptually illustrates a technique for determining the occurrence of aerosol source depletion according to an embodiment of the present disclosure.
  • 30 is a flowchart of a process related to FIG. 29 according to an embodiment of the present disclosure;
  • 5 is a table showing oxidation-reduction potentials of various metals that can be used for manufacturing a load and easiness of formation of an oxide film.
  • 1 conceptually illustrates a technique for determining the occurrence of aerosol source depletion according to an embodiment of the present disclosure.
  • 33 is a flowchart of a process according to an embodiment of the present disclosure related to FIG. 32. 1 conceptually illustrates a technique for determining the occurrence of aerosol source depletion according to an embodiment of the present disclosure. 33 is a flowchart of a process according to an embodiment of the present disclosure related to FIG. 32.
  • embodiments of the present disclosure include, but are not limited to, electronic tobacco, heated tobacco, and nebulizers.
  • Embodiments of the present disclosure may include various aerosol generation devices for generating aerosols for inhalation by a user.
  • FIG. 1A is a schematic block diagram of a configuration of an aerosol generation device 100A according to an embodiment of the present disclosure.
  • FIG. 1A schematically and conceptually shows each component included in the aerosol generation device 100A, and does not show the exact arrangement, shape, size, positional relationship, and the like of each component and the aerosol generation device 100A. Please note.
  • the aerosol generation device 100A includes a first member 102 (hereinafter, referred to as “main body 102”) and a second member 104A (hereinafter, referred to as “cartridge 104A”).
  • the main body 102 may include a control unit 106, a notification unit 108, a power supply 110, a sensor 112, and a memory 114.
  • the aerosol generation device 100A may include sensors such as a flow sensor, a pressure sensor, a voltage sensor, an electric resistance sensor, and a temperature sensor, and these are collectively referred to as a “sensor 112” in the present disclosure.
  • the main body 102 may also include a circuit 134 described below.
  • the cartridge 104A may include a storage unit 116A, an atomizing unit 118A, an air intake channel 120, an aerosol channel 121, a suction port 122, a holding unit 130, and a load 132. Some of the components included in the main body 102 may be included in the cartridge 104A. Some of the components included in the cartridge 104A may be included in the main body 102. The cartridge 104A may be configured to be detachable from the main body 102. Alternatively, all the components included in the main body 102 and the cartridge 104A may be included in the same housing instead of the main body 102 and the cartridge 104A.
  • the storage unit 116A may be configured as a tank that stores the aerosol source.
  • the aerosol source is, for example, a liquid such as polyhydric alcohol such as glycerin or propylene glycol, or water.
  • the aerosol source in the storage unit 116A may include a tobacco raw material that releases a flavor component upon heating or an extract derived from a tobacco raw material.
  • the holding unit 130 holds an aerosol source.
  • the holding unit 130 is made of a fibrous or porous material, and holds an aerosol source as a liquid in gaps between fibers or pores of the porous material.
  • the fibrous or porous material described above for example, cotton, glass fiber, or tobacco raw material can be used.
  • the aerosol source may also include a medicament for inhalation by a patient.
  • the reservoir 116A may have a configuration that can replenish the consumed aerosol source.
  • the storage unit 116A may be configured such that the storage unit 116A itself can be replaced when the aerosol source is consumed.
  • the aerosol source is not limited to a liquid, but may be a solid.
  • the storage unit 116A when the aerosol source is a solid may be a hollow container.
  • the atomizing unit 118A is configured to atomize an aerosol source to generate an aerosol.
  • the suction operation is detected by the sensor 112
  • the atomizing unit 118A generates an aerosol.
  • the suction operation may be detected by a flow sensor or a flow sensor. In this case, if the absolute value and the change amount of the flow rate and the flow rate of the air in the air intake flow path 120 generated by the user holding the suction part 122 and sucking the suction part 122 satisfy predetermined conditions, the flow rate sensor and the flow rate sensor are used.
  • the suction operation may be detected. Further, for example, the suction operation may be detected by a pressure sensor.
  • the pressure sensor may detect the suction operation if a predetermined condition such as a negative pressure in the air intake channel 120 due to the user holding the suction opening 112 and sucking is satisfied.
  • the flow rate sensor, the flow rate sensor, and the pressure sensor only output the flow rate, the flow rate, and the pressure in the air intake channel 120, respectively, and the control unit 106 may detect the suction operation based on the output.
  • the atomizing unit 118A may generate an aerosol without detecting the suction operation or without waiting for the detection of the suction operation.
  • the conversion unit 118A may receive power supply from the power supply 110. With such a configuration, for example, even when the heat capacity of the holding unit 130, the load 132, or the aerosol source itself that constitutes the atomizing unit 118A is large, the atomization is performed when the user actually sucks the aerosol.
  • the conversion unit 118A can appropriately generate an aerosol.
  • the sensor 112 may include a sensor that detects an operation on a push button or a touch panel, or an acceleration sensor.
  • the holding unit 130 is provided so as to connect the storage unit 116A and the atomizing unit 118A.
  • a part of the holding unit 130 communicates with the inside of the storage unit 116A and comes into contact with the aerosol source.
  • Another part of the holding unit 130 extends to the atomizing unit 118A.
  • the other part of the holding unit 130 extending to the atomizing unit 118A may be stored in the atomizing unit 118A, or may be communicated with the inside of the storage unit 116A again through the atomizing unit 118A.
  • the aerosol source is carried from the storage unit 116A to the atomization unit 118A by the capillary effect of the holding unit 130.
  • the atomizing unit 118A includes a heater including a load 132 electrically connected to the power supply 110.
  • the heater is arranged so as to be in contact with or close to the holding unit 130.
  • the control unit 106 controls the heater of the atomizing unit 118A or the power supply to the heater, and atomizes the aerosol source by heating the aerosol source carried through the holding unit 130.
  • Another example of the atomizing unit 118A may be an ultrasonic atomizer that atomizes an aerosol source by ultrasonic vibration.
  • An air intake channel 120 is connected to the atomizing unit 118A, and the air intake channel 120 communicates with the outside of the aerosol generation device 100A.
  • the aerosol generated in the atomization unit 118A is mixed with air taken in through the air intake channel 120.
  • the mixed fluid of the aerosol and the air is sent out to the aerosol channel 121 as shown by an arrow 124.
  • the aerosol flow channel 121 has a tubular structure for transporting a mixed fluid of aerosol and air generated in the atomizing unit 118A to the suction unit 122.
  • the suction port 122 is located at the end of the aerosol flow channel 121 and is configured to open the aerosol flow channel 121 to the outside of the aerosol generation device 100A. The user takes in the air containing the aerosol into the oral cavity by sucking the mouth 122 and sucking it.
  • the notification unit 108 may include a light emitting element such as an LED, a display, a speaker, a vibrator, and the like.
  • the notification unit 108 is configured to give some notification to the user as necessary by light emission, display, utterance, vibration, or the like.
  • the power supply 110 supplies power to each component of the aerosol generation device 100A such as the notification unit 108, the sensor 112, the memory 114, the load 132, and the circuit 134.
  • the power supply 110 may be able to be charged by connecting to an external power supply via a predetermined port (not shown) of the aerosol generation device 100A. Only the power supply 110 may be removable from the main body 102 or the aerosol generation device 100A, or may be replaced with a new power supply 110. Further, the power supply 110 may be exchanged with a new power supply 110 by exchanging the entire main body 102 with a new main body 102.
  • the sensor 112 may include one or more sensors used to obtain a value of a voltage applied to the whole or a specific part of the circuit 134, a value related to a resistance value of the load 132, a value related to temperature, and the like. Sensor 112 may be incorporated into circuit 134. The function of the sensor 112 may be incorporated in the control unit 106. The sensor 112 may also include a pressure sensor that senses pressure fluctuations in the air intake channel 120 and / or the aerosol channel 121 or a flow sensor that senses flow. Sensor 112 may also include a weight sensor that senses the weight of a component, such as reservoir 116A. Sensor 112 may also be configured to count the number of puffs by a user using aerosol generation device 100A.
  • the sensor 112 may be configured to accumulate the energizing time to the atomizing unit 118A. Sensor 112 may also be configured to detect the level of the liquid level in reservoir 116A.
  • the controller 106 and the sensor 112 may also be configured to determine or detect the SOC (State of Charge, state of charge), the current integrated value, the voltage, and the like of the power supply 110.
  • the SOC may be obtained by a current integration method (Coulomb counting method), an SOC-OCV (Open Circuit Voltage, open circuit voltage) method, or the like.
  • the sensor 112 may be an operation button that can be operated by a user.
  • the control unit 106 may be an electronic circuit module configured as a microprocessor or a microcomputer.
  • the control unit 106 may be configured to control the operation of the aerosol generation device 100A according to computer-executable instructions stored in the memory 114.
  • the memory 114 is a storage medium such as a ROM, a RAM, and a flash memory.
  • the memory 114 may store, in addition to the computer-executable instructions as described above, setting data and the like necessary for controlling the aerosol generation device 100A.
  • the memory 114 includes a control program of the notification unit 108 (e.g., mode of light emission, utterance, vibration, and the like), a control program of the atomization unit 118A, values acquired and / or detected by the sensor 112, and heating of the atomization unit 118A.
  • Various data such as a history may be stored.
  • the control unit 106 reads data from the memory 114 as needed and uses it for control of the aerosol generation device 100A, and stores the data in the memory 114 as needed.
  • FIG. 1B is a schematic block diagram of the configuration of the aerosol generation device 100B according to an embodiment of the present disclosure.
  • the aerosol generation device 100B has a configuration similar to the aerosol generation device 100A of FIG. 1A.
  • the configuration of the second member 104B (hereinafter, referred to as “aerosol-generating article 104B” or “stick 104B”) is different from the configuration of the first member 104A.
  • the aerosol-generating article 104B may include an aerosol base material 116B, an atomizing section 118B, an air intake flow path 120, an aerosol flow path 121, and a mouthpiece 122.
  • Some of the components contained within body 102 may be contained within aerosol-generating article 104B.
  • Some of the components included in the aerosol-generating article 104B may be included in the body 102.
  • the aerosol-generating article 104B may be configured to be insertable into and removable from the main body 102. Alternatively, all the components included in the main body 102 and the aerosol-generating article 104B may be included in the same housing instead of the main body 102 and the aerosol-generating article 104B.
  • the aerosol substrate 116B may be configured as a solid that carries the aerosol source.
  • the aerosol source may be a liquid such as a polyhydric alcohol such as glycerin or propylene glycol, or water.
  • the aerosol source in the aerosol base material 116B may include a tobacco raw material or an extract derived from a tobacco raw material that releases a flavor component when heated. If the aerosol generation device 100A is a medical inhaler, such as a nebulizer, the aerosol source may also include a medicament for inhalation by a patient.
  • the aerosol substrate 116B may be configured such that the aerosol substrate 116B itself can be replaced when the aerosol source is consumed.
  • the aerosol source is not limited to a liquid, but may be a solid.
  • the atomizing unit 118B is configured to atomize an aerosol source to generate an aerosol.
  • the atomizing unit 118B When the suction operation is detected by the sensor 112, the atomizing unit 118B generates an aerosol.
  • the atomizing unit 118B includes a heater (not shown) including a load electrically connected to the power supply 110.
  • the control unit 106 controls the heater of the atomizing unit 118B or the power supply to the heater, and heats the aerosol source carried in the aerosol base material 116B to atomize the aerosol source.
  • the atomizing unit 118B may be an ultrasonic atomizer that atomizes an aerosol source by ultrasonic vibration.
  • An air intake channel 120 is connected to the atomizing unit 118B, and the air intake channel 120 communicates with the outside of the aerosol generation device 100B.
  • the aerosol generated in the atomization unit 118B is mixed with the air taken in through the air intake channel 120.
  • the mixed fluid of the aerosol and the air is sent out to the aerosol channel 121 as shown by an arrow 124.
  • the aerosol flow channel 121 has a tubular structure for transporting a mixed fluid of aerosol and air generated in the atomizing section 118B to the suction section 122.
  • the aerosol-generating article 104B is configured to be heated from the inside by the atomizing unit 118B located inside or inserted therein.
  • the aerosol-generating article 104B may be configured to be heated from the outside by the atomizing unit 118B configured to surround or house itself.
  • the control unit 106 is configured to control the aerosol generation devices 100A and 100B (hereinafter, also collectively referred to as “aerosol generation device 100”) according to the embodiments of the present disclosure by various methods.
  • FIG. 2 is a diagram illustrating an exemplary circuit configuration of a part of the aerosol generation device 100A according to the first embodiment of the present disclosure.
  • the circuit 200 shown in FIG. 2 includes a power supply 110, a control unit 106, sensors 112A to 112D (hereinafter, also collectively referred to as "sensor 112"), a load 132 (hereinafter, also referred to as “heater resistance”), a first circuit 202,
  • the circuit includes a second circuit 204, a switch Q1 including a first field effect transistor (FET, Field Emission @ Transistor) 206, a conversion unit 208, a switch Q2 including a second FET 210, and a resistor 212 (hereinafter also referred to as a “shunt resistor”).
  • the sensor 112 may be built in other components such as the control unit 106 and the conversion unit 208.
  • the electric resistance value of the load 132 changes according to the temperature.
  • the shunt resistor 212 is connected in series with the load 132 and has a known electric resistance value.
  • the electrical resistance of the shunt resistor 212 may be substantially invariant with temperature.
  • the shunt resistor 212 has a larger electrical resistance value than the load 132.
  • the sensors 112C and 112D may be omitted. It will be apparent to those skilled in the art that various devices such as iGBTs, contactors, etc., as well as FETs, can be used as switches Q1 and Q2.
  • Conversion unit 208 is, for example, a switching converter, and may include FET 214, diode 216, inductance 218, and capacitor 220.
  • the control unit 106 may control the conversion unit 208 such that the conversion unit 208 converts the output voltage of the power supply 110 and the converted output voltage is applied to the entire circuit.
  • a step-up switching converter, a step-up / step-down switching converter, an LDO (Linear Drop Out) regulator, or the like may be used.
  • the conversion unit 208 is not an essential component and can be omitted.
  • a control unit (not shown) separate from control unit 106 may be configured to control conversion unit 208.
  • the control unit (not shown) may be built in the conversion unit 208.
  • the circuit 134 shown in FIG. 1A electrically connects the power supply 110 and the load 132 and may include the first circuit 202 and the second circuit 204.
  • the first circuit 202 and the second circuit 204 are connected in parallel to the power supply 110 and the load 132.
  • First circuit 202 may include switch Q1.
  • Second circuit 204 may include switch Q2 and resistor 212 (and, optionally, sensor 112D).
  • the first circuit 202 may have a lower resistance than the second circuit 204.
  • sensors 112B and 112D are voltage sensors and are configured to detect the voltage values across load 132 and resistor 212, respectively.
  • the configuration of the sensor 112 is not limited to this.
  • the sensor 112 may be a current sensor using a known resistor or using a Hall element, and may detect a value of a current flowing through the load 132 and / or the resistor 212.
  • the control unit 106 can control the switches Q1, Q2, and the like, and can acquire the value detected by the sensor 112.
  • the control unit 106 is configured to cause the first circuit 202 to function by switching the switch Q1 from the off state to the on state, and to function the second circuit 204 by switching the switch Q2 from the off state to the on state.
  • the control unit 106 may be configured to alternately switch the switches Q1 and Q2 to cause the first circuit 202 and the second circuit 204 to function alternately.
  • the first circuit 202 is used for atomizing the aerosol source.
  • the switch Q1 When the switch Q1 is turned on and the first circuit 202 functions, power is supplied to the heater (that is, the load 132 in the heater), and the load 132 is heated.
  • the aerosol source in the case of the aerosol generation device 100B in FIG. 1B, the aerosol source supported on the aerosol base material 116B held by the holding unit 130 in the atomization unit 118A is atomized and aerosolized. Is generated.
  • the second circuit 204 obtains the value of the voltage applied to the load 132, the value related to the resistance value of the load 132, the value related to the temperature of the load 132, the value of the voltage applied to the resistor 212, and the like. Used.
  • the sensors 112B and 112D are voltage sensors, as shown in FIG.
  • switch Q2 When switch Q2 is on and second circuit 204 is functioning, current flows through switch Q2, resistor 212 and load 132.
  • the values of the voltage applied to the load 132 and / or the value of the voltage applied to the resistor 212 are obtained by the sensors 112B and 112D, respectively.
  • the value of the current flowing through the load 132 can be obtained using the value of the voltage applied to the resistor 212 acquired by the sensor 112D and the known resistance value R shunt of the resistor 212. Since the total value of the resistance values of the resistor 212 and the load 132 can be obtained based on the output voltage V out of the conversion unit 208 and the current value, by subtracting the known resistance value R shunt from the total value, The resistance value R HTR of the load 132 can be obtained. If the load 132 has a positive or negative temperature coefficient characteristic in which the resistance value changes in accordance with the temperature, the relationship between the resistance value of the load 132 and the temperature, which is known in advance, and the value obtained as described above are obtained.
  • the temperature of the load 132 can be estimated based on the detected value and the resistance value R HTR of the load 132. Those skilled in the art will understand that the resistance value and the temperature of the load 132 can be estimated by using the value of the current flowing through the resistor 212 instead of the value of the current flowing through the load 132.
  • the value related to the resistance value of the load 132 in this example may include a voltage value, a current value, and the like of the load 132.
  • Specific examples of the sensors 112B and 112D are not limited to voltage sensors, but may include other elements such as current sensors (eg, Hall elements).
  • the sensor 112A detects an output voltage when the power supply 110 is discharged or when there is no load.
  • the sensor 112C detects an output voltage of the conversion unit 208.
  • the output voltage of converter 208 may be a predetermined target voltage. These voltages are voltages applied to the entire circuit.
  • the resistance value R HTR of the load 132 when the temperature of the load 132 is T HTR can be expressed as follows.
  • R HTR (T HTR ) (V HTR ⁇ R shunt ) / (V Batt ⁇ V HTR )
  • V Batt is a voltage applied to the entire circuit.
  • V Batt is the output voltage of the power supply 110.
  • V Batt corresponds to the target voltage of the converter 208.
  • V HTR is a voltage applied to the heater.
  • a voltage applied to the shunt resistor 212 may be used instead of the V HTR .
  • FIG. 3 shows that the switch Q1 is turned off and the load 132 (heater) is turned off when the aerosol source in the storage unit 116A (or the aerosol base material 116B) is sufficient and when the aerosol source is depleted.
  • Schematically shows a cooling process of the load 132 after the power supply of the load 132 is stopped.
  • the horizontal axis indicates time, and the vertical axis indicates the temperature of the load 132.
  • Curve 302 shows the cooling curve of load 132 when there is sufficient aerosol source.
  • the temperature of the load 132 may be a certain temperature (hereinafter, referred to as the “maximum temperature of the aerosol source reaching at normal time” or the “aerosol generation temperature” even if the power supply 110 continues to supply the load 132) Converge around). That is, the temperature of the load 132 when the power supply to the load 132 is stopped is the maximum temperature of the aerosol source that reaches the normal state. This is a phenomenon that occurs because the thermal energy used for raising the temperature of the load 132 and the aerosol source is used for evaporation (phase transition) of the aerosol source.
  • the highest temperature of the aerosol source reached at normal times will be consistent with the boiling point of the solvent.
  • the maximum temperature of the aerosol source that reaches the normal state varies depending on the composition of the various solvents constituting the mixed solvent and their molar ratios.
  • the maximum temperature of the aerosol source that reaches the normal state in the mixed solvent may be obtained by an experiment, or may be obtained analytically using Raoul's law or the like.
  • the temperature of the load 132 when the switch Q1 is turned off and the power supply to the load 132 is stopped is about 200 ° C.
  • the temperature of the load 132 decreases over time as shown by the curve 302 and reaches room temperature (here, 25 ° C.).
  • Curve 304 shows the cooling curve of load 132 when the aerosol source is depleted (or insufficient).
  • the load 132 is overheated because the temperature of the load 132 is higher than the aerosol generation temperature.
  • the temperature of the load 132 can reach 350 ° C.
  • the temperature of the load 132 decreases over time as shown by the curve 304, and eventually reaches room temperature.
  • the time required for the temperature of the load 132 to drop to room temperature when the aerosol source is depleted is the time required for the temperature of the load 132 to drop to room temperature when the aerosol source is sufficient. Longer than required.
  • the switch Q1 is turned off and the power supply to the load 132 is stopped compared to when the aerosol source is sufficient. This is because the temperature of the load 132 is high.
  • the load 132 can be cooled by an aerosol source having a lower temperature than the load 132 or an aerosol source newly supplied from the storage unit 116A. , The time required for the temperature of the load 132 to decrease to room temperature tends to be different.
  • FIG. 4 is a flowchart of a process for monitoring the cooling process of the load 132 and determining whether the aerosol source is depleted according to an embodiment of the present disclosure.
  • the description will be given on the assumption that the control unit 106 executes all the steps. However, it should be noted that some steps may be performed by another component of the aerosol generation device 100.
  • Aerosol generation request by the user continues before the processing in FIG.
  • the process starts in step 402, and the control unit 106 determines whether the aerosol generation request has been completed.
  • the control unit 106 may determine whether or not the suction by the user has ended based on the output of the pressure sensor or the like.
  • the control unit 106 determines whether the aerosol generation request has been completed based on whether a button provided on the aerosol generation device 100 to supply power to the load 132 is not pressed. May be.
  • the control unit 106 detects a predetermined time from the operation of the user interface such as pressing a button provided on the aerosol generation device 100 to supply power to the load 132. Whether or not the aerosol generation request has been completed may be determined based on whether or not the aerosol generation request has been completed.
  • step 402 If the aerosol generation request continues (“N” in step 402), the process returns to before step 402. Upon completion of the aerosol generation request (“Y” in step 402), the process proceeds to step 404.
  • step 404 the control unit 106 turns off the switch Q1 and stops power supply to the load 132.
  • control unit 106 starts a timer.
  • control unit 106 waits for time to advance by a predetermined value ⁇ t.
  • control unit 106 may add (increment) to t with the elapsed time from the latest time at which step 416 was executed as ⁇ t. .
  • step 410 the control unit 106 turns on the switch Q2 to cause the second circuit 204 to function.
  • the control unit 106 can measure the electric resistance value R HTR (t) of the load 132 by the method described with reference to FIG.
  • step 412 the control unit 106 may acquire the electric resistance value from a sensor that detects the electric resistance value of the load 132.
  • the control unit 106 may calculate the electric resistance value using a value acquired from a sensor that detects an electric value (such as a current value) related to the electric resistance.
  • step 414 the control unit 106 turns off the switch Q2.
  • R HTR a predetermined value
  • step 416 If the resistance value of the load 132 does not reach the predetermined value (“N” in step 416), the process returns to before step 408. If the resistance value of the load 132 has reached a predetermined value (“Y” in step 416), the process proceeds to step 418.
  • step 418 the control unit 106 determines whether or not the value t of the timer at this time (that is, the time elapsed since the switch Q1 was turned off) exceeds a predetermined threshold value Thr. As shown in FIG. 3, Thr is the cooling time required for the temperature of the load 132 to drop to room temperature when the aerosol source is sufficient.
  • step 420 the control unit 106 determines that the aerosol source is depleted.
  • step 418 If the value of the timer is equal to or smaller than the threshold (“N” in step 418), the process proceeds to step 422. In step 422, the control unit 106 determines that the remaining amount of the aerosol source is sufficient.
  • the cooling process of the load after the load is raised to a temperature at which the aerosol source can be atomized or more is monitored based on the time-series change of the value detected by the sensor 112. can do.
  • This monitoring is performed in such a manner that a time-series change in the value detected by the sensor 112 and a decrease in the temperature of the load maintain a correlation.
  • the load 132 is a PTC heater
  • a change in the electric resistance value of the load 132 and the temperature of the load 132 have a correlation
  • the electric resistance value of the load 132 also decreases.
  • control unit 106 is configured to determine, based on the cooling process, occurrence of depletion of the aerosol source in the storage unit 116A or the aerosol base material 116B. Therefore, depletion of the aerosol source can be detected in a state where disturbance such as suction by the user is small.
  • FIG. 5 shows that the measured resistance value of the load 132 can fluctuate significantly due to the occurrence of a surge current (or residual current).
  • Curve 502 shows the cooling curve of load 132 when there is sufficient aerosol source.
  • Curve 504 shows the cooling curve for load 132 when the aerosol source is depleted (or insufficient).
  • Reference numeral 506 indicates the time required for the surge current (or residual current) to settle. Since the circuit 134 has at least an inductor (inductive) component, immediately after the switch Q1 is turned off, the current flowing through the first circuit 202 changes abruptly, and the product of the degree of the current abrupt change (time differential value) and the inductance. A surge current having a magnitude corresponding to the current is generated.
  • FIG. 6 is a flowchart illustrating a process according to an embodiment of the present disclosure that can solve the above-described problem.
  • the processing in steps 602 and 604 is the same as the processing in steps 402 and 404 in FIG.
  • Step 606 the control unit 106 waits for a predetermined time (for example, 10 ms) while keeping both the switch Q1 and the switch Q2 off. That is, at or immediately after the start of the cooling process of the load 132, a dead zone is provided in which the monitoring of the cooling process is not performed or the determination of the occurrence of depletion based on the monitored cooling process is not performed.
  • the predetermined time at this time may be, for example, the time 506 until the surge current stops, as shown in FIG. As described above, since the surge current has a magnitude corresponding to the degree of current supply (time differential value), it gradually decreases with time. Similarly, the residual current gradually decreases over time.
  • step 608 may be executed before step 606.
  • the control unit 106 determines whether the monitoring of the cooling process is not performed or the occurrence of the depletion of the aerosol source based on the monitored cooling process is determined. It is configured to provide a dead zone that is not performed. Therefore, fluctuations in the output value of the sensor 112, which may occur when the resistance value of the load 132 is measured immediately after or immediately after the start of the cooling process, are less likely to be observed, and the observation accuracy of the load cooling process is improved.
  • the dead zone may be provided until at least one of the residual current and the surge current generated at the end of the power supply becomes equal to or less than the threshold value.
  • the control unit 106 observes electromagnetic noise generated by a residual current or a surge current by a magnetic sensor included in the sensor 112, and based on the magnitude of the noise, determines at least one of the residual current and the surge current. It may be configured to determine a value. Thereby, it is possible to prevent the cooling process from being observed in a state where the residual current or the surge current is superimposed on the output value of the sensor 112, and the observation accuracy is improved.
  • the length of time of the dead zone may be less than the length of time required to complete the cooling process if aerosol source depletion does not occur.
  • the length of the dead zone may be shorter than the length of Threshold in FIG. Thereby, it is possible to prevent the observation of the cooling process from being hindered due to the setting of the excessively long dead zone.
  • FIG. 7 conceptually illustrates an embodiment of the present disclosure for reducing the influence of the occurrence of surge current (or residual current).
  • Curve 702 shows the cooling curve for load 132 when there is sufficient aerosol source.
  • Curve 704 shows a cooling curve for load 132 when the aerosol source is depleted (or insufficient).
  • Reference numeral 706 indicates the time until the surge current (or residual current) stops.
  • the cycle T is longer than the time (time indicated by reference numeral 706) required for at least one of the residual current and the surge current generated when the power supply to the load 132 is completed to become equal to or less than the threshold value.
  • a value related to the electrical resistance of the load 132 is detected by the sensor 112. Note that the above detection may or may not be performed at the time of the leftmost dotted line (time of occurrence of surge current).
  • FIG. 8 is a flowchart of a process according to an embodiment of the present disclosure related to FIG.
  • the processing in steps 802 to 808 is the same as the processing in steps 402 to 408 in FIG.
  • step 810 the control unit 106 determines whether or not the time t indicated by the timer is an integral multiple of the period T. If t is not an integral multiple of T (“N” in step 810), the process returns to step 808.
  • ⁇ t is an integral multiple of T (“Y” in step 810), it means that the measurement timing indicated by the dotted line in FIG. 7 has been reached.
  • the process proceeds to step 812, where the switch Q2 is turned on, and the electric resistance value of the load 132 or a value related to the electric resistance is measured.
  • the processing of steps 812 to 824 is the same as the processing of steps 410 to 422 in FIG.
  • the control unit 106 performs cooling at a cycle longer than the time required for at least one of the residual current and the surge current generated at the end of power supply to become equal to or less than the threshold.
  • the sensor 112 is configured to detect a value related to the electrical resistance value during monitoring of the process. Therefore, when the resistance value of the load 132 is measured immediately after the cooling of the load 132 or immediately after the cooling is started, it is difficult to observe the fluctuation of the output value of the sensor 112, and the observation accuracy of the cooling process is improved.
  • FIG. 9 conceptually illustrates an embodiment of the present disclosure for reducing the influence of the occurrence of a surge current.
  • Curve 902 shows the cooling curve of load 132 when there is sufficient aerosol source.
  • Curve 904 shows the cooling curve of load 132 when the aerosol source is depleted (or insufficient).
  • the value detected by the sensor 112 at or immediately after the start of the cooling process is corrected by smoothing a time-series change in the value.
  • an average value of the resistance value of the load 132 measured from one measurement time point to another certain measurement time point may be determined as the resistance value of the load 132 at the measurement time point. .
  • N 5 in the mathematical formula shown in FIG.
  • the resistance value at the time corresponding to the last dotted line among the five dotted lines shown in FIG. May be obtained as an average value of the five resistance values measured in the above.
  • the average value of the resistance values of the load 132 measured from a certain measurement time point (start point) to another certain measurement time point (end point) may not be obtained at the end point, but may be obtained at the start point. It may be obtained as a time included between the end points.
  • FIG. 10 is a flowchart of a process according to an embodiment of the present disclosure related to FIG.
  • the processing of steps 1002 to 1014 is the same as the processing of steps 402 to 414 in FIG.
  • step 1016 the control unit 106 increases (increments) a predetermined integer N.
  • the initial value of N may be 0, and the value of N may be incremented by 1 at step 1016. This N corresponds to N appearing on the right side of the equation shown in FIG.
  • step 1018 the control unit 106 determines whether or not N has become equal to a predetermined threshold value Thr1.
  • step 1018 If N does not reach the threshold (“N” in step 1018), the process returns to step 1008. If N has reached the threshold (“Y” in step 1018), the process proceeds to step 1020. In step 1020, the control unit 106 calculates R ave (t) based on, for example, the equation shown in FIG. The process proceeds to step 1022, where control unit 106 resets N to zero. Subsequent processing in steps 1024 to 1030 is the same as the processing in steps 416 to 422 in FIG.
  • the control unit 106 smoothes the value detected by the sensor 112 at or immediately after the start of the cooling process, and the time-series change of the value detected by the sensor 112.
  • the cooling process is monitored based on the corrected value.
  • a simple average of a plurality of obtained values is performed, but in another example, a moving average of a plurality of measured values may be obtained.
  • the exhaustion of the aerosol source can be detected in a state where the influence of disturbance such as the user's suction is small.
  • the control unit 106 may be configured to correct the value detected by the sensor 112 using at least one of the averaging process and the low-pass filter. Thereby, the smoothing process can be realized by a simpler method.
  • FIG. 11 conceptually illustrates measurement timing of a value for monitoring a load cooling process according to an embodiment of the present disclosure.
  • Curve 1102 shows the cooling curve for load 132 when there is sufficient aerosol source.
  • Curve 1104 shows a cooling curve for load 132 when the aerosol source is depleted (or insufficient).
  • the monitoring of the cooling process can be performed in such a manner that a time-series change in the value detected by the sensor 112 and a decrease in the temperature of the load 132 maintain a correlation.
  • the cycle T during which the sensor 112 detects the value of the electric resistance or the electric value related to the electric resistance during monitoring of the cooling process can be achieved by the control unit 106. It may be larger than the minimum value T min .
  • the monitoring of the cooling process may be started after a predetermined time has elapsed from the end of the power supply, and the predetermined time may be longer than the minimum value T min achievable by the control unit 106. With such a configuration, the timing for measuring the value for monitoring the cooling process of the load becomes appropriate, so that the cooling process of the load can be observed with high accuracy without using a dedicated temperature sensor.
  • FIG. 12 conceptually illustrates measurement timing of a value for monitoring a load cooling process according to an embodiment of the present disclosure.
  • Curve 1202 shows the cooling curve of load 132 when there is sufficient aerosol source.
  • Curve 1204 shows a cooling curve for load 132 when the aerosol source is depleted (or insufficient).
  • a dead zone is provided for a predetermined period, and the value is measured after the end of the dead zone. May be performed again. During the dead zone, the value need not be measured.
  • the value measured during the dead zone may not be used for determining whether the aerosol source has been depleted.
  • the period T for measuring the value after the end of the dead zone may be larger than the minimum value T min achievable by the control unit 106, or may be T min .
  • the monitoring of the cooling process may be started after a predetermined time has elapsed from the end of the power supply.
  • FIG. 13 is a flowchart of a process according to an embodiment of the present disclosure related to FIG.
  • the processing in steps 1302 to 1308 is the same as the processing in steps 402 to 408 in FIG.
  • control unit 106 determines whether or not the time indicated by the timer has exceeded a predetermined dead zone t dead_zone (that is, whether or not the dead zone has ended). If the dead zone has not ended (“N” in step 1310), the process returns to before step 1308. If the dead zone has ended (“Y” in step 1310), the process proceeds to step 1312.
  • the processing in steps 1312 to 1324 is the same as the processing in steps 410 to 422 in FIG. According to the embodiments of FIGS. 12 and 13, the provision of the dead zone makes it possible to appropriately measure the timing for monitoring the cooling process of the load, so that the cooling of the load can be performed without using a dedicated temperature sensor. The process can be observed with high accuracy.
  • FIG. 14 conceptually illustrates measurement timing of values for monitoring a load cooling process according to an embodiment of the present disclosure.
  • Curve 1402 shows the cooling curve for load 132 when there is sufficient aerosol source.
  • Curve 1404 shows a cooling curve for load 132 when the aerosol source is depleted (or insufficient).
  • FIG. 15 is a flowchart of a process according to an embodiment of the present disclosure related to FIG.
  • the processing in steps 1502 to 1506 is the same as the processing in steps 402 to 406 in FIG.
  • the control unit 106 determines the value of the measurement cycle T shown in FIG.
  • the measurement cycle T may be obtained as a product of a predetermined coefficient ⁇ and the resistance value of the load 132 at that time. If the load 132 is a PTC heater, when the temperature of the load 132 decreases, the resistance value of the load 132 decreases. Therefore, according to the above example, T becomes shorter each time the value is measured.
  • the above method of calculating T is only an example.
  • the measurement cycle T may be calculated to be inversely proportional to the elapsed time from the start of the cooling process, or may be calculated to be inversely proportional to the number of measurements already performed.
  • step 1510 The processing in step 1510 is the same as the processing in step 408.
  • the process proceeds to step 1512, and the control unit 106 determines whether or not the time has elapsed by the updated T after the update of T in step 1508. If the time has not elapsed by T (“N” in step 1512), the process returns to before step 1510. If the time has elapsed by T (“Y” in step 1512), the process proceeds to step 1514.
  • the processing of steps 1514 to 1520 is the same as the processing of steps 410 to 416.
  • step 1520 If it is determined that the load 132 has not reached room temperature (“N” in step 1520), the process returns to before step 1508, a new T is set, and the processes in steps 1508 to 1520 are repeated. If it is determined that the load 132 has reached room temperature (“Y” in step 1520), the process proceeds to step 1522.
  • the processing of steps 1522 to 1526 is the same as the processing of steps 418 to 422.
  • the control unit 106 gradually shortens the cycle in which the sensor 112 detects the value of the electrical resistance or the electrical value related to the electrical resistance during the monitoring of the cooling process. It can be configured to: The control unit 106 controls the cycle of detecting the value of the electric resistance or the electric value related to the electric resistance by the sensor 112 during the monitoring of the cooling process as the temperature of the load 132 corresponding to the value detected by the sensor 112 is lower. May be configured to be shorter. With such a feature, an appropriate measurement frequency can be set, and the influence of the load 132 on the cooling process becomes small.
  • FIG. 16 schematically illustrates a process of supplying power to the load and cooling the load after the supply of power is stopped according to an embodiment of the present disclosure.
  • Curve 1602 shows the cooling curve for load 132 when there is sufficient aerosol source.
  • Curve 1604 shows a cooling curve for load 132 when the aerosol source is depleted (or insufficient).
  • the star in FIG. 16 indicates the temperature of the load 132 corresponding to the resistance value of the load 132 before the start of aerosol generation or immediately after the start of power supply.
  • FIG. 17 is a flowchart of a process according to an embodiment of the present disclosure related to FIG.
  • the control unit 106 determines whether there is an aerosol generation request.
  • the control unit 106 may determine whether or not the user has started suction based on the output of the pressure sensor or the like.
  • the control unit 106 may determine whether a button provided on the aerosol generation device 100 has been pressed to supply power to the load 132.
  • step 1704 the control unit 106 turns on the switch Q2 before turning on the switch Q1.
  • step 1706 the control unit 106 measures the electric resistance value of the load 132 or the electric value related to the electric resistance by the various methods described above. Here, the following description is based on the assumption that the electric resistance value of the load 132 is measured.
  • the control unit 106 holds the electric resistance value measured in step 1706 as an initial value.
  • step 1708 the control unit 106 turns off the switch Q2.
  • step 1710 the control unit 106 turns on the switch Q1 to start power supply to the load 132.
  • step 1726 the control unit 106 determines whether or not the resistance value R HTR (t) measured in step 1722 is equal to the initial value measured in step 1706. If they are not equal (“N” in step 1726), the process returns to before step 1718. If the two are equal (“Y” in step 1726), the process proceeds to step 1728.
  • the processing of steps 1728 to 1732 is the same as the processing of steps 418 to 422.
  • the control unit 106 is configured to determine the occurrence of the depletion of the aerosol source based on the cooling process until the value detected by the sensor 112 becomes a steady state. Since the cooling process is observed until the temperature of the load 132 reaches a steady state, the cooling process can be monitored until an appropriate end point. In one example, the control unit 106 sets the value detected by the sensor 112 to a steady state based on a comparison between the value detected by the sensor 112 before power supply is performed and the value detected by the sensor 112 in the cooling process. You may be comprised so that it may have reached. Thereby, it is determined whether the steady state has been reached based on the resistance value before the generation of the aerosol.
  • the individual difference of the load 132 can be considered, and the accuracy of the determination as to whether or not the steady state has been reached is improved. Further, even when the temperature of the use environment of the aerosol generation device 100 is different from a general room temperature (for example, 25 ° C.), the end point of the cooling process can be appropriately observed.
  • a general room temperature for example, 25 ° C.
  • step 1726 the resistance value R HTR (t) measured in step 1722 is changed to the initial value measured in step 1706 or the power supply is executed. Before performing the determination, it may be determined whether the value is equal to a value obtained by adding a minute predetermined value ⁇ to the value detected by the sensor 112.
  • FIG. 18 conceptually illustrates a method of monitoring a load cooling process according to an embodiment of the present disclosure.
  • Curve 1802 shows the cooling curve of load 132 when there is sufficient aerosol source.
  • Curve 1804 illustrates a cooling curve for load 132 when the aerosol source is depleted (or insufficient).
  • the temperature of the load 132 is lowered to a temperature higher than room temperature (for example, 25 ° C. + ⁇ ).
  • the approximate cooling time is used as the time to reach the steady state.
  • FIG. 19 is a flowchart of a process according to an embodiment of the present disclosure related to FIG. The processing from steps 1902 to 1914 is the same as the processing from steps 402 to 414.
  • the control unit 106 is configured to determine the occurrence of depletion of the aerosol source based on the cooling process until the value detected by the sensor 112 becomes a steady state. In one example, the control unit 106 determines that the value detected by the sensor is steady based on a comparison between the value detected by the sensor 112 corresponding to the temperature higher than the room temperature by a predetermined value and the value detected by the sensor 112 in the cooling process. It is configured to determine whether a state has been reached.
  • ⁇ used in the embodiments of FIGS. 18 and 19 may be set to be larger than the error in the load temperature obtained from the value detected by the sensor 112 due to the error in the sensor 112.
  • the sensor 112 is a voltage sensor
  • an error of a resistance value that can be measured by using the voltage sensor from a value of a measurement error known about the voltage sensor such as a gain error, an offset error, and a hysteresis error.
  • an error in the temperature that can be estimated for the load 132 can be obtained from the error in the measurable resistance value and the error in the temperature-resistance characteristic known for the load 132.
  • may be set so as to be larger than the temperature error that can be estimated.
  • the individual difference of the load 132 can be considered as compared with the case where the determination is made based on a predetermined threshold such as 25 ° C. corresponding to room temperature, and the accuracy of the determination as to whether or not the steady state has been reached can be obtained. improves.
  • FIG. 20 conceptually illustrates a method of monitoring a load cooling process according to an embodiment of the present disclosure.
  • a curve 2002 is a cooling curve of the load 132.
  • Point of R HTR (t n-6) , R HTR (t n-5), ⁇ , R HTR (t n) , respectively, t n-6, t n -5, ⁇ , t n Represents the resistance value of the load 132 measured at. Instead of the resistance value, an electrical value related to the resistance of the load 132 may be used.
  • the time derivative, the deviation, and the variance of these values measured for the load 132 can be calculated using, for example, a mathematical formula shown in FIG.
  • the resistance or the resistance of the load 132 is determined based on whether or not the time derivative, deviation, or variance satisfies a predetermined condition. It is determined whether the related electrical value has reached a steady state.
  • FIG. 21 is a flowchart of a process according to an embodiment of the present disclosure related to FIG. Steps 2102 to 2116 are the same as steps 1902 to 1916 in FIG.
  • step 2116 If it is determined in step 2116 that the load 132 has not reached the predetermined steady state (“N” in step 2116), the process proceeds to step 2118.
  • step 2118 the control unit 106 determines whether or not the absolute value of the time derivative of the resistance value of the load 132 (or an electrical value related to the resistance value) is smaller than a predetermined threshold. If the absolute value is greater than or equal to the threshold ("N" in step 2118), the process returns to step 2108. If the absolute value is smaller than the threshold (“Y” in step 2118), the process proceeds to step 2120.
  • the condition in step 2118 may further include that the time differential value is equal to or less than zero. Thereby, when the cooling curve 2002 vibrates and its inclination becomes positive, it is possible to avoid erroneously determining that the steady state has been reached.
  • the processing in steps 2120 to 2124 is the same as the processing in steps 1918 to 1922.
  • FIG. 22 is a flowchart of a process according to an embodiment of the present disclosure related to FIG. The processing from steps 2202 to 2216 is the same as the processing from steps 2102 to 2116 in FIG.
  • step 2216 If it is determined in step 2216 that the load 132 has not reached the predetermined steady state (“N” in step 2216), the process proceeds to step 2218.
  • step 2218 the control unit 106 determines whether the variance of the resistance value of the load 132 (or the electrical value related to the resistance value) is smaller than a predetermined threshold. The deviation may be used in the determination instead of the variance. If the variance is greater than or equal to the threshold (“N” in step 2218), the process returns to before step 2208. If the variance is smaller than the threshold (“Y” in step 2218), the process proceeds to step 2220. Steps 2220 to 2224 are the same as steps 2120 to 2124.
  • the control unit 106 determines that the value detected by the sensor 112 has reached the steady state based on the time derivative, deviation, or variance of the value detected by the sensor 112. Is configured to determine Compared to the case where the value itself detected by the sensor 112 is used, the time change of the value is considered, so that it is easy to determine that the steady state has been reached.
  • the control unit 106 determines whether the temperature of the load 132 does not deviate from the value of the electric resistance or the electric value related to the electric resistance, or
  • the sensor 112 may be configured to detect a value during monitoring of the cooling process at a frequency that does not interfere with the cooling of the load 132 during the cooling process. Therefore, the cooling process of the load can be observed with high accuracy without using a dedicated temperature sensor.
  • the control unit 106 determines whether or not the cooling of the load 132 is started after or immediately after the cooling and before the load 132 reaches room temperature. It can be configured to determine the occurrence of the depletion of the aerosol source in the storage unit 116A or the aerosol base material 116B based on the time-series change of the value detected by the sensor 112. In one example, the control unit 106 determines whether the value detected by the sensor 112 has reached a steady state based on the value detected by the sensor 112 or a time-series change of the value, and is detected by the sensor 112. It can be configured to determine the occurrence of depletion based on the cooling process until the value reaches a steady state. Therefore, the cooling process of the load can be observed with high accuracy without using a dedicated temperature sensor.
  • the first embodiment of the present disclosure has been described as the aerosol generation device and the method of operating the aerosol generation device.
  • the present disclosure may be embodied as a program that, when executed by a processor, causes the processor to perform the method, or as a computer-readable storage medium storing the program.
  • Q HTR is the amount of heat of the load 132.
  • ⁇ wick , ⁇ liquid, and ⁇ air are the wick , the aerosol source held by the wick, and the heat transfer coefficient of the atmosphere, respectively.
  • S wick , S liquid, and S air are the surface area of the wick, the aerosol source carried by the wick, and the load 132 on the atmosphere, respectively.
  • T HTR , T wick , T liquid, and T air are the load 132, the wick, the aerosol source and the temperature of the atmosphere held by the wick, respectively.
  • CHTR is the heat capacity of the load 132.
  • the relaxation time ⁇ is defined by the following equations (4) to (6).
  • equation (3) can be rewritten as follows.
  • the differential equation (12) can be modified as follows.
  • C is an integration constant
  • equation (14) can be solved for T HTR (t) as follows.
  • the inventors of the present application have come up with a technical idea of determining whether the aerosol source has been depleted using the cooling rate of the load 132.
  • FIG. 23 is a graph schematically showing a cooling process of the load 132 after the power supply to the load 132 is stopped in the aerosol generation device 100.
  • the horizontal axis indicates time, and the vertical axis indicates load temperature.
  • the maximum temperature of the aerosol source that reaches at normal time is 200 ° C.
  • an example of the temperature reached by the overheated load 132 when the aerosol source is depleted is 350 ° C.
  • the speed of the temperature change of the load 132 is measured in a region including the temperature exceeding the maximum temperature of the aerosol source that reaches the normal state, such as the regions 2302A and 2302B. It is desirable to do. Conversely, regions that include only temperatures below the highest temperature of the aerosol source that normally arrives, such as region 2304, are not suitable for measuring the rate of temperature change of the load 132 to detect aerosol source depletion. .
  • FIG. 24 is a diagram showing the actual cooling speed of the load 132.
  • FIG. 24A shows the cooling rate when the aerosol source is sufficient.
  • FIG. 24 (b) shows the cooling rate when the aerosol source is depleted (or insufficient).
  • 24A and 24B the horizontal axis represents time, and the vertical axis represents the cooling rate of the load 132 observed through the electric resistance value of the load 132.
  • the scale on the vertical axis is the same.
  • the cooling rate of the load 132 is strongly affected by the disturbance due to the above-described surge current and residual current. Therefore, when observing the cooling rate via the electrical resistance of the load 132, it is difficult to use the cooling rate of the load 132 in the region 2402 to determine whether the aerosol source has been depleted. It will be apparent to those skilled in the art that such a concern is unlikely to occur when the cooling rate of the load 132 is observed using a dedicated temperature sensor.
  • the cooling rate when the aerosol source in (a) is sufficient and the cooling rate when the aerosol source in (b) is depleted (or insufficient) are greatly different. . This is considered to be because the above-mentioned difference in the load temperature causes a significant difference in the cooling rate. Accordingly, the cooling rate of the load 132 in the region 2404 is suitable for determining whether the aerosol source has been depleted.
  • the cooling rate when the aerosol source in (a) is sufficient and the cooling rate when the aerosol source in (b) is depleted (or insufficient) are almost the same. This is considered to be because the cooling rate at a temperature equal to or lower than the maximum temperature of the aerosol source reaching the normal state was observed. Accordingly, the cooling rate of the load 132 in the region 2406 is inappropriate for determining whether the aerosol source has been depleted.
  • FIG. 25 is a diagram illustrating timings suitable for measuring the cooling rate of the load 132.
  • the cooling rate As described in connection with FIG. 23, by measuring the cooling rate as soon as possible after the switch Q1 is turned off and the cooling of the load 132 is started, it is possible to more accurately determine whether the aerosol source is depleted. Can be determined.
  • the switch Q2 is turned on immediately after the switch Q1 is turned off as indicated by reference numeral 2502
  • the measured value of the temperature of the load 132 greatly fluctuates due to the influence of a surge current or the like. Therefore, it is difficult to accurately measure the cooling rate.
  • FIG. 26 is a flowchart of a process of detecting exhaustion of an aerosol source according to an embodiment of the present disclosure.
  • the description will be given on the assumption that the control unit 106 executes all the steps. However, it should be noted that some steps may be performed by another component of the aerosol generation device 100.
  • the process starts in step 2602, and the control unit 106 determines whether the aerosol generation request has been completed.
  • the control unit 106 may determine whether or not the suction by the user has ended based on the output of the pressure sensor or the like.
  • the control unit 106 determines whether the aerosol generation request has been completed based on whether a button provided on the aerosol generation device 100 to supply power to the load 132 is not pressed. May be.
  • the control unit 106 detects a predetermined time from the operation of the user interface such as pressing a button provided on the aerosol generation device 100 to supply power to the load 132. Whether or not the aerosol generation request has been completed may be determined based on whether or not the aerosol generation request has been completed.
  • step 2602 If the aerosol generation request continues (“N” in step 2602), the process returns to before step 2602. When the aerosol generation request ends (“Y” in step 2602), the process proceeds to step 2604. In step 2604, the control unit 106 turns off the switch Q1 and stops power supply to the load 132.
  • step 2606 the control unit 106 waits for a predetermined time while both the switch Q1 and the switch Q2 are off. That is, at or immediately after the start of the cooling process of the load 132, a dead zone is provided in which the cooling process is not monitored or the occurrence of depletion based on the monitored cooling process is not determined. The dead zone may be provided until after the surge current has decayed and before the temperature of the load 132 drops below the boiling point of the aerosol source.
  • control unit 106 starts a timer.
  • step 2610 the control unit 106 turns on the switch Q2 to cause the second circuit 204 to function.
  • step 2612 the control unit 106 measures a value related to the temperature of the load 132 at time t1, using the sensor 112 or the like.
  • the sensor 112 may be configured to detect and output the temperature, voltage, resistance value, and the like of the load 132.
  • the electric resistance value R HTR (t1) of the load 132 is measured.
  • control unit 106 turns off switch Q2.
  • step 2616 the control unit 106 turns on the switch Q2 again to make the second circuit 204 function.
  • step 2518 the control unit 106 measures a value related to the temperature of the load 132, for example, an electric resistance value R HTR (t2) of the load 132.
  • step 2620 control unit 106 turns off switch Q2 again.
  • step 2622 the control unit 106 obtains the cooling rate of the load 132 based on the values of R HTR (t1), R HTR (t2), t1, and t2.
  • step 2624 the control unit 106 compares the obtained cooling rate with a predetermined threshold. If the cooling rate is lower than the threshold ("Y" in step 2624), the process proceeds to step 2626, and the control unit 106 determines that the aerosol source is depleted. On the other hand, if the cooling rate is equal to or higher than the threshold ("N" in step 2624), the process proceeds to step 2628, and the control unit 106 determines that a sufficient amount of the aerosol source remains.
  • the control unit 106 derives from the output value of the sensor 112 in the cooling process after the load 132 is heated to a temperature or higher at which the aerosol source can be atomized. It is configured to determine the occurrence of the depletion of the aerosol source in the storage unit 116A or the aerosol base material 116B based on the cooling rate performed. Whether or not the aerosol source is depleted is detected based on the cooling rate, and it is possible to quickly and accurately determine whether or not the aerosol source is depleted. Steps 2614 and 2616 may be omitted, and the switch Q2 turned on in step 2610 may be kept on until step 2620.
  • the difference between the cooling rate when the depletion of the aerosol source occurs and the cooling rate when the depletion does not occur in the cooling process is equal to or greater than the threshold. It is configured to determine the occurrence of depletion based on a cooling rate in a certain time zone (for example, a time zone corresponding to the region 2302A or 2302B in FIG. 23).
  • the control unit 106 uses the cooling rate in a time zone (for example, a time zone corresponding to the region 2302A) in which the temperature of the load 132 belongs to a temperature range that can be reached only when depletion occurs. May be determined. It is determined whether the aerosol source has been depleted based on the cooling rate derived in a section where the cooling rate has a significant difference. Therefore, the determination as to whether or not depletion has occurred can be performed with higher accuracy.
  • the control unit 106 derives the cooling rate from the plurality of output values of the sensor 112 and determines at least the earliest value on the time axis of the plurality of output values of the sensor 112 in the cooling process. Among them, it may be configured to acquire in a time zone where the temperature of the load 132 belongs to a temperature range that can be reached only when depletion occurs. Alternatively, the control unit 106 may be configured to acquire a plurality of output values of the sensor 112 in a time zone where the temperature of the load 132 belongs to a temperature range that can be reached only when depletion occurs during the cooling process. .
  • the start point of the measurement period only needs to belong to a region having a significant difference, so that the dead zone need not be strictly set, and a high-performance microcomputer with an extremely short control cycle is used as a control unit. It becomes unnecessary to use it as 106.
  • the load 132 may have an electric resistance value that changes according to the temperature.
  • the sensor 112 may output a value related to the electric resistance value as a value related to the temperature of the load 132.
  • the control unit 106 may be configured to provide a dead zone where a value related to the electric resistance value is not acquired by the sensor 112 or a cooling rate is not derived at the time of or immediately after the start of the cooling process.
  • control unit 106 derives the cooling rate based on the output value of the sensor 112 at or immediately after the start of the cooling process, corrected so that the time-series change of the output value of the sensor 112 is smoothed. It may be configured as follows. According to this configuration, since the resistance value at the start of cooling or immediately after the start of cooling is not used, it is difficult to observe the fluctuation of the output value of the sensor 112, and the observation accuracy of the cooling process is improved.
  • control unit 106 may be configured to control the power supply from the power supply 110 to the load 132 such that the power supplied from the power supply 110 to the load 132 decreases or gradually decreases before the cooling process. Good.
  • the current flowing through the circuit can be reduced. Therefore, the period during which the output value fluctuates due to the above-described surge current, residual current, or the like can be shortened, and it is possible to observe a section where a significant difference occurs depending on the cooling rate.
  • the above-described dead zone may be provided so as to continue until at least one of the residual current and the surge current generated at the end of the power supply becomes equal to or less than the threshold value.
  • the dead zone is longer than the time until the surge current or residual current disappears or becomes negligible. Therefore, since the cooling process is not observed in a state where the residual current or the surge current is superimposed on the output value of the sensor, the observation accuracy is improved.
  • the dead zone may be shorter than the length of the completion of the cooling process when no depletion has occurred. This results in a dead zone that is shorter than the cooling time when there is sufficient aerosol source. Therefore, since an excessively long dead zone is not required, obstruction of observation of the cooling process can be suppressed.
  • At least one of the time from the end of power supply to the start of the acquisition of the value related to the electric resistance value by the sensor 112 and the cycle at which the sensor 112 acquires the value related to the electric resistance value can be achieved by the control unit 106. It may be larger than the minimum value. Thereby, when observing the cooling process of the load 132 via the resistance value, the observation timing or the frequency of the observation is intentionally reduced. Therefore, the cooling process of the load can be observed with high accuracy without using a dedicated temperature sensor.
  • FIG. 27 is a flowchart of a process for detecting exhaustion of an aerosol source according to an embodiment of the present disclosure. Steps 2702 and 2704 are the same as steps 2602 and 2604 in FIG.
  • step 2706 control unit 106 turns on switch Q2.
  • the switch Q2 may be turned on immediately after the switch Q1 is turned off.
  • step 2708 the control unit 106 turns off the switch Q2.
  • the current flowing through the load 132 when the switch Q2 is on is smaller than the current flowing through the load 132 when the switch Q1 is on. Therefore, the surge current generated after turning on and off the switch Q2 in steps 2706 and 2708 is smaller than the surge current generated in the example shown by reference numeral 2502 in FIG.
  • Steps 2704 to 2708 may be performed before step 2702. Thereby, the cooling process can be observed immediately after the start.
  • Steps 2710 to 2732 are the same as steps 2606 to 2628.
  • the aerosol generation device may include the circuit 200 illustrated in FIG. 2 in one example.
  • the circuit 200 is connected in series between the power supply 110 and the load 132 and has a first circuit 202 having a first switch (switch) Q1, and is connected in series between the power supply 110 and the load 132 and is in parallel with the first circuit 202.
  • a second circuit 204 having a second switch Q2 and having a higher electrical resistance than the first circuit 202.
  • the control unit 106 controls the first switch Q1 and the second switch Q2, and outputs the output of the sensor while only the second switch Q2 of the first switch Q1 and the second switch Q2 is on. It may be configured to derive the cooling rate based on the value.
  • control unit 106 may be configured to turn on the second switch Q2 immediately before the cooling process. Thereby, the first switch Q1 and the second switch Q2 are alternately turned on. Therefore, the surge current and the residual current at the start of the cooling process can be reduced.
  • FIG. 28 schematically illustrates a circuit included in an aerosol generation device according to an embodiment of the present disclosure.
  • the circuit 2800 differs from the circuit 200 in FIG. 2 in that the circuit 2800 does not include the second circuit 204.
  • the aerosol generation device may include a temperature sensor 112E that detects and outputs the temperature of the load 132.
  • the control unit 106 directly measures the temperature of the load 132 at the time points t1 and t2 by the temperature sensor 112E without performing the processing of steps 2606 to 2622 in FIG. 26, and based on the measured temperature.
  • the cooling rate may be determined by the following method.
  • the aerosol generation device may include a circuit having a configuration similar to the circuit 2800 shown in FIG. 28, and the voltage value across the load 132 as shown in FIG. 2 instead of the temperature sensor 112E. May be provided.
  • the aerosol generation device does not include the switch Q2.
  • the control unit 106 may execute the same processing as the processing in FIG. However, in this case, the control unit 106 turns off the switch Q1 and waits for a predetermined time instead of step 2606.
  • the control unit 106 also turns on the switch Q1 instead of steps 2610 and 2616, and turns off the switch Q1 instead of steps 2614 and 2620.
  • the second embodiment of the present disclosure has been described as the aerosol generation device and the method of operating the aerosol generation device.
  • the present disclosure may be embodied as a program that, when executed by a processor, causes the processor to perform the method, or as a computer-readable storage medium storing the program.
  • ⁇ Third embodiment> When an aerosol generation request is made when the aerosol source in the storage unit 116A or the aerosol base material 116B is depleted, the heater (load 132) is heated while being exposed to the atmosphere. Therefore, depending on the material constituting the load 132, the load 132 may undergo a chemical change, and its physical properties may change. In one example, a protective film is formed on the surface of the load 132 by a phenomenon such as oxidation, and as a result, the electric resistance value of the load 132 may change.
  • the inventors of the present application have come up with a technical idea of detecting occurrence of depletion of an aerosol source in an aerosol generation device using such a phenomenon. Hereinafter, the present embodiment will be specifically described.
  • FIG. 29 conceptually illustrates a method for determining occurrence of aerosol source depletion according to an embodiment of the present disclosure.
  • the horizontal axis of the graph indicates time, and the vertical axis indicates the electric resistance value of the load 132.
  • the electric resistance value of the load 132 is merely an example of a value related to the physical properties of the load 132 used in the present embodiment. Those skilled in the art will appreciate that values associated with various physical properties of the load 132 that may change due to depletion of the aerosol source can be used in the present embodiments.
  • R HTR (t 0 ) indicates the resistance value of the load 132 at room temperature (here, 25 ° C.) (or in a steady state) at time t 0 before power is supplied to the load 132.
  • room temperature here, 25 ° C.
  • R HTR (t 0 ) can be measured.
  • aerosol generation request is made at time t 1.
  • the switch Q1 is turned on, and power supply to the load 132 is started.
  • the resistance value R HTR of the load 132 increases as the temperature of the load 132 increases.
  • a curve 2902 in FIG. 29 shows a change in the resistance value of the load 132 when the aerosol source is sufficient.
  • Curve 2904 shows the change in resistance of load 132 when the aerosol source is depleted.
  • the resistance of the load 132 will not increase when the temperature of the load 132 reaches the maximum temperature of the aerosol source (here, 200 ° C.) which normally reaches, as shown by the curve 2902. .
  • the aerosol generation request is completed at time t 2, the the switch Q1 is turned off, the temperature of the load 132 decreases, the resistance value of the load 132 is lowered.
  • the resistance value returns to the value R HTR (t 0 ) of the load 132 before heating.
  • the temperature of the load 132 exceeds the maximum temperature of the aerosol source that would normally be reached, and can be reached only when aerosol source depletion occurs (eg, , 350 ° C.).
  • the physical properties of the load 132 may change depending on the material of the load 132.
  • a protective film may be formed on the surface of the load 132.
  • the temperature of the load 132 at time t 2 has reached to over 350 ° C..
  • the resistance value of the load 132 does not return to the value before heating due to the above-described change in the physical properties. , Larger than the value.
  • t 3 -t 2 may be set to be equal to or longer than the time ⁇ t cooling required for the load 132 to return to room temperature (or a steady state) when the aerosol source is sufficient.
  • FIG. 30 is a flowchart of a process related to FIG. 29 according to an embodiment of the present disclosure.
  • the description will be given on the assumption that the control unit 106 executes all the steps. However, it should be noted that some steps may be performed by another component of the aerosol generation device 100.
  • step 3002 the control unit 106 determines whether connection of a heater (load) has been detected. For example, when detecting that the cartridge 104A has been connected to the main body 102, the control unit 106 determines that the connection of the heater has been detected.
  • step 3002 If the connection of the heater is not detected (“N” in step 3002), the process returns to before step 3002. If the connection of the heater is detected (“Y” in step 3002), the process proceeds to step 3004. In step 3004, the control unit 106 turns on the switch Q2 to cause the second circuit 204 to function.
  • the timing to turn on the switch Q2 can be any time from the time t 0 in FIG. 28 to time t 1 that aerosol generation begins.
  • the timing at which the switch Q2 is turned on may be the time when it is determined in step 3010 described later that there is an aerosol generation request.
  • step 3006 the control unit 106 measures a value related to the physical properties of the load 132.
  • the control unit 106 may measure a voltage applied to both ends of the load 132 using a voltage sensor, and measure an electric resistance value of the load 132 based on the voltage.
  • a description will be given below on the assumption that the resistance value R HTR (t 0 ) of the load 132 is measured in this manner.
  • the process proceeds to step 3008, where control unit 106 turns off switch Q2.
  • step 3010 the control unit 106 determines whether there is an aerosol generation request.
  • the control unit 106 may determine whether or not the user has started suction based on the output of the pressure sensor or the like. In another example, the control unit 106 may determine whether a button provided on the aerosol generation device 100 has been pressed to supply power to the load 132. If there is no aerosol generation request (“N” in step 3010), the process returns to before step 3010. If there is an aerosol generation request (“Y” in step 3010), the process proceeds to step 3012. In step 3012, the control unit 106 turns on the switch Q1 to start power supply to the load 132.
  • step 3022 the control unit 106 determines whether or not the timer value t is equal to or greater than ⁇ t cooling shown in FIG. If the condition is not satisfied (“N” in step 3022), the process returns to before step 3020. If the condition is satisfied (“Y” in step 3022), the process proceeds to step 3024.
  • step 3024 the control unit 106 turns on the switch Q2 to cause the second circuit 204 to function.
  • step 3026 the control unit 106 measures the resistance value R HTR (t 3 ) of the load 132 (see FIG. 29).
  • Step 3028 the control unit 106 turns off the switch Q2.
  • step 3030 control unit 106 determines whether the difference between R HTR (t 3 ) and R HTR (t 0 ) is equal to or greater than a predetermined threshold. If the difference is equal to or larger than the threshold (“Y” in step 3030), the process proceeds to step 3032, and the control unit 106 determines that the aerosol source is depleted. On the other hand, if the difference is less than the threshold (“N” in step 3030), the process proceeds to step 3034, and the control unit 106 determines that a sufficient amount of the aerosol source remains.
  • FIG. 31 shows a table 3100 showing the oxidation-reduction potential of various metals that can be used for manufacturing the load 132 (heater) and the easiness of forming an oxide film.
  • Al is most likely to form an oxide film
  • Au is most difficult to form an oxide film.
  • a phenomenon in which the physical properties of the load 132 change at a temperature that can be reached only when the aerosol source is depleted is used for detecting occurrence of depletion of the aerosol source.
  • the load 132 may include a metal having an oxidation-reduction potential equal to or lower than the oxidation-reduction potential of copper.
  • the load 132 may include NiCr.
  • the load 132 may also be configured to have no passivation coating on its surface so that oxidation is not hindered. In other words, it can be said that stainless steel or the like having a passivation film formed on the surface is not suitable for manufacturing the load 132.
  • FIG. 32 conceptually illustrates a technique for determining the occurrence of aerosol source depletion according to an embodiment of the present disclosure.
  • R HTR (t 1 ) is the load of the load 132 at room temperature (here, 25 ° C.) (or a steady state) at time t 1 when the switch Q1 is turned on and power supply to the load 132 is started. Indicates the resistance value.
  • Curve 3202 shows the change in resistance of the load 132 when there is sufficient aerosol source.
  • Curve 3204 shows the change in resistance of load 132 when the aerosol source is depleted.
  • the temperature of the load 132 exceeds the maximum temperature of the aerosol source reached at the normal time, as shown by the curve 3204, and the aerosol source is depleted. It only rises to a temperature that can only be reached when. At this time, the physical properties of the load 132 may change depending on the material of the load 132. When the switch Q1 is turned off, the temperature of the load 132 decreases, and accordingly, the resistance value of the load 132 also decreases.
  • the resistance value R HTR (t 3 ) of the load 132 is higher than the value R HTR (t 1 ) before heating due to the influence of the change in physical properties. growing.
  • FIG. 33 is a flowchart of a process related to FIG. 32 according to an embodiment of the present disclosure.
  • the processing of steps 3302 to 3316 is the same as the processing of steps 3014 to 3028 in FIG.
  • the process proceeds to step 3318, and the control unit 106 determines whether or not the resistance value of the load 132 when returning to the steady state is equal to or greater than a predetermined threshold R thre .
  • the threshold value R thre is the total value of the steady state resistance value when the aerosol source is sufficient and the increase amount known in advance about the resistance value of the load 132 when the physical property of the load 132 changes due to overheating. .
  • the threshold value R thre is a resistance value of the load 132 when the physical properties of the load 132 change due to overheating.
  • the threshold value R thre may be stored in the memory 114 in advance.
  • the control unit 106 instead of the above processing, the control unit 106 also measures the resistance value at time t 1 in FIG.
  • Steps 3320 and 3322 are the same as steps 3032 and 3034.
  • the control unit 106 may prohibit the atomization of the aerosol source by the load 132 until the resistance value of the load 132 returns to the steady state.
  • the control unit 106 may or may not respond to an aerosol generation request during ⁇ t cooling shown in FIGS. 29 and 32.
  • FIG. 34 conceptually illustrates a technique for determining the occurrence of aerosol source depletion according to an embodiment of the present disclosure. Unlike the case of FIG. 32, in this example, also to measure the resistance value of the load 132 at a time prior to time t 4 to time t 3, it is determined whether the aerosol source is depleted. Time t 4, when the aerosol source is depleted, after the load 132 to over temperature capable of atomizing the aerosol source is heated, before the time when the temperature of the load 132 decreases until a steady state It is time.
  • FIG. 35 is a flowchart of a process related to FIG. 32 according to an embodiment of the present disclosure.
  • the processing of steps 3502 to 3508 is the same as the processing of steps 3302 to 3308 in FIG.
  • step 3510 the control unit 106 determines whether or not the timer value t has become equal to or longer than the alternative cooling time shown in FIG. If the condition is not satisfied (“N” in step 3510), the process returns to before step 3508. If the condition is satisfied (“Y” in step 3510), the process proceeds to step 3512.
  • the processing of steps 3512 to 3516 is the same as the processing of steps 3312 to 3316 in FIG.
  • the control unit 106 determines whether the resistance value R HTR (t 4 ) of the load 132 measured in step 3514 is equal to or more than a predetermined value.
  • the predetermined value may be R ′ HTR (t 3 ) + (R ′ HTR (t 3 ) ⁇ R HTR (t 1 )) ⁇ ⁇ (see FIG. 34). This takes into consideration that the resolution of the resistance value of the load 132 by the sensor 112 must be smaller than R ′ HTR (t 3 ) ⁇ R HTR (t 1 ) and ⁇ as a correction term.
  • the resistance value of the load 132 before the steady state is reached is compared with a value obtained by adding a predetermined value to the resistance value of the load 132 in the steady state when the exhaustion occurs.
  • the latter value may be stored in the memory 114 in advance.
  • a value obtained by subtracting a predetermined value from the resistance value of the load 132 before reaching the steady state may be compared with the resistance value of the load 132 in the steady state when the exhaustion occurs.
  • step 3518 If the condition is satisfied (“Y” in step 3518), the process proceeds to step 3520, and the control unit 106 determines that the aerosol source is depleted. If the condition is not satisfied (“N” in step 3518), the process proceeds to step 3522, and control unit 106 determines that a sufficient amount of the aerosol source remains.
  • the aerosol generation device changes physical properties when heated at a temperature that can be reached only when the aerosol source is depleted in the storage unit 116A or the aerosol base material 116B.
  • the load 132 is provided.
  • a value related to the physical properties of the load 132 is output by the sensor 112.
  • the control unit 106 may be configured to determine the occurrence of depletion based on the output value of the sensor 112 after the load 132 has been heated to a temperature at which the aerosol source can be atomized or higher.
  • the depletion of the aerosol source is detected based on the change in the physical properties of the load 132 due to the depletion of the aerosol source. Therefore, occurrence of depletion of the aerosol source can be detected with high accuracy.
  • control unit 106 determines the occurrence of depletion based on the output value of the sensor 112 in a steady state after the load 132 has been heated to a temperature at which the aerosol source can be atomized or higher. It may be configured. Thus, the exhaustion of the aerosol source is detected based on the physical properties of the load 132 in the steady state. Therefore, the possibility of erroneous detection is reduced.
  • control unit 106 determines the occurrence of depletion based on the amount of change in the output value of the sensor 112 before and after increasing the load 132 to a temperature at which the aerosol source can be atomized or higher. It may be configured. Thus, the exhaustion of the aerosol source is detected based on the amount of change in the physical properties of the load 132 before and after the power is supplied to the load 132. Therefore, compared to the case where the physical properties after the end of the power supply are compared with the threshold value, it is less likely to be affected by the individual difference of the load.
  • control unit 106 determines the occurrence of depletion based on the difference between the output values of the sensor 112 in a steady state before and after the load 132 is heated to a temperature at which the aerosol source can be atomized or higher. May be configured.
  • the exhaustion of the aerosol source is detected based on the amount of change in the physical property in the steady state before and after the power supply. Therefore, compared with the case where the physical properties after power supply are compared with the threshold value, the load 132 is less affected by the individual difference of the load 132.
  • the control unit 106 controls the aerosol source by the load 132 until the output value of the sensor 112 reaches a steady state. It may be configured to prohibit atomization. As a result, an interval up to the steady state is defined. Therefore, the frequency of determining the depletion of the aerosol source can be increased.
  • the output value of the sensor 112 before the steady state is reached May be configured to determine the occurrence of depletion based on a comparison with a value obtained by adding a predetermined value to a value related to the physical properties of the load 132 in a steady state in the case where the error occurs.
  • the control unit 106 may reduce the output value of the sensor 112 before reaching the steady state by a value obtained by subtracting a predetermined value from the output value.
  • It may be configured to determine the occurrence of depletion based on a comparison with a value related to the physical properties of the load 132 in a steady state when the depletion occurs. Thereby, the physical properties of the load 132 are measured at a time point before the time point when the steady state is reached. Therefore, it is possible to specify earlier that the aerosol source has been depleted.
  • the sensor may output a value related to the electrical resistance value of the load 132 as a value related to the physical properties of the load 132.
  • the temperature is derived from the resistance value of the load. Therefore, an expensive dedicated temperature sensor is not required.
  • the control unit 106 determines the output value of the sensor 112 after the temperature of the load 132 has risen to a temperature at which the aerosol source can be atomized or more, and a protective film (for example, oxidation) on the surface of the load 132. It may be configured to determine the occurrence of depletion based on a comparison with a value related to the resistance value of the load 132 when the film is formed. Further, as described above, the control unit 106 determines the amount of change in the output value of the sensor 112 before and after increasing the load 132 to a temperature at which the aerosol source can be atomized or more, and the amount of change in the protective film on the surface of the load 132.
  • a protective film for example, oxidation
  • the value corresponding to the protective film portion is the threshold.
  • the threshold may be stored in the memory 114 in advance. Therefore, a change in resistance value due to the formation of the protective film, that is, occurrence of depletion of the aerosol source can be appropriately detected.
  • the aerosol generation device may include the circuit 200 illustrated in FIG. 2 in one example.
  • the circuit 200 is connected in series between the power supply 110 and the load 132 and has a first circuit 202 having a first switch (switch) Q1, and is connected in series between the power supply 110 and the load 132 and is in parallel with the first circuit 202.
  • a second circuit 204 having a second switch Q2 and having an electrical resistance greater than that of the first circuit 202.
  • the control unit 106 controls the first switch Q1 and the second switch Q2, and outputs the output of the sensor while only the second switch Q2 of the first switch Q1 and the second switch Q2 is on. It may be configured to determine the occurrence of depletion based on the value. This configuration has a dedicated high-resistance resistance measuring circuit. Therefore, the influence on the cooling process of the load when measuring the resistance value can be reduced.
  • the third embodiment of the present disclosure has been described as an aerosol generation device and a method of operating an aerosol generation device.
  • the present disclosure may be embodied as a program that, when executed by a processor, causes the processor to perform the method, or may be implemented as a computer-readable storage medium storing the program.

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Medicinal Preparation (AREA)
  • Control Of Temperature (AREA)
  • Catching Or Destruction (AREA)

Abstract

低コスト且つ高精度でヒータの冷却過程を観測することができ、低コスト且つ高精度でエアロゾル源の不足や枯渇を検知することができる、エアロゾル生成装置を提供する。 エアロゾル生成装置100は、エアロゾル源を貯留する貯留部116A又はエアロゾル源を保持するエアロゾル基材116Bと、電源110からの給電による発熱でエアロゾル源を霧化し、且つ温度に応じて電気抵抗の値が変化する負荷132と、負荷の電気抵抗の値又は電気抵抗に関連する電気的な値を検出するセンサ112と、センサ112により検出される値の時系列的な変化に基づき、エアロゾル源を霧化することができる温度以上まで負荷132が昇温した後の負荷132の冷却過程を、センサ112により検出される値の時系列的な変化と負荷132の温度の低下が相関関係を保持する態様で、監視するよう構成される制御部106を備える。

Description

エアロゾル生成装置並びにこれを動作させる方法及びプログラム
 本開示は、ユーザが吸引するエアロゾルを生成するエアロゾル生成装置並びにこれを動作させる方法及びプログラムに関する。
 一般的な電子たばこ、加熱式たばこ、ネブライザーなどの、ユーザが吸引するエアロゾルを生成するためのエアロゾル生成装置においては、霧化されることでエアロゾルとなるエアロゾル源が不足しているときにユーザが吸引を行うと、ユーザに対して十分なエアロゾルを供給できない。加えて、電子たばこや加熱式たばこの場合、意図しない香喫味を有するエアロゾルが放出され得るという問題が生じる。
 この問題に対する解決策として、特許文献1には、ヒータを冷却する際にヒータ温度がある温度から別の温度まで下がるのに要する時間に基づいて、エアロゾル源の枯渇を検知する技術が開示されている。特許文献2から5もまた、上記の問題を解決するため又は上記の問題の解決に寄与する可能性がある種々の技術を開示している。
 これらの技術は発展途上にある。低コスト且つ高精度でエアロゾル生成装置のヒータの冷却過程を観測することができる技術、低コスト且つ高精度でエアロゾル生成装置内のエアロゾル源の不足や枯渇を検知することができる技術などが必要とされている。なお、ヒータの冷却工程は、エアロゾル生成装置の状態に応じた影響を受ける。従って、ヒータの冷却工程を観測すれば、エアロゾル生成装置の状態を知ることができるため、低コスト且つ高精度でエアロゾル生成装置のヒータの冷却過程を観測することができる技術もまた必要とされている。
国際公開第2017/185355号 国際公開第2017/185356号 国際公開第2017/024477号 国際公開第2017/144191号 国際公開第2017/084818号
 本開示は、上記の点に鑑みてなされたものである。
 本開示が解決しようとする第1の課題は、低コスト且つ高精度でヒータの冷却過程を観測することができ、さらには低コスト且つ高精度でエアロゾル源の不足や枯渇を検知することができる、エアロゾル生成装置並びにそれを動作させる方法及びプログラムを提供することである。
 本開示が解決しようとする第2の課題は、低コスト且つ高精度でエアロゾル源の不足や枯渇を検知することができる、エアロゾル生成装置並びにそれを動作させる方法及びプログラムを提供することである。
 本開示が解決しようとする第3の課題は、低コスト且つ高精度でエアロゾル源の不足や枯渇を検知することができる、エアロゾル生成装置並びにそれを動作させる方法及びプログラムを提供することである。
 上述した第1の課題を解決するため、本開示の第1の実施形態によれば、エアロゾル源を貯留する貯留部又は前記エアロゾル源を保持するエアロゾル基材と、電源からの給電による発熱で前記エアロゾル源を霧化し、且つ温度に応じて電気抵抗の値が変化する負荷と、前記負荷の電気抵抗の値又は電気抵抗に関連する電気的な値を検出するセンサと、前記センサにより検出される値の時系列的な変化に基づき、前記エアロゾル源を霧化することができる温度以上まで前記負荷が昇温した後の前記負荷の冷却過程を、前記センサにより検出される値の時系列的な変化と前記負荷の温度の低下が相関関係を保持する態様で、監視するよう構成される制御部と、を含む、エアロゾル生成装置が提供される。
 一実施形態において、前記制御部は、エアロゾル生成に対する要求に基づき、前記電源から前記負荷への給電を制御するよう構成される。前記給電の終了から前記冷却過程の監視の開始までの時間と、前記冷却過程の監視中に前記センサが前記電気抵抗の値又は前記電気抵抗に関連する電気的な値を検出する周期とのうち少なくとも一方は、前記制御部が達成可能な最小値より大きい。
 一実施形態において、前記制御部は、前記冷却過程に基づき、前記貯留部又は前記エアロゾル基材における前記エアロゾル源の枯渇の発生を判断するよう構成される。
 一実施形態において、前記制御部は、前記冷却過程の開始時又は開始直後に、前記冷却過程の監視が行われない又は監視された前記冷却過程に基づく前記枯渇の発生が判断されない不感帯を設けるよう構成される。
 一実施形態において、前記制御部は、エアロゾル生成に対する要求に基づき、前記電源から前記負荷への給電を制御するよう構成される。前記不感帯は、前記給電の終了時に生じる残留電流とサージ電流のうち少なくとも一方の電流値が閾値以下になるまで設けられる。
 一実施形態において、前記不感帯の時間の長さは、前記エアロゾル源の枯渇が発生しない場合に前記冷却過程が完了するまでの時間の長さより短い。
 一実施形態において、前記制御部は、エアロゾル生成に対する要求に基づき、前記電源から前記負荷への給電を制御し、前記給電の終了時に生じる残留電流とサージ電流のうち少なくとも一方の電流値が閾値以下になるのに必要な時間より長い周期で、前記冷却過程の監視中に前記センサによって前記電気抵抗値に関連する値を検出するよう構成される。
 一実施形態において、前記制御部は、前記冷却過程の監視中に前記センサによって前記電気抵抗の値又は前記電気抵抗に関連する電気的な値を検出する周期を段階的に短くするよう構成される。
 一実施形態において、前記制御部は、前記センサによって検出される値に対応する前記負荷の温度が低いほど、前記冷却過程の監視中に前記センサによって前記電気抵抗の値又は前記電気抵抗に関連する電気的な値を検出する周期を短くするよう構成される。
 一実施形態において、前記制御部は、前記冷却過程の開始時又は開始直後に前記センサによって検出される値を、前記センサにより検出される値の時系列的な変化を平滑化することによって補正し、前記補正された前記値に基づき、前記冷却過程を監視するよう構成される。
 一実施形態において、前記制御部は、平均化処理とローパスフィルタのうち少なくとも一方を用いて、前記センサによって検出される値を補正するよう構成される。
 一実施形態において、前記制御部は、前記センサにより検出される値が定常状態になるまでの前記冷却過程に基づき、前記エアロゾル源の枯渇の発生を判断するよう構成される。
 一実施形態において、前記制御部は、エアロゾル生成に対する要求に基づき、前記電源から前記負荷への給電を制御し、前記給電を実行する前に前記センサにより検出される値と、前記冷却過程において前記センサにより検出される値との比較に基づき、前記センサにより検出される値が定常状態に至ったかを判断するよう構成される。
 一実施形態において、前記制御部は、室温より既定値だけ高い温度に対応する前記センサにより検出される値と前記冷却過程において前記センサにより検出される値との比較に基づき、前記センサにより検出される値が定常状態に至ったかを判断するよう構成される。
 一実施形態において、前記既定値は、前記センサの誤差に起因する、前記センサにより検出される値から得られる前記負荷の温度の誤差より大きい。
 一実施形態において、前記制御部は、前記センサにより検出される値の時間微分値に基づき、前記センサにより検出される値が定常状態に至ったかを判断するよう構成される。
 一実施形態において、前記制御部は、前記センサにより検出される値の偏差又は分散に基づき、前記センサにより検出される値が定常状態に至ったかを判断するよう構成される。
 また、本開示の第1の実施形態によれば、エアロゾル生成装置を動作させる方法であって、温度に応じて電気抵抗値が変化する負荷への給電による発熱によってエアロゾル源を霧化するステップと、前記負荷の電気抵抗の値又は電気抵抗に関連する電気的な値を検出するステップと、前記検出される値の時系列的な変化に基づき、前記エアロゾル源を霧化することができる温度以上まで前記負荷が昇温した後の冷却過程を、前記センサにより検出される値の時系列的な変化と前記負荷の温度の低下が相関関係を保持する態様で、監視するステップとを含む、方法が提供される。
 また、本開示の第1の実施形態によれば、エアロゾル源を貯留する貯留部又は前記エアロゾル源を保持するエアロゾル基材と、電源からの給電による発熱で前記エアロゾル源を霧化し、且つ温度に応じて電気抵抗値が変化する負荷と、前記負荷の電気抵抗の値又は電気抵抗に関連する電気的な値を検出するセンサと、前記センサにより検出される値の時系列的な変化に基づき、前記エアロゾル源を霧化することができる温度以上まで前記負荷が昇温した後の冷却過程を監視するよう構成される制御部と、を含む、エアロゾル生成装置が提供される。前記制御部は、前記負荷の温度と電気抵抗の値又は電気抵抗に関連する電気的な値とが乖離しないタイミング、又は、前記冷却過程における前記負荷の冷却を妨げない頻度で、前記冷却過程の監視中、前記センサによって前記値を検出するよう構成される。
 また、本開示の第1の実施形態によれば、エアロゾル生成装置を動作させる方法であって、温度に応じて電気抵抗値が変化する負荷への給電による発熱によってエアロゾル源を霧化するステップと、前記負荷の電気抵抗の値又は電気抵抗に関連する電気的な値を検出するステップと、前記検出される値の時系列的な変化に基づき、前記エアロゾル源を霧化することができる温度以上まで前記負荷が昇温した後の冷却過程を監視するステップとを含み、前記負荷の温度と電気抵抗の値又は電気抵抗に関連する電気的な値とが乖離しないタイミング、又は、前記冷却過程における前記負荷の冷却を妨げない頻度で、前記冷却過程の監視中、前記値が検出される、方法が提供される。
 また、本開示の第1の実施形態によれば、エアロゾル源を貯留する貯留部又は前記エアロゾル源を保持するエアロゾル基材と、前記電源からの給電による発熱で前記エアロゾル源を霧化し、且つ温度に応じて電気抵抗値が変化する負荷と、前記負荷の電気抵抗の値又は電気抵抗に関連する電気的な値を検出するセンサと、前記センサにより検出される値の時系列的な変化に基づき、前記エアロゾル源を霧化することができる温度以上まで前記負荷が昇温した後の冷却過程を監視するよう構成される制御部と、を含む、エアロゾル生成装置が提供される。前記制御部は、前記冷却過程のうち、前記負荷の冷却開始時又は冷却開始直後よりも後、かつ前記負荷が室温に至るよりも前の、前記センサにより検出される値の時系列的な変化に基づき、前記貯留部における前記エアロゾル源の枯渇の発生を判断するよう構成される。
 一実施形態において、前記制御部は、前記センサにより検出される値又は該値の時系列的な変化に基づき、前記センサにより検出される値が定常状態に至ったかを判断し、前記センサにより検出される値が定常状態に至るまでの前記冷却過程に基づき、前記枯渇の発生を判断するよう構成される。
 また、本開示の第1の実施形態によれば、エアロゾル生成装置を動作させる方法であって、温度に応じて電気抵抗値が変化する負荷への給電による発熱によってエアロゾル源を霧化するステップと、前記負荷の電気抵抗の値又は電気抵抗に関連する電気的な値を検出するステップと、前記検出される値の時系列的な変化に基づき、前記エアロゾル源を霧化することができる温度以上まで前記負荷が昇温した後の冷却過程を監視するステップとを含む、方法が提供される。前記冷却過程のうち、前記負荷の冷却開始時又は冷却開始直後よりも後、かつ前記負荷が室温に至るよりも前の、前記検出される値の時系列的な変化に基づき、前記エアロゾル源の枯渇の発生が判断される。
 また、本開示の第1の実施形態によれば、プロセッサにより実行されると、前記プロセッサに、上述の方法のいずれかを実行させる、プログラムが提供される。
 上述した第2の課題を解決するため、本開示の第2の実施形態によれば、エアロゾル源を貯留する貯留部又は前記エアロゾル源を保持するエアロゾル基材と、電源からの給電による発熱で前記エアロゾル源を霧化する負荷と、前記負荷の温度に関連する値を出力するセンサと、前記エアロゾル源を霧化することができる温度以上まで前記負荷が昇温した後の冷却過程における、前記センサの出力値から導出される冷却速度に基づき、前記貯留部又は前記エアロゾル基材における前記エアロゾル源の枯渇の発生を判断するよう構成される制御部と、を含む、エアロゾル生成装置が提供される。
 一実施形態において、前記制御部は、前記冷却過程のうち、前記エアロゾル源の枯渇が発生するときの前記冷却速度と該枯渇が発生しないときの前記冷却速度との間の差が閾値以上である時間帯における前記冷却速度に基づき、前記枯渇の発生を判断するよう構成される。
 一実施形態において、前記制御部は、前記冷却過程のうち、前記枯渇が発生する時のみ到達可能な温度域に前記負荷の温度が属する時間帯における前記冷却速度に基づき、前記枯渇の発生を判断するよう構成される。
 一実施形態において、前記制御部は、前記センサの複数の出力値から前記冷却速度を導出し、前記センサの複数の出力値のうち少なくとも時間軸で最先の値を、前記冷却過程のうち、前記枯渇が発生する時のみ到達可能な温度域に前記負荷の温度が属する時間帯において取得するよう構成される。
 一実施形態において、前記制御部は、前記センサの複数の出力値を、前記冷却過程のうち、前記枯渇が発生する時のみ到達可能な温度域に前記負荷の温度が属する時間帯で取得するよう構成される。
 一実施形態において、前記負荷は、温度に応じて電気抵抗値が変化し、前記センサは、前記負荷の温度に関連する値として、電気抵抗値に関する値を出力する。
 一実施形態において、前記制御部は、前記冷却過程の開始時又は開始直後に前記電気抵抗値に関する値が前記センサによって取得されないか又は前記冷却速度が導出されない不感帯を設けるように構成される。あるいは、前記制御部は、前記センサの出力値の時系列的な変化が平滑化されるように補正された、前記冷却過程の開始時又は開始直後の前記センサの出力値に基づき前記冷却速度を導出するよう構成される。
 一実施形態において、前記制御部は、前記冷却過程の前に前記電源から前記負荷へ給電される電力が段階的に減少又は漸減するように、前記電源から前記負荷への給電を制御するよう構成される。
 一実施形態において、前記制御部は、エアロゾル生成に対する要求に基づき、前記電源から前記負荷への給電を制御するよう構成される。前記不感帯は、前記給電の終了時に生じる残留電流とサージ電流のうち少なくとも一方の電流値が閾値以下になるまで続くように設けられる。
 一実施形態において、前記不感帯は、前記枯渇が発生していない場合に前記冷却過程が完了する長さより短い。
 一実施形態において、エアロゾル生成装置は、さらに、前記電源と前記負荷の間に直列接続され、第1開閉器を有する第1回路と、前記電源と前記負荷の間に直列接続され、前記第1回路と並列に接続され,第2開閉器を有し,前記第1回路より電気抵抗値が大きい第2回路と、を含む。前記制御部は、前記第1開閉器と前記第2開閉器を制御し、前記第1開閉器と前記第2開閉器のうち、前記第2開閉器のみをオンしている間の前記センサの出力値に基づき、前記冷却速度を導出するよう構成される。
 一実施形態において、前記制御部は、前記冷却過程の直前に前記第2開閉器をオンするよう構成される。
 一実施形態において、前記給電の終了から前記センサによる前記電気抵抗値に関する値の取得の開始までの時間と、前記センサが前記電気抵抗値に関する値を取得する周期とのうち少なくとも一方が、前記制御部が達成可能な最小値より大きい。
 また、本開示の第2の実施形態によれば、エアロゾル生成装置を動作させる方法であって、負荷への給電による発熱によってエアロゾル源を霧化するステップと、前記負荷の温度に関連する値を検出するステップと、前記エアロゾル源を霧化することができる温度以上まで前記負荷が昇温した後の冷却過程における、前記検出された値から導出される冷却速度に基づき、前記エアロゾル源の枯渇の発生を判断するステップと、を含む、方法が提供される。
 また、本開示の第2の実施形態によれば、プロセッサにより実行されると前記プロセッサに上述の方法を実行させる、プログラムが提供される。
 上述した第3の課題を解決するため、本開示の第3の実施形態によれば、エアロゾル源を貯留する貯留部又は前記エアロゾル源を保持するエアロゾル基材と、電源からの給電による発熱で前記エアロゾル源を霧化し、且つ、前記貯留部又は前記エアロゾル基材における前記エアロゾル源の枯渇が発生する時のみ到達可能な温度で加熱されると物性が変化する負荷と、前記負荷の物性に関連する値を出力するセンサと、前記エアロゾル源を霧化することができる温度以上まで前記負荷が昇温した後の前記センサの出力値に基づき、前記枯渇の発生を判断するよう構成される制御部と、を含む、エアロゾル生成装置が提供される。
 一実施形態において、前記制御部は、前記エアロゾル源を霧化することができる温度以上まで前記負荷が昇温した後の定常状態における前記センサの出力値である定常値に基づき、前記枯渇の発生を判断するよう構成される。
 一実施形態において、前記制御部は、エアロゾル生成に対する要求を取得可能であり、且つ前記要求の取得を契機に前記定常値を取得するよう構成される。
 一実施形態において、前記制御部は、前記エアロゾル源を霧化することができる温度以上まで前記負荷を昇温させる前後における前記センサの出力値の変化量に基づき、前記枯渇の発生を判断するよう構成される。
 一実施形態において、前記制御部は、前記エアロゾル源を霧化することができる温度以上まで前記負荷を昇温させる前後の定常状態における前記センサの出力値の差に基づき、前記枯渇の発生を判断するよう構成される。
 一実施形態において、前記制御部は、前記エアロゾル源を霧化することができる温度以上まで前記負荷が昇温した後、前記センサの出力値が定常状態に至るまで、前記負荷による前記エアロゾル源の霧化を禁止するよう構成される。
 一実施形態において、前記制御部は、前記エアロゾル源を霧化することができる温度以上まで前記負荷が昇温した後の冷却過程において、定常状態に至る前の前記センサの出力値と、前記枯渇が発生した場合の定常状態における前記負荷の物性に関連する値に既定値を加えた値との比較に基づき、又は、定常状態に至る前の前記センサの出力値に既定値を減じた値と、前記枯渇が発生した場合の定常状態における前記負荷の物性に関連する値との比較に基づき、前記枯渇の発生を判断するよう構成される。
 一実施形態において、前記負荷は、温度に応じて電気抵抗値が変化する。前記センサは、前記負荷の物性に関連する値として、前記負荷の電気抵抗値に関する値を出力する。
 一実施形態において、前記制御部は、前記エアロゾル源を霧化することができる温度以上まで前記負荷が昇温した後の前記センサの出力値と、前記負荷の表面に保護膜が形成された場合の前記負荷の抵抗値に関連する値との比較に基づき、前記枯渇の発生を判断するよう構成される。
 一実施形態において、前記制御部は、前記エアロゾル源を霧化することができる温度以上まで前記負荷を昇温させる前後における前記センサの出力値の変化量と、前記負荷の表面における保護膜の形成による前記負荷の抵抗値に関連する値の変化量との比較に基づき、前記枯渇の発生を判断するよう構成される。
 一実施形態において、前記負荷は、銅の酸化還元電位以下の酸化還元電位を持つ金属を含む。
 一実施形態において、前記負荷は、不動態被膜を有さない。
 一実施形態において、前記負荷は、NiCrを含む。
 一実施形態において、エアロゾル生成装置は、さらに、前記電源と前記負荷の間に直列接続され、第1開閉器を有する第1回路と、前記電源と前記負荷の間に直列接続され、前記第1回路と並列に接続され,第2開閉器を有し,前記第1回路より電気抵抗値が大きい第2回路と、を含む。前記制御部は、前記第1開閉器と前記第2開閉器を制御し、前記第1開閉器と前記第2開閉器のうち、前記第2開閉器のみをオンしている間の前記センサの出力値に基づき、前記枯渇の発生を判断するよう構成される。
 また、本開示の第3の実施形態によれば、エアロゾル源の枯渇が発生する時のみ到達可能な温度で加熱されると物性が変化する負荷を含むエアロゾル生成装置を動作させる方法であって、前記負荷の物性に関連する値を検出するステップと、前記エアロゾル源を霧化することができる温度以上まで前記負荷が昇温した後の前記検出された値に基づき、前記エアロゾル源の枯渇の発生を判断するステップと、を含む、方法が提供される。
 また、本開示の第3の実施形態によれば、プロセッサにより実行されると、前記プロセッサに上述の方法を実行させる、プログラムが提供される。
 本開示の第1の実施形態によれば、低コスト且つ高精度でヒータの冷却過程を観測することができ、さらには低コスト且つ高精度でエアロゾル源の不足や枯渇を検知することができる、エアロゾル生成装置並びにそれを動作させる方法及びプログラムを提供することができる。
 本開示の第2の実施形態によれば、低コスト且つ高精度でエアロゾル源の不足や枯渇を検知することができる、エアロゾル生成装置並びにそれを動作させる方法及びプログラムを提供することができる。
 本開示の第3の実施形態によれば、低コスト且つ高精度でエアロゾル源の不足や枯渇を検知することができる、エアロゾル生成装置並びにそれを動作させる方法及びプログラムを提供することができる。
本開示の一実施形態によるエアロゾル生成装置の構成の概略的なブロック図である。 本開示の一実施形態によるエアロゾル生成装置の構成の概略的なブロック図である。 本開示の一実施形態による、エアロゾル生成装置の一部に関する例示的な回路構成を示す図である。 貯留部又はエアロゾル基材内のエアロゾル源が十分にあるとき及びエアロゾル源が枯渇しているときのそれぞれについて、負荷への給電が停止した後の負荷の冷却過程を概略的に示す。 本開示の一実施形態による、負荷の冷却過程を監視し、エアロゾル源が枯渇しているか否かを判定するための処理のフローチャートである。 サージ電流の発生により、計測される負荷の抵抗値が大きく変動し得ることを示す。 本開示の一実施形態による処理を示すフローチャートである。 サージ電流の発生が及ぼす影響を軽減するための本開示の実施形態を概念的に示す。 図7に関連する本開示の一実施形態による処理のフローチャートである。 サージ電流の発生が及ぼす影響を軽減するための本開示の一実施形態を概念的に示す。 図9に関連する本開示の一実施形態による処理のフローチャートである。 本開示の一実施形態による、負荷の冷却過程を監視するための値の計測タイミングを概念的に示す。 本開示の一実施形態による、負荷の冷却過程を監視するための値の計測タイミングを概念的に示す。 図12に関連する本開示の一実施形態による処理のフローチャートである。 本開示の一実施形態による、負荷の冷却過程を監視するための値の計測タイミングを概念的に示す。 図14に関連する本開示の一実施形態による処理のフローチャートである。 本開示の一実施形態による、負荷への給電及び給電停止後の負荷の冷却過程を概略的に示す。 図16に関連する本開示の一実施形態による処理のフローチャートである。 本開示の一実施形態による負荷の冷却過程の監視方法を概念的に示す。 図18に関連する本開示の一実施形態による処理のフローチャートである。 本開示の一実施形態による負荷の冷却過程の監視方法を概念的に示す。 図20に関連する本開示の一実施形態による処理のフローチャートである。 図20に関連する本開示の一実施形態による処理のフローチャートである。 エアロゾル生成装置において負荷への給電を停止した後の負荷の冷却過程を概略的に示すグラフである。 実際の負荷の冷却速度を示す図である。 負荷の冷却速度を計測するのに適したタイミングについて説明する図である。 本開示の一実施形態による、エアロゾル源の枯渇を検知する処理のフローチャートである。 本開示の一実施形態による、エアロゾル源の枯渇を検知する処理のフローチャートである。 本開示の一実施形態による、エアロゾル生成装置が備える回路を概略的に示す。 本開示の一実施形態によるエアロゾル源の枯渇の発生を判断する手法を概念的に示す。 図29に関連する、本開示の一実施形態による処理のフローチャートである。 負荷の製造に用いることができる様々な金属の酸化還元電位及び酸化被膜の形成され易さを示す表である。 本開示の一実施形態によるエアロゾル源の枯渇の発生を判断する手法を概念的に示す。 図32に関連する、本開示の一実施形態による処理のフローチャートである。 本開示の一実施形態によるエアロゾル源の枯渇の発生を判断する手法を概念的に示す。 図32に関連する、本開示の一実施形態による処理のフローチャートである。
 以下、図面を参照しながら本開示の実施形態について詳しく説明する。なお、本開示の実施形態は、電子たばこ,加熱式たばこ及びネブライザーを含むが、これらに限定されない。本開示の実施形態は、ユーザが吸引するエアロゾルを生成するための様々なエアロゾル生成装置を含み得る。
 図1Aは、本開示の一実施形態に係るエアロゾル生成装置100Aの構成の概略的なブロック図である。図1Aは、エアロゾル生成装置100Aが備える各コンポーネントを概略的且つ概念的に示すものであり、各コンポーネント及びエアロゾル生成装置100Aの厳密な配置、形状、寸法、位置関係等を示すものではないことに留意されたい。
 図1Aに示されるように、エアロゾル生成装置100Aは、第1の部材102(以下、「本体102」と呼ぶ)及び第2の部材104A(以下、「カートリッジ104A」と呼ぶ)を備える。図示されるように、一例として、本体102は、制御部106、通知部108、電源110、センサ112及びメモリ114を含んでもよい。エアロゾル生成装置100Aは、流量センサ、圧力センサ、電圧センサ、電気抵抗センサ、温度センサなどのセンサを有してもよく、本開示においてはこれらをまとめて「センサ112」とも呼ぶ。本体102はまた、後述する回路134を含んでもよい。一例として、カートリッジ104Aは、貯留部116A、霧化部118A、空気取込流路120、エアロゾル流路121、吸口部122、保持部130及び負荷132を含んでもよい。本体102内に含まれるコンポーネントの一部がカートリッジ104A内に含まれてもよい。カートリッジ104A内に含まれるコンポーネントの一部が本体102内に含まれてもよい。カートリッジ104Aは、本体102に対して着脱可能に構成されてもよい。あるいは、本体102及びカートリッジ104A内に含まれるすべてのコンポーネントが、本体102及びカートリッジ104Aに代えて、同一の筐体内に含まれてもよい。
 貯留部116Aは、エアロゾル源を収容するタンクとして構成されてもよい。この場合、エアロゾル源は、例えば、グリセリンやプロピレングリコールといった多価アルコール、水などの液体である。エアロゾル生成装置100Aが電子たばこである場合、貯留部116A内のエアロゾル源は、加熱することによって香喫味成分を放出するたばこ原料やたばこ原料由来の抽出物を含んでいてもよい。保持部130は、エアロゾル源を保持する。例えば、保持部130は、繊維状又は多孔質性の素材から構成され、繊維間の隙間や多孔質材料の細孔に液体としてのエアロゾル源を保持する。前述した繊維状又は多孔質性の素材には、例えばコットンやガラス繊維、またはたばこ原料などを用いることができる。エアロゾル生成装置100Aがネブライザー等の医療用吸入器である場合、エアロゾル源はまた、患者が吸入するための薬剤を含んでもよい。別の例として、貯留部116Aは、消費されたエアロゾル源を補充することができる構成を有してもよい。あるいは、貯留部116Aは、エアロゾル源が消費された際に貯留部116A自体を交換することができるように構成されてもよい。また、エアロゾル源は液体に限られるものではなく、固体でも良い。エアロゾル源が固体の場合の貯留部116Aは、空洞の容器であっても良い。
 霧化部118Aは、エアロゾル源を霧化してエアロゾルを生成するように構成される。センサ112によって吸引動作が検知されると、霧化部118Aはエアロゾルを生成する。例えば、吸引動作は、流量センサや流速センサによって検知されてもよい。この場合は、ユーザが吸口部122を咥えて吸引することで生じる空気取込流路120内の空気の流量や流速の絶対値や変化量が既定の条件を満たせば、流量センサや流速センサは吸引動作を検知してもよい。また例えば、吸引動作は、圧力センサによって検知されてもよい。この場合は、ユーザが吸口部112を咥えて吸引することで空気取込流路120内が負圧になるなどの既定の条件が満たされれば、圧力センサは吸引動作を検知してもよい。なお、流量センサ、流速センサ及び圧力センサはそれぞれ空気取込流路120内の流量、流速及び圧力を出力するのみで、その出力に基づいて制御部106が吸引動作を検知してもよい。
 また例えば、押しボタンやタッチパネル、または加速度センサなどを用いることで、吸引動作を検知することなく、または吸引動作の検知を待たずに、霧化部118Aはエアロゾルを生成してもよく、または霧化部118Aは電源110からの給電を受けてもよい。このような構成とすることで、例えば霧化部118Aを構成する保持部130や負荷132、またはエアロゾル源そのものの熱容量が大きい場合であっても、実際にユーザがエアロゾルを吸引するタイミングにおいて、霧化部118Aは適切にエアロゾルを生成できる。なお、センサ112は押しボタンやタッチパネルに対する操作を検知するセンサや、加速度センサを含んでいてもよい。
 例えば、保持部130は、貯留部116Aと霧化部118Aとを連結するように設けられる。この場合、保持部130の一部は貯留部116Aの内部に通じ、エアロゾル源と接触する。保持部130の他の一部は霧化部118Aへ延びる。なお、霧化部118Aへ延びた保持部130の他の一部は、霧化部118Aに収められてもよく、あるいは、霧化部118Aを通って再び貯留部116Aの内部に通じてもよい。エアロゾル源は、保持部130の毛細管効果によって貯留部116Aから霧化部118Aへと運ばれる。一例として、霧化部118Aは、電源110に電気的に接続された負荷132を含むヒータを備える。ヒータは、保持部130と接触又は近接するように配置される。吸引動作が検知されると、制御部106は、霧化部118Aのヒータ又は当該ヒータへの給電を制御し、保持部130を通じて運ばれたエアロゾル源を加熱することによって当該エアロゾル源を霧化する。霧化部118Aの別の例は、エアロゾル源を超音波振動によって霧化する超音波式霧化器であってもよい。霧化部118Aには空気取込流路120が接続され、空気取込流路120はエアロゾル生成装置100Aの外部へ通じている。霧化部118Aにおいて生成されたエアロゾルは、空気取込流路120を介して取り込まれた空気と混合される。エアロゾルと空気の混合流体は、矢印124で示されるように、エアロゾル流路121へと送り出される。エアロゾル流路121は、霧化部118Aにおいて生成されたエアロゾルと空気との混合流体を吸口部122まで輸送するための管状構造を有する。
 吸口部122は、エアロゾル流路121の終端に位置し、エアロゾル流路121をエアロゾル生成装置100Aの外部に対して開放するように構成される。ユーザは、吸口部122を咥えて吸引することにより、エアロゾルを含んだ空気を口腔内へ取り込む。
 通知部108は、LEDなどの発光素子、ディスプレイ、スピーカ、バイブレータなどを含んでもよい。通知部108は、必要に応じて、発光、表示、発声、振動などによって、ユーザに対して何らかの通知を行うように構成される。
 電源110は、通知部108、センサ112、メモリ114、負荷132、回路134などのエアロゾル生成装置100Aの各コンポーネントに電力を供給する。電源110は、エアロゾル生成装置100Aの所定のポート(図示せず)を介して外部電源に接続することにより充電することができてもよい。電源110のみを本体102又はエアロゾル生成装置100Aから取り外すことができてもよく、新しい電源110と交換することができてもよい。また、本体102全体を新しい本体102と交換することによって電源110を新しい電源110と交換することができてもよい。
 センサ112は、回路134の全体又は特定の部分に印加される電圧の値、負荷132の抵抗値に関する値又は温度に関する値などを取得するために用いられる1つ又は複数のセンサを含んでもよい。センサ112は回路134に組み込まれてもよい。センサ112の機能が制御部106に組み込まれてもよい。センサ112はまた、空気取込流路120及び/又はエアロゾル流路121内の圧力の変動を検知する圧力センサ又は流量を検知する流量センサを含んでもよい。センサ112はまた、貯留部116Aなどのコンポーネントの重量を検知する重量センサを含んでもよい。センサ112はまた、エアロゾル生成装置100Aを用いたユーザによるパフの回数を計数するように構成されてもよい。センサ112はまた、霧化部118Aへの通電時間を積算するように構成されてもよい。センサ112はまた、貯留部116A内の液面の高さを検知するように構成されてもよい。制御部106及びセンサ112はまた、電源110のSOC(State of Charge,充電状態)、電流積算値、電圧などを求める又は検知するように構成されてもよい。SOCは、電流積算法(クーロン・カウンティング法)やSOC-OCV(Open Circuit Voltage,開回路電圧)法等によって求められてもよい。センサ112はまた、ユーザが操作可能な操作ボタンなどであってもよい。
 制御部106は、マイクロプロセッサ又はマイクロコンピュータとして構成された電子回路モジュールであってもよい。制御部106は、メモリ114に格納されたコンピュータ実行可能命令に従ってエアロゾル生成装置100Aの動作を制御するように構成されてもよい。メモリ114は、ROM、RAM、フラッシュメモリなどの記憶媒体である。メモリ114には、上記のようなコンピュータ実行可能命令のほか、エアロゾル生成装置100Aの制御に必要な設定データ等が格納されてもよい。例えば、メモリ114は、通知部108の制御プログラム(発光、発声、振動等の態様等)、霧化部118Aの制御プログラム、センサ112により取得及び/又は検知された値、霧化部118Aの加熱履歴等の様々なデータを格納してもよい。制御部106は、必要に応じてメモリ114からデータを読み出してエアロゾル生成装置100Aの制御に利用し、必要に応じてデータをメモリ114に格納する。
 図1Bは、本開示の一実施形態に係るエアロゾル生成装置100Bの構成の概略的なブロック図である。
 図示されるように、エアロゾル生成装置100Bは、図1Aのエアロゾル生成装置100Aと類似した構成を有する。但し、第2の部材104B(以下、「エアロゾル発生物品104B」又は「スティック104B」と呼ぶ)の構成は第1の部材104Aの構成とは異なっている。一例として、エアロゾル発生物品104Bは、エアロゾル基材116B、霧化部118B、空気取込流路120、エアロゾル流路121、吸口部122を含んでもよい。本体102内に含まれるコンポーネントの一部がエアロゾル発生物品104B内に含まれてもよい。エアロゾル発生物品104B内に含まれるコンポーネントの一部が本体102内に含まれてもよい。エアロゾル発生物品104Bは、本体102に対して挿抜可能に構成されてもよい。あるいは、本体102及びエアロゾル発生物品104B内に含まれるすべてのコンポーネントが、本体102及びエアロゾル発生物品104Bに代えて、同一の筐体内に含まれてもよい。
 エアロゾル基材116Bは、エアロゾル源を担持する固体として構成されてもよい。図1Aの貯留部116Aの場合と同様に、エアロゾル源は、例えば、グリセリンやプロピレングリコールといった多価アルコール、水などの液体であってもよい。エアロゾル基材116B内のエアロゾル源は、加熱することによって香喫味成分を放出するたばこ原料やたばこ原料由来の抽出物を含んでいてもよい。エアロゾル生成装置100Aがネブライザー等の医療用吸入器である場合、エアロゾル源はまた、患者が吸入するための薬剤を含んでもよい。エアロゾル基材116Bは、エアロゾル源が消費された際にエアロゾル基材116B自体を交換することができるように構成されてもよい。エアロゾル源は液体に限られるものではなく、固体でも良い。
 霧化部118Bは、エアロゾル源を霧化してエアロゾルを生成するように構成される。センサ112によって吸引動作が検知されると、霧化部118Bはエアロゾルを生成する。霧化部118Bは、電源110に電気的に接続された負荷を含むヒータ(図示せず)を備える。吸引動作が検知されると、制御部106は、霧化部118Bのヒータ又は当該ヒータへの給電を制御し、エアロゾル基材116B内に担持されたエアロゾル源を加熱することによって当該エアロゾル源を霧化する。霧化部118Bの別の例は、エアロゾル源を超音波振動によって霧化する超音波式霧化器であってもよい。霧化部118Bには空気取込流路120が接続され、空気取込流路120はエアロゾル生成装置100Bの外部へ通じている。霧化部118Bにおいて生成されたエアロゾルは、空気取込流路120を介して取り込まれた空気と混合される。エアロゾルと空気の混合流体は、矢印124で示されるように、エアロゾル流路121へと送り出される。エアロゾル流路121は、霧化部118Bにおいて生成されたエアロゾルと空気との混合流体を吸口部122まで輸送するための管状構造を有する。なお、エアロゾル生成装置100Bにおいては、エアロゾル発生物品104Bは、その内部に位置する又はその内部に挿入される霧化部118Bによって、その内部から加熱されるよう構成されている。これに代えて、エアロゾル発生物品104Bは、自身を包囲又は収納するように構成した霧化部118Bによって、その外部から加熱されるよう構成されていてもよい。
 制御部106は、本開示の実施形態に係るエアロゾル生成装置100A及び100B(以下、まとめて「エアロゾル生成装置100」とも呼ぶ)を様々な方法で制御するように構成される。
 エアロゾル生成装置においてエアロゾル源が不足しているときにユーザが吸引を行うと、ユーザに対して十分なエアロゾルを供給できない。加えて、電子たばこや加熱式たばこの場合、意図しない香喫味を有するエアロゾルが放出され得る(このような現象を「意図しない挙動」とも呼ぶ)。本願発明者らは、エアロゾル源が枯渇又は不足するときに適切な制御を実行するエアロゾル生成装置並びにそれを動作させる方法及びプログラムを発明した。以下では、主として、エアロゾル生成装置が図1Aに示す構成を有する場合を想定して、本開示の各実施形態について詳しく説明する。但し、必要に応じて、エアロゾル生成装置が図1Bに示す構成を有する場合についても併せて説明する。エアロゾル生成装置が図1A及び図1Bの構成以外の様々な構成を有する場合にも本開示の実施形態を適用できることは当業者にとって明らかであろう。
<第1の実施形態>
 図2は、本開示の第1の実施形態による、エアロゾル生成装置100Aの一部に関する例示的な回路構成を示す図である。
 図2に示す回路200は、電源110、制御部106、センサ112A乃至D(以下、まとめて「センサ112」とも呼ぶ)、負荷132(以下、「ヒータ抵抗」とも呼ぶ)、第1回路202、第2回路204、第1電界効果トランジスタ(FET,Field Emission Transistor)206を含むスイッチQ1、変換部208、第2FET210を含むスイッチQ2、抵抗212(以下、「シャント抵抗」とも呼ぶ)を備える。なお、センサ112は、制御部106や変換部208などの他の構成要素に内蔵されていてもよい。例えばPTC(Positive Temperature Coefficient,正の温度係数特性)ヒータやNTC(Negative Temperature Coefficient,負の温度係数特性)ヒータを用いることで、負荷132の電気抵抗値は温度に応じて変化する。シャント抵抗212は、負荷132と直列に接続され、既知の電気抵抗値を有する。シャント抵抗212の電気抵抗値は温度に対して実質的に不変であってもよい。シャント抵抗212は負荷132より大きな電気抵抗値を有する。実施形態に応じて、センサ112C、112Dは省略されてもよい。FETだけでなく、iGBT、コンタクタなどの様々な素子をスイッチQ1及びQ2として用いることができることは当業者にとって明らかであろう。
 変換部208は、例えばスイッチング・コンバータであり、FET214、ダイオード216、インダクタンス218及びキャパシタ220を含み得る。変換部208が電源110の出力電圧を変換して、変換された出力電圧が回路全体に印加されるように、制御部106は変換部208を制御してもよい。また、図2に示した降圧型のスイッチング・コンバータに代えて、昇圧型のスイッチング・コンバータや昇降圧型のスイッチング・コンバータ、又はLDO(Linear DropOut)レギュレータなどを用いてもよい。なお、変換部208は必須のコンポーネントではなく、省略することも可能である。さらに、制御部106とは別体の不図示の制御部が、変換部208を制御するように構成されていてもよい。この不図示の制御部は、変換部208に内蔵されていてもよい。
 図1Aに示される回路134は、電源110と負荷132とを電気的に接続し、第1回路202及び第2回路204を含み得る。第1回路202及び第2回路204は、電源110及び負荷132に対して並列接続される。第1回路202はスイッチQ1を含み得る。第2回路204はスイッチQ2及び抵抗212(及び、オプションとして、センサ112D)を含み得る。第1回路202は第2回路204よりも小さい抵抗値を有してもよい。この例において、センサ112B及び112Dは電圧センサであり、それぞれ、負荷132及び抵抗212の両端の電圧値を検知するように構成される。しかし、センサ112の構成はこれに限定されない。例えば、センサ112は既知抵抗を用いた又はホール素子を用いた電流センサであってもよく、負荷132及び/又は抵抗212を流れる電流の値を検知してもよい。
 図2において点線矢印で示すように、制御部106は、スイッチQ1、スイッチQ2等を制御することができ、センサ112により検知された値を取得することができる。制御部106は、スイッチQ1をオフ状態からオン状態に切り替えることにより第1回路202を機能させ、スイッチQ2をオフ状態からオン状態に切り替えることにより第2回路204を機能させるように構成されてもよい。制御部106は、スイッチQ1及びQ2を交互に切り替えることにより、第1回路202及び第2回路204を交互に機能させるように構成されてもよい。
 第1回路202はエアロゾル源の霧化に用いられる。スイッチQ1がオン状態に切り替えられて第1回路202が機能するとき、ヒータ(すなわち、ヒータ内の負荷132)に電力が供給され、負荷132は加熱される。負荷132の加熱により、霧化部118A内の保持部130に保持されているエアロゾル源(図1Bのエアロゾル生成装置100Bの場合、エアロゾル基材116Bに担持されたエアロゾル源)が霧化されてエアロゾルが生成される。
 第2回路204は、負荷132に印加される電圧の値、負荷132の抵抗値に関連する値、負荷132の温度に関連する値、抵抗212に印加される電圧の値等を取得するために用いられる。一例として、図2に示すように、センサ112B及び112Dが電圧センサである場合を考える。スイッチQ2がオンであり第2回路204が機能しているとき、電流はスイッチQ2、抵抗212及び負荷132を流れる。センサ112B及び112Dにより、それぞれ、負荷132に印加される電圧の値及び/又は抵抗212に印加される電圧の値が得られる。また、センサ112Dにより取得された抵抗212に印加される電圧の値と、抵抗212の既知の抵抗値Rshuntとを用いて、負荷132を流れる電流の値を求めることができる。変換部208の出力電圧Voutと当該電流値とに基づいて、抵抗212及び負荷132の抵抗値の合計値を求めることができるので、当該合計値から既知の抵抗値Rshuntを差し引くことにより、負荷132の抵抗値RHTRを求めることができる。負荷132が温度に応じて抵抗値が変わる正又は負の温度係数特性を有している場合、予め知られている負荷132の抵抗値と温度との間の関係と、上述のようにして求められたと負荷132の抵抗値RHTRとに基づいて、負荷132の温度を推定することができる。負荷132を流れる電流の値に代えて、抵抗212を流れる電流の値を用いても負荷132の抵抗値や温度を推定できることが当業者に理解されよう。この例における負荷132の抵抗値に関連する値は、負荷132の電圧値、電流値等を含み得る。センサ112B及び112Dの具体例は電圧センサに限定されず、電流センサ(例えば、ホール素子)などの他の素子を含み得る。
 センサ112Aは、電源110の放電時又は無負荷時における出力電圧を検知する。センサ112Cは、変換部208の出力電圧を検知する。あるいは、変換部208の出力電圧は、予め定められた目標電圧であってもよい。これらの電圧は、回路全体に印加される電圧である。
 負荷132の温度がTHTRであるときの負荷132の抵抗値RHTRは、以下のように表すことができる。
 RHTR(THTR)=(VHTR×Rshunt)/(VBatt-VHTR
 ここで、VBattは回路全体に印加される電圧である。変換部208を用いない場合、VBattは電源110の出力電圧である。変換部208を用いる場合、VBattは変換部208の目標電圧に該当する。VHTRはヒータに印加される電圧である。VHTRに代えて、シャント抵抗212に印加される電圧を用いてもよい。
 図3は、貯留部116A(又は、エアロゾル基材116B)内のエアロゾル源が十分にあるとき及びエアロゾル源が枯渇しているときのそれぞれについて、スイッチQ1がオフにされて負荷132(ヒータ)への給電が停止した後の負荷132の冷却過程を概略的に示す。横軸は時間を示し、縦軸は負荷132の温度を示す。
 曲線302は、エアロゾル源が十分にあるときの負荷132の冷却曲線を示す。エアロゾル源が十分にある限り、負荷132の温度は、電源110から負荷132に給電を継続しても、ある温度(以下、「正常時に到達するエアロゾル源の最高温度」や「エアロゾル生成温度」とも呼ぶ)付近で収束する。つまり、負荷132への給電が停止されたときの負荷132の温度は、正常時に到達するエアロゾル源の最高温度である。これは、負荷132およびエアロゾル源の昇温に用いられていた熱エネルギーが、エアロゾル源の蒸発(相転移)に用いられるために生じる現象である。エアロゾル源が単一溶媒から構成される場合、正常時に到達するエアロゾル源の最高温度は、当該溶媒の沸点と一致する。一方、エアロゾル源が混合溶媒から構成される場合、正常時に到達するエアロゾル源の最高温度は、混合溶媒を構成する各種溶媒の組成とそのモル比に応じて変化する。混合溶媒における正常時に到達するエアロゾル源の最高温度は、実験によって求めてもよいし、ラウールの法則などを用いて解析的に求めてもよい。一例として、図3に示すように、スイッチQ1がオフにされて負荷132への給電が停止されたときの負荷132の温度は約200℃である。負荷132の温度は曲線302で示すように時間の経過とともに低下し、室温(ここでは、25℃)に達する。
 曲線304は、エアロゾル源が枯渇している(又は、不足している)ときの負荷132の冷却曲線を示す。エアロゾル源が枯渇しているので、負荷132への給電が停止されたとき、負荷132の温度がエアロゾル生成温度よりも高いため、負荷132は過熱状態にある。一例として、図3に示すように、負荷132の温度は350℃に達し得る。給電が停止すると、負荷132の温度は曲線304で示すように時間の経過とともに低下し、やがて室温に達する。
 RHTR(t=0)は、負荷132への給電が停止されたときの負荷132の電気抵抗値を示す。RHTR(THTR=R.T.)は、負荷132の温度が室温に達したときの負荷132の電気抵抗値を示す。
 図3に示すように、エアロゾル源が枯渇しているときに負荷132の温度が室温まで低下するのに要する時間は、エアロゾル源が十分にあるときに負荷132の温度が室温まで低下するのに要する時間よりも長い。負荷132は主に空冷効果によって冷却されるところ、エアロゾル源が枯渇しているときは、エアロゾル源が十分にあるときに比べてスイッチQ1がオフにされて負荷132への給電が停止されたときの負荷132の温度が高いためである。なお、エアロゾル源が十分にあるとき、負荷132は、負荷132より低温なエアロゾル源や貯留部116Aから新たに供給されるエアロゾル源によっても冷却され得るため、エアロゾル源が枯渇しているときと十分にあるときで、負荷132の温度が室温まで低下するのに要する時間に違いが生じやすい。
 図4は、本開示の一実施形態による、負荷132の冷却過程を監視し、エアロゾル源が枯渇しているか否かを判定するための処理のフローチャートである。ここでは、制御部106がすべてのステップを実行するものとして説明を行う。しかし、一部のステップがエアロゾル生成装置100の別のコンポーネントによって実行されてもよいことに留意されたい。
 図4の処理の前まで、ユーザによるエアロゾル生成要求が継続している。処理はステップ402において開始し、制御部106は、エアロゾル生成要求が終わったか否かを判定する。一例として、制御部106は、圧力センサの出力等に基づいて、ユーザによる吸引が終わったか否かを判定してもよい。別の例において、制御部106は、負荷132への給電を行うためにエアロゾル生成装置100に備え付けられているボタンが押されなくなったか否かに基づいて、エアロゾル生成要求が終わったか否かを判定してもよい。また別の例において、制御部106は、負荷132への給電を行うためにエアロゾル生成装置100に備え付けられているボタンの押下などのユーザ・インターフェースに対する操作を検知してから、所定時間が経過したか否かに基づいて、エアロゾル生成要求が終わったか否かを判定してもよい。
 エアロゾル生成要求が続いている場合(ステップ402の「N」)、処理はステップ402の前に戻る。エアロゾル生成要求が終わると(ステップ402の「Y」)、処理はステップ404に進む。ステップ404において、制御部106は、スイッチQ1をオフにし、負荷132への給電を停止する。
 処理はステップ406に進み、制御部106はタイマを起動する。制御部106は、タイマの値を初期値t=0に設定してもよい。
 処理はステップ408に進み、制御部106は時間が所定の値Δtだけ進むのを待つ。また別の例として、後述するステップ416からステップ408に戻ってきた場合、制御部106は、ステップ416を実行した最新の時間からの経過時間をΔtとして、tに加算(インクリメント)してもよい。
 処理はステップ410に進み、制御部106は、スイッチQ2をオンにして、第2回路204を機能させる。制御部106は、図2に関連して述べたような方法で負荷132の電気抵抗値RHTR(t)を計測することができる。ステップ412において、制御部106は、負荷132の電気抵抗値を検出するセンサから電気抵抗値を取得してもよい。あるいは、制御部106は、電気抵抗に関連する電気的な値(電流値など)を検出するセンサから取得した値を用いて電気抵抗値を求めてもよい。次いでステップ414において、制御部106はスイッチQ2をオフにする。
 処理はステップ416に進み、制御部106は、ステップ412において得られた値RHTR(t)が所定の値RHTR(THTR=R.T.)に等しいか否かを判定する。図3に示すように、負荷132がPTCヒータならば、負荷132の抵抗値は、スイッチQ1がオフにされた時点での温度に対応する値RHTR(t=0)から、時間の経過とともに小さくなる。負荷132の温度が室温に達すると、負荷132の抵抗値はRHTR(THTR=R.T.)になる。したがって、ステップ416において実行される、負荷132の抵抗値に関する上述の判定により、負荷132の温度が室温まで低下したか否かを判定することができる。
 負荷132の抵抗値が所定の値に達しない場合(ステップ416の「N」)、処理はステップ408の前に戻る。負荷132の抵抗値が所定の値に達した場合(ステップ416の「Y」)、処理はステップ418に進む。ステップ418において、制御部106は、このときのタイマの値t(すなわち、スイッチQ1がオフにされてから経過した時間)が所定の閾値Threを超えるか否かを判定する。図3に示すように、Threは、エアロゾル源が十分にあるときに負荷132の温度が室温に下がるまでに要する冷却時間である。
 タイマの値が閾値を超える場合(ステップ418の「Y」)、処理はステップ420に進む。これは負荷132の温度が室温に下がるまでに閾値Threを超える時間を要したことを意味するので、図3の説明からも分かるように、スイッチQ1がオフにされた時点で負荷132は過熱状態にあったと理解される。したがって、ステップ420において、制御部106は、エアロゾル源が枯渇していると判定する。
 タイマの値が閾値以下である場合(ステップ418の「N」)、処理はステップ422に進む。ステップ422において、制御部106は、エアロゾル源の残量が十分であると判定する。
 図4の実施形態によれば、センサ112により検出される値の時系列的な変化に基づき、エアロゾル源を霧化することができる温度以上まで負荷が昇温した後の負荷の冷却過程を監視することができる。この監視は、センサ112により検出される値の時系列的な変化と負荷の温度の低下とが相関関係を保持する態様で実施される。例えば、負荷132がPTCヒータならば、負荷132の電気抵抗値の変化と負荷132の温度は相関関係を有し、負荷132の温度が時間の経過とともに低下すると、負荷132の電気抵抗値も低下する。このような構成により、専用の温度センサを用いなくても、負荷(ヒータ)の冷却過程を高精度に観測できる。
 また、図4の実施形態によれば、制御部106は、冷却過程に基づき、貯留部116A又はエアロゾル基材116Bにおけるエアロゾル源の枯渇の発生を判断するよう構成される。したがって、ユーザによる吸引などの外乱が少ない状態でエアロゾル源の枯渇を検知することができる。
 図5は、サージ電流(又は残留電流)の発生により、計測される負荷132の抵抗値が大きく変動し得ることを示す。曲線502はエアロゾル源が十分にあるときの負荷132の冷却曲線を示す。曲線504はエアロゾル源が枯渇している(又は、不足している)ときの負荷132の冷却曲線を示す。参照番号506はサージ電流(又は残留電流)が収まるのに要する時間を示す。回路134は少なからずインダクタ(誘導)成分を有するため、スイッチQ1をオフにした直後は、第1回路202を流れる電流が急変することにより、電流の急変の度合い(時間微分値)とインダクタンスの積に応じた大きさを持つサージ電流が発生する。したがって、スイッチQ1をオフにした直後にスイッチQ2をオンにして負荷132の抵抗値を測定すると、抵抗値計測用の電流にサージ電流が重畳される。これにより、測定される負荷132の抵抗値が大きく変動するなどの不都合が生じる。換言すれば、前述した負荷132の電気抵抗値の変化と負荷132の温度が持つ相関関係が保持されず、これらが乖離する虞がある。したがって、負荷132の冷却過程を精度よく観測することや、負荷132の温度が室温に達するまでの時間を正確に測定することが困難になる。なお、回路134はインダクタ成分に加えてキャパシタ(容量)成分も少なからず有するため、スイッチQ1をオフにした後に回路を流れる残留電流も、サージ電流と同様に不都合を生じさせる虞がある。
 図6は、上記の問題を解決し得る、本開示の一実施形態による処理を示すフローチャートである。ステップ602及び604の処理は図4のステップ402及び404の処理と同様であるので説明を省略する。
 ステップ606において、制御部106は、所定時間(例えば、10msなど)の間、スイッチQ1及びスイッチQ2の両方をオフにしたまま待機する。すなわち、負荷132の冷却過程の開始時又は開始直後に、冷却過程の監視が行われないか又は監視された冷却過程に基づく枯渇の発生の判断が行われない不感帯が設けられる。このときの所定時間は、例えば、図5において示される、サージ電流が収まるまでの時間506であってもよい。前述した通り、サージ電流は電流の給電の度合い(時間微分値)に応じた大きさを持つため、時間経過と共に徐々に低減する。同様に、残留電流も時間経過と共に徐々に低減する。当該時間に関する情報は予めメモリ114に格納されていてもよし、センサ112の出力値に応じて可変的に設定されてもよい。不感帯を設けることにより、図5に示すようにスイッチQ2をオンにするタイミングが上記所定時間だけ遅れる。ステップ608から624の処理は図4のステップ406から422の処理と同様であるので説明を省略する。なお、ステップ608の処理はステップ606の前に実行されてもよい。
 図6の実施形態によれば、制御部106は、冷却過程の開始時又は開始直後に、冷却過程の監視が行われないか又は監視された冷却過程に基づくエアロゾル源の枯渇の発生の判断が行われない不感帯を設けるよう構成される。したがって、冷却過程の開始時又は開始直後に負荷132の抵抗値を計測した場合に生じ得るセンサ112の出力値の揺らぎを観測しにくくなるので、負荷の冷却過程の観測精度が向上する。
 不感帯は、給電の終了時に生じる残留電流とサージ電流のうち少なくとも一方の電流値が閾値以下になるまで設けられてもよい。一例として、制御部106は、センサ112に含まれる磁気センサによって、残留電流やサージ電流が生じさせる電磁波ノイズを観測し、このノイズの大きさに基づき、残留電流とサージ電流のうち少なくとも一方の電流値を判断するよう構成されてもよい。これにより、残留電流やサージ電流がセンサ112の出力値に重畳された状態において冷却過程が観測されることを防止できるので、観測精度が向上する。
 不感帯の時間の長さは、エアロゾル源の枯渇が発生しない場合に冷却過程が完了するまでの時間の長さより短くてもよい。一例として、不感帯の時間の長さは、図5のThreの長さより短くてもよい。これにより、過剰に長い不感帯が設定されて冷却過程の観測が妨げられることを抑制できる。
 図7は、サージ電流(又は残留電流)の発生が及ぼす影響を軽減するための本開示の実施形態を概念的に示す。曲線702はエアロゾル源が十分にあるときの負荷132の冷却曲線を示す。曲線704はエアロゾル源が枯渇している(又は、不足している)ときの負荷132の冷却曲線を示す。参照番号706はサージ電流(又は残留電流)が収まるまでの時間を示す。この例では、負荷132への給電が終了した時に生じる残留電流とサージ電流のうち少なくとも一方の電流値が閾値以下になるのに必要な時間(参照番号706で示される時間)より長い周期Tで、冷却過程の監視中に、負荷132の電気抵抗値に関連する値がセンサ112によって検出される。なお、一番左の点線の時点(サージ電流発生時点)においては、上記検出を行ってもよいし、行わなくてもよい。
 図8は、図7に関連する本開示の一実施形態による処理のフローチャートである。ステップ802から808の処理は図4のステップ402から408の処理と同様である。
 ステップ810において、制御部106は、タイマが示す時間tが上述の周期Tの整数倍であるか否かを判定する。tがTの整数倍でない場合(ステップ810の「N」)、処理はステップ808の前に戻る。
 tがTの整数倍である場合(ステップ810の「Y」)、図7において点線で示される計測のタイミングに到達したことになる。処理はステップ812に進み、スイッチQ2がオンにされ、負荷132の電気抵抗値又は電気抵抗に関連する値が計測される。ステップ812から824の処理は図4のステップ410から422の処理と同様である。
 図7及び図8の実施形態によれば、制御部106は、給電の終了時に生じる残留電流とサージ電流のうち少なくとも一方の電流値が閾値以下になるのに必要な時間より長い周期で、冷却過程の監視中にセンサ112によって電気抵抗値に関連する値を検出するよう構成される。したがって、負荷132の冷却開始時又は冷却開始直後に負荷132の抵抗値を計測した場合における、センサ112の出力値の揺らぎを観測しにくくなるため、冷却過程の観測精度が向上する。
 図9は、サージ電流の発生が及ぼす影響を軽減するための本開示の一実施形態を概念的に示す。曲線902はエアロゾル源が十分にあるときの負荷132の冷却曲線を示す。曲線904はエアロゾル源が枯渇している(又は、不足している)ときの負荷132の冷却曲線を示す。この例では、冷却過程の開始時又は開始直後にセンサ112によって検出される値が、当該値の時系列的な変化を平滑化することによって補正される。一例において、図9に数式で示すように、ある計測時点から別のある計測時点までに測定された負荷132の抵抗値の平均値をその計測時点における負荷132の抵抗値として決定してもよい。例えば、図9で示された数式においてN=5として、図9に示される5つの点線のうち最後の点線に対応する時点における抵抗値は、当該時点及び以前の4つの時点を含む5つの時点で計測された5つの抵抗値の平均値として求められてもよい。なお、ある計測時点(始点)から別のある計測時点(終点)まで測定された負荷132の抵抗値の平均値は、終点におけるものとして求めず、始点におけるものとして求めてもよいし、始点と終点の間に含まれる時点のものとして求めてもよい。
 図10は、図9に関連する本開示の一実施形態による処理のフローチャートである。ステップ1002から1014の処理は図4のステップ402から414の処理と同様である。
 ステップ1016において、制御部106は、所定の整数Nを増加(インクリメント)させる。Nの初期値は0であってもよく、ステップ1016においてNの値が1だけ増加されてもよい。このNは図9に示される数式の右辺に登場するNに対応する。
 処理はステップ1018に進み、制御部106は、Nが所定の閾値Thre1と等しくなったか否かを判定する。一例において、5つの計測された抵抗値の平均値を制御に用いる抵抗値として使用する場合、N=5である。
 Nが閾値に達しない場合(ステップ1018の「N」)、処理はステップ1008の前に戻る。Nが閾値になった場合(ステップ1018の「Y」)、処理はステップ1020に進む。ステップ1020において、制御部106は、例えば図9に示される式に基づいてRave(t)を算出する。処理はステップ1022に進み、制御部106はNをゼロにリセットする。その後のステップ1024から1030の処理は図4のステップ416から422の処理と同様である。
 図9及び図10の実施形態によれば、制御部106は、冷却過程の開始時又は開始直後にセンサ112によって検出される値を、センサ112により検出される値の時系列的な変化を平滑化することによって補正し、補正された値に基づいて冷却過程を監視するよう構成される。図9及び図10の例においては、複数の得られた値の単純平均を行っているが、別の例において、複数の計測値の移動平均を求めてもよい。これらの構成によれば、ユーザの吸引などの外乱の影響が少ない状態でエアロゾル源の枯渇を検知できる。また、制御部106は、平均化処理とローパスフィルタのうち少なくとも一方を用いて、センサ112によって検出される値を補正するよう構成されてもよい。これにより、より簡便な方法で平滑化処理を実現することができる。
 図11から図15を参照しつつ、負荷の冷却過程を監視するための値の適切な計測タイミングについて説明する。図2に関連して述べたような負荷132の電気抵抗値を計測する方法によれば、専用の温度センサを用いずに負荷132の冷却過程を監視することができる。しかし、負荷132の電気抵抗値を計測しようとすると回路134へ通電する必要があるため、負荷132の電気抵抗値の計測の度に、自身を流れる電流によって負荷132が少なからず発熱する。従って、不適切な計測タイミングによる負荷の冷却過程の監視は外乱となり、負荷の冷却過程の観測精度を低下させてしまう虞がある。
 図11は、本開示の一実施形態による、負荷の冷却過程を監視するための値の計測タイミングを概念的に示す。曲線1102はエアロゾル源が十分にあるときの負荷132の冷却曲線を示す。曲線1104はエアロゾル源が枯渇している(又は、不足している)ときの負荷132の冷却曲線を示す。図4の実施形態と同様に、冷却過程の監視は、センサ112により検出される値の時系列的な変化と負荷132の温度の低下とが相関関係を保持する態様で実施することができる。例えば、負荷132がPTCヒータならば、負荷132の電気抵抗値の変化と負荷132の温度は相関関係を有し、負荷132の温度が時間の経過とともに低下すると、負荷132の電気抵抗値も低下する。このとき、一例において、図11に示すように、冷却過程の監視中にセンサ112が電気抵抗の値又は電気抵抗に関連する電気的な値を検出する周期Tは、制御部106が達成可能な最小値Tminより大きくてもよい。給電の終了から所定の時間が経過した後に冷却過程の監視が開始されてもよく、当該所定の時間は制御部106が達成可能な最小値Tminより大きくてもよい。このような構成により、負荷の冷却過程を監視するための値の計測タイミングが適切になるため、専用の温度センサを用いなくても、負荷の冷却過程を高精度に観測できる。
 図12は、本開示の一実施形態による、負荷の冷却過程を監視するための値の計測タイミングを概念的に示す。曲線1202はエアロゾル源が十分にあるときの負荷132の冷却曲線を示す。曲線1204はエアロゾル源が枯渇している(又は、不足している)ときの負荷132の冷却曲線を示す。図示されるように、t=0の時点で負荷132の電気抵抗の値又は電気抵抗に関連する電気的な値を計測した後、所定の期間の不感帯を設け、当該不感帯の終了後に値の計測を再び行ってもよい。不感帯中は、値を計測しなくてもよい。あるいは、不感帯中も値を計測する一方で、不感帯中に計測された値をエアロゾル源が枯渇したかどうかの判断に用いなくてもよい。不感帯終了後に値を計測する周期Tは、制御部106が達成可能な最小値Tminより大きくてもよいし、Tminであってもよい。また、給電の終了から所定の時間が経過した後に冷却過程の監視が開始されてもよい。
 図13は、図12に関連する本開示の一実施形態による処理のフローチャートである。ステップ1302から1308の処理は図4のステップ402から408の処理と同様である。
 ステップ1310において、制御部106は、タイマが示す時間が不感帯の所定の期間tdead_zoneを超えたか否か(すなわち、不感帯が終了したか否か)を判定する。不感帯が終了していない場合(ステップ1310の「N」)、処理はステップ1308の前に戻る。不感帯が終了した場合(ステップ1310の「Y」)、処理はステップ1312に進む。ステップ1312から1324の処理は図4のステップ410から422の処理と同様である。図12及び図13の実施形態によれば、不感帯を設けることで、負荷の冷却過程を監視するための値の計測タイミングが適切になるため、専用の温度センサを用いなくても、負荷の冷却過程を高精度に観測できる。
 図14は、本開示の一実施形態による、負荷の冷却過程を監視するための値の計測タイミングを概念的に示す。曲線1402はエアロゾル源が十分にあるときの負荷132の冷却曲線を示す。曲線1404はエアロゾル源が枯渇している(又は、不足している)ときの負荷132の冷却曲線を示す。図示されるように、t=0の時点で負荷132の電気抵抗の値又は電気抵抗に関連する電気的な値を最初に計測したときから2度目に値を計測するまでの時間は、2度目の計測時点と3度目の計測時点との間の時間より長くてもよい。図示されるように、その後も、隣接する計測時点間の時間は徐々に短くなるように設定されてもよい。
 図15は、図14に関連する本開示の一実施形態による処理のフローチャートである。ステップ1502から1506の処理は図4のステップ402から406の処理と同様である。
 ステップ1508において、制御部106は、図14に示す計測周期Tの値を決定する。一例において、ステップ1508に示すように、計測周期Tは、所定の係数αとその時点の負荷132の抵抗値との積として求められてもよい。負荷132がPTCヒータならば、負荷132の温度が低下すると負荷132の抵抗値は小さくなるので、上記の例によれば、値が計測されるたびにTは短くなる。上述のTの算出方法は一例にすぎない。別の例として、計測周期Tは、冷却過程の開始からの経過時間と反比例するように計算されてもよいし、既に行われた計測の回数に反比例するように計算されてもよい。
 ステップ1510の処理はステップ408の処理と同様である。処理はステップ1512に進み、制御部106は、ステップ1508におけるTの更新後に時間が当該更新されたTだけ経過したか否かを判定する。時間がTだけ経過していない場合(ステップ1512の「N」)、処理はステップ1510の前に戻る。時間がTだけ経過した場合(ステップ1512の「Y」)、処理はステップ1514に進む。ステップ1514から1520の処理はステップ410から416の処理と同様である。
 負荷132が室温に達していないと判定される場合(ステップ1520の「N」)、処理はステップ1508の前に戻り、新たなTが設定され、ステップ1508から1520の処理が繰り返される。負荷132が室温に達したと判定される場合(ステップ1520の「Y」)、処理はステップ1522に進む。ステップ1522から1526の処理はステップ418から422の処理と同様である。
 図14及び図15の実施形態によれば、制御部106は、冷却過程の監視中にセンサ112によって電気抵抗の値又は電気抵抗に関連する電気的な値が検出される周期を段階的に短くするよう構成され得る。制御部106は、センサ112によって検出される値に対応する負荷132の温度が低いほど、冷却過程の監視中にセンサ112によって電気抵抗の値又は電気抵抗に関連する電気的な値を検出する周期を短くするよう構成されてもよい。このような特徴により、適切な計測頻度を設定することができ、負荷132の冷却過程に及ぼす影響が僅かになる。
 図16は、本開示の一実施形態による、負荷への給電及び給電停止後の負荷の冷却過程を概略的に示す。曲線1602はエアロゾル源が十分にあるときの負荷132の冷却曲線を示す。曲線1604はエアロゾル源が枯渇している(又は、不足している)ときの負荷132の冷却曲線を示す。図16中の星印は、エアロゾル生成開始前又は給電開始直後の負荷132の抵抗値に対応する負荷132の温度を示す。
 図17は、図16に関連する本開示の一実施形態による処理のフローチャートである。ステップ1702において、制御部106は、エアロゾル生成要求があったか否かを判定する。一例として、制御部106は、圧力センサの出力等に基づいて、ユーザによる吸引が開始されたか否かを判定してもよい。別の例において、制御部106は、負荷132への給電を行うためにエアロゾル生成装置100に備え付けられているボタンが押されたか否かを判定してもよい。
 処理はステップ1704に進み、制御部106は、スイッチQ1をオンにする前に、スイッチQ2をオンにする。次いでステップ1706において、制御部106は、既に述べた様々な方法で負荷132の電気抵抗値又は電気抵抗に関連する電気的な値を計測する。ここでは、負荷132の電気抵抗値が計測されるものとして以下説明する。制御部106は、ステップ1706において計測された電気抵抗値を初期値として保持する。ステップ1708において制御部106はスイッチQ2をオフにする。処理はステップ1710に進み、制御部106はスイッチQ1をオンにして負荷132への給電を開始する。
 ステップ1712から1724までの処理はステップ402から414までの処理と同様である。
 処理はステップ1726に進み、制御部106は、ステップ1722で計測された抵抗値RHTR(t)がステップ1706で計測された初期値と等しいか否かを判定する。両者が等しくない場合(ステップ1726の「N」)、処理はステップ1718の前に戻る。両者が等しい場合(ステップ1726の「Y」)、処理はステップ1728に進む。ステップ1728から1732の処理はステップ418から422の処理と同様である。
 図16及び図17の実施形態によれば、制御部106は、センサ112により検出される値が定常状態になるまでの冷却過程に基づき、エアロゾル源の枯渇の発生を判断するよう構成される。負荷132の温度が定常状態になるまで冷却過程が観測されるので、冷却過程を適切な終点まで監視することができる。一例において、制御部106は、給電を実行する前にセンサ112により検出される値と、冷却過程においてセンサ112により検出される値との比較に基づき、センサ112により検出される値が定常状態に至ったかを判断するよう構成されてもよい。これにより、エアロゾル生成前の抵抗値に基づいて定常状態に至ったか否かが判断される。したがって、既定の閾値に基づいて判断を行う場合と比較して、負荷132の固体差を考慮することができ、定常状態に至ったか否かの判断の精度が向上する。また、エアロゾル生成装置100の使用環境における温度が、一般的な室温(例えば、25℃)と異なる場合でも、冷却過程の終点を適切に観測できる。
 なお、上述した実施形態に代えて、センサ112の測定誤差を考慮し、ステップ1726において、ステップ1722で計測された抵抗値RHTR(t)が、ステップ1706で計測された初期値又は給電を実行する前にセンサ112により検出される値に微小な所定値Δを加えた値と等しいか否かを判定してもよい。
 図18は、本開示の一実施形態による負荷の冷却過程の監視方法を概念的に示す。曲線1802はエアロゾル源が十分にあるときの負荷132の冷却曲線を示す。曲線1804はエアロゾル源が枯渇している(又は、不足している)ときの負荷132の冷却曲線を示す。この例では、負荷132の温度が完全に室温(例えば、25℃)にまで下がる理想的な冷却時間に代えて、負荷132の温度が室温よりも高い温度(例えば、25℃+Δ)にまで下がる近似的な冷却時間を、定常状態に至った時間として用いる。
 図19は、図18に関連する本開示の一実施形態による処理のフローチャートである。ステップ1902から1914までの処理はステップ402から414までの処理と同様である。
 ステップ1916において、制御部106は、ステップ1912において計測された負荷132の抵抗値を、上記近似的な冷却時間が経過した後の負荷132の抵抗値(RHTR(THTR=R.T.+Δ))と比較して、両者が一致するか否かを判定する。後者の抵抗値は、メモリ114に予め記憶されていてもよい。両者が一致しない場合(ステップ1916の「N」)、処理はステップ1908の前に戻る。両者が一致する場合(ステップ1916の「Y」)、処理はステップ1918に進む。ステップ1918から1922の処理はステップ418から422の処理と同様である。
 図18及び図19の実施形態によれば、制御部106は、センサ112により検出される値が定常状態になるまでの冷却過程に基づき、エアロゾル源の枯渇の発生を判断するよう構成される。一例において、制御部106は、室温より既定値だけ高い温度に対応するセンサ112により検出される値と冷却過程においてセンサ112により検出される値との比較に基づき、センサにより検出される値が定常状態に至ったかを判断するよう構成される。
 図18及び図19の実施形態において用いられるΔの値は、センサ112の誤差に起因する、センサ112により検出される値から得られる負荷の温度の誤差より大きくなるように設定されてもよい。一例として、センサ112が電圧センサである場合、ゲイン誤差、オフセット誤差、ヒステリシス誤差などの当該電圧センサについて分かっている測定誤差の値から、当該電圧センサを用いて測定することができる抵抗値の誤差を求めることができる。さらに、測定できる抵抗値の誤差と、負荷132について分かっている温度-抵抗特性の誤差とから、負荷132について推定できる温度の誤差を求めることができる。この場合、Δを、当該推定できる温度の誤差よりも大きくなるように設定すればよい。これにより、室温に相当する25℃などの既定の閾値に基づいて判断を行う場合と比較して、負荷132の固体差を考慮することができ、定常状態に至ったか否かの判断の精度が向上する。
 図20は、本開示の一実施形態による負荷の冷却過程の監視方法を概念的に示す。曲線2002は負荷132の冷却曲線である。RHTR(tn-6)、RHTR(tn-5)、・・・、RHTR(t)は、それぞれ、tn-6、tn-5、・・・、tの時点において計測される負荷132の抵抗値を表す。抵抗値に代えて、負荷132の抵抗に関連する電気的な値を用いてもよい。負荷132について計測されるこれらの値の時間微分値、偏差及び分散は、例えば図20に示す数式を用いて算出することができる。この例では、負荷132の推定される温度が室温+Δに未だ達しなくとも、上記時間微分値、偏差又は分散が所定の条件を満たしたか否かに基づいて、負荷132の抵抗値又は抵抗値に関連する電気的な値が定常状態に至ったか否かが判定される。
 図21は、図20に関連する本開示の一実施形態による処理のフローチャートである。ステップ2102から2116までの処理は図19のステップ1902から1916までの処理と同様である。
 ステップ2116において、負荷132が所定の定常状態に達していないと判定されると(ステップ2116の「N」)、処理はステップ2118に進む。ステップ2118において、制御部106は、負荷132の抵抗値(又は、抵抗値に関連する電気的な値)の時間微分値の絶対値が所定の閾値より小さいか否かを判定する。絶対値が閾値以上である場合(ステップ2118の「N」)、処理はステップ2108の前に戻る。絶対値が閾値より小さい場合(ステップ2118の「Y」)、処理はステップ2120に進む。なお、ステップ2118における条件は、さらに、上記時間微分値がゼロ以下であることを含んでもよい。これにより、冷却曲線2002が振動してその傾きがプラスになるときに、定常状態に達したと誤って判断することを避けることができる。ステップ2120から2124の処理はステップ1918から1922の処理と同様である。
 図22は、図20に関連する本開示の一実施形態による処理のフローチャートである。ステップ2202から2216までの処理は図21のステップ2102から2116までの処理と同様である。
 ステップ2216において、負荷132が所定の定常状態に達していないと判定されると(ステップ2216の「N」)、処理はステップ2218に進む。ステップ2218において、制御部106は、負荷132の抵抗値(又は、抵抗値に関連する電気的な値)の分散が所定の閾値より小さいか否かを判定する。分散の代わりに偏差が判定に用いられてもよい。分散が閾値以上である場合(ステップ2218の「N」)、処理はステップ2208の前に戻る。分散が閾値より小さい場合(ステップ2218の「Y」)、処理はステップ2220に進む。ステップ2220から2224の処理はステップ2120から2124の処理と同様である。
 図20、図21及び図22の実施形態によれば、制御部106は、センサ112により検出される値の時間微分値、偏差又は分散に基づき、センサ112により検出される値が定常状態に至ったかを判断するよう構成される。センサ112により検出される値自体を用いる場合と比較して、値の時間変化を考慮するので、定常状態に至ったことを判断し易くなる。
 以上述べたように、本開示の第1の実施形態によれば、制御部106は、負荷132の温度と電気抵抗の値又は電気抵抗に関連する電気的な値とが乖離しないタイミング、又は、冷却過程における負荷132の冷却を妨げない頻度で、冷却過程の監視中、センサ112によって値を検出するよう構成することができる。したがって、専用の温度センサを用いなくても、負荷の冷却過程を高精度に観測することができる。
 また、本開示の第1の実施形態によれば、制御部106は、冷却過程のうち、負荷132の冷却開始時又は冷却開始直後よりも後、かつ負荷132が室温に至るよりも前の、センサ112により検出される値の時系列的な変化に基づき、貯留部116A又はエアロゾル基材116Bにおけるエアロゾル源の枯渇の発生を判断するよう構成することができる。一例において、制御部106は、センサ112により検出される値又は該値の時系列的な変化に基づき、センサ112により検出される値が定常状態に至ったかを判断し、センサ112により検出される値が定常状態に至るまでの冷却過程に基づき、枯渇の発生を判断するよう構成することができる。したがって、専用の温度センサを用いなくても、負荷の冷却過程を高精度に観測することができる。
 上述の説明において、本開示の第1の実施形態は、エアロゾル生成装置及びエアロゾル生成装置を動作させる方法として説明された。しかし、本開示が、プロセッサにより実行されると当該プロセッサに当該方法を実行させるプログラム、又は当該プログラムを格納したコンピュータ読み取り可能な記憶媒体として実施され得ることが理解されよう。
<第2の実施形態>
 負荷132(又は、ヒータ)が冷却するとき、便宜上、負荷132、毛細管効果を利用して貯留部116Aから負荷132へエアロゾル源を運ぶ部材(例えば、保持部130。以下、「ウィック」と呼ぶ)とウィックが保持するエアロゾル源、大気の間のみで熱交換がなされると仮定すると、ニュートンの冷却の法則を用いて以下の式が成り立つ。
Figure JPOXMLDOC01-appb-M000001
 ここで、QHTRは、負荷132の熱量である。αwick、αliquid及びαairは、それぞれ、ウィック、ウィックが保持するエアロゾル源及び大気の熱伝達率である。Swick、Sliquid及びSairは、それぞれ、ウィック、ウィックが保持するエアロゾル源及び大気に対する負荷132の表面積である。THTR、Twick、Tliquid及びTairは、それぞれ、負荷132、ウィック、ウィックが保持するエアロゾル源及び大気の温度である。
 また、負荷132の熱量については、以下の式が成り立つ。
Figure JPOXMLDOC01-appb-M000002
 ここで、CHTRは、負荷132の熱容量である。
 式(1)と式(2)をまとめると、以下の式が成り立つ。
Figure JPOXMLDOC01-appb-M000003
 簡略化のため、以下の式(4)~(6)で緩和時間τを定義する。
Figure JPOXMLDOC01-appb-M000004
 式(4)~(6)を用いれば、式(3)は以下のように書き換えられる。
Figure JPOXMLDOC01-appb-M000005
 さらなる簡略化のため、式(7)を以下のように書き換える。
Figure JPOXMLDOC01-appb-M000006
 なお、上記の書き換えにあたっては、以下の式(9)と式(10)で定義される数式を用いた。
Figure JPOXMLDOC01-appb-M000007
 微分方程式(8)を解くため、以下の式(11)を用いて、新たな変数Tを導入する。
Figure JPOXMLDOC01-appb-M000008
 式(11)を用いて、微分方程式(8)を変数変換する。
Figure JPOXMLDOC01-appb-M000009
 負荷132の冷却過程で、ウィック、ウィックが保持するエアロゾル源及び大気は、負荷132に対してその熱容量が十分に大きいと仮定すれば、負荷132の冷却過程におけるウィック、ウィックが保持するエアロゾル源及び大気の温度変化は無視できるほどに小さい。従って、微分方程式(12)の左辺第1項は0と見做すことができるため、微分方程式(12)は、以下のように変形できる。
Figure JPOXMLDOC01-appb-M000010
 変数分離を用いて、微分方程式(13)を解くと、以下の式を得られる。
Figure JPOXMLDOC01-appb-M000011
 ここで、Cは、積分定数である。
 式(11)を時間tの関数をみなし、t=0の時の値を求めると、以下の式を得られる。
Figure JPOXMLDOC01-appb-M000012
 ここで、THTR(0)は、t=0の時すなわち負荷132の冷却過程開始時における負荷132の温度である。式(15)を、式(14)の境界条件に用いれば、以下の式が成り立つ。
Figure JPOXMLDOC01-appb-M000013
 式(11)と式(16)を用いれば、以下のように式(14)をTHTR(t)について解くことができる。
Figure JPOXMLDOC01-appb-M000014
 本願発明者らは、式(17)を時間微分すれば、負荷132の温度の時間微分(冷却速度)を以下の式で近似できることを発見した。
Figure JPOXMLDOC01-appb-M000015
 前述した通り、負荷132の冷却過程におけるウィック、ウィックが保持するエアロゾル源及び大気の温度変化は無視できるほどに小さいならば、負荷の温度の時間変化はTHTR(0)によって大きく影響を受ける。すなわち、冷却過程開始時における負荷の温度が高いときほど、負荷の温度は下がりやすいことがわかる。
 以上の考察から、本願発明者らは、負荷132の冷却速度を用いてエアロゾル源が枯渇したか否かを判定するという技術的思想に想到した。
 図23は、エアロゾル生成装置100において負荷132への給電を停止した後の負荷132の冷却過程を概略的に示すグラフである。横軸は時間を示し、縦軸は負荷の温度を示す。ここでは、正常時に到達するエアロゾル源の最高温度が200℃であると仮定し、エアロゾル源が枯渇したときに過熱状態となった負荷132が達する温度の一例を350℃とする。
 上述のように、負荷132の温度が高いときほど、負荷132の温度の低下速度は大きい。したがって、図23の例においてエアロゾル源の枯渇を検知するためには、領域2302A及び2302Bなどの、正常時に到達するエアロゾル源の最高温度を超える温度を含む領域において負荷132の温度変化の速度を計測することが望ましい。反対に、領域2304のように正常に到達するエアロゾル源の最高温度以下の温度のみ含む領域は、エアロゾル源の枯渇を検知するために負荷132の温度変化の速度を計測するのには適していない。
 図24は、実際の負荷132の冷却速度を示す図である。図24の(a)は、エアロゾル源が十分にあるときの冷却速度を示している。図24の(b)は、エアロゾル源が枯渇している(又は、不足している)ときの冷却速度を示している。図24の(a)と(b)において、横軸は時間を示しており、縦軸は負荷132の電気抵抗値を介して観測した負荷132の冷却速度を示している。なお、図24の(a)と(b)において、縦軸のスケールは同じである。
 約4.8秒付近で負荷132の加熱が停止した後、負荷132の冷却過程の観測を、時系列順に領域2402、領域2404、領域2406に分けると、次のことが言える。
 領域2402では、負荷132の加熱が停止した直後のため、負荷132の冷却速度は、前述したサージ電流や残留電流などによる外乱の影響を強く受ける。従って、負荷132の電気抵抗値を介して冷却速度を観測する場合、領域2402における負荷132の冷却速度を、エアロゾル源が枯渇したか否かを判定するために用いることは困難である。なお、専用の温度センサを用いて負荷132の冷却速度を観測する場合、このような懸念が生じにくいことは、当業者にとって明らかであろう。
 領域2404では、(a)のエアロゾル源が十分にあるときの冷却速度と、(b)のエアロゾル源が枯渇している(又は、不足している)ときの冷却速度とが、大きく異なっている。これは、前述した負荷の温度の違いが、冷却速度に有意な差をもたらしているためだと考えられる。従って、領域2404における負荷132の冷却速度は、エアロゾル源が枯渇したか否かを判定するために好適である。
 領域2406では、(a)のエアロゾル源が十分にあるときの冷却速度と、(b)のエアロゾル源が枯渇している(又は、不足している)ときの冷却速度は、殆ど同じである。これは、前述した正常に到達するエアロゾル源の最高温度以下の温度における冷却速度を観測しているためだと考えられる。従って、領域2406における負荷132の冷却速度は、エアロゾル源が枯渇したか否かを判定するために不適当である。
 図25は、負荷132の冷却速度を計測するのに適したタイミングについて説明する図である。図23に関連して述べたように、スイッチQ1がオフにされて負荷132の冷却が開始してからできるだけ早いタイミングで冷却速度を計測することにより、エアロゾル源が枯渇したか否かをより正確に判断することができる。しかし、参照番号2502で示すようにスイッチQ1をオフにした直後にスイッチQ2をオンにすると、サージ電流などの影響により、計測される負荷132の温度に関する値が大きく変動する。したがって、冷却速度を正確に計測することが困難である。他方、参照番号2506で示すように負荷132の温度がエアロゾル源の沸点以下となるタイミングでスイッチQ2をオンにして計測を行っても、エアロゾル源が枯渇した場合とエアロゾル源が十分にある場合との間で有意な差が生じにくい。これらのことから、本願発明者らは、参照番号2504で示すように、スイッチQ1をオフにしてから所定の時間だけ経過した後(設定された不感帯を過ぎた後)に、エアロゾル源の枯渇が発生するときにのみ到達可能な温度域に負荷132の温度が属し得るタイミングで冷却速度を計測することが望ましいとの見解に至った。
 図26は、本開示の一実施形態による、エアロゾル源の枯渇を検知する処理のフローチャートである。ここでは、制御部106がすべてのステップを実行するものとして説明を行う。しかし、一部のステップがエアロゾル生成装置100の別のコンポーネントによって実行されてもよいことに留意されたい。
 処理はステップ2602において開始し、制御部106は、エアロゾル生成要求が終わったか否かを判定する。一例として、制御部106は、圧力センサの出力等に基づいて、ユーザによる吸引が終わったか否かを判定してもよい。別の例において、制御部106は、負荷132への給電を行うためにエアロゾル生成装置100に備え付けられているボタンが押されなくなったか否かに基づいて、エアロゾル生成要求が終わったか否かを判定してもよい。また別の例において、制御部106は、負荷132への給電を行うためにエアロゾル生成装置100に備え付けられているボタンの押下などのユーザ・インターフェースに対する操作を検知してから、所定時間が経過したか否かに基づいて、エアロゾル生成要求が終わったか否かを判定してもよい。
 エアロゾル生成要求が続いている場合(ステップ2602の「N」)、処理はステップ2602の前に戻る。エアロゾル生成要求が終わると(ステップ2602の「Y」)、処理はステップ2604に進む。ステップ2604において、制御部106は、スイッチQ1をオフにし、負荷132への給電を停止する。
 処理はステップ2606に進み、制御部106は、所定時間の間、スイッチQ1及びスイッチQ2の両方をオフにしたまま待機する。すなわち、負荷132の冷却過程の開始時又は開始直後に、冷却過程の監視が行われないか又は監視された冷却過程に基づく枯渇の発生が判断されない不感帯が設けられる。不感帯は、サージ電流が減衰した後の時点であって且つ負荷132の温度がエアロゾル源の沸点以下になるときよりも前である時点まで、設けられてもよい。
 処理はステップ2608に進み、制御部106はタイマを起動する。制御部106は、タイマの値を初期値t=0に設定してもよい。
 処理はステップ2610に進み、制御部106は、スイッチQ2をオンにして、第2回路204を機能させる。処理はステップ2612に進み、制御部106は、センサ112を用いるなどして、時刻t1において、負荷132の温度に関連する値を計測する。当該センサ112は、負荷132の温度、電圧、抵抗値などを検知して出力するように構成されてもよい。ここでは、負荷132の電気抵抗値RHTR(t1)が計測される。処理はステップ2614に進み、制御部106はスイッチQ2をオフにする。
 処理はステップ2616に進み、制御部106は、スイッチQ2を再びオンにして、第2回路204を機能させる。処理はステップ2518に進み、制御部106は、時刻t2において、負荷132の温度に関連する値、例えば負荷132の電気抵抗値RHTR(t2)を計測する。処理はステップ2620に進み、制御部106はスイッチQ2を再びオフにする。
 処理はステップ2622に進み、制御部106は、RHTR(t1)、RHTR(t2)、t1及びt2の値に基づいて、負荷132の冷却速度を求める。次いで、ステップ2624において、制御部106は、得られた冷却速度を所定の閾値と比較する。冷却速度が閾値よりも小さい場合(ステップ2624の「Y」)、処理はステップ2626に進み、制御部106は、エアロゾル源が枯渇していると判定する。他方、冷却速度が閾値以上である場合(ステップ2624の「N」)、処理はステップ2628に進み、制御部106は、エアロゾル源が十分に残っていると判定する。
 このように、図26に示す実施形態によれば、制御部106は、エアロゾル源を霧化することができる温度以上まで負荷132が昇温した後の冷却過程における、センサ112の出力値から導出される冷却速度に基づき、貯留部116A又はエアロゾル基材116Bにおけるエアロゾル源の枯渇の発生を判断するよう構成される。冷却速度に基づいてエアロゾル源の枯渇が発生しているか否かが検知され、エアロゾル源の枯渇が発生しているか否かを迅速かつ高精度に判断することができる。なお、ステップ2614とステップ2616を省略し、ステップ2610でオンにしたスイッチQ2は、ステップ2620までオンにされ続けてもよい。
 また、上述の実施形態によれば、制御部106は、冷却過程のうち、エアロゾル源の枯渇が発生するときの冷却速度と該枯渇が発生しないときの冷却速度との間の差が閾値以上である時間帯(例えば、図23における領域2302A又は2302Bに対応する時間帯)における冷却速度に基づき、枯渇の発生を判断するよう構成される。あるいは、制御部106は、冷却過程のうち、枯渇が発生する時のみ到達可能な温度域に負荷132の温度が属する時間帯(例えば、領域2302Aに対応する時間帯)における冷却速度に基づき、枯渇の発生を判断するよう構成されてもよい。冷却速度に有意差がある区間において導出された冷却速度に基づいて、エアロゾル源の枯渇が発生しているか否かが判断される。したがって、枯渇が発生しているか否かの判断をより高精度に行うことができる。
 また、上述の実施形態によれば、制御部106は、センサ112の複数の出力値から冷却速度を導出し、センサ112の複数の出力値のうち少なくとも時間軸で最先の値を、冷却過程のうち、枯渇が発生する時のみ到達可能な温度域に負荷132の温度が属する時間帯において取得するよう構成されてもよい。あるいは、制御部106は、センサ112の複数の出力値を、冷却過程のうち、枯渇が発生する時のみ到達可能な温度域に負荷132の温度が属する時間帯で取得するよう構成されてもよい。これらの構成によれば、測定期間の始点さえ有意差がある領域に属すればよいので、不感帯の設定を厳格に行わずに済み、さらに、制御周期が極端に早い高性能なマイコンを制御部106として用いることが不要となる。
 本開示の第1の実施形態に関連して既に述べたように、負荷132は、温度に応じて電気抵抗値が変化してもよい。センサ112は、負荷132の温度に関連する値として、電気抵抗値に関する値を出力してもよい。この場合、負荷132の抵抗値から温度が導出されるので、高価な専用の温度センサが不要となる。また、制御部106は、冷却過程の開始時又は開始直後に、電気抵抗値に関する値がセンサ112によって取得されないか若しくは冷却速度が導出されない不感帯を設けるように構成されてもよい。あるいは、制御部106は、センサ112の出力値の時系列的な変化が平滑化されるように補正された、冷却過程の開始時又は開始直後のセンサ112の出力値に基づき冷却速度を導出するよう構成されてもよい。この構成によれば、冷却開始時又は冷却開始直後の抵抗値が用いられないので、センサ112の出力値の揺らぎを観測しにくくなり、冷却過程の観測精度が向上する。
 一例において、制御部106は、冷却過程の前に電源110から負荷132へ給電される電力が段階的に減少又は漸減するように、電源110から負荷132への給電を制御するよう構成されてもよい。これにより、エアロゾル生成段階の終期において、回路を流れる電流を小さくすることができる。したがって、前述したサージ電流や残留電流などによって出力値が揺らぐ期間を短くできるので、冷却速度により顕著な有意差が生じる区間を観測することが可能となる。
 一例において、上述の不感帯は、給電の終了時に生じる残留電流とサージ電流のうち少なくとも一方の電流値が閾値以下になるまで続くように設けられてもよい。これにより、不感帯は、サージ電流又は残留電流が消滅するまで又は無視できるほどの大きさになるまでの時間より長くなる。したがって、冷却過程は、残留電流又はサージ電流がセンサの出力値に重畳された状態において観測されないので、観測精度が向上する。
 一例において、不感帯は、枯渇が発生していない場合に冷却過程が完了する長さより短くてもよい。これにより、不感帯が、エアロゾル源が十分にあるときの冷却時間より短くなる。したがって、過剰に長時間の不感帯を必要としないので、冷却過程の観測が妨げられることを抑制できる。
 一例において、給電の終了からセンサ112による電気抵抗値に関する値の取得の開始までの時間と、センサ112が電気抵抗値に関する値を取得する周期とのうち少なくとも一方は、制御部106が達成可能な最小値より大きくてもよい。これにより、抵抗値を介して負荷132の冷却過程を観測する際には、観測タイミング又は観測の頻度が意図的に低下させられる。したがって、専用の温度センサを用いなくても、負荷の冷却過程を高精度に観測することができる。
 図27は、本開示の一実施形態による、エアロゾル源の枯渇を検知する処理のフローチャートである。ステップ2702及び2704の処理は図26のステップ2602及び2604の処理と同様である。
 処理はステップ2706に進み、制御部106は、スイッチQ2をオンにする。スイッチQ2は、スイッチQ1がオフにされた直後にオンにされてもよい。次いでステップ2708において、制御部106は、スイッチQ2をオフにする。スイッチQ1がオンであるときに負荷132を流れる電流と比較して、スイッチQ2がオンである時に負荷132を流れる電流は小さい。したがって、ステップ2706及び2708におけるスイッチQ2のオン及びオフの後に生じるサージ電流は、図25において参照番号2502で示した例において生じるサージ電流よりも小さくなる。なお、ステップ2704から2708は、ステップ2702よりも先に行ってもよい。これにより、冷却過程を開始直後から観測できる。
 ステップ2710から2732の処理はステップ2606から2628の処理と同様である。
 本開示の第2の実施形態によるエアロゾル生成装置は、一例において、図2に示す回路200を備えてもよい。回路200は、電源110と負荷132の間に直列接続され、第1開閉器(スイッチ)Q1を有する第1回路202と、電源110と負荷132の間に直列接続され、第1回路202と並列に接続され,第2開閉器Q2を有し,第1回路202より電気抵抗値が大きい第2回路204と、を含んでもよい。制御部106は、第1開閉器Q1と第2開閉器Q2を制御し、第1開閉器Q1と第2開閉器Q2のうち、第2開閉器Q2のみをオンしている間のセンサの出力値に基づき、冷却速度を導出するよう構成されてもよい。この構成は、専用の高抵抗の抵抗値計測用回路を有する。したがって、抵抗値の計測時に負荷の冷却過程に及ぼす影響を小さくすることができる。図27に関連して述べたように、制御部106は、冷却過程の直前に第2開閉器Q2をオンするよう構成されてもよい。これにより、第1開閉器Q1と第2開閉器Q2が交互にオンにされる。したがって、冷却過程開始時におけるサージ電流と残留電流を緩和することができる。
 図28は、本開示の一実施形態による、エアロゾル生成装置が備える回路を概略的に示す。回路2800は、第2回路204を備えていない点で図2の回路200と相違する。図28の例において、エアロゾル生成装置は、負荷132の温度を検知して出力する温度センサ112Eを備えてもよい。この場合、例えば、制御部106は、図26におけるステップ2606から2622の処理を行わずに、時点t1及びt2における負荷132の温度を温度センサ112Eによって直接的に測定し、測定された温度に基づいて冷却速度を求めてもよい。
 さらに別の例において、エアロゾル生成装置は、図28に示す回路2800と同様の構成の回路を備えてもよく、温度センサ112Eではなく、図2に示されるような、負荷132の両端の電圧値を検知する電圧センサ112Bを備えてもよい。この場合、エアロゾル生成装置はスイッチQ2を備えない。制御部106は、図26の処理と同様の処理を実行してもよい。但し、この場合、制御部106は、ステップ2606の代わりに、所定時間、スイッチQ1をオフにして待機する。制御部106はまた、ステップ2610及び2616の代わりにスイッチQ1をオンにし、ステップ2614及び2620の代わりにスイッチQ1をオフにする。
 上述の説明において、本開示の第2の実施形態は、エアロゾル生成装置及びエアロゾル生成装置を動作させる方法として説明された。しかし、本開示が、プロセッサにより実行されると当該プロセッサに当該方法を実行させるプログラム、又は当該プログラムを格納したコンピュータ読み取り可能な記憶媒体として実施され得ることが理解されよう。
<第3の実施形態>
 貯留部116A又はエアロゾル基材116B内のエアロゾル源が枯渇しているときにエアロゾル生成要求が行われると、ヒータ(負荷132)は大気中に暴露された状態で加熱される。したがって、負荷132を構成する材料によっては、負荷132が化学変化を起こし、その物性が変化し得る。一例において、酸化などの現象によって負荷132の表面に保護膜が形成され、その結果、負荷132の電気抵抗値が変化し得る。本願発明者らは、このような現象を利用してエアロゾル生成装置におけるエアロゾル源の枯渇の発生を検知するという技術的思想に想到した。以下、本実施形態について具体的に説明する。
 図29は、本開示の一実施形態によるエアロゾル源の枯渇の発生を判断する手法を概念的に示す。グラフの横軸は時間を示し、縦軸は負荷132の電気抵抗値を示す。負荷132の電気抵抗値は、本実施形態において用いられる負荷132の物性に関連する値の一例にすぎない。エアロゾル源の枯渇に起因して変化し得る負荷132の様々な物性に関連する値を本実施形態において用いることができることが当業者に理解されよう。
 RHTR(t)は、負荷132への給電が行われる前の時刻tにおける、室温(ここでは、25℃)(又は、定常状態)での負荷132の抵抗値を示す。スイッチQ2をオンにして第2回路204を機能させることにより、RHTR(t)を計測することができる。
 この例では、時刻tにおいてエアロゾル生成要求が行われる。当該要求に応じて、スイッチQ1がオンにされ、負荷132への給電が開始される。第1の実施形態及び第2の実施形態に関連して述べたように、負荷132にPTCヒータを用いるならば、負荷132の温度が上がるにつれて、負荷132の抵抗値RHTRは大きくなる。図29における曲線2902は、エアロゾル源が十分にあるときの負荷132の抵抗値の変化を示す。曲線2904は、エアロゾル源が枯渇しているときの負荷132の抵抗値の変化を示す。
 エアロゾル源が十分にある場合、曲線2902で示されるように、負荷132の温度が正常時に到達するエアロゾル源の最高温度(ここでは、200℃)に達すると、負荷132の抵抗値は上昇しなくなる。そして、時刻tにおいてエアロゾル生成要求が終了し、スイッチQ1がオフにされると、負荷132の温度が低下し、負荷132の抵抗値は下降する。負荷132の温度が室温(又は、定常状態)に達すると、抵抗値は負荷132の加熱前の値RHTR(t)に戻る。
 エアロゾル源が枯渇している場合、曲線2904で示されるように、負荷132の温度は、正常時に到達するエアロゾル源の最高温度を超え、エアロゾル源の枯渇が発生するときのみ到達可能な温度(例えば、350℃)へとさらに上昇する。この際、負荷132の材料によっては、負荷132の物性が変化し得る。例えば負荷132の表面に保護膜が形成されることもある。この例では、時刻tにおける負荷132の温度は350℃以上にまで達している。スイッチQ1がオフにされると、負荷132の温度が低下し、それに伴って負荷132の抵抗値も減少する。しかし、図29に示されるように、負荷132の温度が室温(又は、定常状態)に戻っても、上述した物性の変化の影響により、負荷132の抵抗値は加熱前の値には戻らず、当該値よりも大きくなる。本実施形態では、時刻tにおける負荷132の抵抗値RHTR(t)と元の抵抗値RHTR(t)との間の差分ΔRが所定の閾値以上になるか否かに基づいて、エアロゾル源が枯渇しているか否かが判定される。ここで、t-tは、エアロゾル源が十分にあるときに負荷132が室温(又は、定常状態)に戻るのに要する時間Δtcooling以上になるように設定されてもよい。
 図30は、図29に関連する、本開示の一実施形態による処理のフローチャートである。ここでは、制御部106がすべてのステップを実行するものとして説明を行う。しかし、一部のステップがエアロゾル生成装置100の別のコンポーネントによって実行されてもよいことに留意されたい。
 処理はステップ3002において開始し、制御部106は、ヒータ(負荷)の接続を検知したか否かを判定する。例えば、制御部106は、カートリッジ104Aが本体102に接続されたことを検知したとき、ヒータの接続を検知したと判定する。
 ヒータの接続が検知されない場合(ステップ3002の「N」)、処理はステップ3002の前に戻る。ヒータの接続が検知された場合(ステップ3002の「Y」)、処理はステップ3004に進む。ステップ3004において、制御部106は、スイッチQ2をオンにして、第2回路204を機能させる。スイッチQ2をオンにするタイミングは、図28における時刻tからエアロゾル生成が開始される時刻tまでのいずれかの時点とすることができる。スイッチQ2をオンにするタイミングは、後述するステップ3010においてエアロゾル生成要求があると判定した時点でもよい。
 処理はステップ3006に進み、制御部106は、負荷132の物性に関連する値を計測する。例えば、制御部106は、電圧センサを用いて負荷132の両端に印加される電圧を測定し、当該電圧に基づいて負荷132の電気抵抗値を計測してもよい。図30の例では、このようにして負荷132の抵抗値RHTR(t)が計測されるものとして以下説明する。処理はステップ3008に進み、制御部106はスイッチQ2をオフにする。
 処理はステップ3010に進み、制御部106は、エアロゾル生成要求があるか否かを判定する。一例として、制御部106は、圧力センサの出力等に基づいて、ユーザによる吸引が開始されたか否かを判定してもよい。別の例において、制御部106は、負荷132への給電を行うためにエアロゾル生成装置100に備え付けられているボタンが押されたか否かを判定してもよい。エアロゾル生成要求がない場合(ステップ3010の「N」)、処理はステップ3010の前に戻る。エアロゾル生成要求があった場合(ステップ3010の「Y」)、処理はステップ3012に進む。ステップ3012において、制御部106は、スイッチQ1をオンにして負荷132への給電を開始する。
 ステップ3014から3020までの処理は図4のステップ402から408までの処理と同様である。
 処理はステップ3022に進み、制御部106は、タイマの値tが図29に示すΔtcooling以上であるか否かを判定する。条件が満たされない場合(ステップ3022の「N」)、処理はステップ3020の前に戻る。条件が満たされる場合(ステップ3022の「Y」)、処理はステップ3024に進む。
 ステップ3024において、制御部106は、スイッチQ2をオンにして、第2回路204を機能させる。次いでステップ3026において、制御部106は、負荷132の抵抗値RHTR(t)(図29を参照)を計測する。次いで、ステップ3028において、制御部106はスイッチQ2をオフにする。
 処理はステップ3030に進み、制御部106は、RHTR(t)とRHTR(t)との差分が所定の閾値以上であるかどうかを判定する。差分が閾値以上である場合(ステップ3030の「Y」)、処理はステップ3032に進み、制御部106は、エアロゾル源が枯渇していると判定する。他方、差分が閾値未満である場合(ステップ3030の「N」)、処理はステップ3034に進み、制御部106は、エアロゾル源が十分に残っていると判定する。
 図31は、負荷132(ヒータ)の製造に用いることができる様々な金属の酸化還元電位及び酸化被膜の形成され易さを示す表3100を示す。酸化還元電位が小さいほど酸化被膜が形成され易く、酸化還元電位が大きいほど酸化被膜が形成されにくい。表3100においては、Alが酸化被膜が最も形成され易く、Auが酸化被膜が最も形成されにくい。本実施形態においては、エアロゾル源の枯渇が発生するときにのみ到達可能な温度において負荷132の物性が変化する現象が、エアロゾル源の枯渇の発生の検知に利用される。したがって、表3100に示される金属のうち、酸化被膜が形成され得るAl、Ti、Zr、Ta、Zn、Cr、Fe、Ni、Pb及びCuが、負荷132の製造に適している。したがって、負荷132は、銅の酸化還元電位以下の酸化還元電位を持つ金属を含んでもよい。一例として、上記の金属のほか、負荷132はNiCrを含んでもよい。また、酸化が妨げられないよう、負荷132は、その表面に不動態被膜を有さないように構成されてもよい。換言すれば、表面に不動態被膜が形成されるステンレスなどは、負荷132の製造に適していないと言える。
 図32は、本開示の一実施形態によるエアロゾル源の枯渇の発生を判断する手法を概念的に示す。RHTR(t)は、スイッチQ1がオンにされて負荷132への給電が開始されたときの時刻tにおける、室温(ここでは、25℃)(又は、定常状態)での負荷132の抵抗値を示す。曲線3202は、エアロゾル源が十分にあるときの負荷132の抵抗値の変化を示す。曲線3204は、エアロゾル源が枯渇しているときの負荷132の抵抗値の変化を示す。
 図29の例と同様に、エアロゾル源が十分にある場合、曲線3202で示されるように、負荷132の温度が正常時に到達するエアロゾル源の最高温度(ここでは、200℃)に達すると、負荷132の抵抗値は上昇しなくなる。時刻tにおいてエアロゾル生成要求が終了し、スイッチQ1がオフにされると、負荷132の温度が低下し、負荷132の抵抗値は下降する。負荷132の温度が室温(又は、定常状態)に達したときの抵抗値RHTR(t)は、加熱前の値RHTR(t)と略等しい。
 図29の例と同様に、エアロゾル源が枯渇している場合、曲線3204で示されるように、負荷132の温度は、正常時に到達するエアロゾル源の最高温度を超え、エアロゾル源の枯渇が発生するときのみ到達可能な温度へとさらに上昇する。このとき、負荷132の材料によっては、負荷132の物性が変化し得る。スイッチQ1がオフにされると、負荷132の温度が低下し、それに伴って負荷132の抵抗値も減少する。しかし、負荷132の温度が室温(又は、定常状態)に戻っても、物性の変化の影響により、負荷132の抵抗値RHTR(t)は加熱前の値RHTR(t)よりも大きくなる。
 図33は、図32に関連する、本開示の一実施形態による処理のフローチャートである。ステップ3302から3316の処理は図30のステップ3014から3028の処理と同様である。
 処理はステップ3318に進み、制御部106は、定常状態に戻ったときの負荷132の抵抗値が所定の閾値Rthre以上であるか否かを判定する。当該閾値Rthreは、エアロゾル源が十分にある場合における定常状態の抵抗値と、過熱により負荷132の物性が変化した場合の負荷132の抵抗値について予め分かっている増加量との合計値である。換言すれば、当該閾値Rthreは、過熱により負荷132の物性が変化した場合の負荷132の抵抗値である。閾値Rthreは、予めメモリ114に記憶されていてもよい。ステップ3318において、上記の処理に代えて、制御部106は、図32における時刻tにおいても抵抗値を計測し、時刻tにおいて計測された抵抗値と時刻tにおいて計測された抵抗値との間の差分が所定の閾値以上であるか否かを判定してもよい。当該所定の閾値は予めメモリに記憶されていてもよい。ステップ3320及び3322の処理はステップ3032及び3034の処理と同様である。
 図29及び図30の実施形態又は図32及び図33の実施形態において、負荷132の冷却中に、負荷132の温度が室温又は定常状態にまで低下する前にエアロゾル生成要求が再度生じると、負荷132の温度及び抵抗値は再び上昇する。この場合、エアロゾル源が枯渇しているか否かを図30又は図33の処理によって正確に判断することが困難になる。この問題の解決策として、制御部106は、負荷132の抵抗値が定常状態に戻るまで、負荷132によるエアロゾル源の霧化を禁止してもよい。一例として、制御部106は、図29及び図32に示すΔtcoolingの間にエアロゾル生成要求が生じても、当該要求に応じなくてもよい。
 図34は、本開示の一実施形態によるエアロゾル源の枯渇の発生を判断する手法を概念的に示す。図32の場合とは異なり、この例では、時刻tよりも前の時刻tの時点で負荷132の抵抗値を計測し、エアロゾル源が枯渇しているか否かを判断する。時刻tは、エアロゾル源が枯渇している場合に、エアロゾル源を霧化することができる温度以上まで負荷132が昇温した後、負荷132の温度が定常状態にまで下がる時点よりも前の時点である。
 図35は、図32に関連する、本開示の一実施形態による処理のフローチャートである。ステップ3502から3508の処理は、図33のステップ3302から3308の処理と同様である。
 処理はステップ3510に進み、制御部106は、タイマの値tが図34に示す代替的な冷却時間以上になったか否かを判定する。条件が満たされない場合(ステップ3510の「N」)、処理はステップ3508の前に戻る。条件が満たされる場合(ステップ3510の「Y」)、処理はステップ3512に進む。ステップ3512~3516の処理は、図33のステップ3312から3316の処理と同様である。
 処理はステップ3518に進み、制御部106は、ステップ3514で計測された負荷132の抵抗値RHTR(t)が所定の値以上であるか否かを判定する。所定の値は、一例としてR’HTR(t)+(R’HTR(t)-RHTR(t))-Δ(図34を参照)であってもよい。これは、センサ112による負荷132の抵抗値の分解能が、R’HTR(t)-RHTR(t)よりも小さければならない点と、補正項としてのΔを考慮したものである。すなわち、定常状態に至る前の負荷132の抵抗値と、枯渇が発生した場合の定常状態における負荷132の抵抗値に既定値を加えた値とが比較される。後者の値は予めメモリ114に記憶されていてもよい。あるいは、定常状態に至る前の負荷132の抵抗値から既定値を減じた値と、枯渇が発生した場合の定常状態における負荷132の抵抗値とが比較されてもよい。
 条件が満たされる場合(ステップ3518の「Y」)、処理はステップ3520に進み、制御部106は、エアロゾル源が枯渇していると判定する。条件が満たされない場合(ステップ3518の「N」)、処理はステップ3522に進み、制御部106は、エアロゾル源が十分に残っていると判定する。
 以上述べたように、本開示の第3の実施形態によるエアロゾル生成装置は、貯留部116A又はエアロゾル基材116Bにおけるエアロゾル源の枯渇が発生する時のみ到達可能な温度で加熱されると物性が変化する負荷132を備える。負荷132の物性に関連する値がセンサ112によって出力される。制御部106は、エアロゾル源を霧化することができる温度以上まで負荷132が昇温した後のセンサ112の出力値に基づき、枯渇の発生を判断するよう構成されてもよい。これにより、エアロゾル源の枯渇に伴う負荷132の物性の変化に基づき、エアロゾル源の枯渇が検知される。したがって、エアロゾル源の枯渇の発生を高精度に検知することができる。
 また、上述のように、制御部106は、エアロゾル源を霧化することができる温度以上まで負荷132が昇温した後の定常状態におけるセンサ112の出力値に基づき、枯渇の発生を判断するよう構成されてもよい。これにより、定常状態における負荷132の物性に基づいてエアロゾル源の枯渇が検知される。したがって、誤った検知がなされる可能性が低減される。
 また、上述のように、制御部106は、エアロゾル源を霧化することができる温度以上まで負荷132を昇温させる前後におけるセンサ112の出力値の変化量に基づき、枯渇の発生を判断するよう構成されてもよい。これにより、負荷132への給電の前後の負荷132の物性の変化量に基づいて、エアロゾル源の枯渇が検知される。したがって、給電終了後の物性を閾値と比較する場合と比べて、負荷の固体差による影響を受けにくくなる。
 また、上述のように、制御部106は、エアロゾル源を霧化することができる温度以上まで負荷132を昇温させる前後の定常状態におけるセンサ112の出力値の差に基づき、枯渇の発生を判断するよう構成されてもよい。これにより、給電前後の定常状態における物性の変化量に基づいてエアロゾル源の枯渇が検知される。したがって、給電後の物性を閾値と比較する場合と比べて、負荷132の固体差による影響を受けにくくなる。
 また、上述のように、制御部106は、エアロゾル源を霧化することができる温度以上まで負荷132が昇温した後、センサ112の出力値が定常状態に至るまで、負荷132によるエアロゾル源の霧化を禁止するよう構成されてもよい。これにより、定常状態に至るまでのインターバルが規定される。したがって、エアロゾル源の枯渇を判定する頻度を増加することができる。
 また、上述のように、制御部106は、エアロゾル源を霧化することができる温度以上まで負荷132が昇温した後の冷却過程において、定常状態に至る前のセンサ112の出力値と、枯渇が発生した場合の定常状態における負荷132の物性に関連する値に既定値を加えた値との比較に基づき、枯渇の発生を判断するように構成されてもよい。あるいは、制御部106は、エアロゾル源を霧化することができる温度以上まで負荷132が昇温した後の冷却過程において、定常状態に至る前のセンサ112の出力値に既定値を減じた値と、枯渇が発生した場合の定常状態における負荷132の物性に関連する値との比較に基づき、枯渇の発生を判断するよう構成されてもよい。これにより、定常状態に至る時点よりも前の時点で負荷132の物性が測定される。したがって、エアロゾル源の枯渇が生じたことを、より早期に特定することが可能となる。
 また、上述のように、センサは、負荷132の物性に関連する値として、負荷132の電気抵抗値に関する値を出力してもよい。これにより、負荷の抵抗値から温度が導出される。したがって、高価な専用の温度センサが不要となる。
 また、上述のように、制御部106は、エアロゾル源を霧化することができる温度以上まで負荷132が昇温した後のセンサ112の出力値と、負荷132の表面に保護膜(例えば、酸化被膜)が形成された場合の負荷132の抵抗値に関連する値との比較に基づき、枯渇の発生を判断するよう構成されてもよい。また、上述のように、制御部106は、エアロゾル源を霧化することができる温度以上まで負荷132を昇温させる前後におけるセンサ112の出力値の変化量と、負荷132の表面における保護膜の形成による負荷132の抵抗値に関連する値の変化量との比較に基づき、枯渇の発生を判断するよう構成されてもよい。これらの場合、保護膜部分に相当する値が閾値となる。当該閾値は予めメモリ114に記憶されていてもよい。したがって、保護膜の形成による抵抗値の変化、すなわちエアロゾル源の枯渇の発生を適切に検知できる。
 本開示の第3の実施形態によるエアロゾル生成装置は、一例において、図2に示す回路200を備えてもよい。回路200は、電源110と負荷132の間に直列接続され、第1開閉器(スイッチ)Q1を有する第1回路202と、電源110と負荷132の間に直列接続され、第1回路202と並列に接続され,第2開閉器Q2を有し,第1回路202より電気抵抗値が大きい第2回路204と、を含んでもよい。制御部106は、第1開閉器Q1と第2開閉器Q2を制御し、第1開閉器Q1と第2開閉器Q2のうち、第2開閉器Q2のみをオンしている間のセンサの出力値に基づき、枯渇の発生を判断するよう構成されてもよい。この構成は、専用の高抵抗の抵抗値計測用回路を有する。したがって、抵抗値の計測時に負荷の冷却過程に及ぼす影響を小さくすることができる。
 上述の説明において、本開示の第3の実施形態は、エアロゾル生成装置及びエアロゾル生成装置を動作させる方法として説明された。しかし、本開示が、プロセッサにより実行されると当該プロセッサに当該方法を実行させるプログラム、又は当該プログラムを格納したコンピュータ読み取り可能な記憶媒体として実施され得ることが理解されよう。
 以上、本開示の実施形態が説明されたが、これらが例示にすぎず、本開示の範囲を限定するものではないことが理解されるべきである。本開示の趣旨及び範囲から逸脱することなく、実施形態の変更、追加、改良などを適宜行うことができることが理解されるべきである。本開示の範囲は、上述した実施形態のいずれによっても限定されるべきではなく、特許請求の範囲及びその均等物によってのみ規定されるべきである。
 100A、100B…エアロゾル生成装置、102…本体、104A…カートリッジ、104B…エアロゾル発生物品、106…制御部、108…通知部、110…電源、112…センサ、114…メモリ、116A…貯留部、116B…エアロゾル基材、118A、118B…霧化部、120…空気取込流路、121…エアロゾル流路、122…吸口部、130…保持部、132…負荷、134…回路、200…回路、202…第1回路、204…第2回路、208…変換部、212…シャント抵抗
 

Claims (24)

  1.  エアロゾル源を貯留する貯留部又は前記エアロゾル源を保持するエアロゾル基材と、
     電源からの給電による発熱で前記エアロゾル源を霧化し、且つ温度に応じて電気抵抗の値が変化する負荷と、
     前記負荷の電気抵抗の値又は電気抵抗に関連する電気的な値を検出するセンサと、
     前記センサにより検出される値の時系列的な変化に基づき、前記エアロゾル源を霧化することができる温度以上まで前記負荷が昇温した後の前記負荷の冷却過程を、前記センサにより検出される値の時系列的な変化と前記負荷の温度の低下が相関関係を保持する態様で、監視するよう構成される制御部と、を含む、
     エアロゾル生成装置。
  2.  前記制御部は、エアロゾル生成に対する要求に基づき、前記電源から前記負荷への給電を制御するよう構成され、
     前記給電の終了から前記冷却過程の監視の開始までの時間と、前記冷却過程の監視中に前記センサが前記電気抵抗の値又は前記電気抵抗に関連する電気的な値を検出する周期とのうち少なくとも一方は、前記制御部が達成可能な最小値より大きい、
     請求項1に記載のエアロゾル生成装置。
  3.  前記制御部は、前記冷却過程に基づき、前記貯留部又は前記エアロゾル基材における前記エアロゾル源の枯渇の発生を判断するよう構成される、
     請求項1又は2に記載のエアロゾル生成装置。
  4.  前記制御部は、前記冷却過程の開始時又は開始直後に、前記冷却過程の監視が行われない又は監視された前記冷却過程に基づく前記枯渇の発生が判断されない不感帯を設けるよう構成される、
     請求項3に記載のエアロゾル生成装置。
  5.  前記制御部は、エアロゾル生成に対する要求に基づき、前記電源から前記負荷への給電を制御するよう構成され、
     前記不感帯は、前記給電の終了時に生じる残留電流とサージ電流のうち少なくとも一方の電流値が閾値以下になるまで設けられる、
     請求項4に記載のエアロゾル生成装置。
  6.  前記不感帯の時間の長さは、前記エアロゾル源の枯渇が発生しない場合に前記冷却過程が完了するまでの時間の長さより短い、
     請求項4又は5に記載のエアロゾル生成装置。
  7.  前記制御部は、
      エアロゾル生成に対する要求に基づき、前記電源から前記負荷への給電を制御し、
      前記給電の終了時に生じる残留電流とサージ電流のうち少なくとも一方の電流値が閾値以下になるのに必要な時間より長い周期で、前記冷却過程の監視中に前記センサによって前記電気抵抗値に関連する値を検出する
     よう構成される、
     請求項1から3のいずれか1項に記載のエアロゾル生成装置。
  8.  前記制御部は、前記冷却過程の監視中に前記センサによって前記電気抵抗の値又は前記電気抵抗に関連する電気的な値を検出する周期を段階的に短くするよう構成される、
     請求項1から3のいずれか1項に記載のエアロゾル生成装置。
  9.  前記制御部は、前記センサによって検出される値に対応する前記負荷の温度が低いほど、前記冷却過程の監視中に前記センサによって前記電気抵抗の値又は前記電気抵抗に関連する電気的な値を検出する周期を短くするよう構成される、
     請求項1から3のいずれか1項に記載のエアロゾル生成装置。
  10.  前記制御部は、
      前記冷却過程の開始時又は開始直後に前記センサによって検出される値を、前記センサにより検出される値の時系列的な変化を平滑化することによって補正し、
      前記補正された前記値に基づき、前記冷却過程を監視するよう構成される、
     請求項1から3のいずれか1項に記載のエアロゾル生成装置。
  11.  前記制御部は、平均化処理とローパスフィルタのうち少なくとも一方を用いて、前記センサによって検出される値を補正するよう構成される、
     請求項10に記載のエアロゾル生成装置。
  12.  前記制御部は、前記センサにより検出される値が定常状態になるまでの前記冷却過程に基づき、前記エアロゾル源の枯渇の発生を判断するよう構成される、
     請求項3に記載のエアロゾル生成装置。
  13.  前記制御部は、
      エアロゾル生成に対する要求に基づき、前記電源から前記負荷への給電を制御し、
      前記給電を実行する前に前記センサにより検出される値と、前記冷却過程において前記センサにより検出される値との比較に基づき、前記センサにより検出される値が定常状態に至ったかを判断するよう構成される、
     請求項12に記載のエアロゾル生成装置。
  14.  前記制御部は、室温より既定値だけ高い温度に対応する前記センサにより検出される値と前記冷却過程において前記センサにより検出される値との比較に基づき、前記センサにより検出される値が定常状態に至ったかを判断するよう構成される、
     請求項12に記載のエアロゾル生成装置。
  15.  前記既定値は、前記センサの誤差に起因する、前記センサにより検出される値から得られる前記負荷の温度の誤差より大きい、
     請求項14に記載のエアロゾル生成装置。
  16.  前記制御部は、前記センサにより検出される値の時間微分値に基づき、前記センサにより検出される値が定常状態に至ったかを判断するよう構成される、
     請求項12に記載のエアロゾル生成装置。
  17.  前記制御部は、前記センサにより検出される値の偏差又は分散に基づき、前記センサにより検出される値が定常状態に至ったかを判断するよう構成される、
     請求項12に記載のエアロゾル生成装置。
  18.  エアロゾル生成装置を動作させる方法であって、
     温度に応じて電気抵抗値が変化する負荷への給電による発熱によってエアロゾル源を霧化するステップと、
     前記負荷の電気抵抗の値又は電気抵抗に関連する電気的な値を検出するステップと、
     前記検出される値の時系列的な変化に基づき、前記エアロゾル源を霧化することができる温度以上まで前記負荷が昇温した後の冷却過程を、前記センサにより検出される値の時系列的な変化と前記負荷の温度の低下が相関関係を保持する態様で、監視するステップと
     を含む、方法。
  19.  エアロゾル源を貯留する貯留部又は前記エアロゾル源を保持するエアロゾル基材と、
     電源からの給電による発熱で前記エアロゾル源を霧化し、且つ温度に応じて電気抵抗値が変化する負荷と、
     前記負荷の電気抵抗の値又は電気抵抗に関連する電気的な値を検出するセンサと、
     前記センサにより検出される値の時系列的な変化に基づき、前記エアロゾル源を霧化することができる温度以上まで前記負荷が昇温した後の冷却過程を監視するよう構成される制御部と、
     を含み、
     前記制御部は、前記負荷の温度と電気抵抗の値又は電気抵抗に関連する電気的な値とが乖離しないタイミング、又は、前記冷却過程における前記負荷の冷却を妨げない頻度で、前記冷却過程の監視中、前記センサによって前記値を検出するよう構成される、
     エアロゾル生成装置。
  20.  エアロゾル生成装置を動作させる方法であって、
     温度に応じて電気抵抗値が変化する負荷への給電による発熱によってエアロゾル源を霧化するステップと、
     前記負荷の電気抵抗の値又は電気抵抗に関連する電気的な値を検出するステップと、
     前記検出される値の時系列的な変化に基づき、前記エアロゾル源を霧化することができる温度以上まで前記負荷が昇温した後の冷却過程を監視するステップと
     を含み、
     前記負荷の温度と電気抵抗の値又は電気抵抗に関連する電気的な値とが乖離しないタイミング、又は、前記冷却過程における前記負荷の冷却を妨げない頻度で、前記冷却過程の監視中、前記値が検出される、方法。
  21.  エアロゾル源を貯留する貯留部又は前記エアロゾル源を保持するエアロゾル基材と、
     前記電源からの給電による発熱で前記エアロゾル源を霧化し、且つ温度に応じて電気抵抗値が変化する負荷と、
     前記負荷の電気抵抗の値又は電気抵抗に関連する電気的な値を検出するセンサと、
     前記センサにより検出される値の時系列的な変化に基づき、前記エアロゾル源を霧化することができる温度以上まで前記負荷が昇温した後の冷却過程を監視するよう構成される制御部と、
     を含み、
     前記制御部は、前記冷却過程のうち、前記負荷の冷却開始時又は冷却開始直後よりも後、かつ前記負荷が室温に至るよりも前の、前記センサにより検出される値の時系列的な変化に基づき、前記貯留部における前記エアロゾル源の枯渇の発生を判断するよう構成される、
     エアロゾル生成装置。
  22.  前記制御部は、
      前記センサにより検出される値又は該値の時系列的な変化に基づき、前記センサにより検出される値が定常状態に至ったかを判断し、
      前記センサにより検出される値が定常状態に至るまでの前記冷却過程に基づき、前記枯渇の発生を判断するよう構成される、
     請求項21に記載のエアロゾル生成装置。
  23.  エアロゾル生成装置を動作させる方法であって、
     温度に応じて電気抵抗値が変化する負荷への給電による発熱によってエアロゾル源を霧化するステップと、
     前記負荷の電気抵抗の値又は電気抵抗に関連する電気的な値を検出するステップと、
     前記検出される値の時系列的な変化に基づき、前記エアロゾル源を霧化することができる温度以上まで前記負荷が昇温した後の冷却過程を監視するステップと
     を含み、
     前記冷却過程のうち、前記負荷の冷却開始時又は冷却開始直後よりも後、かつ前記負荷が室温に至るよりも前の、前記検出される値の時系列的な変化に基づき、前記エアロゾル源の枯渇の発生が判断される、方法。
  24.  プロセッサにより実行されると、前記プロセッサに、請求項18、20及び23のいずれか1項に記載の方法を実行させる、プログラム。
PCT/JP2018/023731 2018-06-22 2018-06-22 エアロゾル生成装置並びにこれを動作させる方法及びプログラム WO2019244322A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2020525184A JP6792907B2 (ja) 2018-06-22 2018-06-22 エアロゾル生成装置並びにこれを動作させる方法及びプログラム
RU2021101168A RU2754843C1 (ru) 2018-06-22 2018-06-22 Аэрозольное устройство, а также способ и компьютерно-читаемый носитель данных, содержащий программу для управления таким устройством
EP18923523.7A EP3811801B1 (en) 2018-06-22 2018-06-22 Aerosol generation device, and method and program for operating same
CN201880095846.4A CN112469295B (zh) 2018-06-22 2018-06-22 气溶胶生成装置以及使其动作的方法以及记录介质
PCT/JP2018/023731 WO2019244322A1 (ja) 2018-06-22 2018-06-22 エアロゾル生成装置並びにこれを動作させる方法及びプログラム
US17/128,231 US11337462B2 (en) 2018-06-22 2020-12-21 Aerosol generation device, and method and program for operating same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/023731 WO2019244322A1 (ja) 2018-06-22 2018-06-22 エアロゾル生成装置並びにこれを動作させる方法及びプログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/128,231 Continuation US11337462B2 (en) 2018-06-22 2020-12-21 Aerosol generation device, and method and program for operating same

Publications (1)

Publication Number Publication Date
WO2019244322A1 true WO2019244322A1 (ja) 2019-12-26

Family

ID=68983571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023731 WO2019244322A1 (ja) 2018-06-22 2018-06-22 エアロゾル生成装置並びにこれを動作させる方法及びプログラム

Country Status (6)

Country Link
US (1) US11337462B2 (ja)
EP (1) EP3811801B1 (ja)
JP (1) JP6792907B2 (ja)
CN (1) CN112469295B (ja)
RU (1) RU2754843C1 (ja)
WO (1) WO2019244322A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111329131A (zh) * 2020-03-30 2020-06-26 贵州中烟工业有限责任公司 加热不燃烧卷烟温控方法及温控系统
JPWO2019244323A1 (ja) * 2018-06-22 2020-12-17 日本たばこ産業株式会社 エアロゾル生成装置並びにこれを動作させる方法及びプログラム
JPWO2019244324A1 (ja) * 2018-06-22 2020-12-17 日本たばこ産業株式会社 エアロゾル生成装置並びにこれを動作させる方法及びプログラム
JP2021036881A (ja) * 2020-11-06 2021-03-11 日本たばこ産業株式会社 エアロゾル生成装置並びにこれを動作させる方法及びプログラム
WO2022189765A1 (en) * 2021-03-11 2022-09-15 Nicoventures Trading Limited Aerosol provision system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR116723A1 (es) 2018-10-08 2021-06-09 Juul Labs Inc Elemento de calentamiento
US11744285B2 (en) 2020-07-15 2023-09-05 Altria Client Services Llc Steady state resistance estimation for overheating protection of a nicotine e-vaping device
US20220015443A1 (en) * 2020-07-15 2022-01-20 Altria Client Services Llc Steady state resistance estimation for overheating protection of a non-nicotine e-vaping device
CN117491758A (zh) * 2022-07-25 2024-02-02 深圳麦时科技有限公司 故障检测方法及其装置、可读存储介质和气溶胶雾化装置
US20240091466A1 (en) * 2022-09-19 2024-03-21 Altria Client Services Llc Cooldown alert system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140014126A1 (en) * 2012-07-11 2014-01-16 Eyal Peleg Hot-wire control for an electronic cigarette
JP2015531600A (ja) * 2012-09-11 2015-11-05 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 電気ヒーターを制御して温度を制限する装置および方法
WO2017024477A1 (zh) 2015-08-10 2017-02-16 惠州市吉瑞科技有限公司深圳分公司 一种检测电子烟中烟油是否耗尽的方法和一种电子烟
WO2017084818A1 (en) 2015-11-17 2017-05-26 Philip Morris Products S.A. Aerosol-generating system with self-activated electric heater
WO2017144191A1 (en) 2016-02-25 2017-08-31 Philip Morris Products S.A. Aerosol-generating system with liquid level determination and method of determining liquid level in an aerosol-generating system
WO2017185356A1 (zh) 2016-04-29 2017-11-02 惠州市吉瑞科技有限公司深圳分公司 一种检测电子烟中烟油是否耗尽的方法
WO2017185355A1 (zh) 2016-04-29 2017-11-02 惠州市吉瑞科技有限公司深圳分公司 一种检测电子烟中烟油是否耗尽的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2468117A1 (en) * 2010-12-24 2012-06-27 Philip Morris Products S.A. An aerosol generating system having means for determining depletion of a liquid substrate
TWI546023B (zh) * 2011-10-27 2016-08-21 菲利浦莫里斯製品股份有限公司 具有氣溶膠生產控制之電操作氣溶膠產生系統
TWI608805B (zh) * 2012-12-28 2017-12-21 菲利浦莫里斯製品股份有限公司 加熱型氣溶膠產生裝置及用於產生具有一致性質的氣溶膠之方法
US9423152B2 (en) * 2013-03-15 2016-08-23 R. J. Reynolds Tobacco Company Heating control arrangement for an electronic smoking article and associated system and method
TWI692274B (zh) * 2014-05-21 2020-04-21 瑞士商菲利浦莫里斯製品股份有限公司 用於加熱氣溶膠形成基材之感應加熱裝置及操作感應加熱系統之方法
WO2015192084A1 (en) * 2014-06-14 2015-12-17 Evolv, Llc Electronic vaporizer having temperature sensing and limit
US10932495B2 (en) * 2016-02-25 2021-03-02 Altria Client Services Llc Electrically operated aerosol-generating system with temperature sensor
US11006669B2 (en) * 2016-02-25 2021-05-18 Altria Client Services Llc Aerosol-generating systems with liquid level determination and methods of determining liquid level in aerosol-generating systems

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140014126A1 (en) * 2012-07-11 2014-01-16 Eyal Peleg Hot-wire control for an electronic cigarette
JP2015531600A (ja) * 2012-09-11 2015-11-05 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 電気ヒーターを制御して温度を制限する装置および方法
WO2017024477A1 (zh) 2015-08-10 2017-02-16 惠州市吉瑞科技有限公司深圳分公司 一种检测电子烟中烟油是否耗尽的方法和一种电子烟
WO2017084818A1 (en) 2015-11-17 2017-05-26 Philip Morris Products S.A. Aerosol-generating system with self-activated electric heater
WO2017144191A1 (en) 2016-02-25 2017-08-31 Philip Morris Products S.A. Aerosol-generating system with liquid level determination and method of determining liquid level in an aerosol-generating system
WO2017185356A1 (zh) 2016-04-29 2017-11-02 惠州市吉瑞科技有限公司深圳分公司 一种检测电子烟中烟油是否耗尽的方法
WO2017185355A1 (zh) 2016-04-29 2017-11-02 惠州市吉瑞科技有限公司深圳分公司 一种检测电子烟中烟油是否耗尽的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3811801A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019244323A1 (ja) * 2018-06-22 2020-12-17 日本たばこ産業株式会社 エアロゾル生成装置並びにこれを動作させる方法及びプログラム
JPWO2019244324A1 (ja) * 2018-06-22 2020-12-17 日本たばこ産業株式会社 エアロゾル生成装置並びにこれを動作させる方法及びプログラム
CN111329131A (zh) * 2020-03-30 2020-06-26 贵州中烟工业有限责任公司 加热不燃烧卷烟温控方法及温控系统
JP2021036881A (ja) * 2020-11-06 2021-03-11 日本たばこ産業株式会社 エアロゾル生成装置並びにこれを動作させる方法及びプログラム
WO2022189765A1 (en) * 2021-03-11 2022-09-15 Nicoventures Trading Limited Aerosol provision system

Also Published As

Publication number Publication date
US20210106065A1 (en) 2021-04-15
EP3811801B1 (en) 2023-03-29
JPWO2019244322A1 (ja) 2020-12-17
EP3811801A4 (en) 2021-07-14
EP3811801A1 (en) 2021-04-28
JP6792907B2 (ja) 2020-12-02
CN112469295B (zh) 2022-06-14
US11337462B2 (en) 2022-05-24
CN112469295A (zh) 2021-03-09
RU2754843C1 (ru) 2021-09-08

Similar Documents

Publication Publication Date Title
WO2019244322A1 (ja) エアロゾル生成装置並びにこれを動作させる方法及びプログラム
WO2019244323A1 (ja) エアロゾル生成装置並びにこれを動作させる方法及びプログラム
JP6936414B2 (ja) エアロゾル生成装置
JP6905073B2 (ja) エアロゾル生成装置、エアロゾル生成装置の制御方法、及びこれらの方法をプロセッサに実行させるためのプログラムラム
JP6889345B1 (ja) エアロゾル生成装置、エアロゾル生成装置の制御方法及び当該方法をプロセッサに実行させるためのプログラム
KR102500895B1 (ko) 에어로졸 생성 장치 및 이것을 동작시키는 방법 및 프로그램
KR102500892B1 (ko) 에어로졸 생성 장치 및 이것을 동작시키는 방법 및 프로그램
WO2019244324A1 (ja) エアロゾル生成装置並びにこれを動作させる方法及びプログラム
JP2020195298A (ja) エアロゾル吸引器、エアロゾル吸引器用の制御装置、エアロゾル吸引器の制御方法及びプログラム
JPWO2019146062A1 (ja) エアロゾル生成装置及びエアロゾル生成装置の製造方法
JP6588669B1 (ja) エアロゾル吸引器用の制御装置、制御方法、プログラム、エアロゾル吸引器
JP2021036881A (ja) エアロゾル生成装置並びにこれを動作させる方法及びプログラム
TW202000053A (zh) 霧氣生成裝置及使該裝置動作之方法和程式
TW202000054A (zh) 霧氣生成裝置及使該裝置動作之方法和程式
TW202000052A (zh) 霧氣生成裝置及使該裝置動作之方法和程式
TW202007291A (zh) 霧氣產生裝置以及使該裝置動作之方法及程式

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923523

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525184

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018923523

Country of ref document: EP

Effective date: 20210122