WO2019244297A1 - Light-emitting electronic device inspection method and light-emitting electronic device manufacturing method - Google Patents

Light-emitting electronic device inspection method and light-emitting electronic device manufacturing method Download PDF

Info

Publication number
WO2019244297A1
WO2019244297A1 PCT/JP2018/023593 JP2018023593W WO2019244297A1 WO 2019244297 A1 WO2019244297 A1 WO 2019244297A1 JP 2018023593 W JP2018023593 W JP 2018023593W WO 2019244297 A1 WO2019244297 A1 WO 2019244297A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
electronic device
emitting electronic
semiconductor laser
stem
Prior art date
Application number
PCT/JP2018/023593
Other languages
French (fr)
Japanese (ja)
Inventor
公治 黒木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/023593 priority Critical patent/WO2019244297A1/en
Publication of WO2019244297A1 publication Critical patent/WO2019244297A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers

Definitions

  • the present application relates to a light emitting electronic device inspection method and a light emitting electronic device manufacturing method, and more particularly, to a light emitting electronic device inspection method and a light emitting electronic device manufacturing method including a step of inspecting moisture inside the device. is there.
  • the moisture test method for an electronic device is executed with the aim of securing the relative humidity required inside the electronic device, reducing the manufacturing cost, and improving the quality (for example, Patent Documents 1 to 5). See). More specifically, the light-emitting wavelength has a plurality of light-emitting elements, irradiates the object with light, has a configuration to detect the amount of moisture contained in the object from the reflected light, it is possible to measure the moisture content
  • a moisture content measuring device having a structure has been proposed (see Patent Documents 6 and 7).
  • an object of the present invention is to provide a light-emitting electronic device inspection method and a light-emitting electronic device manufacturing method that enable efficient determination of pass / fail of the internal water content of an electronic device.
  • the method for inspecting a light-emitting electronic device disclosed in the present application includes a first step of mounting a cap to which an optical member is fixed on a stem on which a semiconductor laser is mounted; A second step of measuring a first light output at a temperature with an infrared detector, and determining whether the first light output measured in the second step satisfies a first pass condition. A third step, and when it is determined in the third step that the first optical output satisfies the first pass condition, a current is supplied to the semiconductor laser and a second temperature lower than the first temperature is supplied to the semiconductor laser. A second step of measuring a second light output at a temperature of 4 with an infrared detector, and determining whether the second light output measured in the fourth step satisfies a second pass condition. And a fifth step to be performed.
  • the method for inspecting a light-emitting electronic device disclosed in the present application includes a first step of mounting a cap to which an optical member is fixed on a stem on which a semiconductor laser is mounted; A second step of measuring a first light output at a temperature with an infrared detector, and determining whether the first light output measured in the second step satisfies a first pass condition. A third step, and when it is determined in the third step that the first optical output satisfies the first pass condition, a current is supplied to the semiconductor laser and a second temperature lower than the first temperature is supplied to the semiconductor laser.
  • FIG. 1 is an overall view for describing a configuration of a light emitting electronic device according to an embodiment.
  • FIG. 4 is a flowchart illustrating a method for manufacturing a light-emitting electronic device according to an embodiment. It is a figure showing the structure for measuring the 1st light output (light output P1) in the inspection method of the light emitting electronic device, and the manufacturing method of the light emitting electronic device. It is a figure showing the composition for measuring the 2nd light output (light output P2) in the inspection method of the light emitting electronic device, and the manufacturing method of the light emitting electronic device.
  • FIG. 2 is a flowchart showing a light emitting electronic device inspection method according to the first embodiment. It is a figure showing the relation between the dew point and the amount of moisture.
  • FIG. 9 is a flowchart showing a light emitting electronic device inspection method according to the second embodiment.
  • FIG. 9 is an overall configuration diagram for describing features of a light-emitting electronic device according to a third embodiment.
  • FIG. 13 is an overall configuration diagram for describing features of a light-emitting electronic device according to a fourth embodiment.
  • FIG. 1 is a cross-sectional view illustrating an overall configuration of a light emitting electronic device including a hermetically sealed package.
  • the light emitting electronic device 100 according to the embodiment includes a cap 30 with a lens (hermetically sealed package), a laser diode mounting stem 31, and the like.
  • the lens cap 30 includes a spherical lens 29 (optical member), the cap 22, and the like.
  • Laser diode mounting stem 31 includes laser diode 21 (semiconductor laser), stem 23 and the like.
  • a stem pin 23a is fixed to the stem 23.
  • laser oscillation occurs in the laser diode 21 (semiconductor laser), and the laser diode 21 emits laser light in an infrared region.
  • the spherical lens 29 is fixed to the cap 22, and transmits light emitted from the laser diode 21.
  • FIG. 2 is a flowchart schematically showing a method of manufacturing the light-emitting electronic device 100.
  • the spherical lens 29 is attached to the cap 22.
  • the spherical lens 29 is fixed to the cap 22 to form the lens cap 30 (step S01).
  • the laser diode 21 is attached to the stem 23.
  • the laser diode 21 is mounted on the stem 23 to create the laser diode mounted stem 31 (step S02).
  • the light-emitting electronic device 100 is inspected using the lens cap 30 and the laser diode mounting stem 31 (steps S10 to S19). Passed products of the light emitting electronic device are selected by this inspection method.
  • This inspection process is performed in a humidity-controlled environment such as a nitrogen atmosphere or a dry air atmosphere.
  • the light-emitting electronic device 100 that has passed the inspection moves to the next step (Step S30).
  • the inspection method of the light emitting electronic device will be described in detail.
  • FIG. 3 shows a method of measuring the light output P1 (first light output) of the light emitting electronic device in the light emitting electronic device inspection method and the light emitting electronic device manufacturing method according to the embodiment.
  • the light output P1 represents the output of the laser diode 21 at the temperature T1 (first temperature).
  • a cap 30 with a lens is mounted on a laser diode mounting stem 31 on which the laser diode 21 is mounted, and the cap and the stem are hermetically sealed.
  • the measurement of the light output is performed in the inspection room 50.
  • the inspection room 50 is set to the temperature T1.
  • the laser diode 21 is placed in an environment where humidity is controlled.
  • the light output P1 of the light emitting electronic device 100 is detected by the infrared detector 24.
  • the laser light 25 emitted from the laser diode 21 passes through the spherical lens 29 of the lens cap 30 and enters the infrared detector 24.
  • FIG. 4 shows a method of measuring the light output P2 (second light output) of the light-emitting electronic device in the light-emitting electronic device inspection method and the light-emitting electronic device manufacturing method according to the embodiment.
  • the light output P2 represents the output of the laser diode 21 at the temperature T2 (second temperature).
  • a cap 30 with a lens is mounted on a laser diode mounting stem 31 on which the laser diode 21 is mounted, and the cap and the stem are hermetically sealed.
  • the measurement of the light output is performed in the inspection room 50.
  • the inspection room 50 is set at the temperature T2.
  • the laser diode 21 is placed in an environment where humidity is controlled.
  • the light output P2 of the light emitting electronic device 100 is detected by the infrared detector 24.
  • the infrared detector used for measuring the light output P1 (first light output) and the infrared detector used for measuring the light output P2 (second light output) may be different.
  • the temperature T2 is a value lower than the temperature T1.
  • the laser beam 25 emitted from the laser diode 21 passes through the spherical lens 29 of the lens cap 30 and enters the infrared detector 24.
  • FIG. 5 is a flowchart showing a method for inspecting a light emitting electronic device according to the present embodiment.
  • the cap with lens 30 is mounted on the laser diode mounting stem 31 on which the laser diode 21 is mounted, and the cap and the stem are hermetically sealed (step S11: first step).
  • step S12 in this state, an electric signal for performing laser oscillation is input to the laser diode 21, and the optical output P1 is measured (second step: see FIG. 3).
  • the laser diode drive current is the same as the value used when the determination value used in step S13 is obtained.
  • the light emitted from the laser diode 21 is attenuated because it passes through the spherical lens 29, and the attenuated light output is detected by the infrared detector 24.
  • the optical output P1 is compared with a determination value (first determination value), and a determination is made as to whether or not the first pass condition is satisfied (step S13: third step).
  • a lens conversion value corrected in consideration of the detection sensitivity at each wavelength is used (step S19). If the optical output P1 is larger than a predetermined judgment value (first judgment value), it is judged as pass, and if smaller, it is judged as reject.
  • the lens conversion value corresponds to the attenuation of the light output by the lens. If the result of the determination is reject, the light emitting electronic device 100 is discarded (step S17).
  • Step S14 the temperature of the light-emitting electronic device is lowered to a temperature T2 (second temperature) (Step S14).
  • T2 second temperature
  • step S15 in this state, an electric signal for performing laser oscillation is input to the laser diode 21 and the optical output P2 at the temperature T2 is measured (fourth step: see FIG. 4). Since the amount of infrared absorption of water increases as the relative humidity increases, the dew point inside the light emitting electronic device can be confirmed.
  • step S16 fifth step.
  • the optical output P2 is compared with a determination value (a second determination value), and a determination is made as to whether or not a second pass condition is satisfied (step S16: fifth step).
  • the determination value an allowable value determined based on the light output P1 obtained in step S12 is used. If the optical output P2 is larger than the judgment value (second judgment value), it is judged as pass, and if it is smaller, it is judged as reject. If the result of the determination is reject, the light emitting electronic device 100 is discarded (step S18). The passed light-emitting electronic device 100 moves to the next step (step S30).
  • FIG. 6 is a diagram showing theoretical calculation values indicating the relationship between the dew point and the amount of moisture.
  • the horizontal axis represents the dew point (° C.)
  • the vertical axis represents the internal water content (ppm). Since the internal humidity of the light emitting electronic device affects the light output, the moisture content inside the light emitting electronic device can be inspected from the light output contrast (attenuation: P2 / P1).
  • the laser diode 21 having an oscillation wavelength in the 1940 nm band.
  • the oscillation wavelength of the laser diode 21 used is preferably in the 1450 nm band.
  • a light emitting electronic device having a plurality of oscillation wavelengths with one light source such as using a variable wavelength light source as a light source.
  • a tunable laser is a semiconductor laser whose wavelength can be controlled by current, temperature, and the like. By controlling the tunable laser, wavelengths in the 1940 nm band and the 1450 nm band can be realized. In the 1940 nm band and the 1450 nm band, since the amount of infrared absorption by water is larger than in other wavelength bands, the moisture inside the light emitting electronic device can be detected with high sensitivity.
  • the method for inspecting a light-emitting electronic device disclosed in the present application includes a first step of mounting a cap to which an optical member is fixed on a stem on which a semiconductor laser is mounted; A second step of measuring a first light output at a temperature with an infrared detector, and determining whether the first light output measured in the second step satisfies a first pass condition. A third step, and when it is determined in the third step that the first optical output satisfies the first pass condition, a current is supplied to the semiconductor laser and a second temperature lower than the first temperature is supplied to the semiconductor laser. A second step of measuring a second light output at a temperature of 4 with an infrared detector, and determining whether the second light output measured in the fourth step satisfies a second pass condition. And a fifth step to be performed.
  • a light-emitting electronic device that emits light is targeted for inspection. Since external factors such as irradiation position accuracy and variations due to reflection are reduced, accuracy can be improved. In addition, since the inspection can be performed at the same time as another inspection, an effect of shortening the time required to move between the facilities for the inspection can be obtained.
  • Embodiment 2 the loss of light output due to the cap with lens 30 is substituted by a lens conversion value.
  • the reference light output P3 (third light output) is first measured in a humidity-controlled environment such as a nitrogen atmosphere or a dry air atmosphere.
  • FIG. 7 shows a method of measuring the light output P3 serving as a reference.
  • the reference light output P3 (third light output) is measured in the inspection room 50.
  • the inspection room 50 is set to the temperature T1 (first temperature).
  • the laser diode 21 is placed in an environment where the humidity is controlled. Between the laser diode 21 and the infrared detector 24, a lens cap 30 actually used is provided on the optical path. At the temperature T1, the laser light 25 emitted from the laser diode 21 passes through the spherical lens 29 of the lens cap 30 and enters the infrared detector 24.
  • the infrared detector used when measuring the optical output P3 (third optical output) is the infrared detector used when measuring the optical output P1 (first optical output) or the optical output P2 ( It may be different from the infrared detector used when measuring the second light output).
  • FIG. 8 is a flowchart showing a method for inspecting a light-emitting electronic device according to the present embodiment.
  • This inspection process is performed in a humidity-controlled environment such as a nitrogen atmosphere or a dry air atmosphere.
  • a humidity-controlled environment such as a nitrogen atmosphere or a dry air atmosphere.
  • an electric signal for performing laser oscillation is input to a laser diode mounting stem 31 mounting a laser diode 21 (semiconductor laser).
  • a lens cap 30 actually used is placed on the optical path of the laser beam 25 (see FIG. 7). Since the laser light 25 emitted from the laser diode 21 enters the infrared detector 24, the reference light output P3 (third light output) can be measured (step S10: sixth step). ).
  • step S11 first step
  • step S12 in this state, an electric signal for performing laser oscillation is input to the laser diode 21, and the optical output P1 is measured (second step: see FIG. 3).
  • the laser diode drive current is the same as the value used when the determination value used in step S13 is obtained.
  • the light emitted from the laser diode 21 is attenuated because it passes through the spherical lens 29, and the attenuated light output is detected by the infrared detector 24.
  • the light output P1 is compared with a determination value (third determination value) to determine whether the output is acceptable (step S13: third step).
  • a determination value an allowable value created based on the optical output P3 in consideration of the detection sensitivity at each wavelength is used. If the optical output P1 is larger than a predetermined judgment value (third judgment value), it is judged as pass, and if smaller, it is judged as reject. The judgment value corresponds to the attenuation of the light output by the lens. If the result of the determination is reject, the light emitting electronic device 100 is discarded (step S17).
  • Step S14 the temperature of the light-emitting electronic device is lowered to a temperature T2 (second temperature) (Step S14).
  • T2 second temperature
  • step S15 in this state, an electric signal for performing laser oscillation is input to the laser diode 21 and the optical output P2 at the temperature T2 is measured (fourth step: see FIG. 4). Since the amount of infrared absorption of water increases as the relative humidity increases, the dew point inside the light emitting electronic device can be confirmed.
  • step S16 fifth step.
  • a judgment value an allowable value determined based on the light output P1 obtained in step S12 is used. If the optical output P2 is larger than the judgment value (second judgment value), it is judged as pass, and if it is smaller, it is judged as reject. If the result of the determination is reject, the light emitting electronic device 100 is discarded (step S18). The passed light-emitting electronic device 100 moves to the next step (step S30).
  • the attached cap 30 is placed on the optical path and the light output is measured.
  • the temperature of the light emitting electronic device is lowered, the internal relative humidity increases due to the relationship between the water content and the dew point. Since the humidity inside the light emitting electronic device affects the light output, the moisture content inside the light emitting electronic device can be inspected from the light output contrast (attenuation: P2 / P1).
  • the method for inspecting a light emitting electronic device disclosed in the present application includes the steps of: placing a cap to which an optical member is fixed on an optical path of a stem on which a semiconductor laser is mounted; energizing the semiconductor laser; Further comprising a sixth step of measuring the third step with an infrared detector, wherein the sixth step is performed before the first step, and the third step is performed based on the third light output.
  • the first pass condition used in the above is created.
  • a light-emitting electronic device that emits light is targeted for inspection. Since external factors such as irradiation position accuracy and variations due to reflection are reduced, accuracy can be improved. In addition, since the inspection can be performed at the same time as another inspection, an effect of shortening the time required to move between the facilities for the inspection can be obtained.
  • an electronic component requiring hermetic sealing is mounted on the stem 23 at the same time as the laser diode 21.
  • passive elements such as capacitors, inductors, and resistors
  • active elements such as semiconductor chip components correspond to the electronic components.
  • the semiconductor chip component is represented by a bare chip, and includes an IC (Integrated Circuit) such as a MOS (Metal Oxide Semiconductor), a light emitting / receiving electronic device, and the like.
  • IC Integrated Circuit
  • MOS Metal Oxide Semiconductor
  • FIG. 9 shows the light emitting electronic device before the lens cap 30 is hermetically sealed to the laser diode mounting stem 31.
  • the light emitting electronic device 100 includes a laser diode 21, a cap 22, a stem 23, an electronic component 26, a spherical lens 29, and the like.
  • the electronic component 26 is mounted on the stem 23 simultaneously with the laser diode 21 (semiconductor laser). When a current flows from the stem pin 23a of the stem 23, the laser diode 21 emits laser light and emits laser light.
  • the spherical lens 29 is fixed to the cap 22 and transmits light emitted from the laser diode 21.
  • the laser diode 21 is mounted on the stem 23 together with the electronic components 26.
  • the electronic component 26 starts operating when a current flows from the stem pin 23 a of the stem 23.
  • the light emitting electronic device 100 disclosed in the present embodiment is subjected to the light emitting electronic device inspection method and the light emitting electronic device manufacturing method according to the flow disclosed in the first or second embodiment.
  • a light-emitting electronic device that emits light is targeted for inspection. Since external factors such as irradiation position accuracy and variations due to reflection are reduced, accuracy can be improved. In addition, since the inspection can be performed at the same time as another inspection, there is an effect that the time required to move between the facilities for the inspection can be reduced. Further, the light emitting electronic device 100 according to the present embodiment has a built-in inspection function. A mechanism having airtightness can be realized independently for electronic components. The method for manufacturing a light-emitting electronic device according to the present embodiment is used as a method for checking the airtightness of an electronic component.
  • Embodiment 4 In the method for inspecting a light-emitting electronic device and the method for manufacturing the light-emitting electronic device according to the present embodiment, another optical member is used instead of the spherical lens 29 fixed to the lens cap 30.
  • the optical member transmits light emitted from the laser diode 21.
  • an optical filter, an aspheric lens, a flat glass, etc. correspond to the optical member.
  • the optical member is applicable as long as it has a function of transmitting a wavelength emitted from the laser diode 21.
  • FIG. 10 shows the light-emitting electronic device before the lens cap 30 is hermetically sealed to the laser diode mounting stem 31.
  • the light emitting electronic device 100 includes a laser diode 21, a cap 22, a stem 23, an optical member 28, and the like.
  • the optical member 28 includes an optical filter, an aspheric lens, flat glass, and the like.
  • An optical member 28 such as an optical filter, an aspheric lens, or a flat glass is fixed to the cap 22 and transmits light emitted from the laser diode 21.
  • the laser diode 21 is mounted on the stem 23.
  • the light emitting electronic device 100 disclosed in the present embodiment is subjected to the light emitting electronic device inspection method and the light emitting electronic device manufacturing method according to the flow disclosed in the first or second embodiment.
  • a light-emitting electronic device that emits light is targeted for inspection. Since external factors such as irradiation position accuracy and variations due to reflection are reduced, accuracy can be improved. In addition, since the inspection can be performed at the same time as another inspection, an effect of shortening the time required to move between the facilities for the inspection can be obtained.
  • An embodiment disclosed in the present application is a package for hermetically sealing an electronic component, a semiconductor laser mounted inside the hermetically sealed package and emitting infrared light, and a package for infrared light emitted from the semiconductor laser.
  • An optical member that transmits to the outside of the package, the semiconductor laser is energized to emit light by itself, the intensity of infrared light emitted to the outside of the package is measured, and the presence or absence of moisture inside the package is determined by infrared absorption.
  • the present invention relates to a method of inspecting a hermetically sealed package of an electronic component, which is characterized by detecting the package.
  • the embodiment disclosed in the present application relates to a method for inspecting a hermetically sealed package of an electronic component, wherein the electronic component is the semiconductor laser itself. Further, the embodiment disclosed in the present application is directed to an inspection of a hermetically sealed package of an electronic component, wherein the semiconductor laser is a wavelength tunable laser capable of controlling a wavelength by a current, a temperature, and the like as a light source. It concerns the method. Further, the embodiment disclosed in the present application is characterized in that the light output measured in an environment without humidity and the light output measured after hermetic sealing are measured, and both are compared. It is related to the package inspection method.
  • the embodiment disclosed in the present application is a hermetically sealed package of an electronic component, wherein the temperature is reduced to a certain temperature after hermetic sealing, the measured optical output is measured, and the two are compared.
  • the embodiment disclosed in the present application relates to a method for inspecting a hermetically sealed package of an electronic component, wherein a wavelength of a semiconductor laser is in a 1940 nm band or a 1450 nm band.
  • the step of mounting the electronic component on the package, the step of hermetically sealing the package, and the above-described method of inspecting the hermetically sealed package of the electronic component are hermetically sealed. Inspecting the presence or absence of moisture inside the package.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

A light-emitting electronic device inspection method provided with: a first step (S11) of mounting a cap (22) with an optical member (28, 29) fixed thereon onto a stem (23) mounting a semiconductor laser (21); a second step (S12) of energizing the semiconductor laser (21) and measuring a first optical output (P1) at a first temperature (T1), using an infrared detector (24); a third step (S13) of determining whether the first optical output (P1) measured in the second step satisfies a pass condition; a fourth step (S14, S15) of, if it is determined in the third step that the first optical output (P1) satisfies the pass condition, energizing the semiconductor laser (21) and measuring a second optical output (P2) at a second temperature (T2) lower than the first temperature (T1), using the infrared detector (24); and a fifth step (S16) of determining whether the second optical output (P2) measured in the fourth step satisfies the pass condition.

Description

発光電子デバイスの検査方法および発光電子デバイスの製造方法Light emitting electronic device inspection method and light emitting electronic device manufacturing method
 本願は、発光電子デバイスの検査方法および発光電子デバイスの製造方法に関わり、特に、デバイス内部の水分を検査する工程を含んでいる、発光電子デバイスの検査方法および発光電子デバイスの製造方法に関するものである。 The present application relates to a light emitting electronic device inspection method and a light emitting electronic device manufacturing method, and more particularly, to a light emitting electronic device inspection method and a light emitting electronic device manufacturing method including a step of inspecting moisture inside the device. is there.
 発光電子デバイスなどの電子機器を製造する現場では、生産性を改善するために、電子機器の内部の水分を検査する方法が考案されている。電子機器の水分検査方法は、電子機器の内部に必要とされる相対湿度の確保、製造コストの低減、ならびに高品質化を図ることを目指して実行される(例えば、特許文献1から特許文献5を参照)。より具体的には、発光波長が複数の発光素子を有し、被検知物に光を照射し、反射光から被検知物に含まれる水分量を検出する構成を持ち、含水分測定が可能な構造となっている含水分測定装置が提案されている(特許文献6および特許文献7を参照)。 (4) At the site where electronic devices such as light-emitting electronic devices are manufactured, a method for inspecting moisture inside the electronic devices has been devised in order to improve productivity. The moisture test method for an electronic device is executed with the aim of securing the relative humidity required inside the electronic device, reducing the manufacturing cost, and improving the quality (for example, Patent Documents 1 to 5). See). More specifically, the light-emitting wavelength has a plurality of light-emitting elements, irradiates the object with light, has a configuration to detect the amount of moisture contained in the object from the reflected light, it is possible to measure the moisture content A moisture content measuring device having a structure has been proposed (see Patent Documents 6 and 7).
特開平9-127031号公報JP-A-9-127031 特開2004-045038号公報JP 2004-045038 A 特開昭61-217750号公報JP-A-61-217750 実開平02-095840号公報Japanese Utility Model Publication No. 02-095840 実開2011-117868号公報Japanese Utility Model Publication No. 2011-117868 特開平9-152400号公報JP-A-9-152400 特開2000-146834号公報JP 2000-146834 A
 前述の含水分測定装置によれば、電子機器自体で水分量を検出することができず、電子機器内部の水分量を検出するためには別の測定装置ならびに手段を用いて評価することが必要であった。かつ、被検知物に対しては、都度、内部水分量検査装置から照射する必要があるため、効率および精度に課題があった。本願は、上記のような課題を解消するためになされたものである。すなわち、電子デバイスの内部水分量の判定を効率よく合否判定を可能とする、発光電子デバイスの検査方法および発光電子デバイスの製造方法を提供することを目的とする。 According to the moisture content measuring device described above, the moisture content cannot be detected by the electronic device itself, and it is necessary to evaluate using another measuring device and means in order to detect the moisture content inside the electronic device. Met. In addition, it is necessary to irradiate the object to be detected from the internal moisture content inspection device every time, and thus there is a problem in efficiency and accuracy. The present application has been made to solve the above problems. That is, an object of the present invention is to provide a light-emitting electronic device inspection method and a light-emitting electronic device manufacturing method that enable efficient determination of pass / fail of the internal water content of an electronic device.
 本願に開示される発光電子デバイスの検査方法は、光学部材が固定されたキャップを、半導体レーザを搭載しているステムに実装する第1の工程と、前記半導体レーザに通電して、第1の温度における第1の光出力を赤外線検出器により測定する第2の工程と、前記第2の工程で測定された前記第1の光出力が、第1の合格条件を満足するかどうかを判定する第3の工程と、前記第3の工程で前記第1の光出力が前記第1の合格条件を満足すると判定した場合、前記半導体レーザに通電して、前記第1の温度よりも低い第2の温度における第2の光出力を赤外線検出器により測定する第4の工程と、前記第4の工程で測定された前記第2の光出力が、第2の合格条件を満足するかどうかを判定する第5の工程と、を備えているものである。 The method for inspecting a light-emitting electronic device disclosed in the present application includes a first step of mounting a cap to which an optical member is fixed on a stem on which a semiconductor laser is mounted; A second step of measuring a first light output at a temperature with an infrared detector, and determining whether the first light output measured in the second step satisfies a first pass condition. A third step, and when it is determined in the third step that the first optical output satisfies the first pass condition, a current is supplied to the semiconductor laser and a second temperature lower than the first temperature is supplied to the semiconductor laser. A second step of measuring a second light output at a temperature of 4 with an infrared detector, and determining whether the second light output measured in the fourth step satisfies a second pass condition. And a fifth step to be performed.
 本願に開示される発光電子デバイスの検査方法は、光学部材が固定されたキャップを、半導体レーザを搭載しているステムに実装する第1の工程と、前記半導体レーザに通電して、第1の温度における第1の光出力を赤外線検出器により測定する第2の工程と、前記第2の工程で測定された前記第1の光出力が、第1の合格条件を満足するかどうかを判定する第3の工程と、前記第3の工程で前記第1の光出力が前記第1の合格条件を満足すると判定した場合、前記半導体レーザに通電して、前記第1の温度よりも低い第2の温度における第2の光出力を赤外線検出器により測定する第4の工程と、前記第4の工程で測定された前記第2の光出力が、第2の合格条件を満足するかどうかを判定する第5の工程と、を備えていることにより、内部水分量の判定に対する合格品を効率よく選出することが可能になる。 The method for inspecting a light-emitting electronic device disclosed in the present application includes a first step of mounting a cap to which an optical member is fixed on a stem on which a semiconductor laser is mounted; A second step of measuring a first light output at a temperature with an infrared detector, and determining whether the first light output measured in the second step satisfies a first pass condition. A third step, and when it is determined in the third step that the first optical output satisfies the first pass condition, a current is supplied to the semiconductor laser and a second temperature lower than the first temperature is supplied to the semiconductor laser. A second step of measuring a second light output at a temperature of 4 with an infrared detector, and determining whether the second light output measured in the fourth step satisfies a second pass condition. And a fifth step of The acceptable product for determining parts water content it is possible to elect efficiently.
実施の形態に関わる、発光電子デバイスの構成を説明するための全体図である。FIG. 1 is an overall view for describing a configuration of a light emitting electronic device according to an embodiment. 実施の形態に関わる、発光電子デバイスの製造方法を示しているフロー図である。FIG. 4 is a flowchart illustrating a method for manufacturing a light-emitting electronic device according to an embodiment. 発光電子デバイスの検査方法および発光電子デバイスの製造方法において、第1の光出力(光出力P1)を測定するための構成を表している図である。It is a figure showing the structure for measuring the 1st light output (light output P1) in the inspection method of the light emitting electronic device, and the manufacturing method of the light emitting electronic device. 発光電子デバイスの検査方法および発光電子デバイスの製造方法において、第2の光出力(光出力P2)を測定するための構成を表している図である。It is a figure showing the composition for measuring the 2nd light output (light output P2) in the inspection method of the light emitting electronic device, and the manufacturing method of the light emitting electronic device. 実施の形態1に関わる、発光電子デバイスの検査方法を示しているフロー図である。FIG. 2 is a flowchart showing a light emitting electronic device inspection method according to the first embodiment. 露点と水分量の関係を示している図である。It is a figure showing the relation between the dew point and the amount of moisture. 発光電子デバイスの検査方法および発光電子デバイスの製造方法において、第3の光出力(光出力P3)を測定するための構成を表している図である。It is a figure showing the composition for measuring the 3rd light output (light output P3) in the inspection method of the light emitting electronic device, and the manufacturing method of the light emitting electronic device. 実施の形態2に関わる、発光電子デバイスの検査方法を示しているフロー図である。FIG. 9 is a flowchart showing a light emitting electronic device inspection method according to the second embodiment. 実施の形態3に関わる、発光電子デバイスの特徴を説明するための全体構成図である。FIG. 9 is an overall configuration diagram for describing features of a light-emitting electronic device according to a third embodiment. 実施の形態4に関わる、発光電子デバイスの特徴を説明するための全体構成図である。FIG. 13 is an overall configuration diagram for describing features of a light-emitting electronic device according to a fourth embodiment.
実施の形態1.
 以下、実施の形態に関わる、発光電子デバイスの検査方法および発光電子デバイスの製造方法を、図を参照しながら説明する。まず図1は、気密封止パッケージを備えた発光電子デバイスの全体構成を示している断面図である。実施の形態に関わる発光電子デバイス100は、レンズ付きキャップ30(気密封止パッケージ)とレーザダイオード搭載ステム31などから構成されている。レンズ付きキャップ30は、球面レンズ29(光学部材)と、キャップ22、などを備えている。
Embodiment 1 FIG.
Hereinafter, a method for inspecting a light-emitting electronic device and a method for manufacturing the light-emitting electronic device according to the embodiment will be described with reference to the drawings. First, FIG. 1 is a cross-sectional view illustrating an overall configuration of a light emitting electronic device including a hermetically sealed package. The light emitting electronic device 100 according to the embodiment includes a cap 30 with a lens (hermetically sealed package), a laser diode mounting stem 31, and the like. The lens cap 30 includes a spherical lens 29 (optical member), the cap 22, and the like.
 レーザダイオード搭載ステム31は、レーザダイオード21(半導体レーザ)と、ステム23、などを備えている。ステム23には、ステムピン23aが固定されている。レーザダイオード21(半導体レーザ)は、ステム23のステムピン23aから電流を流すと、レーザ発振が起こり、レーザダイオード21は赤外線領域のレーザ光を出射する。球面レンズ29は、キャップ22に固定されており、レーザダイオード21から出射した光が透過する。 ス テ ム Laser diode mounting stem 31 includes laser diode 21 (semiconductor laser), stem 23 and the like. A stem pin 23a is fixed to the stem 23. When a current flows from the stem pin 23a of the stem 23, laser oscillation occurs in the laser diode 21 (semiconductor laser), and the laser diode 21 emits laser light in an infrared region. The spherical lens 29 is fixed to the cap 22, and transmits light emitted from the laser diode 21.
 図2は、発光電子デバイス100の製造方法を、概略的に示しているフローである。まず、キャップ22に球面レンズ29を取り付ける。この段階で、球面レンズ29をキャップ22に固定して、レンズ付きキャップ30を作成する(ステップS01)。さらに、ステム23にレーザダイオード21を取り付ける。この段階で、レーザダイオード21をステム23に搭載して、レーザダイオード搭載ステム31を作成する(ステップS02)。レンズ付きキャップ30とレーザダイオード搭載ステム31を使って、発光電子デバイス100の検査を行う(ステップS10~ステップS19)。この検査方法により発光電子デバイスの合格品を選出する。この検査工程は、窒素雰囲気、乾燥空気雰囲気などの湿度の管理された環境下で行う。検査を合格した発光電子デバイス100は、次工程に移る(ステップS30)。以下では、発光電子デバイスの検査方法を詳細に説明する。 FIG. 2 is a flowchart schematically showing a method of manufacturing the light-emitting electronic device 100. First, the spherical lens 29 is attached to the cap 22. At this stage, the spherical lens 29 is fixed to the cap 22 to form the lens cap 30 (step S01). Further, the laser diode 21 is attached to the stem 23. At this stage, the laser diode 21 is mounted on the stem 23 to create the laser diode mounted stem 31 (step S02). The light-emitting electronic device 100 is inspected using the lens cap 30 and the laser diode mounting stem 31 (steps S10 to S19). Passed products of the light emitting electronic device are selected by this inspection method. This inspection process is performed in a humidity-controlled environment such as a nitrogen atmosphere or a dry air atmosphere. The light-emitting electronic device 100 that has passed the inspection moves to the next step (Step S30). Hereinafter, the inspection method of the light emitting electronic device will be described in detail.
 図3は、実施の形態に関わる、発光電子デバイスの検査方法および発光電子デバイスの製造方法において、発光電子デバイスの光出力P1(第1の光出力)を測定する方法を表している。ここで、光出力P1は、温度T1(第1の温度)におけるレーザダイオード21の出力を表している。レーザダイオード21を搭載しているレーザダイオード搭載ステム31には、レンズ付きキャップ30が実装されており、キャップとステムは気密封止されている。光出力の測定は、検査室50で行われる。検査室50は、温度T1に設定されている。レーザダイオード21は、湿度が管理されている環境下におかれている。発光電子デバイス100の光出力P1は、赤外線検出器24で検出する。温度T1で、レーザダイオード21から出射したレーザ光25は、レンズ付きキャップ30の球面レンズ29を通過して、赤外線検出器24に入射する。 FIG. 3 shows a method of measuring the light output P1 (first light output) of the light emitting electronic device in the light emitting electronic device inspection method and the light emitting electronic device manufacturing method according to the embodiment. Here, the light output P1 represents the output of the laser diode 21 at the temperature T1 (first temperature). A cap 30 with a lens is mounted on a laser diode mounting stem 31 on which the laser diode 21 is mounted, and the cap and the stem are hermetically sealed. The measurement of the light output is performed in the inspection room 50. The inspection room 50 is set to the temperature T1. The laser diode 21 is placed in an environment where humidity is controlled. The light output P1 of the light emitting electronic device 100 is detected by the infrared detector 24. At the temperature T1, the laser light 25 emitted from the laser diode 21 passes through the spherical lens 29 of the lens cap 30 and enters the infrared detector 24.
 図4は、実施の形態に関わる、発光電子デバイスの検査方法および発光電子デバイスの製造方法において、発光電子デバイスの光出力P2(第2の光出力)の測定方法を表している。ここで、光出力P2は、温度T2(第2の温度)におけるレーザダイオード21の出力を表している。レーザダイオード21を搭載しているレーザダイオード搭載ステム31には、レンズ付きキャップ30が実装されており、キャップとステムは気密封止されている。光出力の測定は、検査室50で行われる。検査室50は、温度T2に設定されている。レーザダイオード21は、湿度が管理されている環境下におかれている。発光電子デバイス100の光出力P2は、赤外線検出器24で検出する。なお、光出力P1(第1の光出力)を測定する際に使用する赤外線検出器と光出力P2(第2の光出力)を測定する際に使用する赤外線検出器は、異なっていてもよい。温度T2は、温度T1よりも低い値である。温度T2で、レーザダイオード21から出射したレーザ光25は、レンズ付きキャップ30の球面レンズ29を通過して、赤外線検出器24に入射する。 FIG. 4 shows a method of measuring the light output P2 (second light output) of the light-emitting electronic device in the light-emitting electronic device inspection method and the light-emitting electronic device manufacturing method according to the embodiment. Here, the light output P2 represents the output of the laser diode 21 at the temperature T2 (second temperature). A cap 30 with a lens is mounted on a laser diode mounting stem 31 on which the laser diode 21 is mounted, and the cap and the stem are hermetically sealed. The measurement of the light output is performed in the inspection room 50. The inspection room 50 is set at the temperature T2. The laser diode 21 is placed in an environment where humidity is controlled. The light output P2 of the light emitting electronic device 100 is detected by the infrared detector 24. The infrared detector used for measuring the light output P1 (first light output) and the infrared detector used for measuring the light output P2 (second light output) may be different. . The temperature T2 is a value lower than the temperature T1. At the temperature T2, the laser beam 25 emitted from the laser diode 21 passes through the spherical lens 29 of the lens cap 30 and enters the infrared detector 24.
 図5は、本実施の形態に関わる、発光電子デバイスの検査方法を示すフローである。まず、レーザダイオード21を搭載しているレーザダイオード搭載ステム31に、レンズ付きキャップ30を実装して、キャップとステムを気密封止する(ステップS11:第1の工程)。ステップS12では、この状態で、レーザダイオード21に対して、レーザ発振を行うための電気信号を入力して、光出力P1を測定する(第2の工程:図3を参照)。この際、レーザダイオード駆動電流は、ステップS13で使用する判定値を求めた際に使用した値と同じにする。 FIG. 5 is a flowchart showing a method for inspecting a light emitting electronic device according to the present embodiment. First, the cap with lens 30 is mounted on the laser diode mounting stem 31 on which the laser diode 21 is mounted, and the cap and the stem are hermetically sealed (step S11: first step). In step S12, in this state, an electric signal for performing laser oscillation is input to the laser diode 21, and the optical output P1 is measured (second step: see FIG. 3). At this time, the laser diode drive current is the same as the value used when the determination value used in step S13 is obtained.
 レーザダイオード21から出射された光は、球面レンズ29を通過するため減衰し、減衰した光出力を赤外線検出器24で検出する。光出力P1と判定値(第1の判定値)との比較を行い、第1の合格条件を満足するかどうかの合否判定を行う(ステップS13:第3の工程)。判定値は、各波長における検出感度を考慮して補正された、レンズ換算値を用いる(ステップS19)。光出力P1が既定の判定値(第1の判定値)よりも大きければ合格、小さければ不合格と判定する。レンズ換算値は、光出力のレンズによる減衰量に対応している。判定の結果、不合格な場合は、発光電子デバイス100を廃棄する(ステップS17)。 The light emitted from the laser diode 21 is attenuated because it passes through the spherical lens 29, and the attenuated light output is detected by the infrared detector 24. The optical output P1 is compared with a determination value (first determination value), and a determination is made as to whether or not the first pass condition is satisfied (step S13: third step). As the determination value, a lens conversion value corrected in consideration of the detection sensitivity at each wavelength is used (step S19). If the optical output P1 is larger than a predetermined judgment value (first judgment value), it is judged as pass, and if smaller, it is judged as reject. The lens conversion value corresponds to the attenuation of the light output by the lens. If the result of the determination is reject, the light emitting electronic device 100 is discarded (step S17).
 次に、発光電子デバイスの温度を温度T2(第2の温度)まで下げる(ステップS14)。これにより、発光電子デバイス100の内側の相対湿度が上昇する。ステップS15では、この状態で、レーザダイオード21に対してレーザ発振を行うための電気信号を入力して、温度T2における光出力P2を測定する(第4の工程:図4を参照)。水の赤外線吸収量は、相対湿度が高まると増加するため、発光電子デバイスの内部の露点を確認することができる。 Next, the temperature of the light-emitting electronic device is lowered to a temperature T2 (second temperature) (Step S14). As a result, the relative humidity inside the light emitting electronic device 100 increases. In step S15, in this state, an electric signal for performing laser oscillation is input to the laser diode 21 and the optical output P2 at the temperature T2 is measured (fourth step: see FIG. 4). Since the amount of infrared absorption of water increases as the relative humidity increases, the dew point inside the light emitting electronic device can be confirmed.
 さらに、光出力P2と判定値(第2の判定値)との比較を行い、第2の合格条件を満足するかどうかの合否判定を行う(ステップS16:第5の工程)。なお、第1の合格条件と第2の合格条件は、同じ場合もあり得る。判定値には、ステップS12で求めた光出力P1を基準にして決めた許容値を使用する。光出力P2が判定値(第2の判定値)よりも大きければ合格、小さければ不合格と判定する。判定の結果、不合格な場合は、発光電子デバイス100を廃棄する(ステップS18)。合格した発光電子デバイス100は、次工程に移す(ステップS30)。 (4) Further, the optical output P2 is compared with a determination value (a second determination value), and a determination is made as to whether or not a second pass condition is satisfied (step S16: fifth step). Note that the first pass condition and the second pass condition may be the same. As the determination value, an allowable value determined based on the light output P1 obtained in step S12 is used. If the optical output P2 is larger than the judgment value (second judgment value), it is judged as pass, and if it is smaller, it is judged as reject. If the result of the determination is reject, the light emitting electronic device 100 is discarded (step S18). The passed light-emitting electronic device 100 moves to the next step (step S30).
 以上で説明したように、本願に開示される、発光電子デバイスの検査方法および発光電子デバイスの製造方法では、光出力P2を測定する際に、発光電子デバイスの温度を下げている。発光電子デバイスの温度が下がると、水分量と露点との関係から、発光電子デバイスの内部の相対湿度が増加する。図6は、露点と水分量の関係を示した理論計算値を示す図である。図において、横軸は、露点(℃)を、縦軸は、内部の水分量(ppm)を表している。発光電子デバイスの内部湿度が光出力に影響を及ぼすため、光出力の対比(減衰量:P2/P1)から発光電子デバイスにおける内側の水分量が検査できる。 As described above, in the light emitting electronic device inspection method and the light emitting electronic device manufacturing method disclosed in the present application, the temperature of the light emitting electronic device is lowered when measuring the light output P2. As the temperature of the light emitting electronic device decreases, the relative humidity inside the light emitting electronic device increases due to the relationship between the water content and the dew point. FIG. 6 is a diagram showing theoretical calculation values indicating the relationship between the dew point and the amount of moisture. In the figure, the horizontal axis represents the dew point (° C.), and the vertical axis represents the internal water content (ppm). Since the internal humidity of the light emitting electronic device affects the light output, the moisture content inside the light emitting electronic device can be inspected from the light output contrast (attenuation: P2 / P1).
 なお、本実施の形態において、1940nm帯の発振波長を有するレーザダイオード21を用いて、前述したフローに沿って検査を行うことが好ましい。使用するレーザダイオード21の発振波長は1450nm帯でも好ましい。また、光源に波長可変光源を使用するなど、一つの光源で複数の発振波長を有する発光電子デバイスを使用することも可能である。波長可変レーザは、波長を電流ならびに温度などにより制御することが可能な半導体レーザである。波長可変レーザを制御すれば、1940nm帯および1450nm帯の波長を実現できる。1940nm帯および1450nm帯は、他の波長帯よりも水による赤外線吸収量が大きいため、発光電子デバイスの内部水分を高感度で検出することができる。 In the present embodiment, it is preferable to perform the inspection according to the above-described flow using the laser diode 21 having an oscillation wavelength in the 1940 nm band. The oscillation wavelength of the laser diode 21 used is preferably in the 1450 nm band. Further, it is also possible to use a light emitting electronic device having a plurality of oscillation wavelengths with one light source, such as using a variable wavelength light source as a light source. A tunable laser is a semiconductor laser whose wavelength can be controlled by current, temperature, and the like. By controlling the tunable laser, wavelengths in the 1940 nm band and the 1450 nm band can be realized. In the 1940 nm band and the 1450 nm band, since the amount of infrared absorption by water is larger than in other wavelength bands, the moisture inside the light emitting electronic device can be detected with high sensitivity.
 本願に開示される発光電子デバイスの検査方法は、光学部材が固定されたキャップを、半導体レーザを搭載しているステムに実装する第1の工程と、前記半導体レーザに通電して、第1の温度における第1の光出力を赤外線検出器により測定する第2の工程と、前記第2の工程で測定された前記第1の光出力が、第1の合格条件を満足するかどうかを判定する第3の工程と、前記第3の工程で前記第1の光出力が前記第1の合格条件を満足すると判定した場合、前記半導体レーザに通電して、前記第1の温度よりも低い第2の温度における第2の光出力を赤外線検出器により測定する第4の工程と、前記第4の工程で測定された前記第2の光出力が、第2の合格条件を満足するかどうかを判定する第5の工程と、を備えているものである。 The method for inspecting a light-emitting electronic device disclosed in the present application includes a first step of mounting a cap to which an optical member is fixed on a stem on which a semiconductor laser is mounted; A second step of measuring a first light output at a temperature with an infrared detector, and determining whether the first light output measured in the second step satisfies a first pass condition. A third step, and when it is determined in the third step that the first optical output satisfies the first pass condition, a current is supplied to the semiconductor laser and a second temperature lower than the first temperature is supplied to the semiconductor laser. A second step of measuring a second light output at a temperature of 4 with an infrared detector, and determining whether the second light output measured in the fourth step satisfies a second pass condition. And a fifth step to be performed.
 本実施の形態に関わる、発光電子デバイスの検査方法および発光電子デバイスの製造方法によれば、自発光する発光電子デバイスを検査対象にしている。照射位置精度ならびに反射によるばらつきなど外的要因が低減するため、確度を向上することができる。かつ、他の検査と同時に検査が可能となるため、検査のため設備間を移動する時間を短縮できる効果が得られる。 According to the method for inspecting a light-emitting electronic device and the method for manufacturing a light-emitting electronic device according to the present embodiment, a light-emitting electronic device that emits light is targeted for inspection. Since external factors such as irradiation position accuracy and variations due to reflection are reduced, accuracy can be improved. In addition, since the inspection can be performed at the same time as another inspection, an effect of shortening the time required to move between the facilities for the inspection can be obtained.
実施の形態2.
 前実施の形態においては、レンズ付きキャップ30による光出力の損失を、レンズ換算値で代用していた。本実施の形態では、基準となる光出力P3(第3の光出力)を、窒素雰囲気、乾燥空気雰囲気などの湿度が管理された環境下で、最初に測定する。図7は、基準となる光出力P3を測定する方法を表している。基準となる光出力P3(第3の光出力)の測定は、検査室50で行う。
Embodiment 2 FIG.
In the previous embodiment, the loss of light output due to the cap with lens 30 is substituted by a lens conversion value. In the present embodiment, the reference light output P3 (third light output) is first measured in a humidity-controlled environment such as a nitrogen atmosphere or a dry air atmosphere. FIG. 7 shows a method of measuring the light output P3 serving as a reference. The reference light output P3 (third light output) is measured in the inspection room 50.
 検査室50は、温度T1(第1の温度)に設定されている。レーザダイオード21は、湿度が管理された環境下におかれている。レーザダイオード21と赤外線検出器24の間には、実際に使用するレンズ付きキャップ30が光路上に設置されている。温度T1で、レーザダイオード21から出射したレーザ光25は、レンズ付きキャップ30の球面レンズ29を通過して、赤外線検出器24に入射する。なお、光出力P3(第3の光出力)を測定する際に使用する赤外線検出器は、光出力P1(第1の光出力)を測定する際に使用する赤外線検出器、または光出力P2(第2の光出力)を測定する際に使用する赤外線検出器と、異なっていてもよい。 The inspection room 50 is set to the temperature T1 (first temperature). The laser diode 21 is placed in an environment where the humidity is controlled. Between the laser diode 21 and the infrared detector 24, a lens cap 30 actually used is provided on the optical path. At the temperature T1, the laser light 25 emitted from the laser diode 21 passes through the spherical lens 29 of the lens cap 30 and enters the infrared detector 24. The infrared detector used when measuring the optical output P3 (third optical output) is the infrared detector used when measuring the optical output P1 (first optical output) or the optical output P2 ( It may be different from the infrared detector used when measuring the second light output).
 図8は、本実施の形態に関わる、発光電子デバイスの検査方法を示すフローである。この検査工程は、窒素雰囲気、乾燥空気雰囲気などの湿度の管理された環境下で行う。先ず、レーザダイオード21(半導体レーザ)を搭載しているレーザダイオード搭載ステム31に対して、レーザ発振を行うための電気信号を入力する。この際、レーザ光25の光路上に、実際に使用するレンズ付きキャップ30を設置する(図7を参照)。レーザダイオード21から出射されたレーザ光25は、赤外線検出器24に入射するので、基準となる光出力P3(第3の光出力)を測定することが可能である(ステップS10:第6の工程)。 FIG. 8 is a flowchart showing a method for inspecting a light-emitting electronic device according to the present embodiment. This inspection process is performed in a humidity-controlled environment such as a nitrogen atmosphere or a dry air atmosphere. First, an electric signal for performing laser oscillation is input to a laser diode mounting stem 31 mounting a laser diode 21 (semiconductor laser). At this time, a lens cap 30 actually used is placed on the optical path of the laser beam 25 (see FIG. 7). Since the laser light 25 emitted from the laser diode 21 enters the infrared detector 24, the reference light output P3 (third light output) can be measured (step S10: sixth step). ).
 つぎに、レーザダイオード21を搭載しているレーザダイオード搭載ステム31に、レンズ付きキャップ30を実装して、キャップとステムを気密封止する(ステップS11:第1の工程)。ステップS12では、この状態で、レーザダイオード21に対して、レーザ発振を行うための電気信号を入力して、光出力P1を測定する(第2の工程:図3を参照)。この際、レーザダイオード駆動電流は、ステップS13で使用する判定値を求めた際に使用した値と同じにする。 Next, the lens-equipped cap 30 is mounted on the laser diode mounting stem 31 on which the laser diode 21 is mounted, and the cap and the stem are hermetically sealed (step S11: first step). In step S12, in this state, an electric signal for performing laser oscillation is input to the laser diode 21, and the optical output P1 is measured (second step: see FIG. 3). At this time, the laser diode drive current is the same as the value used when the determination value used in step S13 is obtained.
 レーザダイオード21から出射された光は、球面レンズ29を通過するため減衰し、減衰した光出力を赤外線検出器24で検出する。光出力P1と判定値(第3の判定値)との比較を行い、合否判定を行う(ステップS13:第3の工程)。判定値は、光出力P3を基準にして、各波長における検出感度を考慮して作成された、許容値を用いる。光出力P1が既定の判定値(第3の判定値)よりも大きければ合格、小さければ不合格と判定する。判定値は、光出力のレンズによる減衰量に対応している。判定の結果、不合格な場合は、発光電子デバイス100を廃棄する(ステップS17)。 The light emitted from the laser diode 21 is attenuated because it passes through the spherical lens 29, and the attenuated light output is detected by the infrared detector 24. The light output P1 is compared with a determination value (third determination value) to determine whether the output is acceptable (step S13: third step). As the determination value, an allowable value created based on the optical output P3 in consideration of the detection sensitivity at each wavelength is used. If the optical output P1 is larger than a predetermined judgment value (third judgment value), it is judged as pass, and if smaller, it is judged as reject. The judgment value corresponds to the attenuation of the light output by the lens. If the result of the determination is reject, the light emitting electronic device 100 is discarded (step S17).
 次に、発光電子デバイスの温度を温度T2(第2の温度)まで下げる(ステップS14)。これにより、発光電子デバイス100の内側の相対湿度が上昇する。ステップS15では、この状態で、レーザダイオード21に対してレーザ発振を行うための電気信号を入力して、温度T2における光出力P2を測定する(第4の工程:図4を参照)。水の赤外線吸収量は、相対湿度が高まると増加するため、発光電子デバイスの内部の露点を確認することができる。 Next, the temperature of the light-emitting electronic device is lowered to a temperature T2 (second temperature) (Step S14). As a result, the relative humidity inside the light emitting electronic device 100 increases. In step S15, in this state, an electric signal for performing laser oscillation is input to the laser diode 21 and the optical output P2 at the temperature T2 is measured (fourth step: see FIG. 4). Since the amount of infrared absorption of water increases as the relative humidity increases, the dew point inside the light emitting electronic device can be confirmed.
 さらに、光出力P2と判定値(第2の判定値)との比較を行い、合否判定を行う(ステップS16:第5の工程)。判定値には、ステップS12で求めた光出力P1を基準にして決めた許容値を使用する。光出力P2が判定値(第2の判定値)よりも大きければ合格、小さければ不合格と判定する。判定の結果、不合格な場合は、発光電子デバイス100を廃棄する(ステップS18)。合格した発光電子デバイス100は、次工程に移す(ステップS30)。 Furthermore, the optical output P2 is compared with a judgment value (second judgment value), and a pass / fail judgment is made (step S16: fifth step). As the determination value, an allowable value determined based on the light output P1 obtained in step S12 is used. If the optical output P2 is larger than the judgment value (second judgment value), it is judged as pass, and if it is smaller, it is judged as reject. If the result of the determination is reject, the light emitting electronic device 100 is discarded (step S18). The passed light-emitting electronic device 100 moves to the next step (step S30).
 本実施の形態に関わる、発光電子デバイスの検査方法および発光電子デバイスの製造方法では、最初に基準となる光出力を測定するために、湿度が管理された環境下で、後工程で使用するレンズ付きキャップ30を光路上に設置し、光出力を測定する。次に、発光電子デバイスの温度を下げると、水分量と露点との関係から内部の相対湿度が増加する。発光電子デバイスの内部の湿度が光出力に影響を及ぼすため、光出力の対比(減衰量:P2/P1)から発光電子デバイスにおける内部の水分量が検査できる。 In the light emitting electronic device inspection method and the light emitting electronic device manufacturing method according to the present embodiment, a lens used in a subsequent process under an environment where humidity is controlled in order to first measure a reference light output. The attached cap 30 is placed on the optical path and the light output is measured. Next, when the temperature of the light emitting electronic device is lowered, the internal relative humidity increases due to the relationship between the water content and the dew point. Since the humidity inside the light emitting electronic device affects the light output, the moisture content inside the light emitting electronic device can be inspected from the light output contrast (attenuation: P2 / P1).
 本願に開示される発光電子デバイスの検査方法は、光学部材が固定されたキャップを、半導体レーザを搭載しているステムの光路上に設置し、前記半導体レーザに通電して、第3の光出力を赤外線検出器で測定する第6の工程を、さらに備え、前記第6の工程を、前記第1の工程よりも前に実施し、前記第3の光出力を基準にして前記第3の工程で使用する前記第1の合格条件を作成することを特徴とするものである。 The method for inspecting a light emitting electronic device disclosed in the present application includes the steps of: placing a cap to which an optical member is fixed on an optical path of a stem on which a semiconductor laser is mounted; energizing the semiconductor laser; Further comprising a sixth step of measuring the third step with an infrared detector, wherein the sixth step is performed before the first step, and the third step is performed based on the third light output. The first pass condition used in the above is created.
 本実施の形態に関わる、発光電子デバイスの検査方法および発光電子デバイスの製造方法によれば、自発光する発光電子デバイスを検査対象にしている。照射位置精度ならびに反射によるばらつきなど外的要因が低減するため、確度を向上することができる。かつ、他の検査と同時に検査が可能となるため、検査のため設備間を移動する時間を短縮できる効果が得られる。 According to the method for inspecting a light-emitting electronic device and the method for manufacturing a light-emitting electronic device according to the present embodiment, a light-emitting electronic device that emits light is targeted for inspection. Since external factors such as irradiation position accuracy and variations due to reflection are reduced, accuracy can be improved. In addition, since the inspection can be performed at the same time as another inspection, an effect of shortening the time required to move between the facilities for the inspection can be obtained.
実施の形態3.
 本実施の形態に関わる、発光電子デバイスの検査方法および発光電子デバイスの製造方法では、気密封止を必要とする電子部品を、ステム23にレーザダイオード21と同時に実装する。例えば、コンデンサ、インダクタ、抵抗などの受動素子、ならびに、半導体チップ部品をはじめとする能動素子が、電子部品に該当する。半導体チップ部品は、ベアチップに代表され、MOS(Metal Oxide Semiconductor)などのIC(Integrated Circuit)、受発光電子デバイスなどを含んでいる。電子部品は、検査機能を内蔵している。
Embodiment 3 FIG.
In the method for inspecting a light-emitting electronic device and the method for manufacturing the light-emitting electronic device according to the present embodiment, an electronic component requiring hermetic sealing is mounted on the stem 23 at the same time as the laser diode 21. For example, passive elements such as capacitors, inductors, and resistors, and active elements such as semiconductor chip components correspond to the electronic components. The semiconductor chip component is represented by a bare chip, and includes an IC (Integrated Circuit) such as a MOS (Metal Oxide Semiconductor), a light emitting / receiving electronic device, and the like. Electronic components have a built-in inspection function.
 図9は、レンズ付きキャップ30がレーザダイオード搭載ステム31に気密封止される前の発光電子デバイスを表している。本実施の形態に関わる発光電子デバイス100は、レーザダイオード21と、キャップ22と、ステム23と、電子部品26と、球面レンズ29、などを備えている。電子部品26は、レーザダイオード21(半導体レーザ)と同時にステム23に実装する。レーザダイオード21は、ステム23のステムピン23aから電流を流すと、レーザ発振が起こり、レーザ光を出射する。 FIG. 9 shows the light emitting electronic device before the lens cap 30 is hermetically sealed to the laser diode mounting stem 31. The light emitting electronic device 100 according to the present embodiment includes a laser diode 21, a cap 22, a stem 23, an electronic component 26, a spherical lens 29, and the like. The electronic component 26 is mounted on the stem 23 simultaneously with the laser diode 21 (semiconductor laser). When a current flows from the stem pin 23a of the stem 23, the laser diode 21 emits laser light and emits laser light.
 球面レンズ29は、キャップ22に固定されており、レーザダイオード21から出射された光を透過する。レーザダイオード21は、電子部品26とともに、ステム23に搭載されている。電子部品26は、ステム23のステムピン23aから電流を流すと動作を開始する。本実施の形態に開示される発光電子デバイス100に対して、実施の形態1または実施の形態2に開示されたフローに従って、発光電子デバイスの検査方法および発光電子デバイスの製造方法を、実施する。 The spherical lens 29 is fixed to the cap 22 and transmits light emitted from the laser diode 21. The laser diode 21 is mounted on the stem 23 together with the electronic components 26. The electronic component 26 starts operating when a current flows from the stem pin 23 a of the stem 23. The light emitting electronic device 100 disclosed in the present embodiment is subjected to the light emitting electronic device inspection method and the light emitting electronic device manufacturing method according to the flow disclosed in the first or second embodiment.
 本実施の形態に関わる、気密封止パッケージの検査方法および電子機器の製造方法によれば、自発光する発光電子デバイスを検査対象にしている。照射位置精度ならびに反射によるばらつきなど外的要因が低減するため、確度を向上することができる。かつ、他の検査と同時に検査が可能となるため、検査のため設備間を移動する時間を短縮できる効果がある。また、本実施の形態に関わる発光電子デバイス100は、検査機能を内蔵している。電子部品に対し、単独で気密性を持つ機構を実現できる。本実施の形態に関わる発光電子デバイスの製造方法は、電子部品の気密性を確認する製造方法として使用する。 According to the method of inspecting a hermetically sealed package and the method of manufacturing an electronic device according to the present embodiment, a light-emitting electronic device that emits light is targeted for inspection. Since external factors such as irradiation position accuracy and variations due to reflection are reduced, accuracy can be improved. In addition, since the inspection can be performed at the same time as another inspection, there is an effect that the time required to move between the facilities for the inspection can be reduced. Further, the light emitting electronic device 100 according to the present embodiment has a built-in inspection function. A mechanism having airtightness can be realized independently for electronic components. The method for manufacturing a light-emitting electronic device according to the present embodiment is used as a method for checking the airtightness of an electronic component.
実施の形態4.
 本実施の形態に関わる、発光電子デバイスの検査方法および発光電子デバイスの製造方法では、レンズ付きキャップ30に固定されている球面レンズ29に代わり、他の光学部材を用いる。光学部材は、レーザダイオード21から出射される光を透過する。例えば、光学フィルタ、非球面レンズ、平板型ガラスなどが、光学部材に、該当する。光学部材は、レーザダイオード21から出射する波長を透過する機能を持っていれば、適用可能となる。
Embodiment 4 FIG.
In the method for inspecting a light-emitting electronic device and the method for manufacturing the light-emitting electronic device according to the present embodiment, another optical member is used instead of the spherical lens 29 fixed to the lens cap 30. The optical member transmits light emitted from the laser diode 21. For example, an optical filter, an aspheric lens, a flat glass, etc. correspond to the optical member. The optical member is applicable as long as it has a function of transmitting a wavelength emitted from the laser diode 21.
 図10は、レンズ付きキャップ30がレーザダイオード搭載ステム31に気密封止される前の発光電子デバイスを表している。本実施の形態に関わる発光電子デバイス100は、レーザダイオード21と、キャップ22と、ステム23と、光学部材28、などを備えている。光学部材28には、光学フィルタ、非球面レンズ、平板型ガラスなどが、含まれている。レーザダイオード21は、ステム23のステムピン23aから電流を流すと、レーザ発振が起こり、レーザ光を出射する。 FIG. 10 shows the light-emitting electronic device before the lens cap 30 is hermetically sealed to the laser diode mounting stem 31. The light emitting electronic device 100 according to the present embodiment includes a laser diode 21, a cap 22, a stem 23, an optical member 28, and the like. The optical member 28 includes an optical filter, an aspheric lens, flat glass, and the like. When a current flows from the stem pin 23a of the stem 23, the laser diode 21 emits laser light and emits laser light.
 光学フィルタ、非球面レンズ、平板型ガラスなどの光学部材28は、キャップ22に固定されており、レーザダイオード21から出射された光を透過する。レーザダイオード21は、ステム23に搭載されている。本実施の形態に開示される発光電子デバイス100に対して、実施の形態1または実施の形態2に開示されたフローに従って、発光電子デバイスの検査方法および発光電子デバイスの製造方法を、実施する。 光学 An optical member 28 such as an optical filter, an aspheric lens, or a flat glass is fixed to the cap 22 and transmits light emitted from the laser diode 21. The laser diode 21 is mounted on the stem 23. The light emitting electronic device 100 disclosed in the present embodiment is subjected to the light emitting electronic device inspection method and the light emitting electronic device manufacturing method according to the flow disclosed in the first or second embodiment.
 本実施の形態に関わる、発光電子デバイスの検査方法および発光電子デバイスの製造方法によれば、自発光する発光電子デバイスを検査対象としている。照射位置精度ならびに反射によるばらつきなど外的要因が低減するため、確度を向上することができる。かつ、他の検査と同時に検査が可能となるため、検査のため設備間を移動する時間を短縮できる効果が得られる。 According to the method for inspecting a light-emitting electronic device and the method for manufacturing a light-emitting electronic device according to the present embodiment, a light-emitting electronic device that emits light is targeted for inspection. Since external factors such as irradiation position accuracy and variations due to reflection are reduced, accuracy can be improved. In addition, since the inspection can be performed at the same time as another inspection, an effect of shortening the time required to move between the facilities for the inspection can be obtained.
 発光電子デバイスでは、ステムとキャップとの密着性を確保することが難しい。ステムとキャップとの気密性が悪い場合、デバイスの使用中に外部環境から水分がパッケージの内側の気密空間に侵入する。水分とトランジスタが反応することで、GaAsの酸化、電極の腐食、金属のイオンマイグレーションなどを誘発し、デバイスの劣化を引き起こす。このため、発光電子デバイスを製造する現場では、気密性を確保することが重要な課題になっている。 It is difficult for light-emitting electronic devices to ensure adhesion between the stem and the cap. If the airtightness between the stem and the cap is poor, moisture enters the airtight space inside the package from the external environment during use of the device. The reaction between the moisture and the transistor induces oxidation of GaAs, corrosion of electrodes, ion migration of metal, and the like, thereby causing deterioration of the device. For this reason, it is an important issue to secure airtightness at a site where a light emitting electronic device is manufactured.
 本願に開示される実施の形態は、電子部品を気密封止するパッケージと、気密封止パッケージの内部に搭載され赤外光を出射する半導体レーザと、半導体レーザから出射される赤外光をパッケージの外部へ透過する光学部材と、を有し、半導体レーザを通電し自発光させ、パッケージの外部へ出射された赤外光の強度を測定し、パッケージの内側の水分の有無を赤外吸収により検出することを特徴とする電子部品の気密封止パッケージの検査方法に関わるものである。 An embodiment disclosed in the present application is a package for hermetically sealing an electronic component, a semiconductor laser mounted inside the hermetically sealed package and emitting infrared light, and a package for infrared light emitted from the semiconductor laser. An optical member that transmits to the outside of the package, the semiconductor laser is energized to emit light by itself, the intensity of infrared light emitted to the outside of the package is measured, and the presence or absence of moisture inside the package is determined by infrared absorption. The present invention relates to a method of inspecting a hermetically sealed package of an electronic component, which is characterized by detecting the package.
 また、本願に開示される実施の形態は、電子部品が半導体レーザ自身であることを特徴とする電子部品の気密封止パッケージの検査方法に関わるものである。また、本願に開示される実施の形態は、半導体レーザが、光源として波長を電流ならびに温度などにより制御することが可能な波長可変レーザであることを特徴とする電子部品の気密封止パッケージの検査方法に関わるものである。また、本願に開示される実施の形態は、湿度がない環境で測定した光出力と、気密封止後に測定した光出力を測定し、両者を比較することを特徴とする電子部品の気密封止パッケージの検査方法に関わるものである。 The embodiment disclosed in the present application relates to a method for inspecting a hermetically sealed package of an electronic component, wherein the electronic component is the semiconductor laser itself. Further, the embodiment disclosed in the present application is directed to an inspection of a hermetically sealed package of an electronic component, wherein the semiconductor laser is a wavelength tunable laser capable of controlling a wavelength by a current, a temperature, and the like as a light source. It concerns the method. Further, the embodiment disclosed in the present application is characterized in that the light output measured in an environment without humidity and the light output measured after hermetic sealing are measured, and both are compared. It is related to the package inspection method.
 また、本願に開示される実施の形態は、気密封止後に一定の温度まで温度を下げたのち、測定した光出力を測定し、両者を比較することを特徴とする電子部品の気密封止パッケージの検査方法に関わるものである。また、本願に開示される実施の形態は、半導体レーザの波長が、1940nm帯、または1450nm帯であることを特徴とする電子部品の気密封止パッケージの検査方法に関わるものである。 Further, the embodiment disclosed in the present application is a hermetically sealed package of an electronic component, wherein the temperature is reduced to a certain temperature after hermetic sealing, the measured optical output is measured, and the two are compared. Related to the inspection method. The embodiment disclosed in the present application relates to a method for inspecting a hermetically sealed package of an electronic component, wherein a wavelength of a semiconductor laser is in a 1940 nm band or a 1450 nm band.
 また、本願に開示される実施の形態は、電子部品をパッケージに搭載する工程と、パッケージを気密封止する工程と、前記した電子部品の気密封止パッケージの検査方法により、気密封止されたパッケージの内部における水分の有無を検査する工程と、を有する電子機器の製造方法に関わるものである。 Further, in the embodiment disclosed in the present application, the step of mounting the electronic component on the package, the step of hermetically sealing the package, and the above-described method of inspecting the hermetically sealed package of the electronic component are hermetically sealed. Inspecting the presence or absence of moisture inside the package.
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。また、本願は、その開示の範囲内において、各実施の形態を組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。 Although this application describes various exemplary embodiments and examples, the various features, aspects, and functions described in one or more embodiments may apply to particular embodiments. However, the present invention is not limited to this, and can be applied to the embodiment alone or in various combinations. Accordingly, innumerable modifications not illustrated are envisioned within the scope of the technology disclosed herein. For example, a case where at least one component is deformed, added or omitted, and a case where at least one component is extracted and combined with a component of another embodiment are included. In the present application, each embodiment can be combined, or each embodiment can be appropriately modified or omitted within the scope of the disclosure.
21 レーザダイオード、22 キャップ、23 ステム、23a ステムピン、24 赤外線検出器、25 レーザ光、26 電子部品、28 光学部材、29 球面レンズ、30 レンズ付きキャップ、31 レーザダイオード搭載ステム、50 検査室、P1 光出力(第1の光出力)、P2 光出力(第2の光出力)、P3 光出力(第3の光出力)、T1 温度(第1の温度)、T2 温度(第2の温度)、100 発光電子デバイス 21 laser diode, 22 cap, 23 stem, 23a stem pin, 24 infrared detector, 25 laser light, 26 electronic components, 28 optical member, 29 、 spherical lens, 30 lens cap, 31 laser diode mounted stem, 50 inspection room, P1 Light output (first light output), P2 light output (second light output), P3 light output (third light output), T1 temperature (first temperature), T2 temperature (second temperature), 100% light emitting electronic device

Claims (8)

  1.  光学部材が固定されたキャップを、半導体レーザを搭載しているステムに実装する第1の工程と、
    前記半導体レーザに通電して、第1の温度における第1の光出力を赤外線検出器により測定する第2の工程と、
    前記第2の工程で測定された前記第1の光出力が、第1の合格条件を満足するかどうかを判定する第3の工程と、
    前記第3の工程で前記第1の光出力が前記第1の合格条件を満足すると判定した場合、前記半導体レーザに通電して、前記第1の温度よりも低い第2の温度における第2の光出力を赤外線検出器により測定する第4の工程と、
    前記第4の工程で測定された前記第2の光出力が、第2の合格条件を満足するかどうかを判定する第5の工程と、を備えている発光電子デバイスの検査方法。
    A first step of mounting the cap to which the optical member is fixed on the stem on which the semiconductor laser is mounted;
    A second step of energizing the semiconductor laser and measuring a first optical output at a first temperature with an infrared detector;
    A third step of determining whether the first light output measured in the second step satisfies a first pass condition;
    When it is determined in the third step that the first optical output satisfies the first pass condition, the semiconductor laser is energized to perform a second operation at a second temperature lower than the first temperature. A fourth step of measuring light output with an infrared detector;
    A fifth step of determining whether or not the second light output measured in the fourth step satisfies a second pass condition.
  2.  光学部材が固定されたキャップを、半導体レーザを搭載しているステムの光路上に設置し、前記半導体レーザに通電して、第3の光出力を赤外線検出器で測定する第6の工程を、さらに備え、
    前記第6の工程を、前記第1の工程よりも前に実施し、
    前記第3の光出力を基準にして前記第3の工程で使用する前記第1の合格条件を作成することを特徴とする請求項1に記載の発光電子デバイスの検査方法。
    A sixth step of placing the cap to which the optical member is fixed on the optical path of the stem on which the semiconductor laser is mounted, energizing the semiconductor laser, and measuring the third optical output with an infrared detector, In addition,
    Performing the sixth step before the first step;
    2. The method according to claim 1, wherein the first pass condition used in the third step is created based on the third light output. 3.
  3.  前記半導体レーザは、1940nm帯または1450nm帯に発振波長を有することを特徴とする請求項1または2に記載の発光電子デバイスの検査方法。 3. The method according to claim 1, wherein the semiconductor laser has an oscillation wavelength in a 1940 nm band or a 1450 nm band.
  4.  前記半導体レーザは、波長可変レーザからなることを特徴とする請求項1または2に記載の発光電子デバイスの検査方法。 The method according to claim 1 or 2, wherein the semiconductor laser is a tunable laser.
  5.  前記ステムには、電子部品が実装されていることを特徴とする請求項1または2に記載の発光電子デバイスの検査方法。 方法 The light emitting electronic device inspection method according to claim 1, wherein an electronic component is mounted on the stem.
  6.  前記光学部材は、光学フィルタ、またはレンズ、または平板型ガラス、からなることを特徴とする請求項1または2に記載の発光電子デバイスの検査方法。 The method according to claim 1, wherein the optical member is made of an optical filter, a lens, or a flat glass.
  7.  前記第1の工程から前記第6の工程を、窒素雰囲気下で実施することを特徴とする請求項2に記載の発光電子デバイスの検査方法。 3. The method according to claim 2, wherein the first to sixth steps are performed in a nitrogen atmosphere.
  8.  光学部材をキャップに固定する工程と、
    半導体レーザをステムに搭載する工程と、
    請求項1から7のいずれか1項に記載の発光電子デバイスの検査方法により発光電子デバイスの合格品を選出する工程と、
    を備えている発光電子デバイスの製造方法。
    Fixing the optical member to the cap,
    Mounting the semiconductor laser on the stem;
    Selecting a passing product of the light-emitting electronic device by the light-emitting electronic device inspection method according to any one of claims 1 to 7,
    A method for manufacturing a light-emitting electronic device comprising:
PCT/JP2018/023593 2018-06-21 2018-06-21 Light-emitting electronic device inspection method and light-emitting electronic device manufacturing method WO2019244297A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/023593 WO2019244297A1 (en) 2018-06-21 2018-06-21 Light-emitting electronic device inspection method and light-emitting electronic device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/023593 WO2019244297A1 (en) 2018-06-21 2018-06-21 Light-emitting electronic device inspection method and light-emitting electronic device manufacturing method

Publications (1)

Publication Number Publication Date
WO2019244297A1 true WO2019244297A1 (en) 2019-12-26

Family

ID=68983538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023593 WO2019244297A1 (en) 2018-06-21 2018-06-21 Light-emitting electronic device inspection method and light-emitting electronic device manufacturing method

Country Status (1)

Country Link
WO (1) WO2019244297A1 (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186076A (en) * 1984-03-05 1985-09-21 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light emitting device
JPH1197790A (en) * 1997-09-17 1999-04-09 Nippon Sanso Kk Semiconductor laser
JP2003110180A (en) * 2001-07-25 2003-04-11 Furukawa Electric Co Ltd:The Semiconductor laser module and method and apparatus for measuring light
JP2004253542A (en) * 2003-02-19 2004-09-09 Anritsu Corp Semiconductor laser apparatus
JP2007227587A (en) * 2006-02-23 2007-09-06 Mitsubishi Electric Corp Semiconductor laser device
JP2007288160A (en) * 2006-03-22 2007-11-01 Sanyo Electric Co Ltd Semiconductor laser device
JP2008032658A (en) * 2006-07-31 2008-02-14 Kyocera Kinseki Corp Method and device for inspecting airtightness of package
JP2008083281A (en) * 2006-09-27 2008-04-10 Nippon Telegr & Teleph Corp <Ntt> Single core bi-directional transmission/reception module
JP2008101946A (en) * 2006-10-17 2008-05-01 Sharp Corp Characteristic test device of light-emitting element and its method
JP2009005168A (en) * 2007-06-22 2009-01-08 Stanley Electric Co Ltd Communication device, transmitting device, and receiving device
JP2010091559A (en) * 2008-10-03 2010-04-22 Asml Netherlands Bv Lithographic apparatus and humidity measurement system
US20120206046A1 (en) * 2011-02-14 2012-08-16 Chao-Chi Huang Laser module
JP2012164689A (en) * 2011-02-03 2012-08-30 Mitsubishi Electric Corp Airtight package, method for measuring moisture content in the airtight package, and method for measuring leak rate of the airtight package
JP2013222726A (en) * 2012-04-12 2013-10-28 Sharp Corp Light emitting element module, method for manufacturing the same, and light emitting device
JP2016151572A (en) * 2015-02-19 2016-08-22 アズビル株式会社 Dryness measurement device

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186076A (en) * 1984-03-05 1985-09-21 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light emitting device
JPH1197790A (en) * 1997-09-17 1999-04-09 Nippon Sanso Kk Semiconductor laser
JP2003110180A (en) * 2001-07-25 2003-04-11 Furukawa Electric Co Ltd:The Semiconductor laser module and method and apparatus for measuring light
JP2004253542A (en) * 2003-02-19 2004-09-09 Anritsu Corp Semiconductor laser apparatus
JP2007227587A (en) * 2006-02-23 2007-09-06 Mitsubishi Electric Corp Semiconductor laser device
JP2007288160A (en) * 2006-03-22 2007-11-01 Sanyo Electric Co Ltd Semiconductor laser device
JP2008032658A (en) * 2006-07-31 2008-02-14 Kyocera Kinseki Corp Method and device for inspecting airtightness of package
JP2008083281A (en) * 2006-09-27 2008-04-10 Nippon Telegr & Teleph Corp <Ntt> Single core bi-directional transmission/reception module
JP2008101946A (en) * 2006-10-17 2008-05-01 Sharp Corp Characteristic test device of light-emitting element and its method
JP2009005168A (en) * 2007-06-22 2009-01-08 Stanley Electric Co Ltd Communication device, transmitting device, and receiving device
JP2010091559A (en) * 2008-10-03 2010-04-22 Asml Netherlands Bv Lithographic apparatus and humidity measurement system
JP2012164689A (en) * 2011-02-03 2012-08-30 Mitsubishi Electric Corp Airtight package, method for measuring moisture content in the airtight package, and method for measuring leak rate of the airtight package
US20120206046A1 (en) * 2011-02-14 2012-08-16 Chao-Chi Huang Laser module
JP2013222726A (en) * 2012-04-12 2013-10-28 Sharp Corp Light emitting element module, method for manufacturing the same, and light emitting device
JP2016151572A (en) * 2015-02-19 2016-08-22 アズビル株式会社 Dryness measurement device

Similar Documents

Publication Publication Date Title
KR100863140B1 (en) Detecting materials on wafer and repair system and method thereof
CN104903704A (en) Tunable diode laser absorption spectroscopy with water vapor determination
JP2016086039A (en) Method and device of manufacturing semiconductor device
US20080252877A1 (en) Inspection of Eggs in the Presence of Blood
WO2020195136A1 (en) Inspection device and inspection method
KR20090027179A (en) Bonding device
WO2009119542A1 (en) Standard light source device
WO2019244297A1 (en) Light-emitting electronic device inspection method and light-emitting electronic device manufacturing method
KR101431917B1 (en) examination apparatus of package
JP6123460B2 (en) Optical nondestructive inspection apparatus and optical nondestructive inspection method
CN115201108A (en) Optical detection system and optical detection method
CN111247409B (en) Method for testing semiconductor device and method for manufacturing semiconductor device
CN106461543B (en) Spectrum sensor device and method for operating a spectrum sensor device
CN109946234B (en) Apparatus and method for using photoacoustic effect
KR101423122B1 (en) Vision inspection method and vision inspection apparatus for light emitting diod comprising translucent fluorescent substance
JP2022151664A (en) gas sensor
JP2011061202A (en) Testing apparatus for light emitting devices
KR100732530B1 (en) Counting apparatus for wafer
US20110063608A1 (en) Sensing Module for Light-Emitting Devices and Testing Apparatus Using the Same
JP6708756B2 (en) Monitoring method of laser scribing process for forming separation groove in solar module
AU2019429807B2 (en) Spectrometer system and method for testing of same
WO2017115591A1 (en) Photothermal conversion analysis apparatus and liquid cell
CN108918494B (en) Method and device for rapidly identifying quality of fluorescent powder
KR102333316B1 (en) Apparatus with open path structure for monitoring contamination of semiconductor processes
JP6381848B1 (en) Semiconductor device testing method and semiconductor device manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18923446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP