WO2019244267A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2019244267A1
WO2019244267A1 PCT/JP2018/023408 JP2018023408W WO2019244267A1 WO 2019244267 A1 WO2019244267 A1 WO 2019244267A1 JP 2018023408 W JP2018023408 W JP 2018023408W WO 2019244267 A1 WO2019244267 A1 WO 2019244267A1
Authority
WO
WIPO (PCT)
Prior art keywords
strainer
heat exchanger
refrigerant
pipe
way valve
Prior art date
Application number
PCT/JP2018/023408
Other languages
French (fr)
Japanese (ja)
Inventor
佑太 小宮
真哉 東井上
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020525140A priority Critical patent/JP6925529B2/en
Priority to PCT/JP2018/023408 priority patent/WO2019244267A1/en
Publication of WO2019244267A1 publication Critical patent/WO2019244267A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat

Definitions

  • the present invention relates to a refrigeration cycle device.
  • sludge including abrasion powder of a compressor, degraded oil of a refrigerating machine, and the like is generated in a pipe in a refrigeration cycle apparatus.
  • the sludge generated in the pipe flows into the heat transfer tube of the heat exchanger together with the refrigerant, and adheres to the inner wall of the heat transfer tube.
  • the amount of refrigerant flowing in the heat transfer tube decreases. For this reason, the heat transfer performance of the heat exchanger is reduced.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a refrigeration cycle apparatus capable of suppressing a decrease in heat transfer performance of a heat exchanger due to sludge flowing into the heat exchanger. It is.
  • the refrigeration cycle device of the present invention includes a refrigerant circuit and a strainer.
  • the refrigerant circuit is connected by piping so that the refrigerant flows in the order of the compressor, the condenser, the expansion valve, and the evaporator.
  • the strainer is connected to the refrigerant circuit and captures foreign matter mixed in the refrigerant.
  • the strainer is connected to at least one of a pipe connecting the compressor and the condenser and a pipe connecting the expansion valve and the evaporator.
  • the strainer is connected to the pipe connecting the compressor and the condenser, the length of the pipe connecting the strainer and the condenser is shorter than the length of the pipe connecting the compressor and the strainer.
  • the strainer is connected to the pipe connecting the expansion valve and the evaporator, the length of the pipe connecting the strainer and the evaporator is shorter than the length of the pipe connecting the expansion valve and the strainer.
  • the length of the pipe connecting the strainer and the condenser is equal to the length of the compressor and the strainer. Is shorter than the length of the connecting pipe.
  • the strainer is connected to the pipe connecting the expansion valve and the evaporator, the length of the pipe connecting the strainer and the evaporator is shorter than the length of the pipe connecting the expansion valve and the strainer. Therefore, by reducing the length of the pipe connecting the strainer and the condenser, the generation of sludge in the pipe can be suppressed.
  • the generation of sludge in the pipe can be suppressed. Therefore, it is possible to suppress a decrease in the heat transfer performance of the heat exchanger due to the sludge flowing into the heat exchanger.
  • FIG. 2 is a configuration diagram illustrating a configuration of the refrigeration cycle apparatus according to Embodiment 1 of the present invention during a cooling operation.
  • FIG. 2 is a configuration diagram illustrating a configuration during a heating operation of the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • FIG. 4 is a configuration diagram illustrating a configuration during a cooling operation of a refrigeration cycle device of Modification 1 according to Embodiment 1 of the present invention. It is a block diagram which shows the structure at the time of the heating operation of the refrigeration cycle apparatus of the modification 1 which concerns on Embodiment 1 of this invention.
  • FIG. 5 is a configuration diagram illustrating a configuration during a cooling operation of a refrigeration cycle device of Modification Example 2 according to Embodiment 1 of the present invention.
  • FIG. 4 is a configuration diagram illustrating a configuration of a refrigeration cycle device of a second modification according to Embodiment 1 of the present invention during a heating operation. It is a block diagram which shows the structure at the time of the cooling operation of the refrigeration cycle apparatus of the modification 3 which concerns on Embodiment 1 of this invention. It is a block diagram which shows the structure at the time of the heating operation of the refrigeration cycle apparatus of the modification 3 which concerns on Embodiment 1 of this invention. It is a block diagram which shows the structure at the time of the cooling operation of the refrigeration cycle apparatus which concerns on Embodiment 2 of this invention. It is a block diagram which shows the structure at the time of the heating operation of the refrigeration cycle apparatus which concerns on Embodiment 2 of this invention.
  • FIG. 1 It is a block diagram which shows the structure at the time of the cooling operation of the refrigeration cycle apparatus of the modification 1 which concerns on Embodiment 2 of this invention. It is a block diagram which shows the structure at the time of the heating operation of the refrigeration cycle apparatus of the modification 1 which concerns on Embodiment 2 of this invention. It is a block diagram which shows the structure at the time of the cooling operation of the refrigeration cycle apparatus which concerns on Embodiment 3 of this invention. It is a block diagram which shows the structure at the time of the heating operation of the refrigeration cycle apparatus which concerns on Embodiment 3 of this invention. It is a block diagram which shows the structure at the time of the cooling operation of the refrigeration cycle apparatus of the modification 1 which concerns on Embodiment 3 of this invention. FIG.
  • FIG. 13 is a configuration diagram illustrating a configuration during a heating operation of a refrigeration cycle device of Modification Example 1 according to Embodiment 3 of the present invention.
  • FIG. 13 is a partial cross-sectional perspective view illustrating a configuration of a heat exchanger of a refrigeration cycle apparatus according to Embodiment 4 of the present invention.
  • FIG. 1 and 2 a refrigeration cycle apparatus 10 according to Embodiment 1 of the present invention will be described.
  • FIG. 1 shows the flow of the refrigerant during the cooling operation of the refrigeration cycle apparatus 10 according to Embodiment 1 of the present invention.
  • FIG. 2 shows the flow of the refrigerant during the heating operation of the refrigeration cycle apparatus 10 according to Embodiment 1 of the present invention.
  • the flow of the refrigerant is indicated by broken arrows.
  • a refrigeration cycle apparatus 10 includes a compressor 20, an outdoor heat exchanger 30, an expansion valve 40, an indoor heat exchanger 50, a four-way valve 60, a strainer 71 and a strainer 72.
  • the refrigeration cycle apparatus 10 includes an outdoor unit 101 and an indoor unit 102.
  • the outdoor unit 101 accommodates the compressor 20, the outdoor heat exchanger 30, the expansion valve 40, and the four-way valve 60.
  • the indoor unit 102 accommodates the indoor heat exchanger 50, the strainer 71, and the strainer 72.
  • the compressor 20, the outdoor heat exchanger 30, the expansion valve 40, the indoor heat exchanger 50, and the four-way valve 60 constitute a refrigerant circuit RC.
  • the refrigerant circuit RC allows the refrigerant to flow in the order of the compressor 20, the condenser (the outdoor heat exchanger 30 or the indoor heat exchanger 50), the expansion valve 40, and the evaporator (the indoor heat exchanger 50 or the outdoor heat exchanger 30). (Refrigerant tube) 80.
  • the compressor 20 is configured to compress and discharge the sucked refrigerant.
  • the outdoor heat exchanger 30 is for performing heat exchange between the refrigerant and outdoor air.
  • the expansion valve 40 is a throttle device for reducing the pressure of the refrigerant.
  • the expansion valve 40 is, for example, a capillary tube, an electronic expansion valve, or the like.
  • the indoor heat exchanger 50 is for exchanging heat between the refrigerant and the indoor air.
  • Each of the outdoor heat exchanger 30 and the indoor heat exchanger 50 includes, for example, a pipe (heat transfer tube) through which the refrigerant flows, and fins attached to the outside of the pipe. Further, each of the outdoor heat exchanger 30 and the indoor heat exchanger 50 may include a header (distributor).
  • the refrigerant circuit RC has the four-way valve 60.
  • the four-way valve 60 is connected to the compressor 20, the outdoor heat exchanger 30, and the indoor heat exchanger 50 by a pipe 80.
  • the four-way valve 60 is configured to switch the flow of the refrigerant from the compressor 20 to the outdoor heat exchanger 30 or the indoor heat exchanger 50 during the cooling operation and the heating operation.
  • the refrigeration cycle apparatus 10 is configured to be able to change the refrigerant flow path by switching the four-way valve 60.
  • the refrigerant circulates through the refrigerant circuit RC in the order of the compressor 20, the four-way valve 60, the outdoor heat exchanger 30, the expansion valve 40, the indoor heat exchanger 50, and the four-way valve 60.
  • the outdoor heat exchanger 30 functions as a condenser
  • the indoor heat exchanger 50 functions as an evaporator.
  • the four-way valve 60 is switched from the cooling operation.
  • the refrigerant circulates through the refrigerant circuit RC in the order of the compressor 20, the four-way valve 60, the indoor heat exchanger 50, the expansion valve 40, and the outdoor heat exchanger 30.
  • the outdoor heat exchanger 30 functions as an evaporator
  • the indoor heat exchanger 50 functions as a condenser. That is, the outdoor heat exchanger 30 functions as either a condenser or an evaporator.
  • the indoor heat exchanger 50 functions as either the condenser or the evaporator.
  • the strainer is connected to the refrigerant circuit RC.
  • the strainer is configured to catch foreign matter mixed in the refrigerant.
  • the strainer has, for example, a net capable of catching foreign matter mixed in the refrigerant.
  • the strainer is located at the inlet side of the heat exchanger in the refrigerant flow.
  • the refrigeration cycle apparatus 10 has a strainer 71 and a strainer 72 that function as strainers. Each of strainer 71 and strainer 72 may have a similar structure.
  • a strainer 71 is disposed between a pipe 80 connecting the compressor 20 and the indoor heat exchanger 50, and a strainer 71 is provided between the pipe 80 connecting the indoor heat exchanger 50 and the expansion valve 40. 72 are arranged. More specifically, the strainer 71 is disposed between the four-way valve 60 and the pipe 80 connecting the indoor heat exchanger 50. In the present embodiment, a strainer 71 and a strainer 72 are connected to the refrigerant circuit RC before and after the indoor heat exchanger 50.
  • the strainer 72 corresponds to the strainer and the first strainer described in the claims.
  • the strainer 72 corresponding to the first strainer functions as a strainer.
  • the strainer 72 is connected to a pipe 80 that connects the expansion valve 40 and the indoor heat exchanger 50 that is an evaporator.
  • the length of the pipe 80 connecting the strainer 72 and the indoor heat exchanger 50 as the evaporator is shorter than the length of the pipe 80 connecting the expansion valve 40 and the strainer 72.
  • the strainer 71 corresponds to the second strainer described in the claims.
  • the strainer 71 is connected to a pipe 80 that connects the indoor heat exchanger 50, which is an evaporator, to the compressor 20.
  • the length of the pipe 80 connecting the strainer 71 and the indoor heat exchanger 50 as the evaporator is shorter than the length of the pipe 80 connecting the compressor 20 and the strainer 71.
  • the length of a pipe 80 connecting the strainer 71 and the indoor heat exchanger 50 as an evaporator is shorter than the length of the pipe 80 connecting the four-way valve 60 and the strainer 71.
  • the strainer 71 corresponds to the strainer and the second strainer described in the claims.
  • the strainer 71 corresponding to the second strainer functions as a strainer.
  • the strainer 71 is connected to a pipe 80 that connects the compressor 20 and the indoor heat exchanger 50 that is a condenser.
  • the length of the pipe 80 connecting the strainer 71 and the indoor heat exchanger 50 as a condenser is shorter than the length of the pipe 80 connecting the compressor 20 and the strainer 71.
  • the length of a pipe 80 connecting the strainer 71 and the indoor heat exchanger 50 as a condenser is shorter than the length of the pipe 80 connecting the four-way valve 60 and the strainer 71.
  • the strainer 72 corresponds to the first strainer described in the claims.
  • the strainer 72 is connected to a pipe 80 connecting the indoor heat exchanger 50 as a condenser and the expansion valve 40.
  • the length of the pipe 80 connecting the strainer 72 and the indoor heat exchanger 50 as a condenser is shorter than the length of the pipe connecting the expansion valve 40 and the strainer 72.
  • the pipe 80 includes a refrigerant pipe 81, a refrigerant pipe 82, a refrigerant pipe 83, and a refrigerant pipe 84.
  • the four-way valve 60 and the strainer 71 are connected by a refrigerant pipe 81, and the strainer 71 and the indoor heat exchanger 50 are connected by a refrigerant pipe 82.
  • the strainer 71 is arranged at a position closer to the indoor heat exchanger 50 than the four-way valve 60 in the refrigerant circuit RC. That is, the length of the refrigerant pipe 82 is shorter than the length of the refrigerant pipe 81.
  • the indoor heat exchanger 50 and the strainer 72 are connected by a refrigerant pipe 83, and the strainer 72 and the expansion valve 40 are connected by a refrigerant pipe 84.
  • the strainer 72 is arranged at a position closer to the indoor heat exchanger 50 than the expansion valve 40 in the refrigerant circuit RC. That is, the length of the refrigerant pipe 83 is shorter than the length of the refrigerant pipe 84.
  • the refrigerant is supplied to the compressor 20, the four-way valve 60, the outdoor heat exchanger 30, the expansion valve 40, the refrigerant pipe 84, the strainer 72, the refrigerant pipe 83, It flows in the order of the indoor heat exchanger 50, the refrigerant pipe 82, the strainer 71, the refrigerant pipe 81, and the four-way valve 60. Since the refrigerant passes through the strainer 72 before the indoor heat exchanger 50, sludge is captured by the strainer 72. Therefore, during the cooling operation, the strainer 72 suppresses intrusion of sludge into the indoor heat exchanger 50. This sludge is generated in the pipe 80, and contains abrasion powder of the compressor 20, degraded refrigeration oil, and the like.
  • the length of the refrigerant pipe 83 in front of the indoor heat exchanger 50 is shortened, and the distance between the strainer 72 and the indoor heat exchanger 50 is shortened.
  • the possibility that sludge generated in the refrigerant pipe 83 enters the exchanger 50 can be reduced.
  • the refrigerant is supplied to the compressor 20, the four-way valve 60, the refrigerant pipe 81, the strainer 71, the refrigerant pipe 82, the indoor heat exchanger 50, the refrigerant pipe 83, It flows through the strainer 72, the refrigerant pipe 84, the expansion valve 40, the outdoor heat exchanger 30, and the four-way valve 60 in this order. Since the refrigerant passes through the strainer 71 before the indoor heat exchanger 50, sludge is captured by the strainer 71. Therefore, at the time of the heating operation, the intrusion of sludge into the indoor heat exchanger 50 by the strainer 71 is suppressed.
  • the length of the refrigerant pipe 82 in front of the indoor heat exchanger 50 is shortened, and the distance between the strainer 71 and the indoor heat exchanger 50 is shortened.
  • the possibility that sludge generated in the refrigerant pipe 82 enters the exchanger 50 can be reduced.
  • FIGS. 1 and 2 show, as an example of the refrigeration cycle device 10 according to the present embodiment, a configuration in which strainers are connected to the refrigerant circuit RC before and after the indoor heat exchanger 50.
  • the configuration of the refrigeration cycle device 10 according to the present embodiment is not limited to this, and a configuration in which a strainer is connected to the refrigerant circuit RC before and after the outdoor heat exchanger 30 may be used.
  • strainers are connected to refrigerant circuit RC before and after outdoor heat exchanger 30.
  • FIG. 3 shows the flow of the refrigerant during the cooling operation of the refrigeration cycle apparatus 10 according to the first modification of the present embodiment.
  • FIG. 4 shows the flow of the refrigerant during the heating operation of the refrigeration cycle apparatus 10 of the first modification according to the present embodiment. 3 and 4, the flow of the refrigerant is indicated by broken arrows.
  • the refrigeration cycle apparatus 10 of the first modification has a strainer 73 and a strainer 74 connected to the refrigerant circuit RC.
  • Each of the strainer 73 and the strainer 74 may have the same structure as the strainer 71 and the strainer 72 described above.
  • a strainer 73 is disposed between a pipe 80 connecting the compressor 20 and the outdoor heat exchanger 30, and connects the outdoor heat exchanger 30 and the expansion valve 40.
  • a strainer 74 is arranged between the pipes 80. More specifically, the strainer 73 is arranged between the pipe 80 connecting the four-way valve 60 and the outdoor heat exchanger 30.
  • the strainer 73 and the strainer 74 are connected to the refrigerant circuit RC before and after the outdoor heat exchanger 30.
  • the strainer 73 corresponds to the strainer and the first strainer described in the claims.
  • the strainer 73 corresponding to the first strainer functions as a strainer.
  • the strainer 73 is connected to a pipe 80 that connects the compressor 20 and the outdoor heat exchanger 30 that is a condenser.
  • the length of the pipe 80 connecting the strainer 73 and the outdoor heat exchanger 30 as a condenser is shorter than the length of the pipe 80 connecting the compressor 20 and the strainer 73.
  • the length of a pipe 80 connecting the strainer 73 and the outdoor heat exchanger 30 as a condenser is shorter than the length of the pipe 80 connecting the four-way valve 60 and the strainer 73.
  • the strainer 74 corresponds to a second strainer described in the claims.
  • the strainer 74 is connected to a pipe 80 connecting the outdoor heat exchanger 30 as a condenser and the expansion valve 40.
  • the length of the pipe 80 connecting the strainer 74 and the outdoor heat exchanger 30 as a condenser is shorter than the length of the pipe connecting the expansion valve 40 and the strainer 74.
  • the strainer 74 corresponds to the strainer and the second strainer described in the claims.
  • the strainer 74 corresponding to the second strainer functions as a strainer.
  • the strainer 74 is connected to a pipe 80 connecting the expansion valve 40 and the outdoor heat exchanger 30 as an evaporator.
  • the length of the pipe 80 connecting the strainer 74 and the outdoor heat exchanger 30 as an evaporator is shorter than the length of the pipe 80 connecting the expansion valve 40 and the strainer 74.
  • the strainer 73 corresponds to a first strainer described in the claims.
  • the strainer 73 is connected to a pipe 80 that connects the outdoor heat exchanger 30 as an evaporator and the compressor 20.
  • the length of the pipe 80 connecting the strainer 73 and the outdoor heat exchanger 30 as an evaporator is shorter than the length of the pipe 80 connecting the compressor 20 and the strainer 73.
  • the length of a pipe 80 connecting the strainer 73 and the outdoor heat exchanger 30 as an evaporator is shorter than the length of the pipe 80 connecting the four-way valve 60 and the strainer 73.
  • the refrigerant is supplied to the compressor 20, the four-way valve 60, the strainer 73, the outdoor heat exchanger 30, the strainer 74, the expansion valve 40, and the indoor heat exchanger 50. , And flows in the order of the four-way valve 60. Since the refrigerant passes through the strainer 73 before the outdoor heat exchanger 30, sludge is captured by the strainer 73. Therefore, during the cooling operation, the strainer 73 suppresses intrusion of sludge into the outdoor heat exchanger 30.
  • the length of the pipe 80 connecting the strainer 73 and the outdoor heat exchanger 30 is reduced, so that the strainer 73 and the outdoor heat exchanger 30 are connected to the indoor heat exchanger 50.
  • the possibility that sludge generated in the connecting pipe 80 enters can be reduced.
  • the refrigerant is supplied to the compressor 20, the four-way valve 60, the indoor heat exchanger 50, the expansion valve 40, the strainer 74, the outdoor heat exchanger 30, and the strainer 73. , And flows in the order of the four-way valve 60. Since the refrigerant passes through the strainer 74 before the outdoor heat exchanger 30, sludge is captured by the strainer 74. Therefore, during the heating operation, the intrusion of sludge into the outdoor heat exchanger 30 is suppressed by the strainer 74.
  • the length of the pipe 80 connecting the strainer 74 and the outdoor heat exchanger 30 is reduced, so that the strainer 74 and the outdoor heat exchanger 30 are connected to the outdoor heat exchanger 30.
  • the possibility that sludge generated in the connecting pipe 80 enters can be reduced.
  • the configuration of the refrigeration cycle apparatus 10 according to the present embodiment may be configured such that strainers are connected to the refrigerant circuit RC before and after both the outdoor heat exchanger 30 and the indoor heat exchanger 50.
  • FIGS. 5 and 6 in refrigeration cycle apparatus 10 of Modification 2 according to the present embodiment, outdoor heat exchanger 30 and strainers in the front and rear of the room are arranged in refrigerant circuit RC.
  • FIG. 5 shows the flow of the refrigerant during the cooling operation of the refrigeration cycle apparatus 10 according to the second modification of the present embodiment.
  • FIG. 6 shows the flow of the refrigerant during the heating operation of the refrigeration cycle device 10 according to the second modification of the present embodiment. 5 and 6, the flow of the refrigerant is indicated by broken arrows.
  • the refrigeration cycle apparatus 10 of the second modification has a strainer 71, a strainer 72, a strainer 73, and a strainer 74.
  • the strainer 72 and the strainer 73 correspond to the strainer and the first strainer described in the claims. Further, the strainers 71 and 74 correspond to the second strainers described in the claims.
  • the strainer 71 and the strainer 74 correspond to the strainer and the first strainer described in the claims. Further, the strainer 72 and the strainer 73 correspond to a second strainer described in the claims.
  • At least one of the indoor heat exchanger 50 and the outdoor heat exchanger 30 is provided in the refrigerant circuit RC.
  • a configuration in which a strainer is connected before and after this is shown.
  • the configuration of the refrigeration cycle apparatus 10 according to the present embodiment is not limited to these, and the strainer is connected to the refrigerant circuit RC only in front of the indoor heat exchanger 50 or the outdoor heat exchanger 30. You may.
  • FIG. 7 shows the flow of the refrigerant during the cooling operation of the refrigeration cycle device 10 of the third modification according to the present embodiment.
  • the flow of the refrigerant is indicated by broken arrows.
  • the refrigeration cycle apparatus 10 of the second modification does not have the above-described four-way valve 60.
  • the refrigerant circulates through the refrigerant circuit RC in the order of the compressor 20, the outdoor heat exchanger 30, the expansion valve 40, the strainer 70, and the indoor heat exchanger 50.
  • the outdoor heat exchanger 30 functions as a condenser
  • the indoor heat exchanger 50 functions as an evaporator.
  • the strainer 70 corresponds to the strainer described in the claims.
  • the strainer 70 is connected to a pipe 80 that connects the expansion valve 40 and the indoor heat exchanger 50 that is an evaporator.
  • the length of the pipe 80 connecting the strainer 70 and the indoor heat exchanger 50 as the evaporator is shorter than the length of the pipe 80 connecting the expansion valve 40 and the strainer 70.
  • FIG. 8 shows the flow of the refrigerant at the time of the cooling operation of the refrigeration cycle device 10 of Modification 4 according to the present embodiment.
  • the flow of the refrigerant is indicated by the dashed arrows.
  • the refrigeration cycle apparatus 10 of the fourth modification does not have the above-described four-way valve 60.
  • the refrigerant circulates through the refrigerant circuit RC in the order of the compressor 20, the strainer 70, the outdoor heat exchanger 30, the expansion valve 40, and the indoor heat exchanger 50.
  • the outdoor heat exchanger 30 functions as a condenser
  • the indoor heat exchanger 50 functions as an evaporator.
  • the strainer 70 corresponds to the strainer described in the claims.
  • the strainer 70 is connected to a pipe 80 that connects the compressor 20 and the outdoor heat exchanger 30 that is a condenser.
  • the length of the pipe 80 connecting the strainer 70 and the outdoor heat exchanger 30 as a condenser is shorter than the length of the pipe 80 connecting the compressor 20 and the strainer 73.
  • the length of the pipe 80 connecting the strainer and the condenser is: It is shorter than the length of the pipe 80 connecting the compressor 20 and the strainer.
  • the length of the pipe 80 connecting the strainer and the evaporator is equal to the length of the pipe 80 connecting the expansion valve 40 and the strainer. Shorter than the length. Therefore, by reducing the length of the pipe 80 connecting the strainer and the condenser, the generation of sludge in the pipe 80 can be suppressed.
  • the generation of sludge in the pipe 80 can be suppressed. Therefore, it is possible to suppress a decrease in the heat transfer performance of the heat exchanger (condenser or evaporator) due to the sludge flowing into the heat exchanger (condenser or evaporator).
  • the refrigeration cycle apparatus 10 includes the first strainer and the second strainer connected to the four-way valve 60 and the refrigerant circuit RC before and / or after at least one of the outdoor heat exchanger 30 and the indoor heat exchanger 50. It has a strainer.
  • the first strainer functions as a strainer
  • the second strainer functions as a strainer. Therefore, in both the cooling operation and the heating operation by the first strainer and the second strainer, the heat exchanger (condenser or evaporator) due to sludge flowing into at least one of the outdoor heat exchanger 30 and the indoor heat exchanger 50 ) Can be suppressed.
  • the indoor unit 102 accommodates the first strainer and the second strainer. Therefore, the length of each of the pipes 80 connecting the indoor heat exchanger 50 housed in the indoor unit 102 to the first strainer and the second strainer can be shortened. Thereby, generation of sludge in the pipe 80 can be suppressed. Therefore, a decrease in the heat transfer performance of the indoor heat exchanger 50 due to the sludge flowing into the indoor heat exchanger 50 can be suppressed.
  • FIG. Embodiment 2 A refrigeration cycle apparatus 10 according to Embodiment 2 of the present invention will be described with reference to FIGS.
  • FIG. 9 shows the flow of the refrigerant during the cooling operation of the refrigeration cycle apparatus 10 according to Embodiment 2 of the present invention.
  • FIG. 10 shows the flow of the refrigerant during the heating operation of the refrigeration cycle apparatus 10 according to Embodiment 2 of the present invention.
  • the flow of the refrigerant is indicated by broken arrows.
  • the refrigeration cycle apparatus 10 includes a strainer 71, a strainer 72, a bypass pipe 90, and a two-way valve 100.
  • a strainer 71 and a strainer 72 are connected to the refrigerant circuit RC before and after the indoor heat exchanger 50.
  • the refrigerant circuit RC has a bypass pipe 90 and a two-way valve 100.
  • the strainer 72 corresponds to the strainer and the first strainer described in the claims
  • the strainer 71 corresponds to the second strainer.
  • the bypass pipe 90 is connected to a pipe 80 connecting the indoor heat exchanger 50 and the strainer 71, and a pipe 80 connecting the four-way valve 60 and the strainer 71.
  • the bypass pipe 90 is configured to bypass the strainer 71.
  • the bypass pipe 90 is connected to the refrigerant pipe 81 and the refrigerant pipe 82.
  • the two-way valve 100 is connected to a pipe 80 connecting the indoor heat exchanger 50 and the strainer 71 and a bypass pipe 90.
  • the two-way valve 100 is arranged at a branch between the refrigerant pipe 82 and the bypass pipe 90.
  • the refrigeration cycle device 10 is configured to be able to change the refrigerant flow path to one of a path to the strainer 71 and a path to the bypass pipe 90 by switching the two-way valve 100.
  • the two-way valve 100 is configured to flow the refrigerant from the indoor heat exchanger 50 to the bypass pipe 90 during the cooling operation. As shown in FIG. 10, the two-way valve 100 is configured to flow the refrigerant from the strainer 71 to the indoor heat exchanger 50 during the heating operation.
  • the two-way valve 100 is set so that the refrigerant flows on the path to the bypass pipe 90 and does not flow on the path to the strainer 71. That is, during the cooling operation, the refrigerant is supplied to the compressor 20, the four-way valve 60, the outdoor heat exchanger 30, the expansion valve 40, the refrigerant pipe 84, the strainer 72, the refrigerant pipe 83, the indoor heat exchanger 50, the refrigerant pipe 82, the two-way It flows through the valve 100, the bypass pipe 90, the refrigerant pipe 81, and the four-way valve 60 in this order.
  • the refrigeration cycle apparatus 10 When the refrigeration cycle apparatus 10 performs the cooling operation, when the refrigerant flowing out of the indoor heat exchanger 50 passes through the strainer 71, the pressure loss of the refrigerant increases due to an increase in the pressure loss of the refrigerant, and the pressure of the refrigerant sucked into the compressor 20 may decrease. There is. When the pressure of the refrigerant sucked into the compressor 20 decreases, the input of the compressor 20 increases, so that the power consumption of the refrigeration cycle device 10 increases.
  • the refrigeration cycle apparatus 10 when the refrigeration cycle apparatus 10 performs the cooling operation as in the present embodiment, the refrigeration cycle apparatus 10 is set by setting the two-way valve 100 so that the refrigerant passes through the bypass pipe 90 and does not pass through the strainer 71. , The increase in power consumption can be suppressed.
  • the two-way valve 100 is set so that the refrigerant flows on the path to the strainer 71 and does not flow on the path to the bypass pipe 90.
  • the refrigerant is supplied to the compressor 20, the four-way valve 60, the refrigerant pipe 81, the strainer 71, the refrigerant pipe 82, the two-way valve 100, the refrigerant pipe 82, the indoor heat exchanger 50, the refrigerant pipe 83, the strainer 72,
  • the refrigerant pipe 84, the expansion valve 40, the outdoor heat exchanger 30, and the four-way valve 60 flow in this order.
  • the sludge is captured by the strainer 71 because the refrigerant passes through the strainer 71 before flowing into the indoor heat exchanger 50. Thereby, invasion of sludge into the indoor heat exchanger 50 can be suppressed.
  • FIGS. 9 and 10 show an example of a refrigeration cycle apparatus 10 according to Embodiment 2 of the present invention, in which a strainer is connected to the refrigerant circuit RC before and after the indoor heat exchanger 50, and a bypass pipe 90 and The configuration in which the two-way valve 100 is arranged is shown.
  • the configuration of the refrigeration cycle device 10 according to the present embodiment is not limited to this, and has a configuration in which a strainer is connected to the refrigerant circuit RC before and after the outdoor heat exchanger 30, and the bypass pipe 90 and the two-way A configuration in which the valve 100 is disposed may be employed.
  • strainers are connected to refrigerant circuit RC before and after outdoor heat exchanger 30.
  • FIG. 11 shows the flow of the refrigerant during the cooling operation of the refrigeration cycle device 10 of the first modification according to the present embodiment.
  • FIG. 12 shows the flow of the refrigerant during the heating operation of the refrigeration cycle device 10 of the first modification according to the present embodiment. In FIGS. 11 and 12, the flow of the refrigerant is indicated by broken arrows.
  • the refrigeration cycle apparatus 10 of the first modification includes a strainer 73, a strainer 74, a bypass pipe 90, and a two-way valve 100.
  • the strainer 73 and the strainer 74 are disposed before and after the outdoor heat exchanger 30 in the refrigerant circuit RC.
  • a strainer 73 and a strainer 74 are connected before and after the outdoor heat exchanger 30 to the refrigerant circuit RC.
  • the strainer 73 corresponds to the strainer and the first strainer described in the claims, and the strainer 74 corresponds to the second strainer.
  • the bypass pipe 90 is connected to a pipe 80 connecting the outdoor heat exchanger 30 and the strainer 73, and a pipe 80 connecting the four-way valve 60 and the strainer 73.
  • the bypass pipe 90 is configured to bypass the strainer 73.
  • the two-way valve 100 is connected with a pipe 80 connecting the outdoor heat exchanger 30 and the strainer 73 and a bypass pipe 90.
  • the two-way valve 100 is disposed at a branch point between the path to the strainer 73 and the path to the bypass pipe 90 in the refrigerant flow path.
  • the refrigeration cycle apparatus 10 is configured to be able to change the refrigerant flow path to one of a path to the strainer 73 and a path to the bypass pipe 90 by switching the two-way valve 100.
  • the two-way valve 100 is configured to flow the refrigerant from the strainer 73 to the outdoor heat exchanger 30 during the cooling operation. As shown in FIG. 12, the two-way valve 100 is configured to flow the refrigerant from the outdoor heat exchanger 30 to the bypass pipe 90 during the heating operation.
  • the two-way valve 100 is set so that the refrigerant flows on the path to the strainer 73 and does not flow on the path to the bypass pipe 90. That is, during the cooling operation, the refrigerant flows in the order of the compressor 20, the four-way valve 60, the strainer 73, the two-way valve 100, the outdoor heat exchanger 30, the strainer 74, the expansion valve 40, the indoor heat exchanger 50, and the four-way valve 60. .
  • the refrigerant passes through the strainer 73 before flowing into the outdoor heat exchanger 30, so that the sludge is captured by the strainer 73. Thereby, invasion of sludge into the outdoor heat exchanger 30 can be suppressed.
  • the two-way valve 100 is set so that the refrigerant flows on the path to the bypass pipe 90 and does not flow on the path to the strainer 73.
  • the refrigerant flows in the order of the compressor 20, the four-way valve 60, the indoor heat exchanger 50, the expansion valve 40, the strainer 74, the outdoor heat exchanger 30, the two-way valve 100, the bypass pipe 90, and the four-way valve 60. Flows.
  • the refrigeration cycle apparatus 10 When the refrigeration cycle apparatus 10 performs the heating operation, when the refrigerant flowing out of the outdoor heat exchanger 30 passes through the strainer 73, the pressure loss of the refrigerant increases and the pressure of the refrigerant sucked into the compressor 20 may decrease. There is. When the pressure of the refrigerant sucked into the compressor 20 decreases, the input of the compressor 20 increases, so that the power consumption of the refrigeration cycle device 10 increases.
  • the two-way valve 100 is set so that the refrigerant passes through the bypass pipe 90 and does not pass through the strainer 73.
  • an increase in power consumption of the refrigeration cycle device 10 can be suppressed.
  • the bypass pipe 90 includes the pipe 80 connecting the indoor heat exchanger 50 and the second strainer, and the four-way valve 60 and the second strainer. It is connected to a pipe 80 to be connected.
  • the two-way valve 100 is configured to flow the refrigerant from the indoor heat exchanger 50 to the bypass pipe 90 during the cooling operation. Therefore, the two-way valve 100 allows the refrigerant to flow through the bypass pipe 90.
  • the pressure loss of the refrigerant due to the refrigerant passing through the second strainer can be avoided.
  • the bypass pipe 90 includes a pipe 80 connecting the outdoor heat exchanger 30 and the first strainer, a four-way valve 60 and the first It is connected to a pipe 80 connecting the strainer.
  • the two-way valve 100 is configured to flow the refrigerant from the outdoor heat exchanger 30 to the bypass pipe 90 during the heating operation. Therefore, the two-way valve 100 allows the refrigerant to flow through the bypass pipe 90. Then, when the refrigerant passes through the bypass pipe 90 during the heating operation, the pressure loss of the refrigerant due to the refrigerant passing through the first strainer can be avoided.
  • the refrigerant in the present embodiment may be a refrigerant having a larger pressure loss than R32 and a low GWP (Global Warming Potential) refrigerant.
  • the refrigerant may be R290 or a mixed refrigerant containing R290.
  • the refrigerant may be a mixed refrigerant containing R1234yf or R1234ze.
  • FIG. Embodiment 3 A refrigeration cycle apparatus 10 according to Embodiment 3 of the present invention will be described with reference to FIGS.
  • FIG. 13 shows the flow of the refrigerant during the cooling operation of the refrigeration cycle apparatus 10 according to Embodiment 3 of the present invention.
  • FIG. 14 shows the flow of the refrigerant during the heating operation of the refrigeration cycle apparatus 10 according to Embodiment 2 of the present invention.
  • the flow of the refrigerant is indicated by broken arrows.
  • the refrigeration cycle apparatus 10 includes a strainer 71, a strainer 72, a bypass pipe 90, a first check valve 111, and a second check valve 112. And
  • a strainer 71 and a strainer 72 are connected to the refrigerant circuit RC before and after the indoor heat exchanger 50.
  • the refrigerant circuit RC has a bypass pipe 90, a first check valve 111, and a second check valve 112.
  • the strainer 72 corresponds to the strainer and the first strainer described in the claims
  • the strainer 71 corresponds to the second strainer.
  • the first check valve 111 is connected to a pipe 80 connecting the indoor heat exchanger 50 and the strainer 71 between the strainer 71 and the bypass pipe 90.
  • the first check valve 111 is disposed between the branch between the refrigerant pipe 82 and the bypass pipe 90 and the strainer 71.
  • the second check valve 112 is connected to the bypass pipe 90.
  • Each of the first check valve 111 and the second check valve 112 allows the refrigerant to flow in only one direction, and can shut off the flow of the refrigerant flowing from the opposite direction.
  • the first check valve 111 is configured to flow the refrigerant from the strainer 71 to the indoor heat exchanger 50 and to prevent the refrigerant from flowing from the indoor heat exchanger 50 to the strainer 71. I have.
  • the first check valve 111 is arranged so that the refrigerant flows from the four-way valve 60 toward the indoor heat exchanger 50 and that the refrigerant flows from the indoor heat exchanger 50 toward the four-way valve 60.
  • the second check valve 112 is configured to prevent the refrigerant from flowing from the four-way valve 60 to the indoor heat exchanger 50. It is configured to flow a refrigerant.
  • the second check valve 112 is arranged so that the refrigerant flows from the indoor heat exchanger 50 toward the four-way valve 60 and that the refrigerant flows from the four-way valve 60 toward the indoor heat exchanger 50.
  • the refrigerant is the compressor 20, the four-way valve 60, the outdoor heat exchanger 30, the expansion valve 40, the refrigerant pipe 84, the strainer 72, and the refrigerant pipe 83.
  • the refrigerant flows into the indoor heat exchanger 50 after passing through the strainer 72, so that the sludge is captured by the strainer 72. Thereby, invasion of sludge into the indoor heat exchanger 50 can be suppressed. Further, it is possible to prevent the refrigerant flow path of the indoor heat exchanger 50 from being blocked by sludge. Further, since the refrigerant that has passed through the indoor heat exchanger 50 flows through the bypass pipe 90, a decrease in the pressure of the refrigerant sucked into the compressor 20 can be suppressed.
  • the refrigerant is the compressor 20, the four-way valve 60, the refrigerant pipe 81, the strainer 71, the first check valve 111, the refrigerant pipe 82, the indoor heat
  • the heat flows through the exchanger 50, the refrigerant pipe 83, the strainer 72, the refrigerant pipe 84, the expansion valve 40, the outdoor heat exchanger 30, and the four-way valve 60 in this order.
  • the refrigerant flows into the indoor heat exchanger 50 after passing through the strainer 71, so that the sludge is captured by the strainer 71. Thereby, invasion of sludge into the indoor heat exchanger 50 can be suppressed. Further, it is possible to prevent the refrigerant flow path of the indoor heat exchanger 50 from being blocked by sludge.
  • FIGS. 13 and 14 show an example of a refrigeration cycle apparatus 10 according to Embodiment 3 of the present invention, in which a strainer is connected to a refrigerant circuit RC before and after an indoor heat exchanger 50, and a bypass pipe 90 and The configuration in which the first check valve 111 and the second check valve 112 are arranged is shown.
  • the configuration of the refrigeration cycle device 10 according to the present embodiment is not limited to this, and has a configuration in which a strainer is connected to the refrigerant circuit RC before and after the outdoor heat exchanger 30, and the bypass pipe 90 and the first The check valve 111 and the second check valve 112 may be arranged.
  • strainers are arranged before and after outdoor heat exchanger 30 in refrigerant circuit RC.
  • FIG. 15 shows the flow of the refrigerant during the cooling operation of the refrigeration cycle device 10 of the first modification according to the present embodiment.
  • FIG. 16 illustrates the flow of the refrigerant during the heating operation of the refrigeration cycle device 10 of the first modification according to the present embodiment. In FIGS. 15 and 16, the flow of the refrigerant is indicated by broken arrows.
  • the refrigeration cycle apparatus 10 includes a strainer 73, a strainer 74, a bypass pipe 90, a first check valve 111, and a second check valve 112. And in the present embodiment, a strainer 73 and a strainer 74 are connected to the refrigerant circuit RC before and after the outdoor heat exchanger 30.
  • the strainer 73 corresponds to the strainer and the first strainer described in the claims
  • the strainer 74 corresponds to the second strainer.
  • the first check valve 111 is connected between the strainer 73 and the bypass pipe 90 to a pipe 80 connecting the outdoor heat exchanger 30 and the strainer 73.
  • the first check valve 111 is disposed between the strainer 73 and a branch portion between the pipe connecting the strainer 73 and the outdoor heat exchanger 30 and the bypass pipe 90.
  • the second check valve 112 is connected to the bypass pipe 90.
  • the first check valve 111 is configured to flow the refrigerant from the strainer 73 to the outdoor heat exchanger 30 and to prevent the refrigerant from flowing from the outdoor heat exchanger 30 to the strainer 73. I have.
  • the first check valve 111 is arranged so that the refrigerant flows from the four-way valve 60 toward the outdoor heat exchanger 30 and that the refrigerant flows from the outdoor heat exchanger 30 toward the four-way valve 60.
  • the second check valve 112 is configured to prevent the refrigerant from flowing from the four-way valve 60 to the outdoor heat exchanger 30, and is configured to prevent the refrigerant from flowing from the outdoor heat exchanger 30 to the four-way valve 60. It is configured to flow a refrigerant.
  • the second check valve 112 is arranged to flow the refrigerant from the outdoor heat exchanger 30 to the four-way valve 60 and to block the refrigerant from flowing from the four-way valve 60 to the outdoor heat exchanger 30.
  • the refrigerant is supplied to the compressor 20, the four-way valve 60, the strainer 73, the first check valve 111, the outdoor heat exchanger 30, the strainer 74, and the expansion. It flows in the order of the valve 40, the indoor heat exchanger 50, and the four-way valve 60.
  • the refrigerant flows into the outdoor heat exchanger 30 after passing through the strainer 73, so that the sludge is captured by the strainer 73. Thereby, invasion of sludge into the outdoor heat exchanger 30 can be suppressed. Further, it is possible to prevent the refrigerant flow path of the outdoor heat exchanger 30 from being blocked by sludge.
  • the refrigerant is the compressor 20, the four-way valve 60, the indoor heat exchanger 50, the expansion valve 40, the strainer 74, the outdoor heat exchanger 30, and the bypass.
  • the pipe 90, the second check valve 112, the bypass pipe 90, and the four-way valve 60 flow in this order.
  • the refrigerant flows into the outdoor heat exchanger 30 after passing through the strainer 74, so that the sludge is captured by the strainer 74. Thereby, invasion of sludge into the outdoor heat exchanger 30 can be suppressed. Further, it is possible to prevent the refrigerant flow path of the outdoor heat exchanger 30 from being blocked by sludge. Further, since the refrigerant that has passed through the outdoor heat exchanger 30 flows through the bypass pipe 90, a decrease in the pressure of the refrigerant sucked into the compressor 20 can be suppressed.
  • the bypass pipe 90 includes a pipe 80 connecting the indoor heat exchanger 50 and the second strainer, a four-way valve 60 and the second strainer. Is connected to a pipe 80 for connecting.
  • the first check valve 111 is configured to flow the refrigerant from the second strainer to the indoor heat exchanger 50 and to prevent the refrigerant from flowing from the indoor heat exchanger 50 to the second strainer.
  • the second check valve 112 is configured to prevent the refrigerant from flowing from the four-way valve 60 to the indoor heat exchanger 50, and configured to flow the refrigerant from the indoor heat exchanger 50 to the four-way valve 60. I have.
  • the first check valve 111 and the second check valve 112 allow the refrigerant to flow through the bypass pipe 90. For this reason, when the refrigerant passes through the bypass pipe 90 during the cooling operation, the pressure loss of the refrigerant due to the refrigerant passing through the second strainer can be avoided. Therefore, it is possible to avoid a decrease in the pressure of the refrigerant absorbed by the compressor 20 due to an increase in the pressure loss of the refrigerant. Therefore, an increase in the input of the compressor 20 due to a decrease in the pressure of the refrigerant can be avoided, so that an increase in the power consumption of the refrigeration cycle device 10 can be avoided.
  • the bypass pipe 90 includes a pipe 80 connecting the outdoor heat exchanger 30 and the first strainer, a four-way valve 60 and the first strainer. Is connected to a pipe 80 for connecting.
  • the first check valve 111 is configured to flow the refrigerant from the first strainer to the outdoor heat exchanger 30 and to prevent the refrigerant from flowing from the outdoor heat exchanger 30 to the first strainer.
  • the second check valve 112 is configured to prevent the refrigerant from flowing from the four-way valve 60 to the outdoor heat exchanger 30, and is configured to flow the refrigerant from the outdoor heat exchanger 30 to the four-way valve. .
  • the first check valve 111 and the second check valve 112 allow the refrigerant to flow through the bypass pipe 90.
  • the pressure loss of the refrigerant due to the refrigerant passing through the first strainer can be avoided. Therefore, it is possible to avoid a decrease in the pressure of the refrigerant absorbed by the compressor 20 due to an increase in the pressure loss of the refrigerant. Therefore, an increase in the input of the compressor 20 due to a decrease in the pressure of the refrigerant can be avoided, so that an increase in the power consumption of the refrigeration cycle device 10 can be avoided.
  • FIG. 17 is a configuration diagram schematically showing a configuration of a heat transfer tube of a heat exchanger of a refrigeration cycle apparatus 10 according to Embodiment 4 of the present invention.
  • At least one of the outdoor heat exchanger 30 and the indoor heat exchanger 50 has a heat transfer tube.
  • the heat transfer tube is constituted by a flat multi-hole tube 120.
  • At least one of the outdoor heat exchanger 30 and the indoor heat exchanger 50 has a plurality of flat multi-hole tubes 120 and a header tank 130.
  • the plurality of flat multi-hole tubes 120 are stacked.
  • Each of the plurality of flat multi-hole tubes 120 has a plurality of refrigerant channels 122.
  • the plurality of flat multi-hole tubes 120 are inserted into the header tank 130.
  • At least one of the outdoor heat exchanger 30 and the indoor heat exchanger 50 has a flat multi-hole tube 120. Therefore, by connecting the strainer before or after the heat exchanger having the flat multi-hole tube 120 in the refrigerant circuit RC, it is possible to suppress the refrigerant flow path 122 of the flat multi-hole tube 120 from being blocked by sludge. Can be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

A refrigeration cycle device (10) according to the present invention is provided with a refrigerant circuit (RC) and a strainer. The strainer is connected to at least one of a pipe (80) which connects a compressor (20) and a condenser to each other, and a pipe (80) which connects an expansion valve (40) and an evaporator to each other. In cases where the strainer is connected to the pipe (80) which connects the compressor (20) and the condenser to each other, the length of the pipe (80) which connects the strainer and the condenser to each other is shorter than the length of the pipe (80) which connects the compressor (20) and the strainer to each other. In cases where the strainer is connected to the pipe (80) which connects the expansion valve (40) and the evaporator to each other, the length of the pipe (80) which connects the strainer and the evaporator to each other is shorter than the length of the pipe (80) which connects the expansion valve (40) and the strainer to each other.

Description

冷凍サイクル装置Refrigeration cycle device
 本発明は、冷凍サイクル装置に関するものである。 The present invention relates to a refrigeration cycle device.
 従来、冷凍サイクル装置内では、配管内に圧縮機の摩耗粉、冷凍機油劣化物などを含むスラッジが発生することが知られている。配管内に発生したスラッジは、冷媒とともに熱交換器の伝熱管内に流入し、伝熱管の内壁に付着する。スラッジが伝熱管の内壁に付着することにより、伝熱管内を流れる冷媒量が低下する。このため、熱交換器の伝熱性能が低下する。 Conventionally, it has been known that sludge including abrasion powder of a compressor, degraded oil of a refrigerating machine, and the like is generated in a pipe in a refrigeration cycle apparatus. The sludge generated in the pipe flows into the heat transfer tube of the heat exchanger together with the refrigerant, and adheres to the inner wall of the heat transfer tube. When the sludge adheres to the inner wall of the heat transfer tube, the amount of refrigerant flowing in the heat transfer tube decreases. For this reason, the heat transfer performance of the heat exchanger is reduced.
 そこで、熱交換器の伝熱管内に流入するスラッジを捕捉するためのストレーナを備えた冷凍サイクル装置が提案されている。このストレーナを備えた冷凍サイクル装置は、たとえば特開2006-207959号公報(特許文献1)に記載されている。この公報に記載された冷凍サイクル装置では、2つのストレーナが延長配管と熱源側ユニットとの接続部の近傍に設置されている。 Therefore, there has been proposed a refrigeration cycle apparatus provided with a strainer for capturing sludge flowing into the heat exchanger tubes of the heat exchanger. A refrigeration cycle device having this strainer is described in, for example, Japanese Patent Application Laid-Open No. 2006-207959 (Patent Document 1). In the refrigeration cycle apparatus described in this publication, two strainers are installed near the connection between the extension pipe and the heat source side unit.
特開2006-207959号公報JP 2006-207959 A
 上記公報に記載された冷凍サイクル装置においては、一方のストレーナと熱交換器(凝縮器)との間に延長配管が配置されているため、一方のストレーナと熱交換器(凝縮器)との間の配管の長さが長くなる。また、他方のストレーナは熱交換器(凝縮器)と膨張弁との間に配置されているため、他方のストレーナと熱交換器(蒸発器)との間の配管の長さが長くなる。したがって、ストレーナと熱交換器との間の配管内にスラッジが発生し易いため、当該スラッジが熱交換器に流入することにより、熱交換器の伝熱性能が低下し易い。 In the refrigeration cycle apparatus described in the above publication, since an extension pipe is disposed between one strainer and a heat exchanger (condenser), the extension pipe is disposed between one strainer and the heat exchanger (condenser). The length of the piping becomes longer. Further, since the other strainer is disposed between the heat exchanger (condenser) and the expansion valve, the length of the pipe between the other strainer and the heat exchanger (evaporator) becomes longer. Accordingly, since sludge is easily generated in the pipe between the strainer and the heat exchanger, the heat transfer performance of the heat exchanger is likely to be reduced by the sludge flowing into the heat exchanger.
 本発明は上記課題に鑑みてなされたものであり、その目的は、スラッジが熱交換器に流入することによる熱交換器の伝熱性能の低下を抑制することができる冷凍サイクル装置を提供することである。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a refrigeration cycle apparatus capable of suppressing a decrease in heat transfer performance of a heat exchanger due to sludge flowing into the heat exchanger. It is.
 本発明の冷凍サイクル装置は、冷媒回路と、ストレーナとを備えている。冷媒回路は、圧縮機、凝縮器、膨張弁、蒸発器の順に冷媒が流れるように配管で接続されている。ストレーナは、冷媒回路に接続され、かつ冷媒に混入した異物を捕捉する。ストレーナは、圧縮機と凝縮器とを接続する配管および膨張弁と蒸発器とを接続する配管の少なくともいずれかに接続されている。ストレーナが圧縮機と凝縮器とを接続する配管に接続されている場合には、ストレーナと凝縮器とを接続する配管の長さは、圧縮機とストレーナとを接続する配管の長さよりも短い。ストレーナが膨張弁と蒸発器とを接続する配管に接続されている場合には、ストレーナと蒸発器とを接続する配管の長さは、膨張弁とストレーナとを接続する配管の長さよりも短い。 冷凍 The refrigeration cycle device of the present invention includes a refrigerant circuit and a strainer. The refrigerant circuit is connected by piping so that the refrigerant flows in the order of the compressor, the condenser, the expansion valve, and the evaporator. The strainer is connected to the refrigerant circuit and captures foreign matter mixed in the refrigerant. The strainer is connected to at least one of a pipe connecting the compressor and the condenser and a pipe connecting the expansion valve and the evaporator. When the strainer is connected to the pipe connecting the compressor and the condenser, the length of the pipe connecting the strainer and the condenser is shorter than the length of the pipe connecting the compressor and the strainer. When the strainer is connected to the pipe connecting the expansion valve and the evaporator, the length of the pipe connecting the strainer and the evaporator is shorter than the length of the pipe connecting the expansion valve and the strainer.
 本発明の冷凍サイクル装置によれば、ストレーナが圧縮機と凝縮器とを接続する配管に接続されている場合には、ストレーナと凝縮器とを接続する配管の長さは、圧縮機とストレーナとを接続する配管の長さよりも短い。ストレーナが膨張弁と蒸発器とを接続する配管に接続されている場合には、ストレーナと蒸発器とを接続する配管の長さは、膨張弁とストレーナとを接続する配管の長さよりも短い。したがって、ストレーナと凝縮器とを接続する配管の長さを短くすることにより、当該配管でのスラッジの発生を抑制することができる。また、ストレーナと蒸発器とを接続する配管の長さを短くすることにより、当該配管でのスラッジの発生を抑制することができる。よって、スラッジが熱交換器に流入することによる熱交換器の伝熱性能の低下を抑制することができる。 According to the refrigeration cycle apparatus of the present invention, when the strainer is connected to the pipe connecting the compressor and the condenser, the length of the pipe connecting the strainer and the condenser is equal to the length of the compressor and the strainer. Is shorter than the length of the connecting pipe. When the strainer is connected to the pipe connecting the expansion valve and the evaporator, the length of the pipe connecting the strainer and the evaporator is shorter than the length of the pipe connecting the expansion valve and the strainer. Therefore, by reducing the length of the pipe connecting the strainer and the condenser, the generation of sludge in the pipe can be suppressed. Further, by reducing the length of the pipe connecting the strainer and the evaporator, the generation of sludge in the pipe can be suppressed. Therefore, it is possible to suppress a decrease in the heat transfer performance of the heat exchanger due to the sludge flowing into the heat exchanger.
本発明の実施の形態1に係る冷凍サイクル装置の冷房運転時の構成を示す構成図である。FIG. 2 is a configuration diagram illustrating a configuration of the refrigeration cycle apparatus according to Embodiment 1 of the present invention during a cooling operation. 本発明の実施の形態1に係る冷凍サイクル装置の暖房運転時の構成を示す構成図である。FIG. 2 is a configuration diagram illustrating a configuration during a heating operation of the refrigeration cycle apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る変形例1の冷凍サイクル装置の冷房運転時の構成を示す構成図である。FIG. 4 is a configuration diagram illustrating a configuration during a cooling operation of a refrigeration cycle device of Modification 1 according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る変形例1の冷凍サイクル装置の暖房運転時の構成を示す構成図である。It is a block diagram which shows the structure at the time of the heating operation of the refrigeration cycle apparatus of the modification 1 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る変形例2の冷凍サイクル装置の冷房運転時の構成を示す構成図である。FIG. 5 is a configuration diagram illustrating a configuration during a cooling operation of a refrigeration cycle device of Modification Example 2 according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る変形例2の冷凍サイクル装置の暖房運転時の構成を示す構成図である。FIG. 4 is a configuration diagram illustrating a configuration of a refrigeration cycle device of a second modification according to Embodiment 1 of the present invention during a heating operation. 本発明の実施の形態1に係る変形例3の冷凍サイクル装置の冷房運転時の構成を示す構成図である。It is a block diagram which shows the structure at the time of the cooling operation of the refrigeration cycle apparatus of the modification 3 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る変形例3の冷凍サイクル装置の暖房運転時の構成を示す構成図である。It is a block diagram which shows the structure at the time of the heating operation of the refrigeration cycle apparatus of the modification 3 which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る冷凍サイクル装置の冷房運転時の構成を示す構成図である。It is a block diagram which shows the structure at the time of the cooling operation of the refrigeration cycle apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る冷凍サイクル装置の暖房運転時の構成を示す構成図である。It is a block diagram which shows the structure at the time of the heating operation of the refrigeration cycle apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る変形例1の冷凍サイクル装置の冷房運転時の構成を示す構成図である。It is a block diagram which shows the structure at the time of the cooling operation of the refrigeration cycle apparatus of the modification 1 which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る変形例1の冷凍サイクル装置の暖房運転時の構成を示す構成図である。It is a block diagram which shows the structure at the time of the heating operation of the refrigeration cycle apparatus of the modification 1 which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る冷凍サイクル装置の冷房運転時の構成を示す構成図である。It is a block diagram which shows the structure at the time of the cooling operation of the refrigeration cycle apparatus which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る冷凍サイクル装置の暖房運転時の構成を示す構成図である。It is a block diagram which shows the structure at the time of the heating operation of the refrigeration cycle apparatus which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る変形例1の冷凍サイクル装置の冷房運転時の構成を示す構成図である。It is a block diagram which shows the structure at the time of the cooling operation of the refrigeration cycle apparatus of the modification 1 which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る変形例1の冷凍サイクル装置の暖房運転時の構成を示す構成図である。FIG. 13 is a configuration diagram illustrating a configuration during a heating operation of a refrigeration cycle device of Modification Example 1 according to Embodiment 3 of the present invention. 本発明の実施の形態4に係る冷凍サイクル装置の熱交換器の構成を示す部分断面斜視図である。FIG. 13 is a partial cross-sectional perspective view illustrating a configuration of a heat exchanger of a refrigeration cycle apparatus according to Embodiment 4 of the present invention.
 以下、本発明の実施の形態について図面を参照して説明する。なお、以下において同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、本実施の形態は明細書に記載された形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following, the components denoted by the same reference numerals are the same or equivalent, and this is common in the entire text of the specification. The forms of the components shown in the entire text of the specification are merely examples, and the present embodiment is not limited to the form described in the specification.
 実施の形態1.
 図1および図2を参照して、本発明の実施の形態1に係る冷凍サイクル装置10について説明する。図1は、本発明の実施の形態1に係る冷凍サイクル装置10の冷房運転時の冷媒の流れを示している。図2は、本発明の実施の形態1に係る冷凍サイクル装置10の暖房運転時の冷媒の流れを示している。図1および図2においては破線矢印により冷媒の流れが示されている。
Embodiment 1 FIG.
1 and 2, a refrigeration cycle apparatus 10 according to Embodiment 1 of the present invention will be described. FIG. 1 shows the flow of the refrigerant during the cooling operation of the refrigeration cycle apparatus 10 according to Embodiment 1 of the present invention. FIG. 2 shows the flow of the refrigerant during the heating operation of the refrigeration cycle apparatus 10 according to Embodiment 1 of the present invention. In FIGS. 1 and 2, the flow of the refrigerant is indicated by broken arrows.
 図1に示されるように、本実施の形態に係る冷凍サイクル装置10は、圧縮機20と、室外熱交換器30と、膨張弁40と、室内熱交換器50と、四方弁60と、ストレーナ71と、ストレーナ72とを備えている。 As shown in FIG. 1, a refrigeration cycle apparatus 10 according to the present embodiment includes a compressor 20, an outdoor heat exchanger 30, an expansion valve 40, an indoor heat exchanger 50, a four-way valve 60, a strainer 71 and a strainer 72.
 また、冷凍サイクル装置10は、室外機101と、室内機102とを備えている。室外機101に、圧縮機20と、室外熱交換器30と、膨張弁40と、四方弁60とが収容されている。室内機102に、室内熱交換器50と、ストレーナ71およびストレーナ72が収容されている。 (4) The refrigeration cycle apparatus 10 includes an outdoor unit 101 and an indoor unit 102. The outdoor unit 101 accommodates the compressor 20, the outdoor heat exchanger 30, the expansion valve 40, and the four-way valve 60. The indoor unit 102 accommodates the indoor heat exchanger 50, the strainer 71, and the strainer 72.
 圧縮機20、室外熱交換器30、膨張弁40、室内熱交換器50および四方弁60は、冷媒回路RCを構成している。冷媒回路RCは、圧縮機20、凝縮器(室外熱交換器30または室内熱交換器50)、膨張弁40、蒸発器(室内熱交換器50または室外熱交換器30)の順に冷媒が流れるように配管(冷媒管)80で接続されている。 (4) The compressor 20, the outdoor heat exchanger 30, the expansion valve 40, the indoor heat exchanger 50, and the four-way valve 60 constitute a refrigerant circuit RC. The refrigerant circuit RC allows the refrigerant to flow in the order of the compressor 20, the condenser (the outdoor heat exchanger 30 or the indoor heat exchanger 50), the expansion valve 40, and the evaporator (the indoor heat exchanger 50 or the outdoor heat exchanger 30). (Refrigerant tube) 80.
 圧縮機20は、吸入した冷媒を圧縮して吐出するように構成されている。室外熱交換器30は、冷媒と室外空気との熱交換を行うためのものである。膨張弁40は、冷媒を減圧する絞り装置である。膨張弁40は、たとえば、キャピラリーチューブ、電子膨張弁等である。室内熱交換器50は、冷媒と室内空気との熱交換を行うためのものである。室外熱交換器30および室内熱交換器50の各々は、たとえば冷媒が内側を流れるパイプ(伝熱管)と、パイプの外側に取り付けられたフィンとを備えている。また、室外熱交換器30および室内熱交換器50の各々はヘッダ(分配器)を含んでいてもよい。 The compressor 20 is configured to compress and discharge the sucked refrigerant. The outdoor heat exchanger 30 is for performing heat exchange between the refrigerant and outdoor air. The expansion valve 40 is a throttle device for reducing the pressure of the refrigerant. The expansion valve 40 is, for example, a capillary tube, an electronic expansion valve, or the like. The indoor heat exchanger 50 is for exchanging heat between the refrigerant and the indoor air. Each of the outdoor heat exchanger 30 and the indoor heat exchanger 50 includes, for example, a pipe (heat transfer tube) through which the refrigerant flows, and fins attached to the outside of the pipe. Further, each of the outdoor heat exchanger 30 and the indoor heat exchanger 50 may include a header (distributor).
 本実施の形態では、冷媒回路RCは、四方弁60を有している。四方弁60は、圧縮機20と、室外熱交換器30と、室内熱交換器50とに配管80で接続されている。四方弁60は、冷房運転時と暖房運転時とによって圧縮機20から室外熱交換器30または室内熱交換器50への冷媒の流れを切り替えるように構成されている。冷凍サイクル装置10は、四方弁60の弁を切り替えることにより冷媒流通経路を変更可能に構成されている。 In the present embodiment, the refrigerant circuit RC has the four-way valve 60. The four-way valve 60 is connected to the compressor 20, the outdoor heat exchanger 30, and the indoor heat exchanger 50 by a pipe 80. The four-way valve 60 is configured to switch the flow of the refrigerant from the compressor 20 to the outdoor heat exchanger 30 or the indoor heat exchanger 50 during the cooling operation and the heating operation. The refrigeration cycle apparatus 10 is configured to be able to change the refrigerant flow path by switching the four-way valve 60.
 図1に示されるように、冷房運転時には、冷媒回路RCを、圧縮機20、四方弁60、室外熱交換器30、膨張弁40、室内熱交換器50、四方弁60の順に冷媒が循環する。冷房運転時には、室外熱交換器30は凝縮器として機能し、室内熱交換器50は蒸発器として機能する。 As shown in FIG. 1, during the cooling operation, the refrigerant circulates through the refrigerant circuit RC in the order of the compressor 20, the four-way valve 60, the outdoor heat exchanger 30, the expansion valve 40, the indoor heat exchanger 50, and the four-way valve 60. . During the cooling operation, the outdoor heat exchanger 30 functions as a condenser, and the indoor heat exchanger 50 functions as an evaporator.
 図2に示されるように、暖房運転時には、冷房運転時から四方弁60の弁が切り替えられる。暖房運転時には、冷媒回路RCを、圧縮機20、四方弁60、室内熱交換器50、膨張弁40、室外熱交換器30の順で冷媒が循環する。暖房運転時には、室外熱交換器30は蒸発器として機能し、室内熱交換器50は凝縮器として機能する。つまり、室外熱交換器30は凝縮器または蒸発器のいずれか一方として機能する。また、室内熱交換器50は、凝縮器または蒸発器のいずれか他方として機能する。 As shown in FIG. 2, during the heating operation, the four-way valve 60 is switched from the cooling operation. During the heating operation, the refrigerant circulates through the refrigerant circuit RC in the order of the compressor 20, the four-way valve 60, the indoor heat exchanger 50, the expansion valve 40, and the outdoor heat exchanger 30. During the heating operation, the outdoor heat exchanger 30 functions as an evaporator, and the indoor heat exchanger 50 functions as a condenser. That is, the outdoor heat exchanger 30 functions as either a condenser or an evaporator. The indoor heat exchanger 50 functions as either the condenser or the evaporator.
 ストレーナは、冷媒回路RCに接続されている。ストレーナは、冷媒に混入した異物を捕捉するように構成されている。ストレーナは、たとえば、冷媒に混入した異物を捕捉可能な網を有している。ストレーナは、冷媒流れにおいて熱交換器の入口側に配置されている。本実施の形態では、冷凍サイクル装置10は、ストレーナとして機能するストレーナ71およびストレーナ72を有している。ストレーナ71およびストレーナ72の各々は同様の構造を有していてもよい。 The strainer is connected to the refrigerant circuit RC. The strainer is configured to catch foreign matter mixed in the refrigerant. The strainer has, for example, a net capable of catching foreign matter mixed in the refrigerant. The strainer is located at the inlet side of the heat exchanger in the refrigerant flow. In the present embodiment, the refrigeration cycle apparatus 10 has a strainer 71 and a strainer 72 that function as strainers. Each of strainer 71 and strainer 72 may have a similar structure.
 本実施の形態では、圧縮機20と室内熱交換器50とを接続する配管80の間にストレーナ71が配置されており、室内熱交換器50と膨張弁40を接続する配管80の間にストレーナ72が配置されている。より具体的には、ストレーナ71は四方弁60と室内熱交換器50を接続する配管80の間に配置されている。本実施の形態では、冷媒回路RCに室内熱交換器50の前後でストレーナ71およびストレーナ72が接続されている。 In the present embodiment, a strainer 71 is disposed between a pipe 80 connecting the compressor 20 and the indoor heat exchanger 50, and a strainer 71 is provided between the pipe 80 connecting the indoor heat exchanger 50 and the expansion valve 40. 72 are arranged. More specifically, the strainer 71 is disposed between the four-way valve 60 and the pipe 80 connecting the indoor heat exchanger 50. In the present embodiment, a strainer 71 and a strainer 72 are connected to the refrigerant circuit RC before and after the indoor heat exchanger 50.
 図1に示されるように、冷房運転時には、ストレーナ72は、請求の範囲に記載されたストレーナおよび第1ストレーナに相当する。冷房運転時には第1ストレーナに相当するストレーナ72がストレーナとして機能する。ストレーナ72は、膨張弁40と蒸発器である室内熱交換器50とを接続する配管80に接続されている。ストレーナ72と蒸発器である室内熱交換器50とを接続する配管80の長さは、膨張弁40とストレーナ72とを接続する配管80の長さよりも短い。 時 に は As shown in FIG. 1, during the cooling operation, the strainer 72 corresponds to the strainer and the first strainer described in the claims. During the cooling operation, the strainer 72 corresponding to the first strainer functions as a strainer. The strainer 72 is connected to a pipe 80 that connects the expansion valve 40 and the indoor heat exchanger 50 that is an evaporator. The length of the pipe 80 connecting the strainer 72 and the indoor heat exchanger 50 as the evaporator is shorter than the length of the pipe 80 connecting the expansion valve 40 and the strainer 72.
 また、冷房運転時には、ストレーナ71は、請求の範囲に記載された第2ストレーナに相当する。ストレーナ71は、蒸発器である室内熱交換器50と圧縮機20とを接続する配管80に接続されている。ストレーナ71と蒸発器である室内熱交換器50とを接続する配管80の長さは、圧縮機20とストレーナ71とを接続する配管80の長さよりも短い。また、ストレーナ71と蒸発器である室内熱交換器50とを接続する配管80の長さは、四方弁60とストレーナ71とを接続する配管80の長さよりも短い。 (4) During the cooling operation, the strainer 71 corresponds to the second strainer described in the claims. The strainer 71 is connected to a pipe 80 that connects the indoor heat exchanger 50, which is an evaporator, to the compressor 20. The length of the pipe 80 connecting the strainer 71 and the indoor heat exchanger 50 as the evaporator is shorter than the length of the pipe 80 connecting the compressor 20 and the strainer 71. The length of a pipe 80 connecting the strainer 71 and the indoor heat exchanger 50 as an evaporator is shorter than the length of the pipe 80 connecting the four-way valve 60 and the strainer 71.
 図2に示されるように、暖房運転時には、ストレーナ71は、請求の範囲に記載されたストレーナおよび第2ストレーナに相当する。暖房運転時には第2ストレーナに相当するストレーナ71がストレーナとして機能する。ストレーナ71は、圧縮機20と凝縮器である室内熱交換器50とを接続する配管80に接続されている。ストレーナ71と凝縮器である室内熱交換器50とを接続する配管80の長さは、圧縮機20とストレーナ71とを接続する配管80の長さよりも短い。また、ストレーナ71と凝縮器である室内熱交換器50とを接続する配管80の長さは、四方弁60とストレーナ71とを接続する配管80の長さよりも短い。 時 に は As shown in FIG. 2, during the heating operation, the strainer 71 corresponds to the strainer and the second strainer described in the claims. During the heating operation, the strainer 71 corresponding to the second strainer functions as a strainer. The strainer 71 is connected to a pipe 80 that connects the compressor 20 and the indoor heat exchanger 50 that is a condenser. The length of the pipe 80 connecting the strainer 71 and the indoor heat exchanger 50 as a condenser is shorter than the length of the pipe 80 connecting the compressor 20 and the strainer 71. The length of a pipe 80 connecting the strainer 71 and the indoor heat exchanger 50 as a condenser is shorter than the length of the pipe 80 connecting the four-way valve 60 and the strainer 71.
 また、暖房運転時には、ストレーナ72は、請求の範囲に記載された第1ストレーナに相当する。ストレーナ72は、凝縮器である室内熱交換器50と膨張弁40とを接続する配管80に接続されている。ストレーナ72と凝縮器である室内熱交換器50とを接続する配管80の長さは、膨張弁40とストレーナ72とを接続する配管の長さよりも短い。 時 に は During the heating operation, the strainer 72 corresponds to the first strainer described in the claims. The strainer 72 is connected to a pipe 80 connecting the indoor heat exchanger 50 as a condenser and the expansion valve 40. The length of the pipe 80 connecting the strainer 72 and the indoor heat exchanger 50 as a condenser is shorter than the length of the pipe connecting the expansion valve 40 and the strainer 72.
 具体的には、配管80は、冷媒管81、冷媒管82、冷媒管83および冷媒管84を含んでいる。四方弁60とストレーナ71とは冷媒管81により接続されており、ストレーナ71と室内熱交換器50とは冷媒管82により接続されている。ストレーナ71は、冷媒回路RCにおいて四方弁60よりも室内熱交換器50に近い位置に配置される。すなわち、冷媒管81の長さよりも冷媒管82の長さが短い。 Specifically, the pipe 80 includes a refrigerant pipe 81, a refrigerant pipe 82, a refrigerant pipe 83, and a refrigerant pipe 84. The four-way valve 60 and the strainer 71 are connected by a refrigerant pipe 81, and the strainer 71 and the indoor heat exchanger 50 are connected by a refrigerant pipe 82. The strainer 71 is arranged at a position closer to the indoor heat exchanger 50 than the four-way valve 60 in the refrigerant circuit RC. That is, the length of the refrigerant pipe 82 is shorter than the length of the refrigerant pipe 81.
 また、室内熱交換器50とストレーナ72とは冷媒管83により接続されており、ストレーナ72と膨張弁40は冷媒管84により接続されている。ストレーナ72は、冷媒回路RCにおいて膨張弁40よりも室内熱交換器50に近い位置に配置される。すなわち、冷媒管84の長さよりも冷媒管83の長さが短い。 The indoor heat exchanger 50 and the strainer 72 are connected by a refrigerant pipe 83, and the strainer 72 and the expansion valve 40 are connected by a refrigerant pipe 84. The strainer 72 is arranged at a position closer to the indoor heat exchanger 50 than the expansion valve 40 in the refrigerant circuit RC. That is, the length of the refrigerant pipe 83 is shorter than the length of the refrigerant pipe 84.
 図1に示されるように、冷凍サイクル装置10において、冷房運転時に、冷媒は、圧縮機20、四方弁60、室外熱交換器30、膨張弁40、冷媒管84、ストレーナ72、冷媒管83、室内熱交換器50、冷媒管82、ストレーナ71、冷媒管81、四方弁60の順に流れる。冷媒は、室内熱交換器50の前にストレーナ72を通過するため、ストレーナ72によりスラッジが捕捉される。そのため、冷房運転時においては、ストレーナ72により室内熱交換器50へのスラッジの侵入が抑制される。このスラッジは、配管80内で発生したものであり、圧縮機20の摩耗粉、冷凍機油劣化物などを含んでいる。 As shown in FIG. 1, in the refrigeration cycle apparatus 10, at the time of cooling operation, the refrigerant is supplied to the compressor 20, the four-way valve 60, the outdoor heat exchanger 30, the expansion valve 40, the refrigerant pipe 84, the strainer 72, the refrigerant pipe 83, It flows in the order of the indoor heat exchanger 50, the refrigerant pipe 82, the strainer 71, the refrigerant pipe 81, and the four-way valve 60. Since the refrigerant passes through the strainer 72 before the indoor heat exchanger 50, sludge is captured by the strainer 72. Therefore, during the cooling operation, the strainer 72 suppresses intrusion of sludge into the indoor heat exchanger 50. This sludge is generated in the pipe 80, and contains abrasion powder of the compressor 20, degraded refrigeration oil, and the like.
 冷凍サイクル装置10が冷房運転される場合、室内熱交換器50の手前の冷媒管83の長さを短くし、ストレーナ72と室内熱交換器50との冷媒管距離を近くすることで、室内熱交換器50へ冷媒管83で発生したスラッジが侵入する可能性を低くすることができる。 When the refrigeration cycle apparatus 10 performs the cooling operation, the length of the refrigerant pipe 83 in front of the indoor heat exchanger 50 is shortened, and the distance between the strainer 72 and the indoor heat exchanger 50 is shortened. The possibility that sludge generated in the refrigerant pipe 83 enters the exchanger 50 can be reduced.
 図2に示されるように、冷凍サイクル装置10において、暖房運転時に、冷媒は、圧縮機20、四方弁60、冷媒管81、ストレーナ71、冷媒管82、室内熱交換器50、冷媒管83、ストレーナ72、冷媒管84、膨張弁40、室外熱交換器30、四方弁60の順に流れる。冷媒は、室内熱交換器50の前にストレーナ71を通過するため、ストレーナ71によりスラッジが捕捉される。そのため、暖房運転時においては、ストレーナ71により室内熱交換器50へのスラッジの侵入が抑制される。 As shown in FIG. 2, in the refrigeration cycle apparatus 10, during the heating operation, the refrigerant is supplied to the compressor 20, the four-way valve 60, the refrigerant pipe 81, the strainer 71, the refrigerant pipe 82, the indoor heat exchanger 50, the refrigerant pipe 83, It flows through the strainer 72, the refrigerant pipe 84, the expansion valve 40, the outdoor heat exchanger 30, and the four-way valve 60 in this order. Since the refrigerant passes through the strainer 71 before the indoor heat exchanger 50, sludge is captured by the strainer 71. Therefore, at the time of the heating operation, the intrusion of sludge into the indoor heat exchanger 50 by the strainer 71 is suppressed.
 冷凍サイクル装置10が暖房運転される場合、室内熱交換器50の手前の冷媒管82の長さを短くし、ストレーナ71と室内熱交換器50との冷媒管距離を近くすることで、室内熱交換器50へ冷媒管82で発生したスラッジが侵入する可能性を低くすることができる。 When the refrigeration cycle apparatus 10 performs the heating operation, the length of the refrigerant pipe 82 in front of the indoor heat exchanger 50 is shortened, and the distance between the strainer 71 and the indoor heat exchanger 50 is shortened. The possibility that sludge generated in the refrigerant pipe 82 enters the exchanger 50 can be reduced.
 図1および図2では、本実施の形態に係る冷凍サイクル装置10の一例として、冷媒回路RCに室内熱交換器50の前後でストレーナが接続されている構成が示されている。しかしながら、本実施の形態に係る冷凍サイクル装置10の構成は、これに限定されず、冷媒回路RCに室外熱交換器30の前後でストレーナが接続されている構成であってもよい。 FIGS. 1 and 2 show, as an example of the refrigeration cycle device 10 according to the present embodiment, a configuration in which strainers are connected to the refrigerant circuit RC before and after the indoor heat exchanger 50. However, the configuration of the refrigeration cycle device 10 according to the present embodiment is not limited to this, and a configuration in which a strainer is connected to the refrigerant circuit RC before and after the outdoor heat exchanger 30 may be used.
 図3および図4を参照して、本実施の形態に係る変形例1の冷凍サイクル装置10においては、冷媒回路RCに室外熱交換器30の前後でストレーナが接続されている。図3は、本実施の形態に係る変形例1の冷凍サイクル装置10の冷房運転時の冷媒の流れを示している。図4は、本実施の形態に係る変形例1の冷凍サイクル装置10の暖房運転時の冷媒の流れを示している。図3および図4においては破線矢印により冷媒の流れが示されている。 お よ び Referring to FIGS. 3 and 4, in refrigeration cycle apparatus 10 of Modification 1 according to the present embodiment, strainers are connected to refrigerant circuit RC before and after outdoor heat exchanger 30. FIG. 3 shows the flow of the refrigerant during the cooling operation of the refrigeration cycle apparatus 10 according to the first modification of the present embodiment. FIG. 4 shows the flow of the refrigerant during the heating operation of the refrigeration cycle apparatus 10 of the first modification according to the present embodiment. 3 and 4, the flow of the refrigerant is indicated by broken arrows.
 図3および図4に示されるように、本実施の形態に係る変形例1の冷凍サイクル装置10は、冷媒回路RCに接続されたストレーナ73およびストレーナ74を有している。ストレーナ73およびストレーナ74の各々は、上述のストレーナ71およびストレーナ72と同様の構造を有していてもよい。 As shown in FIGS. 3 and 4, the refrigeration cycle apparatus 10 of the first modification according to the present embodiment has a strainer 73 and a strainer 74 connected to the refrigerant circuit RC. Each of the strainer 73 and the strainer 74 may have the same structure as the strainer 71 and the strainer 72 described above.
 本実施の形態に係る変形例1では、圧縮機20と室外熱交換器30とを接続する配管80の間にはストレーナ73が配置されており、室外熱交換器30と膨張弁40を接続する配管80の間にはストレーナ74が配置されている。より具体的には、ストレーナ73は四方弁60と室外熱交換器30を接続する配管80の間に配置されている。本実施の形態に係る変形例1では、冷媒回路RCに室外熱交換器30の前後でストレーナ73およびストレーナ74が接続されている。 In the first modification according to the present embodiment, a strainer 73 is disposed between a pipe 80 connecting the compressor 20 and the outdoor heat exchanger 30, and connects the outdoor heat exchanger 30 and the expansion valve 40. A strainer 74 is arranged between the pipes 80. More specifically, the strainer 73 is arranged between the pipe 80 connecting the four-way valve 60 and the outdoor heat exchanger 30. In the first modification according to the present embodiment, the strainer 73 and the strainer 74 are connected to the refrigerant circuit RC before and after the outdoor heat exchanger 30.
 図3に示されるように、冷房運転時には、ストレーナ73は、請求の範囲に記載されたストレーナおよび第1ストレーナに相当する。冷房運転時には第1ストレーナに相当するストレーナ73がストレーナとして機能する。ストレーナ73は、圧縮機20と凝縮器である室外熱交換器30とを接続する配管80に接続されている。ストレーナ73と凝縮器である室外熱交換器30とを接続する配管80の長さは、圧縮機20とストレーナ73とを接続する配管80の長さよりも短い。また、ストレーナ73と凝縮器である室外熱交換器30とを接続する配管80の長さは、四方弁60とストレーナ73とを接続する配管80の長さよりも短い。 よ う As shown in FIG. 3, during the cooling operation, the strainer 73 corresponds to the strainer and the first strainer described in the claims. During the cooling operation, the strainer 73 corresponding to the first strainer functions as a strainer. The strainer 73 is connected to a pipe 80 that connects the compressor 20 and the outdoor heat exchanger 30 that is a condenser. The length of the pipe 80 connecting the strainer 73 and the outdoor heat exchanger 30 as a condenser is shorter than the length of the pipe 80 connecting the compressor 20 and the strainer 73. The length of a pipe 80 connecting the strainer 73 and the outdoor heat exchanger 30 as a condenser is shorter than the length of the pipe 80 connecting the four-way valve 60 and the strainer 73.
 また、冷房運転時には、ストレーナ74は、請求の範囲に記載された第2ストレーナに相当する。ストレーナ74は、凝縮器である室外熱交換器30と膨張弁40とを接続する配管80に接続されている。ストレーナ74と凝縮器である室外熱交換器30とを接続する配管80の長さは、膨張弁40とストレーナ74とを接続する配管の長さよりも短い。 (4) During the cooling operation, the strainer 74 corresponds to a second strainer described in the claims. The strainer 74 is connected to a pipe 80 connecting the outdoor heat exchanger 30 as a condenser and the expansion valve 40. The length of the pipe 80 connecting the strainer 74 and the outdoor heat exchanger 30 as a condenser is shorter than the length of the pipe connecting the expansion valve 40 and the strainer 74.
 図4に示されるように、暖房運転時には、ストレーナ74は、請求の範囲に記載されたストレーナおよび第2ストレーナに相当する。暖房運転時には第2ストレーナに相当するストレーナ74がストレーナとして機能する。ストレーナ74は、膨張弁40と蒸発器である室外熱交換器30とを接続する配管80に接続されている。ストレーナ74と蒸発器である室外熱交換器30とを接続する配管80の長さは、膨張弁40とストレーナ74とを接続する配管80の長さよりも短い。 よ う As shown in FIG. 4, during the heating operation, the strainer 74 corresponds to the strainer and the second strainer described in the claims. During the heating operation, the strainer 74 corresponding to the second strainer functions as a strainer. The strainer 74 is connected to a pipe 80 connecting the expansion valve 40 and the outdoor heat exchanger 30 as an evaporator. The length of the pipe 80 connecting the strainer 74 and the outdoor heat exchanger 30 as an evaporator is shorter than the length of the pipe 80 connecting the expansion valve 40 and the strainer 74.
 また、暖房運転時には、ストレーナ73は、請求の範囲に記載された第1ストレーナに相当する。ストレーナ73は、蒸発器である室外熱交換器30と圧縮機20とを接続する配管80に接続されている。ストレーナ73と蒸発器である室外熱交換器30とを接続する配管80の長さは、圧縮機20とストレーナ73とを接続する配管80の長さよりも短い。また、ストレーナ73と蒸発器である室外熱交換器30とを接続する配管80の長さは、四方弁60とストレーナ73とを接続する配管80の長さよりも短い。 In the heating operation, the strainer 73 corresponds to a first strainer described in the claims. The strainer 73 is connected to a pipe 80 that connects the outdoor heat exchanger 30 as an evaporator and the compressor 20. The length of the pipe 80 connecting the strainer 73 and the outdoor heat exchanger 30 as an evaporator is shorter than the length of the pipe 80 connecting the compressor 20 and the strainer 73. The length of a pipe 80 connecting the strainer 73 and the outdoor heat exchanger 30 as an evaporator is shorter than the length of the pipe 80 connecting the four-way valve 60 and the strainer 73.
 図3に示されるように、冷凍サイクル装置10において、冷房運転時に、冷媒は、圧縮機20、四方弁60、ストレーナ73、室外熱交換器30、ストレーナ74、膨張弁40、室内熱交換器50、四方弁60の順に流れる。冷媒は、室外熱交換器30の前にストレーナ73を通過するため、ストレーナ73によりスラッジが捕捉される。そのため、冷房運転時においては、ストレーナ73により室外熱交換器30へのスラッジの侵入が抑制される。 As shown in FIG. 3, in the refrigeration cycle apparatus 10, during the cooling operation, the refrigerant is supplied to the compressor 20, the four-way valve 60, the strainer 73, the outdoor heat exchanger 30, the strainer 74, the expansion valve 40, and the indoor heat exchanger 50. , And flows in the order of the four-way valve 60. Since the refrigerant passes through the strainer 73 before the outdoor heat exchanger 30, sludge is captured by the strainer 73. Therefore, during the cooling operation, the strainer 73 suppresses intrusion of sludge into the outdoor heat exchanger 30.
 冷凍サイクル装置10が冷房運転される場合、ストレーナ73と室外熱交換器30とを接続する配管80の長さを短くすることで、室内熱交換器50へストレーナ73と室外熱交換器30とを接続する配管80で発生したスラッジが侵入する可能性を低くすることができる。 When the refrigeration cycle apparatus 10 performs the cooling operation, the length of the pipe 80 connecting the strainer 73 and the outdoor heat exchanger 30 is reduced, so that the strainer 73 and the outdoor heat exchanger 30 are connected to the indoor heat exchanger 50. The possibility that sludge generated in the connecting pipe 80 enters can be reduced.
 図4に示されるように、冷凍サイクル装置10において、暖房運転時に、冷媒は、圧縮機20、四方弁60、室内熱交換器50、膨張弁40、ストレーナ74、室外熱交換器30、ストレーナ73、四方弁60の順に流れる。冷媒は、室外熱交換器30の前にストレーナ74を通過するため、ストレーナ74によりスラッジが捕捉される。そのため、暖房運転時においては、ストレーナ74により室外熱交換器30へのスラッジの侵入が抑制される。 As shown in FIG. 4, in the refrigeration cycle apparatus 10, during the heating operation, the refrigerant is supplied to the compressor 20, the four-way valve 60, the indoor heat exchanger 50, the expansion valve 40, the strainer 74, the outdoor heat exchanger 30, and the strainer 73. , And flows in the order of the four-way valve 60. Since the refrigerant passes through the strainer 74 before the outdoor heat exchanger 30, sludge is captured by the strainer 74. Therefore, during the heating operation, the intrusion of sludge into the outdoor heat exchanger 30 is suppressed by the strainer 74.
 冷凍サイクル装置10が暖房運転される場合、ストレーナ74と室外熱交換器30とを接続する配管80の長さを短くすることで、室外熱交換器30へストレーナ74と室外熱交換器30とを接続する配管80で発生したスラッジが侵入する可能性を低くすることができる。 When the refrigeration cycle apparatus 10 performs the heating operation, the length of the pipe 80 connecting the strainer 74 and the outdoor heat exchanger 30 is reduced, so that the strainer 74 and the outdoor heat exchanger 30 are connected to the outdoor heat exchanger 30. The possibility that sludge generated in the connecting pipe 80 enters can be reduced.
 また、本実施の形態に係る冷凍サイクル装置10の構成は、冷媒回路RCに室外熱交換器30および室内熱交換器50の両方の前後でストレーナが接続されている構成であってもよい。 In addition, the configuration of the refrigeration cycle apparatus 10 according to the present embodiment may be configured such that strainers are connected to the refrigerant circuit RC before and after both the outdoor heat exchanger 30 and the indoor heat exchanger 50.
 図5および図6を参照して、本実施の形態に係る変形例2の冷凍サイクル装置10においては、冷媒回路RCにおいて室外熱交換器30および室内の前後にストレーナが配置されている。図5は、本実施の形態に係る変形例2の冷凍サイクル装置10の冷房運転時の冷媒の流れを示している。図6は、本実施の形態に係る変形例2の冷凍サイクル装置10の暖房運転時の冷媒の流れを示している。図5および図6においては破線矢印により冷媒の流れが示されている。 お よ び Referring to FIGS. 5 and 6, in refrigeration cycle apparatus 10 of Modification 2 according to the present embodiment, outdoor heat exchanger 30 and strainers in the front and rear of the room are arranged in refrigerant circuit RC. FIG. 5 shows the flow of the refrigerant during the cooling operation of the refrigeration cycle apparatus 10 according to the second modification of the present embodiment. FIG. 6 shows the flow of the refrigerant during the heating operation of the refrigeration cycle device 10 according to the second modification of the present embodiment. 5 and 6, the flow of the refrigerant is indicated by broken arrows.
 図5および図6に示されるように、本実施の形態に係る変形例2の冷凍サイクル装置10は、ストレーナ71、ストレーナ72、ストレーナ73およびストレーナ74を有している。 As shown in FIGS. 5 and 6, the refrigeration cycle apparatus 10 of the second modification according to the present embodiment has a strainer 71, a strainer 72, a strainer 73, and a strainer 74.
 図5に示されるように、冷房運転時には、ストレーナ72およびストレーナ73は、請求の範囲に記載されたストレーナおよび第1ストレーナに相当する。また、ストレーナ71およびストレーナ74は、請求の範囲に記載された第2ストレーナに相当する。 As shown in FIG. 5, during the cooling operation, the strainer 72 and the strainer 73 correspond to the strainer and the first strainer described in the claims. Further, the strainers 71 and 74 correspond to the second strainers described in the claims.
 図6に示されるように、暖房運転時には、ストレーナ71およびストレーナ74は、請求の範囲に記載されたストレーナおよび第1ストレーナに相当する。また、ストレーナ72およびストレーナ73は、請求の範囲に記載された第2ストレーナに相当する。 As shown in FIG. 6, during the heating operation, the strainer 71 and the strainer 74 correspond to the strainer and the first strainer described in the claims. Further, the strainer 72 and the strainer 73 correspond to a second strainer described in the claims.
 さらに、図1~図6では、本実施の形態に係る冷凍サイクル装置10および本実施の形態に係る変形例の一例として、冷媒回路RCに室内熱交換器50および室外熱交換器30の少なくともいずれかの前後にストレーナが接続されている構成が示されている。しかしながら、本実施の形態に係る冷凍サイクル装置10の構成は、これらに限定されず、冷媒回路RCに室内熱交換器50または室外熱交換器30の前のみにストレーナが接続されている構成であってもよい。 1 to 6, as an example of the refrigeration cycle apparatus 10 according to the present embodiment and a modification example according to the present embodiment, at least one of the indoor heat exchanger 50 and the outdoor heat exchanger 30 is provided in the refrigerant circuit RC. A configuration in which a strainer is connected before and after this is shown. However, the configuration of the refrigeration cycle apparatus 10 according to the present embodiment is not limited to these, and the strainer is connected to the refrigerant circuit RC only in front of the indoor heat exchanger 50 or the outdoor heat exchanger 30. You may.
 図7を参照して、本実施の形態に係る変形例3の冷凍サイクル装置10においては、冷媒回路RCに室内熱交換器50の前のみにストレーナが接続されている。図7は、本実施の形態に係る変形例3の冷凍サイクル装置10の冷房運転時の冷媒の流れを示している。図7においては破線矢印により冷媒の流れが示されている。 参照 Referring to FIG. 7, in refrigeration cycle apparatus 10 of Modification 3 according to the present embodiment, a strainer is connected to refrigerant circuit RC only in front of indoor heat exchanger 50. FIG. 7 shows the flow of the refrigerant during the cooling operation of the refrigeration cycle device 10 of the third modification according to the present embodiment. In FIG. 7, the flow of the refrigerant is indicated by broken arrows.
 図7に示されるように、本実施の形態に係る変形例2の冷凍サイクル装置10は、上述の四方弁60を有していない。冷房運転時には、冷媒回路RCを、圧縮機20、室外熱交換器30、膨張弁40、ストレーナ70、室内熱交換器50順に冷媒が循環する。冷房運転時には、室外熱交換器30は凝縮器として機能し、室内熱交換器50は蒸発器として機能する。 冷凍 As shown in FIG. 7, the refrigeration cycle apparatus 10 of the second modification according to the present embodiment does not have the above-described four-way valve 60. During the cooling operation, the refrigerant circulates through the refrigerant circuit RC in the order of the compressor 20, the outdoor heat exchanger 30, the expansion valve 40, the strainer 70, and the indoor heat exchanger 50. During the cooling operation, the outdoor heat exchanger 30 functions as a condenser, and the indoor heat exchanger 50 functions as an evaporator.
 ストレーナ70は、請求の範囲に記載されたストレーナに相当する。ストレーナ70は、膨張弁40と蒸発器である室内熱交換器50とを接続する配管80に接続されている。ストレーナ70と蒸発器である室内熱交換器50とを接続する配管80の長さは、膨張弁40とストレーナ70とを接続する配管80の長さよりも短い。 The strainer 70 corresponds to the strainer described in the claims. The strainer 70 is connected to a pipe 80 that connects the expansion valve 40 and the indoor heat exchanger 50 that is an evaporator. The length of the pipe 80 connecting the strainer 70 and the indoor heat exchanger 50 as the evaporator is shorter than the length of the pipe 80 connecting the expansion valve 40 and the strainer 70.
 図8を参照して、本実施の形態に係る変形例4の冷凍サイクル装置においては、冷媒回路RCに室外熱交換器30の前のみにストレーナが接続されている。図8は、本実施の形態に係る変形例4の冷凍サイクル装置10の冷房運転時の冷媒の流れを示している。図8においては破線矢印により冷媒の流れが示されている。 Referring to FIG. 8, in a refrigeration cycle device of Modification 4 according to the present embodiment, a strainer is connected to refrigerant circuit RC only in front of outdoor heat exchanger 30. FIG. 8 shows the flow of the refrigerant at the time of the cooling operation of the refrigeration cycle device 10 of Modification 4 according to the present embodiment. In FIG. 8, the flow of the refrigerant is indicated by the dashed arrows.
 図8に示されるように、本実施の形態に係る変形例4の冷凍サイクル装置10は、上述の四方弁60を有していない。冷房運転時には、冷媒回路RCを、圧縮機20、ストレーナ70、室外熱交換器30、膨張弁40、室内熱交換器50順に冷媒が循環する。冷房運転時には、室外熱交換器30は凝縮器として機能し、室内熱交換器50は蒸発器として機能する。 冷凍 As shown in FIG. 8, the refrigeration cycle apparatus 10 of the fourth modification according to the present embodiment does not have the above-described four-way valve 60. During the cooling operation, the refrigerant circulates through the refrigerant circuit RC in the order of the compressor 20, the strainer 70, the outdoor heat exchanger 30, the expansion valve 40, and the indoor heat exchanger 50. During the cooling operation, the outdoor heat exchanger 30 functions as a condenser, and the indoor heat exchanger 50 functions as an evaporator.
 ストレーナ70は、請求の範囲に記載されたストレーナに相当する。ストレーナ70は、圧縮機20と凝縮器である室外熱交換器30とを接続する配管80に接続されている。ストレーナ70と凝縮器である室外熱交換器30とを接続する配管80の長さは、圧縮機20とストレーナ73とを接続する配管80の長さよりも短い。 The strainer 70 corresponds to the strainer described in the claims. The strainer 70 is connected to a pipe 80 that connects the compressor 20 and the outdoor heat exchanger 30 that is a condenser. The length of the pipe 80 connecting the strainer 70 and the outdoor heat exchanger 30 as a condenser is shorter than the length of the pipe 80 connecting the compressor 20 and the strainer 73.
 次に、本実施の形態の作用効果について説明する。
 本実施の形態に係る冷凍サイクル装置10では、ストレーナが圧縮機20と凝縮器とを接続する配管80に接続されている場合には、ストレーナと凝縮器とを接続する配管80の長さは、圧縮機20とストレーナとを接続する配管80の長さよりも短い。ストレーナが膨張弁40と蒸発器とを接続する配管80に接続されている場合には、ストレーナと蒸発器とを接続する配管80の長さは、膨張弁40とストレーナとを接続する配管80の長さよりも短い。したがって、ストレーナと凝縮器とを接続する配管80の長さを短くすることにより、当該配管80でのスラッジの発生を抑制することができる。また、ストレーナと蒸発器とを接続する配管80の長さを短くすることにより、当該配管80でのスラッジの発生を抑制することができる。よって、スラッジが熱交換器(凝縮器または蒸発器)に流入することによる熱交換器(凝縮器または蒸発器)の伝熱性能の低下を抑制することができる。
Next, the operation and effect of the present embodiment will be described.
In the refrigeration cycle device 10 according to the present embodiment, when the strainer is connected to the pipe 80 connecting the compressor 20 and the condenser, the length of the pipe 80 connecting the strainer and the condenser is: It is shorter than the length of the pipe 80 connecting the compressor 20 and the strainer. When the strainer is connected to the pipe 80 connecting the expansion valve 40 and the evaporator, the length of the pipe 80 connecting the strainer and the evaporator is equal to the length of the pipe 80 connecting the expansion valve 40 and the strainer. Shorter than the length. Therefore, by reducing the length of the pipe 80 connecting the strainer and the condenser, the generation of sludge in the pipe 80 can be suppressed. Further, by reducing the length of the pipe 80 connecting the strainer and the evaporator, the generation of sludge in the pipe 80 can be suppressed. Therefore, it is possible to suppress a decrease in the heat transfer performance of the heat exchanger (condenser or evaporator) due to the sludge flowing into the heat exchanger (condenser or evaporator).
 また、本実施の形態に係る冷凍サイクル装置10は、四方弁60と、冷媒回路RCに室外熱交換器30および室内熱交換器50の少なくともいずれかの前後で接続された第1ストレーナおよび第2ストレーナを備えている。冷房運転時には第1ストレーナがストレーナとして機能し、暖房運転時には第2ストレーナがストレーナとして機能する。したがって、第1ストレーナおよび第2ストレーナにより冷房運転および暖房運転の両方において、室外熱交換器30および室内熱交換器50の少なくともいずれかにスラッジが流入することによる熱交換器(凝縮器または蒸発器)の伝熱性能の低下を抑制することができる。 In addition, the refrigeration cycle apparatus 10 according to the present embodiment includes the first strainer and the second strainer connected to the four-way valve 60 and the refrigerant circuit RC before and / or after at least one of the outdoor heat exchanger 30 and the indoor heat exchanger 50. It has a strainer. During cooling operation, the first strainer functions as a strainer, and during heating operation, the second strainer functions as a strainer. Therefore, in both the cooling operation and the heating operation by the first strainer and the second strainer, the heat exchanger (condenser or evaporator) due to sludge flowing into at least one of the outdoor heat exchanger 30 and the indoor heat exchanger 50 ) Can be suppressed.
 また、本実施の形態に係る冷凍サイクル装置10によれば、室内機102に、第1ストレーナおよび第2ストレーナが収容されている。このため、室内機102に収容された室内熱交換器50と第1ストレーナおよび第2ストレーナとを接続する配管80の各々の長さを短くすることができる。これにより、当該配管80でのスラッジの発生を抑制することができる。よってスラッジが室内熱交換器50に流入することによる室内熱交換器50の伝熱性能の低下を抑制することができる。 According to the refrigeration cycle apparatus 10 according to the present embodiment, the indoor unit 102 accommodates the first strainer and the second strainer. Therefore, the length of each of the pipes 80 connecting the indoor heat exchanger 50 housed in the indoor unit 102 to the first strainer and the second strainer can be shortened. Thereby, generation of sludge in the pipe 80 can be suppressed. Therefore, a decrease in the heat transfer performance of the indoor heat exchanger 50 due to the sludge flowing into the indoor heat exchanger 50 can be suppressed.
 実施の形態2.
 図9および図10を参照して、本発明の実施の形態2に係る冷凍サイクル装置10について説明する。図9は、本発明の実施の形態2に係る冷凍サイクル装置10の冷房運転時の冷媒の流れを示している。図10は、本発明の実施の形態2に係る冷凍サイクル装置10の暖房運転時の冷媒の流れを示している。図9および図10においては破線矢印により冷媒の流れが示されている。
Embodiment 2 FIG.
Embodiment 2 A refrigeration cycle apparatus 10 according to Embodiment 2 of the present invention will be described with reference to FIGS. FIG. 9 shows the flow of the refrigerant during the cooling operation of the refrigeration cycle apparatus 10 according to Embodiment 2 of the present invention. FIG. 10 shows the flow of the refrigerant during the heating operation of the refrigeration cycle apparatus 10 according to Embodiment 2 of the present invention. In FIGS. 9 and 10, the flow of the refrigerant is indicated by broken arrows.
 図9および図10に示されるように、本実施の形態に係る冷凍サイクル装置10は、ストレーナ71と、ストレーナ72と、バイパス配管90と、二方弁100とを備えている。本実施の形態では、冷媒回路RCに室内熱交換器50の前後でストレーナ71およびストレーナ72が接続されている。冷媒回路RCは、バイパス配管90と、二方弁100とを有している。 9 and 10, the refrigeration cycle apparatus 10 according to the present embodiment includes a strainer 71, a strainer 72, a bypass pipe 90, and a two-way valve 100. In the present embodiment, a strainer 71 and a strainer 72 are connected to the refrigerant circuit RC before and after the indoor heat exchanger 50. The refrigerant circuit RC has a bypass pipe 90 and a two-way valve 100.
 図9に示されるように、冷房運転時には、ストレーナ72は、請求の範囲に記載されたストレーナおよび第1ストレーナに相当し、ストレーナ71は第2ストレーナに相当する。バイパス配管90は、室内熱交換器50とストレーナ71とを接続する配管80と、四方弁60とストレーナ71とを接続する配管80とに接続されている。バイパス配管90はストレーナ71をバイパスするように構成されている。本実施の形態では、バイパス配管90は、冷媒管81と冷媒管82とに接続されている。 As shown in FIG. 9, during the cooling operation, the strainer 72 corresponds to the strainer and the first strainer described in the claims, and the strainer 71 corresponds to the second strainer. The bypass pipe 90 is connected to a pipe 80 connecting the indoor heat exchanger 50 and the strainer 71, and a pipe 80 connecting the four-way valve 60 and the strainer 71. The bypass pipe 90 is configured to bypass the strainer 71. In the present embodiment, the bypass pipe 90 is connected to the refrigerant pipe 81 and the refrigerant pipe 82.
 二方弁100は、室内熱交換器50とストレーナ71とを接続する配管80とバイパス配管90とに接続されている。二方弁100は、冷媒管82とバイパス配管90との分岐部に配置されている。冷凍サイクル装置10は、二方弁100の弁を切り替えることにより冷媒流通経路をストレーナ71への経路とバイパス配管90への経路のどちらか一方に変更可能に構成されている。 The two-way valve 100 is connected to a pipe 80 connecting the indoor heat exchanger 50 and the strainer 71 and a bypass pipe 90. The two-way valve 100 is arranged at a branch between the refrigerant pipe 82 and the bypass pipe 90. The refrigeration cycle device 10 is configured to be able to change the refrigerant flow path to one of a path to the strainer 71 and a path to the bypass pipe 90 by switching the two-way valve 100.
 図9に示されるように、二方弁100は、冷房運転時に室内熱交換器50からバイパス配管90に冷媒を流すように構成されている。また、図10に示されるように、二方弁100は、暖房運転時にストレーナ71から室内熱交換器50に冷媒を流すように構成されている。 As shown in FIG. 9, the two-way valve 100 is configured to flow the refrigerant from the indoor heat exchanger 50 to the bypass pipe 90 during the cooling operation. As shown in FIG. 10, the two-way valve 100 is configured to flow the refrigerant from the strainer 71 to the indoor heat exchanger 50 during the heating operation.
 図9に示されるように、冷凍サイクル装置10が冷房運転を行う場合、二方弁100は、冷媒がバイパス配管90への経路を流れ、ストレーナ71への経路を流れないように設定される。つまり、冷房運転時には、冷媒は、圧縮機20、四方弁60、室外熱交換器30、膨張弁40、冷媒管84、ストレーナ72、冷媒管83、室内熱交換器50、冷媒管82、二方弁100、バイパス配管90、冷媒管81、四方弁60の順に流れる。 As shown in FIG. 9, when the refrigeration cycle apparatus 10 performs the cooling operation, the two-way valve 100 is set so that the refrigerant flows on the path to the bypass pipe 90 and does not flow on the path to the strainer 71. That is, during the cooling operation, the refrigerant is supplied to the compressor 20, the four-way valve 60, the outdoor heat exchanger 30, the expansion valve 40, the refrigerant pipe 84, the strainer 72, the refrigerant pipe 83, the indoor heat exchanger 50, the refrigerant pipe 82, the two-way It flows through the valve 100, the bypass pipe 90, the refrigerant pipe 81, and the four-way valve 60 in this order.
 冷凍サイクル装置10が冷房運転を行う場合、室内熱交換器50を流出した冷媒がストレーナ71を通過すると、冷媒の圧力損失が増加することにより圧縮機20に吸入される冷媒の圧力が低下する可能性がある。圧縮機20に吸入される冷媒の圧力が低下すると、圧縮機20の入力が増加するため、冷凍サイクル装置10の消費電力量が増加する。 When the refrigeration cycle apparatus 10 performs the cooling operation, when the refrigerant flowing out of the indoor heat exchanger 50 passes through the strainer 71, the pressure loss of the refrigerant increases due to an increase in the pressure loss of the refrigerant, and the pressure of the refrigerant sucked into the compressor 20 may decrease. There is. When the pressure of the refrigerant sucked into the compressor 20 decreases, the input of the compressor 20 increases, so that the power consumption of the refrigeration cycle device 10 increases.
 したがって、本実施の形態のように冷凍サイクル装置10が冷房運転を行う場合、冷媒がバイパス配管90を通過してストレーナ71を通過しないように二方弁100を設定することで、冷凍サイクル装置10の消費電力量の増加を抑制することができる。 Therefore, when the refrigeration cycle apparatus 10 performs the cooling operation as in the present embodiment, the refrigeration cycle apparatus 10 is set by setting the two-way valve 100 so that the refrigerant passes through the bypass pipe 90 and does not pass through the strainer 71. , The increase in power consumption can be suppressed.
 また、図10に示されるように、冷凍サイクル装置10が暖房運転を行う場合、二方弁100は、冷媒がストレーナ71への経路を流れ、バイパス配管90への経路を流れないように設定される。つまり、暖房運転時には、冷媒は、圧縮機20、四方弁60、冷媒管81、ストレーナ71、冷媒管82、二方弁100、冷媒管82、室内熱交換器50、冷媒管83、ストレーナ72、冷媒管84、膨張弁40、室外熱交換器30、四方弁60の順に流れる。 As shown in FIG. 10, when the refrigeration cycle apparatus 10 performs the heating operation, the two-way valve 100 is set so that the refrigerant flows on the path to the strainer 71 and does not flow on the path to the bypass pipe 90. You. That is, during the heating operation, the refrigerant is supplied to the compressor 20, the four-way valve 60, the refrigerant pipe 81, the strainer 71, the refrigerant pipe 82, the two-way valve 100, the refrigerant pipe 82, the indoor heat exchanger 50, the refrigerant pipe 83, the strainer 72, The refrigerant pipe 84, the expansion valve 40, the outdoor heat exchanger 30, and the four-way valve 60 flow in this order.
 冷凍サイクル装置10が暖房運転を行う場合、室内熱交換器50に冷媒が流入する前にストレーナ71を通過するため、ストレーナ71にスラッジが捕捉される。これにより、室内熱交換器50へのスラッジの侵入を抑制することができる。 When the refrigeration cycle apparatus 10 performs the heating operation, the sludge is captured by the strainer 71 because the refrigerant passes through the strainer 71 before flowing into the indoor heat exchanger 50. Thereby, invasion of sludge into the indoor heat exchanger 50 can be suppressed.
 図9および図10では、本発明の実施の形態2に係る冷凍サイクル装置10の一例として、冷媒回路RCに室内熱交換器50の前後でストレーナが接続されている構成であってバイパス配管90および二方弁100を配置する構成が示されている。しかしながら、本実施の形態に係る冷凍サイクル装置10の構成は、これに限定されず、冷媒回路RCに室外熱交換器30の前後でストレーナが接続されている構成であってバイパス配管90および二方弁100を配置する構成であってもよい。 FIGS. 9 and 10 show an example of a refrigeration cycle apparatus 10 according to Embodiment 2 of the present invention, in which a strainer is connected to the refrigerant circuit RC before and after the indoor heat exchanger 50, and a bypass pipe 90 and The configuration in which the two-way valve 100 is arranged is shown. However, the configuration of the refrigeration cycle device 10 according to the present embodiment is not limited to this, and has a configuration in which a strainer is connected to the refrigerant circuit RC before and after the outdoor heat exchanger 30, and the bypass pipe 90 and the two-way A configuration in which the valve 100 is disposed may be employed.
 図11および図12を参照して、本実施の形態に係る変形例1の冷凍サイクル装置10においては、冷媒回路RCに室外熱交換器30の前後にストレーナが接続されている。図11は、本実施の形態に係る変形例1の冷凍サイクル装置10の冷房運転時の冷媒の流れを示している。図12は、本実施の形態に係る変形例1の冷凍サイクル装置10の暖房運転時の冷媒の流れを示している。図11および図12においては破線矢印により冷媒の流れが示されている。 お よ び Referring to FIGS. 11 and 12, in refrigeration cycle apparatus 10 of Modification 1 according to the present embodiment, strainers are connected to refrigerant circuit RC before and after outdoor heat exchanger 30. FIG. 11 shows the flow of the refrigerant during the cooling operation of the refrigeration cycle device 10 of the first modification according to the present embodiment. FIG. 12 shows the flow of the refrigerant during the heating operation of the refrigeration cycle device 10 of the first modification according to the present embodiment. In FIGS. 11 and 12, the flow of the refrigerant is indicated by broken arrows.
 図11および図12に示されるように、本実施の形態に係る変形例1の冷凍サイクル装置10は、ストレーナ73と、ストレーナ74と、バイパス配管90と、二方弁100とを備えている。ストレーナ73およびストレーナ74は冷媒回路RCにおいて室外熱交換器30の前後に配置されている。本実施の形態では、冷媒回路RCに室外熱交換器30の前後にストレーナ73およびストレーナ74が接続されている。 As shown in FIGS. 11 and 12, the refrigeration cycle apparatus 10 of the first modification according to the present embodiment includes a strainer 73, a strainer 74, a bypass pipe 90, and a two-way valve 100. The strainer 73 and the strainer 74 are disposed before and after the outdoor heat exchanger 30 in the refrigerant circuit RC. In the present embodiment, a strainer 73 and a strainer 74 are connected before and after the outdoor heat exchanger 30 to the refrigerant circuit RC.
 図11に示されるように、冷房運転時には、ストレーナ73は、請求の範囲に記載されたストレーナおよび第1ストレーナに相当し、ストレーナ74は第2ストレーナに相当する。バイパス配管90は、室外熱交換器30とストレーナ73とを接続する配管80と、四方弁60とストレーナ73とを接続する配管80とに接続されている。バイパス配管90は、ストレーナ73をバイパスするように構成されている。 As shown in FIG. 11, during the cooling operation, the strainer 73 corresponds to the strainer and the first strainer described in the claims, and the strainer 74 corresponds to the second strainer. The bypass pipe 90 is connected to a pipe 80 connecting the outdoor heat exchanger 30 and the strainer 73, and a pipe 80 connecting the four-way valve 60 and the strainer 73. The bypass pipe 90 is configured to bypass the strainer 73.
 二方弁100は、室外熱交換器30とストレーナ73とを接続する配管80とバイパス配管90とを接続されている。二方弁100は、冷媒流通経路においてストレーナ73への経路とバイパス配管90への経路との分岐部に配置されている。冷凍サイクル装置10は、二方弁100の弁を切り替えることにより冷媒流通経路をストレーナ73への経路とバイパス配管90への経路のどちらか一方に変更可能に構成されている。 The two-way valve 100 is connected with a pipe 80 connecting the outdoor heat exchanger 30 and the strainer 73 and a bypass pipe 90. The two-way valve 100 is disposed at a branch point between the path to the strainer 73 and the path to the bypass pipe 90 in the refrigerant flow path. The refrigeration cycle apparatus 10 is configured to be able to change the refrigerant flow path to one of a path to the strainer 73 and a path to the bypass pipe 90 by switching the two-way valve 100.
 図11に示されるように、二方弁100は、冷房運転時にストレーナ73から室外熱交換器30に冷媒を流すように構成されている。また、図12に示されるように、二方弁100は、暖房運転時に室外熱交換器30からバイパス配管90に冷媒を流すように構成されている。 As shown in FIG. 11, the two-way valve 100 is configured to flow the refrigerant from the strainer 73 to the outdoor heat exchanger 30 during the cooling operation. As shown in FIG. 12, the two-way valve 100 is configured to flow the refrigerant from the outdoor heat exchanger 30 to the bypass pipe 90 during the heating operation.
 図11に示されるように、冷凍サイクル装置10が冷房運転を行う場合、二方弁100は、冷媒がストレーナ73への経路を流れ、バイパス配管90への経路を流れないように設定される。つまり、冷房運転時には、冷媒は、圧縮機20、四方弁60、ストレーナ73、二方弁100、室外熱交換器30、ストレーナ74、膨張弁40、室内熱交換器50、四方弁60の順に流れる。 As shown in FIG. 11, when the refrigeration cycle apparatus 10 performs the cooling operation, the two-way valve 100 is set so that the refrigerant flows on the path to the strainer 73 and does not flow on the path to the bypass pipe 90. That is, during the cooling operation, the refrigerant flows in the order of the compressor 20, the four-way valve 60, the strainer 73, the two-way valve 100, the outdoor heat exchanger 30, the strainer 74, the expansion valve 40, the indoor heat exchanger 50, and the four-way valve 60. .
 冷凍サイクル装置10が冷房運転を行う場合、室外熱交換器30に冷媒が流入する前にストレーナ73を通過するため、ストレーナ73にスラッジが捕捉される。これにより、室外熱交換器30へのスラッジの侵入を抑制することができる。 When the refrigeration cycle apparatus 10 performs the cooling operation, the refrigerant passes through the strainer 73 before flowing into the outdoor heat exchanger 30, so that the sludge is captured by the strainer 73. Thereby, invasion of sludge into the outdoor heat exchanger 30 can be suppressed.
 また、図12に示されるように、冷凍サイクル装置10が暖房運転を行う場合、二方弁100は、冷媒がバイパス配管90への経路を流れ、ストレーナ73への経路を流れないように設定される。つまり、暖房運転時には、冷媒は、圧縮機20、四方弁60、室内熱交換器50、膨張弁40、ストレーナ74、室外熱交換器30、二方弁100、バイパス配管90、四方弁60の順に流れる。 As shown in FIG. 12, when the refrigeration cycle apparatus 10 performs the heating operation, the two-way valve 100 is set so that the refrigerant flows on the path to the bypass pipe 90 and does not flow on the path to the strainer 73. You. That is, during the heating operation, the refrigerant flows in the order of the compressor 20, the four-way valve 60, the indoor heat exchanger 50, the expansion valve 40, the strainer 74, the outdoor heat exchanger 30, the two-way valve 100, the bypass pipe 90, and the four-way valve 60. Flows.
 冷凍サイクル装置10が暖房運転を行う場合、室外熱交換器30を流出した冷媒がストレーナ73を通過すると、冷媒の圧力損失が増加することにより圧縮機20に吸入される冷媒の圧力が低下する可能性がある。圧縮機20に吸入される冷媒の圧力が低下すると、圧縮機20の入力が増加するため、冷凍サイクル装置10の消費電力量が増加する。 When the refrigeration cycle apparatus 10 performs the heating operation, when the refrigerant flowing out of the outdoor heat exchanger 30 passes through the strainer 73, the pressure loss of the refrigerant increases and the pressure of the refrigerant sucked into the compressor 20 may decrease. There is. When the pressure of the refrigerant sucked into the compressor 20 decreases, the input of the compressor 20 increases, so that the power consumption of the refrigeration cycle device 10 increases.
 したがって、本実施の形態に係る変形例1のように冷凍サイクル装置10が暖房運転を行う場合、冷媒がバイパス配管90を通過してストレーナ73を通過しないように二方弁100を設定することで、冷凍サイクル装置10の消費電力量の増加を抑制することができる。 Therefore, when the refrigeration cycle apparatus 10 performs the heating operation as in Modification 1 according to the present embodiment, the two-way valve 100 is set so that the refrigerant passes through the bypass pipe 90 and does not pass through the strainer 73. In addition, an increase in power consumption of the refrigeration cycle device 10 can be suppressed.
 次に、本実施の形態の作用効果について説明する。
 本実施の形態に係る冷凍サイクル装置10では、図9に示されるように、バイパス配管90は室内熱交換器50と第2ストレーナとを接続する配管80と、四方弁60と第2ストレーナとを接続する配管80とに接続されている。二方弁100は、冷房運転時に室内熱交換器50からバイパス配管90に冷媒を流すように構成されている。このため、二方弁100により冷媒をバイパス配管90に流すことができる。そして、冷房運転時に、冷媒がバイパス配管90を通過することにより、冷媒が第2ストレーナを通過することによる冷媒の圧力損失を避けることができる。このため、冷媒の圧力損失が増加することによる圧縮機20に吸収される冷媒の圧力の低下を避けることができる。よって、冷媒の圧力の低下による圧縮機20の入力の増加を避けることができるため、冷凍サイクル装置10の消費電力量の増加を避けることができる。
Next, the operation and effect of the present embodiment will be described.
In the refrigeration cycle apparatus 10 according to the present embodiment, as shown in FIG. 9, the bypass pipe 90 includes the pipe 80 connecting the indoor heat exchanger 50 and the second strainer, and the four-way valve 60 and the second strainer. It is connected to a pipe 80 to be connected. The two-way valve 100 is configured to flow the refrigerant from the indoor heat exchanger 50 to the bypass pipe 90 during the cooling operation. Therefore, the two-way valve 100 allows the refrigerant to flow through the bypass pipe 90. When the refrigerant passes through the bypass pipe 90 during the cooling operation, the pressure loss of the refrigerant due to the refrigerant passing through the second strainer can be avoided. Therefore, it is possible to avoid a decrease in the pressure of the refrigerant absorbed by the compressor 20 due to an increase in the pressure loss of the refrigerant. Therefore, an increase in the input of the compressor 20 due to a decrease in the pressure of the refrigerant can be avoided, so that an increase in the power consumption of the refrigeration cycle device 10 can be avoided.
 また、本実施の形態に係る冷凍サイクル装置10では、図12に示されるように、バイパス配管90は、室外熱交換器30と第1ストレーナとを接続する配管80と、四方弁60と第1ストレーナとを接続する配管80とに接続されている。二方弁100は、暖房運転時に室外熱交換器30からバイパス配管90に冷媒を流すように構成されている。このため、二方弁100により冷媒をバイパス配管90に流すことができる。そして、暖房運転時に、冷媒がバイパス配管90を通過することにより、冷媒が第1ストレーナを通過することによる冷媒の圧力損失を避けることができる。このため、冷媒の圧力損失が増加することによる圧縮機20に吸収される冷媒の圧力の低下を避けることができる。よって、冷媒の圧力の低下による圧縮機20の入力の増加を避けることができるため、冷凍サイクル装置10の消費電力量の増加を避けることができる。 In the refrigeration cycle apparatus 10 according to the present embodiment, as shown in FIG. 12, the bypass pipe 90 includes a pipe 80 connecting the outdoor heat exchanger 30 and the first strainer, a four-way valve 60 and the first It is connected to a pipe 80 connecting the strainer. The two-way valve 100 is configured to flow the refrigerant from the outdoor heat exchanger 30 to the bypass pipe 90 during the heating operation. Therefore, the two-way valve 100 allows the refrigerant to flow through the bypass pipe 90. Then, when the refrigerant passes through the bypass pipe 90 during the heating operation, the pressure loss of the refrigerant due to the refrigerant passing through the first strainer can be avoided. Therefore, it is possible to avoid a decrease in the pressure of the refrigerant absorbed by the compressor 20 due to an increase in the pressure loss of the refrigerant. Therefore, an increase in the input of the compressor 20 due to a decrease in the pressure of the refrigerant can be avoided, and an increase in the power consumption of the refrigeration cycle device 10 can be avoided.
 バイパス配管90は、圧力損失が大きい冷媒でより効果が発揮される。したがって、本実施の形態における冷媒は、R32よりも圧力損失が大きく、かつ低GWP(Global Warming Potential)冷媒であってもよい。具体的には、冷媒は、R290またはR290を含む混合冷媒であってもよい。また、冷媒は、R1234yfまたはR1234zeを含む混合冷媒であってもよい。 The bypass pipe 90 is more effective with a refrigerant having a large pressure loss. Therefore, the refrigerant in the present embodiment may be a refrigerant having a larger pressure loss than R32 and a low GWP (Global Warming Potential) refrigerant. Specifically, the refrigerant may be R290 or a mixed refrigerant containing R290. Further, the refrigerant may be a mixed refrigerant containing R1234yf or R1234ze.
 実施の形態3.
 図13および図14を参照して、本発明の実施の形態3に係る冷凍サイクル装置10について説明する。図13は、本発明の実施の形態3に係る冷凍サイクル装置10の冷房運転時の冷媒の流れを示している。図14は、本発明の実施の形態2に係る冷凍サイクル装置10の暖房運転時の冷媒の流れを示している。図13および図14においては破線矢印により冷媒の流れが示されている。
Embodiment 3 FIG.
Embodiment 3 A refrigeration cycle apparatus 10 according to Embodiment 3 of the present invention will be described with reference to FIGS. FIG. 13 shows the flow of the refrigerant during the cooling operation of the refrigeration cycle apparatus 10 according to Embodiment 3 of the present invention. FIG. 14 shows the flow of the refrigerant during the heating operation of the refrigeration cycle apparatus 10 according to Embodiment 2 of the present invention. In FIGS. 13 and 14, the flow of the refrigerant is indicated by broken arrows.
 図13および図14に示されるように、本実施の形態に係る冷凍サイクル装置10は、ストレーナ71と、ストレーナ72と、バイパス配管90と、第1逆止弁111と、第2逆止弁112とを備えている。本実施の形態では、冷媒回路RCに室内熱交換器50の前後でストレーナ71およびストレーナ72が接続されている。冷媒回路RCは、バイパス配管90と、第1逆止弁111と、第2逆止弁112とを有している。 As shown in FIGS. 13 and 14, the refrigeration cycle apparatus 10 according to the present embodiment includes a strainer 71, a strainer 72, a bypass pipe 90, a first check valve 111, and a second check valve 112. And In the present embodiment, a strainer 71 and a strainer 72 are connected to the refrigerant circuit RC before and after the indoor heat exchanger 50. The refrigerant circuit RC has a bypass pipe 90, a first check valve 111, and a second check valve 112.
 図13に示されるように、冷房運転時には、ストレーナ72は、請求の範囲に記載されたストレーナおよび第1ストレーナに相当し、ストレーナ71は第2ストレーナに相当する。第1逆止弁111は、室内熱交換器50とストレーナ71とを接続する配管80にストレーナ71とバイパス配管90との間において接続されている。具体的には、第1逆止弁111は、冷媒管82とバイパス配管90との分岐部とストレーナ71との間に配置されている。第2逆止弁112は、バイパス配管90に接続されている。第1逆止弁111および第2逆止弁112の各々は、一方向のみ冷媒が流通可能であり、逆方向から流れてきた冷媒の流れを遮断することができる。 As shown in FIG. 13, during the cooling operation, the strainer 72 corresponds to the strainer and the first strainer described in the claims, and the strainer 71 corresponds to the second strainer. The first check valve 111 is connected to a pipe 80 connecting the indoor heat exchanger 50 and the strainer 71 between the strainer 71 and the bypass pipe 90. Specifically, the first check valve 111 is disposed between the branch between the refrigerant pipe 82 and the bypass pipe 90 and the strainer 71. The second check valve 112 is connected to the bypass pipe 90. Each of the first check valve 111 and the second check valve 112 allows the refrigerant to flow in only one direction, and can shut off the flow of the refrigerant flowing from the opposite direction.
 図13に示されるように、第1逆止弁111は、ストレーナ71から室内熱交換器50に冷媒を流し、室内熱交換器50からストレーナ71に冷媒が流れることを防止するように構成されている。第1逆止弁111は、四方弁60から室内熱交換器50に向けて冷媒を流し、室内熱交換器50から四方弁60に向けて冷媒が流れるのを遮断するように配置されている。 As shown in FIG. 13, the first check valve 111 is configured to flow the refrigerant from the strainer 71 to the indoor heat exchanger 50 and to prevent the refrigerant from flowing from the indoor heat exchanger 50 to the strainer 71. I have. The first check valve 111 is arranged so that the refrigerant flows from the four-way valve 60 toward the indoor heat exchanger 50 and that the refrigerant flows from the indoor heat exchanger 50 toward the four-way valve 60.
 図14に示されるように、第2逆止弁112は、四方弁60から室内熱交換器50に冷媒が流れることを防止するように構成されており、室内熱交換器50から四方弁60に冷媒を流すように構成されている。第2逆止弁112は、室内熱交換器50から四方弁60に向けて冷媒を流し、四方弁60から室内熱交換器50に向けて冷媒が流れるのを遮断するように配置されている。 As shown in FIG. 14, the second check valve 112 is configured to prevent the refrigerant from flowing from the four-way valve 60 to the indoor heat exchanger 50. It is configured to flow a refrigerant. The second check valve 112 is arranged so that the refrigerant flows from the indoor heat exchanger 50 toward the four-way valve 60 and that the refrigerant flows from the four-way valve 60 toward the indoor heat exchanger 50.
 図13に示されるように、冷凍サイクル装置10が冷房運転を行う場合、冷媒は、圧縮機20、四方弁60、室外熱交換器30、膨張弁40、冷媒管84、ストレーナ72、冷媒管83、室内熱交換器50、冷媒管82、バイパス配管90、第2逆止弁112、バイパス配管90、冷媒管81、四方弁60の順に流れる。 As shown in FIG. 13, when the refrigeration cycle apparatus 10 performs the cooling operation, the refrigerant is the compressor 20, the four-way valve 60, the outdoor heat exchanger 30, the expansion valve 40, the refrigerant pipe 84, the strainer 72, and the refrigerant pipe 83. , The indoor heat exchanger 50, the refrigerant pipe 82, the bypass pipe 90, the second check valve 112, the bypass pipe 90, the refrigerant pipe 81, and the four-way valve 60 in this order.
 冷凍サイクル装置10が冷房運転を行う場合、冷媒は、ストレーナ72を通過した後に室内熱交換器50に流入するため、ストレーナ72によりスラッジは捕捉される。これにより、室内熱交換器50へのスラッジの侵入を抑制することができる。さらには、室内熱交換器50の冷媒流路がスラッジにより閉塞されることを抑制することができる。また、室内熱交換器50を通過した冷媒は、バイパス配管90を流れるため、圧縮機20に吸入される冷媒の圧力の低下を抑制することができる。 When the refrigeration cycle apparatus 10 performs the cooling operation, the refrigerant flows into the indoor heat exchanger 50 after passing through the strainer 72, so that the sludge is captured by the strainer 72. Thereby, invasion of sludge into the indoor heat exchanger 50 can be suppressed. Further, it is possible to prevent the refrigerant flow path of the indoor heat exchanger 50 from being blocked by sludge. Further, since the refrigerant that has passed through the indoor heat exchanger 50 flows through the bypass pipe 90, a decrease in the pressure of the refrigerant sucked into the compressor 20 can be suppressed.
 図14に示されるように、冷凍サイクル装置10が暖房運転を行う場合、冷媒は、圧縮機20、四方弁60、冷媒管81、ストレーナ71、第1逆止弁111、冷媒管82、室内熱交換器50、冷媒管83、ストレーナ72、冷媒管84、膨張弁40、室外熱交換器30、四方弁60の順に流れる。 As shown in FIG. 14, when the refrigeration cycle apparatus 10 performs the heating operation, the refrigerant is the compressor 20, the four-way valve 60, the refrigerant pipe 81, the strainer 71, the first check valve 111, the refrigerant pipe 82, the indoor heat The heat flows through the exchanger 50, the refrigerant pipe 83, the strainer 72, the refrigerant pipe 84, the expansion valve 40, the outdoor heat exchanger 30, and the four-way valve 60 in this order.
 冷凍サイクル装置10が暖房運転を行う場合、冷媒は、ストレーナ71を通過した後に室内熱交換器50に流入するため、ストレーナ71によりスラッジは捕捉される。これにより、室内熱交換器50へのスラッジの侵入を抑制することができる。さらには、室内熱交換器50の冷媒流路がスラッジにより閉塞することを抑制することができる。 When the refrigeration cycle apparatus 10 performs the heating operation, the refrigerant flows into the indoor heat exchanger 50 after passing through the strainer 71, so that the sludge is captured by the strainer 71. Thereby, invasion of sludge into the indoor heat exchanger 50 can be suppressed. Further, it is possible to prevent the refrigerant flow path of the indoor heat exchanger 50 from being blocked by sludge.
 図13および図14では、本発明の実施の形態3に係る冷凍サイクル装置10の一例として、冷媒回路RCに室内熱交換器50の前後でストレーナが接続されている構成であってバイパス配管90並びに第1逆止弁111および第2逆止弁112を配置する構成が示されている。しかしながら、本実施の形態に係る冷凍サイクル装置10の構成は、これに限定されず、冷媒回路RCに室外熱交換器30の前後でストレーナが接続されている構成であってバイパス配管90並びに第1逆止弁111および第2逆止弁112を配置する構成であってもよい。 FIGS. 13 and 14 show an example of a refrigeration cycle apparatus 10 according to Embodiment 3 of the present invention, in which a strainer is connected to a refrigerant circuit RC before and after an indoor heat exchanger 50, and a bypass pipe 90 and The configuration in which the first check valve 111 and the second check valve 112 are arranged is shown. However, the configuration of the refrigeration cycle device 10 according to the present embodiment is not limited to this, and has a configuration in which a strainer is connected to the refrigerant circuit RC before and after the outdoor heat exchanger 30, and the bypass pipe 90 and the first The check valve 111 and the second check valve 112 may be arranged.
 図15および図16を参照して、本実施の形態に係る変形例1の冷凍サイクル装置10においては、冷媒回路RCにおいて室外熱交換器30の前後にストレーナが配置されている。図15は、本実施の形態に係る変形例1の冷凍サイクル装置10の冷房運転時の冷媒の流れを示している。図16は、本実施の形態に係る変形例1の冷凍サイクル装置10の暖房運転時の冷媒の流れを示している。図15および図16においては破線矢印により冷媒の流れが示されている。 お よ び Referring to FIGS. 15 and 16, in refrigeration cycle apparatus 10 of Modification 1 according to the present embodiment, strainers are arranged before and after outdoor heat exchanger 30 in refrigerant circuit RC. FIG. 15 shows the flow of the refrigerant during the cooling operation of the refrigeration cycle device 10 of the first modification according to the present embodiment. FIG. 16 illustrates the flow of the refrigerant during the heating operation of the refrigeration cycle device 10 of the first modification according to the present embodiment. In FIGS. 15 and 16, the flow of the refrigerant is indicated by broken arrows.
 図15および図16に示されるように、本実施の形態に係る冷凍サイクル装置10は、ストレーナ73と、ストレーナ74と、バイパス配管90と、第1逆止弁111と、第2逆止弁112とを備えている。本実施の形態では、冷媒回路RCに室外熱交換器30の前後でストレーナ73およびストレーナ74が接続されている。 As shown in FIGS. 15 and 16, the refrigeration cycle apparatus 10 according to the present embodiment includes a strainer 73, a strainer 74, a bypass pipe 90, a first check valve 111, and a second check valve 112. And In the present embodiment, a strainer 73 and a strainer 74 are connected to the refrigerant circuit RC before and after the outdoor heat exchanger 30.
 図15に示されるように、冷房運転時には、ストレーナ73は、請求の範囲に記載されたストレーナおよび第1ストレーナに相当し、ストレーナ74は第2ストレーナに相当する。第1逆止弁111は、室外熱交換器30とストレーナ73とを接続する配管80にストレーナ73とバイパス配管90との間において接続されている。具体的には、第1逆止弁111は、ストレーナ73と室外熱交換器30とを接続する配管とバイパス配管90との分岐部とストレーナ73との間に配置されている。第2逆止弁112はバイパス配管90に接続されている。 As shown in FIG. 15, during the cooling operation, the strainer 73 corresponds to the strainer and the first strainer described in the claims, and the strainer 74 corresponds to the second strainer. The first check valve 111 is connected between the strainer 73 and the bypass pipe 90 to a pipe 80 connecting the outdoor heat exchanger 30 and the strainer 73. Specifically, the first check valve 111 is disposed between the strainer 73 and a branch portion between the pipe connecting the strainer 73 and the outdoor heat exchanger 30 and the bypass pipe 90. The second check valve 112 is connected to the bypass pipe 90.
 図15に示されるように、第1逆止弁111は、ストレーナ73から室外熱交換器30に冷媒を流し、室外熱交換器30からストレーナ73に冷媒が流れることを防止するように構成されている。第1逆止弁111は、四方弁60から室外熱交換器30に向けて冷媒を流し、室外熱交換器30から四方弁60に向けて冷媒が流れるのを遮断するように配置されている。 As shown in FIG. 15, the first check valve 111 is configured to flow the refrigerant from the strainer 73 to the outdoor heat exchanger 30 and to prevent the refrigerant from flowing from the outdoor heat exchanger 30 to the strainer 73. I have. The first check valve 111 is arranged so that the refrigerant flows from the four-way valve 60 toward the outdoor heat exchanger 30 and that the refrigerant flows from the outdoor heat exchanger 30 toward the four-way valve 60.
 図16に示されるように、第2逆止弁112は、四方弁60から室外熱交換器30に冷媒が流れることを防止するように構成されており、室外熱交換器30から四方弁60に冷媒を流すように構成されている。第2逆止弁112は、室外熱交換器30から四方弁60に向けて冷媒を流し、四方弁60から室外熱交換器30に向けて冷媒が流れるのを遮断するように配置されている。 As shown in FIG. 16, the second check valve 112 is configured to prevent the refrigerant from flowing from the four-way valve 60 to the outdoor heat exchanger 30, and is configured to prevent the refrigerant from flowing from the outdoor heat exchanger 30 to the four-way valve 60. It is configured to flow a refrigerant. The second check valve 112 is arranged to flow the refrigerant from the outdoor heat exchanger 30 to the four-way valve 60 and to block the refrigerant from flowing from the four-way valve 60 to the outdoor heat exchanger 30.
 図15に示されるように、冷凍サイクル装置10が冷房運転を行う場合、冷媒は、圧縮機20、四方弁60、ストレーナ73、第1逆止弁111、室外熱交換器30、ストレーナ74、膨張弁40、室内熱交換器50、四方弁60の順に流れる。 As shown in FIG. 15, when the refrigeration cycle apparatus 10 performs the cooling operation, the refrigerant is supplied to the compressor 20, the four-way valve 60, the strainer 73, the first check valve 111, the outdoor heat exchanger 30, the strainer 74, and the expansion. It flows in the order of the valve 40, the indoor heat exchanger 50, and the four-way valve 60.
 冷凍サイクル装置10が冷房運転を行う場合、冷媒は、ストレーナ73を通過した後に室外熱交換器30に流入するため、ストレーナ73によりスラッジは捕捉される。これにより、室外熱交換器30へのスラッジの侵入を抑制することができる。さらには、室外熱交換器30の冷媒流路がスラッジにより閉塞することを抑制することができる。 When the refrigeration cycle apparatus 10 performs the cooling operation, the refrigerant flows into the outdoor heat exchanger 30 after passing through the strainer 73, so that the sludge is captured by the strainer 73. Thereby, invasion of sludge into the outdoor heat exchanger 30 can be suppressed. Further, it is possible to prevent the refrigerant flow path of the outdoor heat exchanger 30 from being blocked by sludge.
 図16に示されるように、冷凍サイクル装置10が暖房運転を行う場合、冷媒は、圧縮機20、四方弁60、室内熱交換器50、膨張弁40、ストレーナ74、室外熱交換器30、バイパス配管90、第2逆止弁112、バイパス配管90、四方弁60の順に流れる。 As shown in FIG. 16, when the refrigeration cycle apparatus 10 performs the heating operation, the refrigerant is the compressor 20, the four-way valve 60, the indoor heat exchanger 50, the expansion valve 40, the strainer 74, the outdoor heat exchanger 30, and the bypass. The pipe 90, the second check valve 112, the bypass pipe 90, and the four-way valve 60 flow in this order.
 冷凍サイクル装置10が暖房運転を行う場合、冷媒は、ストレーナ74を通過した後に室外熱交換器30に流入するため、ストレーナ74によりスラッジは捕捉される。これにより、室外熱交換器30へのスラッジの侵入を抑制することができる。さらには、室外熱交換器30の冷媒流路がスラッジにより閉塞されることを抑制することができる。また、室外熱交換器30を通過した冷媒は、バイパス配管90を流れるため、圧縮機20に吸入される冷媒の圧力の低下を抑制することができる。 When the refrigeration cycle apparatus 10 performs the heating operation, the refrigerant flows into the outdoor heat exchanger 30 after passing through the strainer 74, so that the sludge is captured by the strainer 74. Thereby, invasion of sludge into the outdoor heat exchanger 30 can be suppressed. Further, it is possible to prevent the refrigerant flow path of the outdoor heat exchanger 30 from being blocked by sludge. Further, since the refrigerant that has passed through the outdoor heat exchanger 30 flows through the bypass pipe 90, a decrease in the pressure of the refrigerant sucked into the compressor 20 can be suppressed.
 次に、本実施の形態の作用効果について説明する。
 本実施の形態に係る冷凍サイクル装置10では、図15に示されるように、バイパス配管90は、室内熱交換器50と第2ストレーナとを接続する配管80と、四方弁60と第2ストレーナとを接続する配管80とに接続されている。第1逆止弁111は第2ストレーナから室内熱交換器50に冷媒を流し、室内熱交換器50から第2ストレーナに冷媒が流れることを防止するように構成されている。第2逆止弁112は、四方弁60から室内熱交換器50に冷媒が流れることを防止するように構成されており、室内熱交換器50から四方弁60に冷媒を流すように構成されている。第1逆止弁111および第2逆止弁112により、冷媒をバイパス配管90に流すことができる。このため、冷房運転時に、冷媒がバイパス配管90を通過することにより、冷媒が第2ストレーナを通過することによる冷媒の圧力損失を避けることができる。このため、冷媒の圧力損失が増加することによる圧縮機20に吸収される冷媒の圧力の低下を避けることができる。よって、冷媒の圧力の低下による圧縮機20の入力の増加を避けることができるため、冷凍サイクル装置10の消費電力量の増加を避けることができる。
Next, the operation and effect of the present embodiment will be described.
In the refrigeration cycle apparatus 10 according to the present embodiment, as shown in FIG. 15, the bypass pipe 90 includes a pipe 80 connecting the indoor heat exchanger 50 and the second strainer, a four-way valve 60 and the second strainer. Is connected to a pipe 80 for connecting. The first check valve 111 is configured to flow the refrigerant from the second strainer to the indoor heat exchanger 50 and to prevent the refrigerant from flowing from the indoor heat exchanger 50 to the second strainer. The second check valve 112 is configured to prevent the refrigerant from flowing from the four-way valve 60 to the indoor heat exchanger 50, and configured to flow the refrigerant from the indoor heat exchanger 50 to the four-way valve 60. I have. The first check valve 111 and the second check valve 112 allow the refrigerant to flow through the bypass pipe 90. For this reason, when the refrigerant passes through the bypass pipe 90 during the cooling operation, the pressure loss of the refrigerant due to the refrigerant passing through the second strainer can be avoided. Therefore, it is possible to avoid a decrease in the pressure of the refrigerant absorbed by the compressor 20 due to an increase in the pressure loss of the refrigerant. Therefore, an increase in the input of the compressor 20 due to a decrease in the pressure of the refrigerant can be avoided, so that an increase in the power consumption of the refrigeration cycle device 10 can be avoided.
 本実施の形態に係る冷凍サイクル装置10では、図16に示されるように、バイパス配管90は、室外熱交換器30と第1ストレーナとを接続する配管80と、四方弁60と第1ストレーナとを接続する配管80とに接続されている。第1逆止弁111は、第1ストレーナから室外熱交換器30に冷媒を流し、室外熱交換器30から第1ストレーナに冷媒が流れることを防止するように構成されている。第2逆止弁112は、四方弁60から室外熱交換器30に冷媒が流れることを防止するように構成されており、室外熱交換器30から四方弁に冷媒を流すように構成されている。第1逆止弁111および第2逆止弁112により、冷媒をバイパス配管90に流すことができる。そして、冷房運転時に、冷媒がバイパス配管90を通過することにより、冷媒が第1ストレーナを通過することによる冷媒の圧力損失を避けることができる。このため、冷媒の圧力損失が増加することによる圧縮機20に吸収される冷媒の圧力の低下を避けることができる。よって、冷媒の圧力の低下による圧縮機20の入力の増加を避けることができるため、冷凍サイクル装置10の消費電力量の増加を避けることができる。 In the refrigeration cycle apparatus 10 according to the present embodiment, as shown in FIG. 16, the bypass pipe 90 includes a pipe 80 connecting the outdoor heat exchanger 30 and the first strainer, a four-way valve 60 and the first strainer. Is connected to a pipe 80 for connecting. The first check valve 111 is configured to flow the refrigerant from the first strainer to the outdoor heat exchanger 30 and to prevent the refrigerant from flowing from the outdoor heat exchanger 30 to the first strainer. The second check valve 112 is configured to prevent the refrigerant from flowing from the four-way valve 60 to the outdoor heat exchanger 30, and is configured to flow the refrigerant from the outdoor heat exchanger 30 to the four-way valve. . The first check valve 111 and the second check valve 112 allow the refrigerant to flow through the bypass pipe 90. When the refrigerant passes through the bypass pipe 90 during the cooling operation, the pressure loss of the refrigerant due to the refrigerant passing through the first strainer can be avoided. Therefore, it is possible to avoid a decrease in the pressure of the refrigerant absorbed by the compressor 20 due to an increase in the pressure loss of the refrigerant. Therefore, an increase in the input of the compressor 20 due to a decrease in the pressure of the refrigerant can be avoided, so that an increase in the power consumption of the refrigeration cycle device 10 can be avoided.
 実施の形態4.
 図17を参照して、本発明の実施の形態4に係る冷凍サイクル装置10について説明する。図17は、本発明の実施の形態4に係る冷凍サイクル装置10の熱交換器の伝熱管の構成を概要的に示す構成図である。
Embodiment 4 FIG.
Referring to FIG. 17, a refrigeration cycle apparatus 10 according to Embodiment 4 of the present invention will be described. FIG. 17 is a configuration diagram schematically showing a configuration of a heat transfer tube of a heat exchanger of a refrigeration cycle apparatus 10 according to Embodiment 4 of the present invention.
 図17に示されるように、室外熱交換器30および室内熱交換器50の少なくともいずれかは、伝熱管を有している。伝熱管は扁平多穴管120により構成されている。室外熱交換器30および室内熱交換器50の少なくともいずれかは、複数の扁平多穴管120と、ヘッダタンク130とを有している。複数の扁平多穴管120は積層されている。複数の扁平多穴管120の各々は複数の冷媒流路122を有している。複数の扁平多穴管120はヘッダタンク130に挿入されている。 よ う As shown in FIG. 17, at least one of the outdoor heat exchanger 30 and the indoor heat exchanger 50 has a heat transfer tube. The heat transfer tube is constituted by a flat multi-hole tube 120. At least one of the outdoor heat exchanger 30 and the indoor heat exchanger 50 has a plurality of flat multi-hole tubes 120 and a header tank 130. The plurality of flat multi-hole tubes 120 are stacked. Each of the plurality of flat multi-hole tubes 120 has a plurality of refrigerant channels 122. The plurality of flat multi-hole tubes 120 are inserted into the header tank 130.
 図17中矢印で示されるように、ヘッダタンク130から扁平多穴管120に冷媒が流入する場合、扁平多穴管120の流入口先端側の内壁121に冷媒が衝突する。冷媒が扁平多穴管120の内壁121に衝突すると冷媒に混入しているスラッジが扁平多穴管120の内壁121に付着する。そのため、冷凍サイクル装置10の運転が継続されると、扁平多穴管120の内壁121に徐々にスラッジが堆積する。そして、この堆積したスラッジにより扁平多穴管120の冷媒流路122が閉塞されるおそれがある。 As shown by the arrow in FIG. 17, when the refrigerant flows from the header tank 130 into the flat multi-hole tube 120, the refrigerant collides with the inner wall 121 on the distal end side of the flat multi-hole tube 120 at the inlet. When the refrigerant collides with the inner wall 121 of the flat multi-hole tube 120, sludge mixed in the refrigerant adheres to the inner wall 121 of the flat multi-hole tube 120. Therefore, when the operation of the refrigeration cycle device 10 is continued, sludge gradually accumulates on the inner wall 121 of the flat multi-hole tube 120. Then, there is a possibility that the refrigerant passage 122 of the flat multi-hole tube 120 is blocked by the accumulated sludge.
 本実施の形態によれば、室外熱交換器30および室内熱交換器50の少なくともいずれかの伝熱管は扁平多穴管120により構成されている。このため、冷媒回路RCにおいて扁平多穴管120を有する熱交換器の前または前後にストレーナが接続することにより、扁平多穴管120の冷媒流路122がスラッジにより閉塞されることを抑制することができる。 According to this embodiment, at least one of the outdoor heat exchanger 30 and the indoor heat exchanger 50 has a flat multi-hole tube 120. Therefore, by connecting the strainer before or after the heat exchanger having the flat multi-hole tube 120 in the refrigerant circuit RC, it is possible to suppress the refrigerant flow path 122 of the flat multi-hole tube 120 from being blocked by sludge. Can be.
 上記の各実施の形態は適宜組み合わせることが可能である。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
The above embodiments can be combined as appropriate.
The embodiments disclosed this time are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 10 冷凍サイクル装置、20 圧縮機、30 室外熱交換器、40 膨張弁、50 室内熱交換器、60 四方弁、70,71,72,73,74 ストレーナ、80 配管、90 バイパス配管、100 二方弁、101 室外機、102 室内機、111 第1逆止弁、112 第2逆止弁、120 扁平多穴管、RC 冷媒回路。 10 refrigeration cycle device, 20 compressor, 30 outdoor heat exchanger, 40 expansion valve, 50 indoor heat exchanger, 60 four-way valve, 70, 71, 72, 73, 74 strainer, 80 pipe, 90 bypass pipe, 100 two way Valve 101, outdoor unit, 102 indoor unit, 111 first check valve, 112 second check valve, 120 flat multi-hole pipe, RC refrigerant circuit.

Claims (8)

  1.  圧縮機、凝縮器、膨張弁、蒸発器の順に冷媒が流れるように配管で接続された冷媒回路と、
     前記冷媒回路に接続され、かつ前記冷媒に混入した異物を捕捉するストレーナとを備え、
     前記ストレーナは、前記圧縮機と前記凝縮器とを接続する前記配管および前記膨張弁と前記蒸発器とを接続する前記配管の少なくともいずれかに接続されており、
     前記ストレーナが前記圧縮機と前記凝縮器とを接続する前記配管に接続されている場合には、前記ストレーナと前記凝縮器とを接続する前記配管の長さは、前記圧縮機と前記ストレーナとを接続する前記配管の長さよりも短く、
     前記ストレーナが前記膨張弁と前記蒸発器とを接続する前記配管に接続されている場合には、前記ストレーナと前記蒸発器とを接続する前記配管の長さは、前記膨張弁と前記ストレーナとを接続する前記配管の長さよりも短い、冷凍サイクル装置。
    A refrigerant circuit connected by piping so that the refrigerant flows in the order of a compressor, a condenser, an expansion valve, and an evaporator,
    A strainer connected to the refrigerant circuit and capturing foreign matter mixed in the refrigerant,
    The strainer is connected to at least one of the pipe connecting the compressor and the condenser and the pipe connecting the expansion valve and the evaporator,
    When the strainer is connected to the pipe that connects the compressor and the condenser, the length of the pipe that connects the strainer and the condenser is equal to the length of the compressor and the strainer. Shorter than the length of the pipe to be connected,
    When the strainer is connected to the pipe connecting the expansion valve and the evaporator, the length of the pipe connecting the strainer and the evaporator is such that the expansion valve and the strainer A refrigeration cycle device shorter than the length of the pipe to be connected.
  2.  室内機をさらに備え、
     前記室内機に前記ストレーナが収容されている、請求項1に記載の冷凍サイクル装置。
    Further equipped with an indoor unit,
    The refrigeration cycle apparatus according to claim 1, wherein the strainer is housed in the indoor unit.
  3.  前記ストレーナは、前記冷媒回路に前記凝縮器または前記蒸発器の一方として機能する室外熱交換器および前記凝縮器または前記蒸発器の他方として機能する室内熱交換器の少なくともいずれかの前後で接続された第1ストレーナおよび第2ストレーナとを有し、
     前記冷媒回路は、四方弁をさらに有し、
     前記四方弁は、冷房運転時と暖房運転時とによって前記圧縮機から前記室外熱交換器または前記室内熱交換器へ前記冷媒の流れを切り替えるように構成されており、
     前記第1ストレーナおよび前記第2ストレーナが前記冷媒回路に前記室内熱交換器の前後で接続されている場合には、前記第1ストレーナは前記膨張弁と前記室内熱交換器とを接続する前記配管に接続されており、前記第2ストレーナは前記室内熱交換器と前記四方弁とを接続する前記配管に接続されており、前記第1ストレーナと前記室内熱交換器とを接続する前記配管の長さは、前記膨張弁と前記第1ストレーナとを接続する前記配管の長さよりも短く、前記第2ストレーナと前記室内熱交換器とを接続する前記配管の長さは、前記四方弁と前記第2ストレーナとを接続する前記配管の長さよりも短く、
     前記第1ストレーナおよび前記第2ストレーナが前記冷媒回路に前記室外熱交換器の前後に配置されている場合には、前記第1ストレーナは前記四方弁と前記室外熱交換器とを接続する前記配管に接続されており、前記第2ストレーナは前記室外熱交換器と前記膨張弁とを接続する前記配管に接続されており、前記第1ストレーナと前記室外熱交換器とを接続する前記配管の長さは、前記四方弁と前記第1ストレーナとを接続する前記配管の長さよりも短く、前記第2ストレーナと前記室外熱交換器とを接続する前記配管の長さは、前記膨張弁と前記第2ストレーナとを接続する前記配管の長さよりも短い、請求項1または2に記載の冷凍サイクル装置。
    The strainer is connected to the refrigerant circuit before and / or after an outdoor heat exchanger functioning as one of the condenser or the evaporator and an indoor heat exchanger functioning as the other of the condenser or the evaporator. A first strainer and a second strainer,
    The refrigerant circuit further includes a four-way valve,
    The four-way valve is configured to switch the flow of the refrigerant from the compressor to the outdoor heat exchanger or the indoor heat exchanger during a cooling operation and a heating operation,
    When the first strainer and the second strainer are connected to the refrigerant circuit before and after the indoor heat exchanger, the first strainer connects the pipe connecting the expansion valve and the indoor heat exchanger. , The second strainer is connected to the pipe connecting the indoor heat exchanger and the four-way valve, and the length of the pipe connecting the first strainer and the indoor heat exchanger. The length of the pipe connecting the expansion valve and the first strainer is shorter than the length of the pipe connecting the second strainer and the indoor heat exchanger. 2 shorter than the length of the pipe connecting the strainer,
    When the first strainer and the second strainer are arranged in the refrigerant circuit before and after the outdoor heat exchanger, the first strainer is a pipe that connects the four-way valve and the outdoor heat exchanger. , The second strainer is connected to the pipe connecting the outdoor heat exchanger and the expansion valve, and the length of the pipe connecting the first strainer and the outdoor heat exchanger. The length of the pipe connecting the four-way valve and the first strainer is shorter than the length of the pipe connecting the second strainer and the outdoor heat exchanger. The refrigeration cycle apparatus according to claim 1, wherein the length of the pipe connecting the two strainers is shorter than the length of the pipe.
  4.  前記冷媒回路は、バイパス配管と、二方弁とをさらに有し、
     前記第1ストレーナおよび前記第2ストレーナが前記冷媒回路に前記室内熱交換器の前後で接続されている場合には、前記バイパス配管は、前記室内熱交換器と前記第2ストレーナとを接続する前記配管と、前記四方弁と前記第2ストレーナとを接続する前記配管とに接続されており、
     前記二方弁は、前記室内熱交換器と前記第2ストレーナとを接続する前記配管と前記バイパス配管とに接続されており、
     前記二方弁は、前記暖房運転時に前記第2ストレーナから前記室内熱交換器に前記冷媒を流し、前記冷房運転時に前記室内熱交換器から前記バイパス配管に前記冷媒を流すように構成されている、請求項3に記載の冷凍サイクル装置。
    The refrigerant circuit further includes a bypass pipe and a two-way valve,
    When the first strainer and the second strainer are connected to the refrigerant circuit before and after the indoor heat exchanger, the bypass pipe connects the indoor heat exchanger and the second strainer. A pipe connected to the pipe connecting the four-way valve and the second strainer,
    The two-way valve is connected to the pipe and the bypass pipe that connect the indoor heat exchanger and the second strainer,
    The two-way valve is configured to flow the refrigerant from the second strainer to the indoor heat exchanger during the heating operation, and to flow the refrigerant from the indoor heat exchanger to the bypass pipe during the cooling operation. The refrigeration cycle apparatus according to claim 3.
  5.  前記冷媒回路は、バイパス配管と、二方弁とをさらに有し、
     前記第1ストレーナおよび前記第2ストレーナが前記冷媒回路に前記室外熱交換器の前後で接続されている場合には、前記バイパス配管は、前記室外熱交換器と前記第1ストレーナとを接続する前記配管と、前記四方弁と前記第1ストレーナとを接続する前記配管とに接続されており、
     前記二方弁は、前記室外熱交換器と前記第1ストレーナとを接続する前記配管と前記バイパス配管とに接続されており、
     前記二方弁は、前記冷房運転時に前記第1ストレーナから前記室外熱交換器に前記冷媒を流し、前記暖房運転時に前記室外熱交換器から前記バイパス配管に前記冷媒を流すように構成されている、請求項3に記載の冷凍サイクル装置。
    The refrigerant circuit further includes a bypass pipe and a two-way valve,
    When the first strainer and the second strainer are connected to the refrigerant circuit before and after the outdoor heat exchanger, the bypass pipe connects the outdoor heat exchanger and the first strainer. Connected to a pipe and the pipe connecting the four-way valve and the first strainer,
    The two-way valve is connected to the pipe and the bypass pipe that connect the outdoor heat exchanger and the first strainer,
    The two-way valve is configured to flow the refrigerant from the first strainer to the outdoor heat exchanger during the cooling operation, and to flow the refrigerant from the outdoor heat exchanger to the bypass pipe during the heating operation. The refrigeration cycle apparatus according to claim 3.
  6.  前記冷媒回路は、バイパス配管と、第1逆止弁と、第2逆止弁とをさらに有し、
     前記第1ストレーナおよび前記第2ストレーナが前記冷媒回路に前記室内熱交換器の前後で接続されている場合には、前記バイパス配管は、前記室内熱交換器と前記第2ストレーナとを接続する前記配管と、前記四方弁と前記第2ストレーナとを接続する前記配管とに接続されており、
     前記第1逆止弁は、前記室内熱交換器と前記第2ストレーナとを接続する前記配管に前記第2ストレーナと前記バイパス配管との間において接続されており、かつ前記第2ストレーナから前記室内熱交換器に前記冷媒を流し、前記室内熱交換器から前記第2ストレーナに前記冷媒が流れることを防止するように構成されており、
     前記第2逆止弁は、前記バイパス配管に接続されており、かつ前記四方弁から前記室内熱交換器に前記冷媒が流れることを防止するように構成されており、前記室内熱交換器から前記四方弁に前記冷媒を流すように構成されている、請求項3に記載の冷凍サイクル装置。
    The refrigerant circuit further includes a bypass pipe, a first check valve, and a second check valve,
    When the first strainer and the second strainer are connected to the refrigerant circuit before and after the indoor heat exchanger, the bypass pipe connects the indoor heat exchanger and the second strainer. A pipe connected to the pipe connecting the four-way valve and the second strainer,
    The first check valve is connected to the pipe connecting the indoor heat exchanger and the second strainer between the second strainer and the bypass pipe, and from the second strainer to the room. Flowing the refrigerant through a heat exchanger, and configured to prevent the refrigerant from flowing from the indoor heat exchanger to the second strainer,
    The second check valve is connected to the bypass pipe, and is configured to prevent the refrigerant from flowing from the four-way valve to the indoor heat exchanger. The refrigeration cycle apparatus according to claim 3, wherein the refrigeration cycle apparatus is configured to flow the refrigerant through a four-way valve.
  7.  前記冷媒回路は、バイパス配管と、第1逆止弁と、第2逆止弁とをさらに有し、
     前記第1ストレーナおよび前記第2ストレーナが前記冷媒回路に前記室外熱交換器の前後で接続されている場合には、前記バイパス配管は、前記室外熱交換器と前記第1ストレーナとを接続する前記配管と、前記四方弁と前記第1ストレーナとを接続する前記配管とに接続されており、
     前記第1逆止弁は、前記室外熱交換器と前記第1ストレーナとを接続する前記配管に前記第1ストレーナと前記バイパス配管との間において接続されており、かつ前記第1ストレーナから前記室外熱交換器に前記冷媒を流し、前記室外熱交換器から前記第1ストレーナに前記冷媒が流れることを防止するように構成されており、
     前記第2逆止弁は、前記バイパス配管に接続されており、かつ前記四方弁から前記室外熱交換器に前記冷媒が流れることを防止するように構成されており、前記室外熱交換器から前記四方弁に前記冷媒を流すように構成されている、請求項3に記載の冷凍サイクル装置。
    The refrigerant circuit further includes a bypass pipe, a first check valve, and a second check valve,
    When the first strainer and the second strainer are connected to the refrigerant circuit before and after the outdoor heat exchanger, the bypass pipe connects the outdoor heat exchanger and the first strainer. Connected to a pipe and the pipe connecting the four-way valve and the first strainer,
    The first check valve is connected to the pipe connecting the outdoor heat exchanger and the first strainer between the first strainer and the bypass pipe, and the first check valve is connected to the outdoor strainer and the outdoor strainer. Flowing the refrigerant to a heat exchanger, configured to prevent the refrigerant from flowing from the outdoor heat exchanger to the first strainer,
    The second check valve is connected to the bypass pipe, and is configured to prevent the refrigerant from flowing from the four-way valve to the outdoor heat exchanger. The refrigeration cycle apparatus according to claim 3, wherein the refrigeration cycle apparatus is configured to flow the refrigerant through a four-way valve.
  8.  前記凝縮器および前記蒸発器の少なくともいずれかは伝熱管を有し、
     前記伝熱管は扁平多穴管により構成されている、請求項1~7のいずれか1項に記載の冷凍サイクル装置。
    At least one of the condenser and the evaporator has a heat transfer tube,
    The refrigeration cycle apparatus according to any one of claims 1 to 7, wherein the heat transfer tube is configured by a flat multi-hole tube.
PCT/JP2018/023408 2018-06-20 2018-06-20 Refrigeration cycle device WO2019244267A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020525140A JP6925529B2 (en) 2018-06-20 2018-06-20 Refrigeration cycle equipment
PCT/JP2018/023408 WO2019244267A1 (en) 2018-06-20 2018-06-20 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/023408 WO2019244267A1 (en) 2018-06-20 2018-06-20 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2019244267A1 true WO2019244267A1 (en) 2019-12-26

Family

ID=68982774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023408 WO2019244267A1 (en) 2018-06-20 2018-06-20 Refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP6925529B2 (en)
WO (1) WO2019244267A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51132659U (en) * 1975-04-18 1976-10-25
JPS5676976U (en) * 1979-11-21 1981-06-23
JPS58141168U (en) * 1982-03-18 1983-09-22 日産自動車株式会社 Vehicle cooler
JPS58145464U (en) * 1982-03-26 1983-09-30 株式会社日立製作所 Distributor
JPH0230859U (en) * 1988-08-19 1990-02-27
JPH1019420A (en) * 1996-06-28 1998-01-23 Sanyo Electric Co Ltd Air conditioner
JPH11304297A (en) * 1998-04-23 1999-11-05 Aisin Seiki Co Ltd Refrigerant branch unit
JP2000213831A (en) * 1999-01-21 2000-08-02 Mitsubishi Electric Corp Refrigerating device
US20060107688A1 (en) * 2004-11-23 2006-05-25 Lg Electronics Inc. Refrigerant bypassing and filtering apparatus of air conditioner and method for controlling the same
JP2008032247A (en) * 2006-07-26 2008-02-14 Hitachi Appliances Inc Air conditioner and installation method of air conditioner by recycling existing refrigerant piping
JP2008151434A (en) * 2006-12-19 2008-07-03 Toyota Industries Corp Cooling device
JP2010014300A (en) * 2008-07-02 2010-01-21 Panasonic Corp Refrigerating device or refrigerator

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51132659U (en) * 1975-04-18 1976-10-25
JPS5676976U (en) * 1979-11-21 1981-06-23
JPS58141168U (en) * 1982-03-18 1983-09-22 日産自動車株式会社 Vehicle cooler
JPS58145464U (en) * 1982-03-26 1983-09-30 株式会社日立製作所 Distributor
JPH0230859U (en) * 1988-08-19 1990-02-27
JPH1019420A (en) * 1996-06-28 1998-01-23 Sanyo Electric Co Ltd Air conditioner
JPH11304297A (en) * 1998-04-23 1999-11-05 Aisin Seiki Co Ltd Refrigerant branch unit
JP2000213831A (en) * 1999-01-21 2000-08-02 Mitsubishi Electric Corp Refrigerating device
US20060107688A1 (en) * 2004-11-23 2006-05-25 Lg Electronics Inc. Refrigerant bypassing and filtering apparatus of air conditioner and method for controlling the same
JP2008032247A (en) * 2006-07-26 2008-02-14 Hitachi Appliances Inc Air conditioner and installation method of air conditioner by recycling existing refrigerant piping
JP2008151434A (en) * 2006-12-19 2008-07-03 Toyota Industries Corp Cooling device
JP2010014300A (en) * 2008-07-02 2010-01-21 Panasonic Corp Refrigerating device or refrigerator

Also Published As

Publication number Publication date
JP6925529B2 (en) 2021-08-25
JPWO2019244267A1 (en) 2020-12-17

Similar Documents

Publication Publication Date Title
CN101268312B (en) Air conditioner
US8020405B2 (en) Air conditioning apparatus
JP4488712B2 (en) Air conditioner
JP6036356B2 (en) Refrigeration equipment
US11092369B2 (en) Integrated suction header assembly
JP3941817B2 (en) Air conditioner
JP2010078288A (en) Refrigeration system
WO2019244267A1 (en) Refrigeration cycle device
JP6643630B2 (en) Air conditioner
WO2012056887A1 (en) Refrigeration cycle apparatus
JP4468887B2 (en) Supercooling device and air conditioner equipped with supercooling device
WO2019198175A1 (en) Refrigeration cycle device
KR100349790B1 (en) Refrigeration cycle with dryer
JP2008309443A (en) Heat transfer pipe connecting structure
JP2015218954A (en) Refrigeration cycle device
JP2007093167A (en) Liquid gas heat exchanger for air-conditioner
JP2012184866A (en) Refrigeration cycle device
KR100880496B1 (en) Air conditioner
JP6729788B2 (en) Refrigeration equipment
WO2020178966A1 (en) Gas header, heat exchanger, and refrigeration cycle device
JP3680225B2 (en) Refrigerant circuit
JP2011133132A (en) Refrigerating device
JP2010112618A (en) Air conditioning device
JP2012063083A (en) Heat source unit
JP6895653B2 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923134

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525140

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18923134

Country of ref document: EP

Kind code of ref document: A1