JP3680225B2 - Refrigerant circuit - Google Patents

Refrigerant circuit Download PDF

Info

Publication number
JP3680225B2
JP3680225B2 JP08643596A JP8643596A JP3680225B2 JP 3680225 B2 JP3680225 B2 JP 3680225B2 JP 08643596 A JP08643596 A JP 08643596A JP 8643596 A JP8643596 A JP 8643596A JP 3680225 B2 JP3680225 B2 JP 3680225B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
check valve
valve
electric expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08643596A
Other languages
Japanese (ja)
Other versions
JPH09280680A (en
Inventor
敏幸 夏目
昌弥 繁永
高宏 岡本
幸正 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP08643596A priority Critical patent/JP3680225B2/en
Publication of JPH09280680A publication Critical patent/JPH09280680A/en
Application granted granted Critical
Publication of JP3680225B2 publication Critical patent/JP3680225B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、室内外熱交換器の対向流化と膨張弁流下方向の規定とを行う冷媒回路に関する。
【0002】
【従来の技術】
一般に、非共沸冷媒を使用する空気調和機や冷凍機の能力および成績係数を向上させる為に、室内外熱交換器の対向流化や過冷却熱交換器の使用が行われる。その際に、冷房時および暖房時の両方において熱交換器の対向流化や過冷却熱交換器の使用を可能にする為に、4つの逆止弁を用いた逆止弁ブリッジを用いて、冷房時・暖房時の何れの場合でも室内外熱交換器や過冷却熱交換器における冷媒流の方向が同一になるようにしている。
【0003】
また、ハイドロクロロフルオロカーボン(以下、HCFCと略称する)系の冷媒R22の代替冷媒としてハイドロフルオロカーボン(HFCと略称する)系の冷媒を用いると共に、冷凍機油として合成油(エステル油,エーテル油,アルキルベンゼン油等)を用いた空気調和機においては、冷媒系内の残留不純物(切削油,加工油,金属粉等)から生成されるスラッジの付着によって、膨張弁が詰まったり動作不良を起こしたりする。その際に、流下方向によってスラッジの付着量に差異がある構造を有している膨張弁を使用している場合には、膨張弁流下方向をスラッジが付着しにくい方向に規定することによって、上述の問題に対処できるのである。
【0004】
従来、室内外熱交換器の対向流化と膨張弁流下方向の規定とを行う場合には、図4に示すような逆止弁ブリッジ冷媒回路を用いている。
この逆止弁ブリッジ冷媒回路は、4個の逆止弁1〜逆止弁4を環状に連結してなる第1逆止弁ブリッジ5と、4個の逆止弁6〜逆止弁9を環状に連結してなる第2逆止弁ブリッジ10と、4個の逆止弁11〜逆止弁14を環状に連結してなる第3逆止弁ブリッジ15とを用い、第1逆止弁ブリッジ5の隣接する2つの逆止弁3,4の間と第2逆止弁ブリッジ10の隣接する2つの逆止弁6,7の間とを連結し、第2逆止弁ブリッジ10の隣接する2つの逆止弁8,9の間と第3逆止弁ブリッジ15の隣接する2つの逆止弁11,12の間とを連結している。
さらに、上記第1逆止弁ブリッジ5の隣接する2つの逆止弁1,2の間、四路切換弁16、圧縮機17、アキュムレータ18、四路切換弁16、第3逆止弁ブリッジ15の隣接する2つの逆止弁13,14の間を順次連結している。
【0005】
そして、上記第1逆止弁ブリッジ5の隣接する逆止弁1,4の間と逆止弁2,3の間とを室外熱交換器19を介して連結し、第2逆止弁ブリッジ10の隣接する逆止弁6,9の間と逆止弁7,8の間とを電動膨張弁20を介して連結し、第3逆止弁ブリッジ15の隣接する逆止弁11,14の間と逆止弁12,13の間とを室内熱交換器21を介して連結している。
【0006】
上記構成において、冷房時には、四路切換弁16を実線のように切り換えることによって冷媒は実線の矢印のごとく流れる。一方、暖房時には、四路切換弁16を破線のように切り換えることによって冷媒は破線の矢印のごとく流れる。その場合に、室外熱交換器19,電動膨張弁20および室内熱交換器21を流れる冷媒の方向は、冷房時および暖房時に拘わらず同じ方向となる。
したがって、室内外熱交換器の対向流化と膨張弁流下方向の規定とが行われるのである。
【0007】
また、通常、冷房運転時においては、室外熱交換器を出た冷媒は過冷却状態にあり、室内熱交換器を出た冷媒は過熱状態にある。これに対して、暖房運転時においては、室内熱交換器を出た冷媒は過冷却状態にあり、室外熱交換器を出た冷媒は過熱状態にある。つまり、冷房運転時あるいは暖房運転時に拘わらず凝縮器を出た冷媒が過冷却状態となる一方、蒸発器を出た冷媒が過熱状態となる。そこで、この過冷却状態にある冷媒と過熱状態にある冷媒との(より端的に言えば、室内外熱交換器を出た冷媒同士の)熱交換(過冷却熱交換)を行うことによって空気調和機の成績係数を上げることができる。その際に、上記過冷却熱交換は対向流によって行う方が熱交換効率がよい。
【0008】
図5は、図4に示す逆止弁ブリッジ冷媒回路に過冷却熱交換器25を設けた逆止弁ブリッジ冷媒回路である。ここで、過冷却熱交換器25は二重管熱交換器で構成され、その外管は、逆止弁ブリッジ冷媒回路の第2逆止弁ブリッジ10において、隣接する逆止弁6,9の間と逆止弁7,8の間とを連結する冷媒管における電動膨張弁20の上流側に介接されている。一方、内管は、四路切換弁16とアキュムレータ18とを連結する冷媒管に介接されている。
ここで、上述したように、上記電動膨張弁20へ向かう冷媒の方向は冷・暖房時に拘わらず同じ方向であり、圧縮機17への戻り冷媒の方向も冷暖房時に拘わらず同じ方向であって電動膨張弁20へ向かう冷媒の方向とは逆方向である。したがって、過冷却熱交換器25によって行われる過冷却熱交換は冷・暖房時に拘わらず対向流によって行われるのである。
【0009】
【発明が解決しようとする課題】
しかしながら、上記従来の逆止弁ブリッジ冷媒回路においては、流下方向を規定しようとする機器の数に相当する逆止弁ブリッジを必要とする。したがって、上述のように、室内外熱交換器の対向流化と膨張弁流下方向の規定とを行う場合には、流下方向を規定しようとする機器の数が3であるから4個の逆止弁からなる逆止弁ブリッジを3組必要とし、使用される逆止弁が12個と多くなる。したがって、本来の空気調和機能以外に必要な補助スペースの拡大やコストの増大を招くという問題がある。特に、室内に設置される室内ユニット22は可能な限り小型にすることが望ましく、上述のような逆止弁ブリッジを組み込むことは避けたい。
また、多くの逆止弁を使用するということは故障の可能性が高くなり、それだけ製品信頼性が低下するという問題もある。
【0010】
そこで、この発明の目的は、4個の逆止弁と2個の電動弁を用いて室内外熱交換器の対向流化と膨張弁流下方向の規定とを行うことができる冷媒回路を提供することにある。
【0011】
【課題を解決するための手段】
上記目的を達成するため、請求項1に係る発明の冷媒回路は、第1逆止弁,室外熱交換器および第2逆止弁を,冷媒の流れる方向が一方向になるように冷媒管を介して順次環状に接続し、第3逆止弁,第4逆止弁および室内熱交換器を,冷媒の流れる方向が一方向になるように冷媒管を介して順次環状に接続し、上記第1逆止弁および室外熱交換器の間と上記第3逆止弁および室内熱交換器の間とを,第1電動膨張弁が介設された冷媒管で連結し、上記第2逆止弁および室外熱交換器の間と上記第4逆止弁および室内熱交換器の間とを,第2電動膨張弁が介設された冷媒管で連結し、上記第1逆止弁および第2逆止弁の間と圧縮機の吐出口とを,四路切換弁を介して冷媒管で連結し、上記第3逆止弁および第4逆止弁の間と上記圧縮機の吸入口とを,上記四路切換弁を介して冷媒管で連結したことを特徴としている。
【0012】
上記構成において、冷房時には、上記第1電動膨張弁が全閉されると共に、四路切換弁が切り換えられて圧縮機からの高温高圧冷媒が第1逆止弁と第2逆止弁との間に供給される。そうすると、上記冷媒は、上記第1電動膨張弁によって遮られ、且つ、第2逆止弁および第4逆止弁の下流側が上流側より高圧であるために第2,第4逆止弁を通過できず、第1逆止弁→室外熱交換器→第2電動膨張弁→室内熱交換器→第3逆止弁→四路切換弁→圧縮機となる。
これに対して、暖房時には、上記第2電動膨張弁が全閉されると共に、四路切換弁が切り換えられて圧縮機からの冷媒が上記第3逆止弁と第4逆止弁との間に供給される。そうすると、上記冷媒は、上記第2電動膨張弁によって遮られ、且つ、第3逆止弁および第1逆止弁の下流側が上流側より高圧であるために第3,第1逆止弁を通過できず、第4逆止弁→室内熱交換器→第1電動膨張弁→室外熱交換器→第2逆止弁→四路切換弁→圧縮機となる。
【0013】
その結果、冷房時および暖房時の何れの場合においても、上記室外熱交換器,室内熱交換器および第1,第2電動膨張弁を通過する冷媒の方向は同一方向となる。こうして、4個の逆止弁と2個の電動膨張弁とを用いた冷媒回路によって室内外熱交換器の対向流化と膨張弁流下方向の規定とが行われる。
【0014】
また、請求項2に係る発明は、請求項1に係る発明の冷媒回路において、上記第1電動膨張弁および第2電動膨張弁は、冷媒を一方向に流した場合のスラッジの付着量が他方向に流した場合の付着量に比して少ない構造を有していることを特徴としている。
【0015】
上記構成によれば、冷房時および暖房時に拘わらず第1,第2電動膨張弁を通過する冷媒の方向は同一方向であるから、上記第1,第2電動膨張弁の流下方向をスラッジの付着量が少ない方向とすることによって、両電動膨張弁の信頼性が高められる。
【0016】
また、請求項3に係る発明は、請求項1に係る発明の冷媒回路において、上記室外熱交換器を出た冷媒と上記室内熱交換器を出た冷媒との過冷却熱交換をおこなう過冷却熱交換器を備えたことを特徴としている。
【0017】
上記構成によれば、過冷却熱交換器によって、凝縮器を出た過冷却状態の冷媒と蒸発器を出た過熱状態の冷媒との間の過冷却熱交換が行われる。その際に、上記凝縮器および蒸発器を出た冷媒の流れる方向は冷房時および暖房時に拘わらず同一方向であるから、上記過冷却熱交換を対向流で行うことが可能となる。こうして、請求項1に係る発明の冷媒回路の更なる成績係数の向上が図られる。
【0018】
【発明の実施の形態】
以下、この発明を図示の実施の形態により詳細に説明する。
<第1実施の形態>
図1は本実施の形態における冷媒回路を示す図である。本冷媒回路は次のような構成を有している。
すなわち、逆止弁31,室外熱交換器32および逆止弁33を、冷媒の流れる方向が一方向になるように、冷媒管を介して順次環状に接続する。また、逆止弁34,逆止弁35および室内熱交換器36を、冷媒の流れる方向が一方向になるように、冷媒管を介して順次環状に接続する。そして、逆止弁31および室外熱交換器32の間と逆止弁34および室内熱交換器36の間とを、全閉可能な第1電動膨張弁37が介設された冷媒管で接続する。同様に、逆止弁33および室外熱交換器32の間と逆止弁35および室内熱交換器36の間とを、全閉可能な第2電動膨張弁38が介設された冷媒管で接続する。
さらに、上記逆止弁31および逆止弁33の間と圧縮機39の吐出口とを四路切換弁40を介して冷媒管で接続する。一方、逆止弁34および逆止弁35の間と圧縮機39の吸入口とを四路切換弁40およびアキュムレータ41を介して冷媒管で接続する。
【0019】
ここで、上記第1電動膨張弁37および第2電動膨張弁38は、図2に示すようなニードル弁体を用いた構造を有しており、凝縮器からの高圧液冷媒を破線の矢印Bのようにニードル弁体45の根元側から供給した場合には、高圧液冷媒がコイル46やロータ47やシャフト48やケーシング49の間に入り込むような構造になっている。したがって、上述のごとく、HFC系の冷媒を用い、冷凍機油として合成油を用いた場合には、加工油,組立油,防錆油または洗浄油等の不純物が溶解されたり金属粉が分散している高圧液冷媒/合成油が上記隙間に入り込む。そして、停止状態や均圧状態となった場合には減圧されて冷媒および合成油が蒸発し、冷媒/合成油中に析出した上記不純物や金属粉がスラッジを形成してコイル46やロータ47やシャフト48やケーシング49の間やニードル弁体45の表面に堆積するのである。
こうして、上記ニードル弁体45と弁座50との隙間が詰まったり、シャフト48が動作不良を起こしたりするようになる。
【0020】
これに対して、凝縮器からの高圧液冷媒を実線の矢印Aのようにニードル弁体45の先端側から供給した場合には、流体流れの再付着現象によってスラッジがニードル弁体45の上部に付着する。ところが、ニードル弁体45と弁座50との隙間を流れる冷媒の流速が速く、強い剪断力が作用して、付着したスラッジが成長して堆積することはない。また、減圧されて上記不純物や金属粉が析出している低圧の2相冷媒/合成油は、コイル46やロータ47やシャフト48やケーシング49の間に入り込むことはないのである。
つまり、上記第1,第2電動膨張弁37,38は、流下方向を矢印Aの如く規定することによってスラッジが付着しにくい構造になっているのである。
【0021】
また、上記4個の逆止弁31,33,34,35と2個の電動膨張弁37,38とは、室外熱交換器32,圧縮機39,四路切換弁40およびアキュムレータ41と共に、室外ユニット42を形成している。これに対して、室内ユニット43は室内熱交換器36のみで形成されている。したがって、本実施の形態における室内ユニット43は、本来の空気調和機能以外の補助スペースが最小になっている。
【0022】
上記構成の冷媒回路は次のように動作する。
(1)冷房運転
冷房運転時には、上記四路切換弁40を実線のように切り換えると共に、第1電動膨張弁37を全閉にする一方、第2電動膨張弁38の開度を制御する。
そうすると、実線の矢印(イ)で示すように四路切換弁40を通過した冷媒は、逆止弁33に遮られて逆止弁31を通過し、全閉された第1電動膨張弁37によって遮られて室外熱交換器32側に流れる。そして、室外熱交換器32によって凝縮された冷媒は、逆止弁33の下流側が上流側より高圧であるために逆止弁33を通過できずに第2電動膨張弁38側に流れて減圧される。
【0023】
こうして、減圧された冷媒は、逆止弁35によって遮られて室内熱交換器36側に流れる。そして、室内熱交換器36で蒸発されて気体となった冷媒は、第1電動膨張弁37によって遮られて逆止弁34側に流れ、逆止弁35の下流側が上流側より高圧であるために逆止弁35を通過できずに四路切換弁40側に流れるのである。こうして、四路切換弁40を通過した冷媒は、アキュムレータ41を介して圧縮機39の吸入口に戻る。
このように、冷房運転時においては、冷媒は実線の矢印で示す順路で流れるのである。
【0024】
(2)暖房運転
暖房運転時には、上記四路切換弁40を破線のように切り換えると共に、第2電動膨張弁38を全閉にする一方、第1電動膨張弁37の開度を制御する。
そうすると、破線の矢印(ロ)で示すように四路切換弁40を通過した冷媒は、逆止弁34に遮られて逆止弁35を通過し、全閉された第2電動膨張弁38によって遮られて室内熱交換器36側に流れる。そして、室内熱交換器36によって凝縮された冷媒は、逆止弁34の下流側が上流側より高圧であるために逆止弁34を通過できずに第1電動膨張弁37側に流れて減圧される。
【0025】
こうして、減圧された冷媒は、逆止弁31によって遮られて室外熱交換器32側に流れる。そして、室外熱交換器32で蒸発されて気体となった冷媒は、第2電動膨張弁38によって遮られて逆止弁33側に流れ、逆止弁31の下流側が上流側より高圧であるために逆止弁31を通過できずに四路切換弁40側に流れるのである。こうして、四路切換弁40を通過した冷媒は、アキュムレータ41を介して圧縮機39の吸入口に戻る。
このように、暖房運転時においては、冷媒は破線の矢印で示す順路で流れるのである。
【0026】
その結果、図1から分かるように、冷房運転時および暖房運転時の何れ場合にも、室外熱交換器32および室内熱交換器36を通過する冷媒の流れる方向は同一である。したがって、室内外熱交換器32,36における冷媒流と空気流との方向関係を冷房時および暖房時に拘わらず向流とすることができ(対向流化)、熱交換損失を減少できる。また、各電動膨張弁37,38を流れる冷媒の方向は一定である。したがって、第1電動膨張弁37及び第2電動膨張弁38の流下方向を図2における矢印Aになるように設定することによって、スラッジが付着しにくい方向に冷媒を流すことができ、電動膨張弁の信頼性を向上できるのである。
【0027】
このように、本実施の形態における冷媒回路によれば、図4に示すような12個の逆止弁を用いた従来の逆止弁ブリッジ冷媒回路の場合より少ない4個の逆止弁と2つの電動膨張弁とで、上記従来の逆止弁ブリッジ冷媒回路と同じように室内外熱交換器の対向流化と膨張弁流下方向の規定とを行うことができる。したがって、本実施の形態によれば、室内外熱交換器の対向流化と膨張弁流下方向の規定とを行うに際して、冷媒回路の組み込みスペースの拡大やコストの増大や製品信頼性の低下を極力押さえることができるのである。
【0028】
さらに、上記2つの電動膨張弁37,38として、流下方向を規制することによってスラッジの付着を低減できる構造の電動膨張弁を使用し、且つ、冷房時または暖房時の何れか一方の際に電動膨張弁37,38の何れか一方を使用する(つまり、動作不良を起こす機会を1/2にする)ことによって、電動膨張弁37,38の詰まりによる信頼性の低下を大幅に低下できる。
さらに、上記室内熱交換器36以外の機器を室外ユニット42側に収めることができ、室内ユニット43をコンパクトにできる。
【0029】
<第2実施の形態>
図3は本実施の形態における冷媒回路を示す図である。本冷媒回路は、図1に示す冷媒回路に過冷却熱交換器62を設けた構造を有している。
すなわち、逆止弁51,室外熱交換器52,逆止弁53,逆止弁54,逆止弁55,室内熱交換器56,第1電動膨張弁57,第2電動膨張弁58,圧縮機59,四路切換弁60およびアキュムレータ61は、図1に示す第1実施の形態における逆止弁31,室外熱交換器32,逆止弁33,逆止弁34,逆止弁35,室内熱交換器36,第1電動膨張弁37,第2電動膨張弁38,圧縮機39,四路切換弁40およびアキュムレータ41と同様に連結されて同様に動作する。
【0030】
本実施の形態においては、上記室外熱交換器52と逆止弁53とを接続する冷媒管における第2電動膨張弁58への分岐点aよりも上流側に、過冷却熱交換器62の内管を介接している。また、室内熱交換器56と逆止弁54とを接続する冷媒管における第1電動膨張弁57への分岐点bよりも上流側に、過冷却熱交換器62の外管を介接している。こうして、過冷却熱交換器62によって、過熱状態の冷媒と過冷却状態の冷媒と間の熱交換(過冷却熱交換)を行うのである。
【0031】
ここで、上述したように、冷媒は、冷・暖房時に拘わらず、上記室外熱交換器52から分岐点aに向かって流れる一方、室内熱交換器56から分岐点bに向かって流れ、過冷却熱交換器62内における両冷媒の通過方向は逆となる。したがって、過冷却熱交換器62によって行われる過冷却熱交換は、冷・暖房時に拘わらず対向流によって行われるのである。
【0032】
このように、本実施の形態における冷媒回路においては、室外熱交換器52と逆止弁53とを連結する冷媒管における分岐点aよりも上流側と、室内熱交換器56と逆止弁54とを連結する冷媒管における分岐点bよりも上流側とに、過冷却熱交換器62を介接している。そして、室外熱交換器52および室内熱交換器56から出て過冷却熱交換器62を通過する冷媒の方向が常に同一である。したがって、冷房時・暖房時に拘わらず対向流によって過冷却熱交換を行うことができる。
すなわち、本実施の形態によれば、第1実施の形態による効果に加えて、過冷却熱交換による更なる成績係数の向上を図ることができる。
【0033】
尚、この発明における過冷却熱交換器は、二重管熱交換器に限定されるものではない。
【0034】
【発明の効果】
以上より明らかなように、請求項1に係る発明の冷媒回路は、4個の逆止弁と2個の電動膨張弁を用いて、冷房時には上記第1電動膨張弁を全閉する一方、暖房時には上記第2電動膨張弁を全閉することによって、冷房時および暖房時の何れの場合においても、上記室外熱交換器,室内熱交換器および第1,第2電動膨張弁を通過する冷媒の方向が同一方向になるようにしたので、4個の逆止弁と2個の電動膨張弁とを用いた冷媒回路によって室内外熱交換器の対向流化と膨張弁流下方向の規定とを行うことができる。
【0035】
すなわち、この発明によれば、逆止弁4個を用いた逆止弁ブリッジを3組(つまり、12個の逆止弁を)必要とする冷媒回路に比較して、収納スペースの縮小やコストの低下や製品信頼性の向上を図ることができるのである。
【0036】
また、請求項2に係る発明の冷媒回路は、上記第1電動膨張弁および第2電動膨張弁として冷媒を一方向に流した場合のスラッジの付着量が他方向に流した場合より少ない構造の電動膨張弁を使用し、且つ、各電動膨張弁の流下方向を規定したので、上記第1,第2電動膨張弁の流下方向をスラッジの付着量が少ない上記一方向とすることによって、冷房時および暖房時に拘わらず第1,第2電動膨張弁の詰まりや動作不良を少なくできる。
したがって、両電動膨張弁の信頼性が高められる。
【0037】
また、請求項3に係る発明の冷媒回路は、過冷却熱交換器によって、冷房時および暖房時に拘わらず同一方向に上記室外熱交換器および室内熱交換器を通過した冷媒の間で過冷却熱交換をおこなうので、上記過冷却熱交換器を通過する両冷媒の流れる方向を逆にすることによって、凝縮器からの過冷却状態の冷媒と蒸発器からの過熱状態の冷媒との過冷却熱交換を冷房時および暖房時に拘わらず対向流によって行うことができる。
したがって、この発明によれば、請求項1に係る発明の冷媒回路の成績係数を更に向上することができる。
【図面の簡単な説明】
【図1】この発明の冷媒回路における一実施の形態を示す図である。
【図2】図1における電動膨張弁の具体的構造を示す図である。
【図3】図1とは異なる実施の形態を示す図である。
【図4】室内外熱交換器の対向流化と膨張弁流下方向の規定とを行う従来の逆止弁ブリッジ冷媒回路を示す図である。
【図5】室内外熱交換器の対向流化と膨張弁流下方向の規定と過冷却熱交換とを行う従来の逆止弁ブリッジ冷媒回路を示す図である。
【符号の説明】
31,33,34,35,51,53,54,55…逆止弁、
32,52…室外熱交換器、 36,56…室内熱交換器、
37,57…第1電動膨張弁、 38,58…第2電動膨張弁、
39,59…圧縮機、 40,60…四路切換弁、
42…室外ユニット、 43,63…室内ユニット、
62…過冷却熱交換器。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigerant circuit that performs counterflow of an indoor / outdoor heat exchanger and regulation of an expansion valve flow direction.
[0002]
[Prior art]
In general, in order to improve the performance and coefficient of performance of air conditioners and refrigerators that use non-azeotropic refrigerants, counter flow of indoor and outdoor heat exchangers and use of supercooled heat exchangers are performed. At that time, in order to enable the use of a counter flow of the heat exchanger and the use of the supercooling heat exchanger in both cooling and heating, using a check valve bridge using four check valves, In either case of cooling or heating, the direction of the refrigerant flow in the indoor / outdoor heat exchanger or the supercooling heat exchanger is made the same.
[0003]
Further, a hydrofluorocarbon (abbreviated as HFC) refrigerant is used as an alternative refrigerant for the hydrochlorofluorocarbon (hereinafter abbreviated as HCFC) refrigerant R22, and a synthetic oil (ester oil, ether oil, alkylbenzene oil) is used as a refrigerating machine oil. Etc.), the expansion valve is clogged or malfunctions due to sludge generated from residual impurities (cutting oil, processing oil, metal powder, etc.) in the refrigerant system. At that time, when an expansion valve having a structure in which the amount of sludge attached differs depending on the flow direction, the expansion valve flow direction is defined as a direction in which sludge does not easily adhere to the above. It can cope with this problem.
[0004]
Conventionally, a check valve bridge refrigerant circuit as shown in FIG. 4 is used when the counter flow of the indoor / outdoor heat exchanger and the regulation of the downward flow direction of the expansion valve are performed.
This check valve bridge refrigerant circuit includes a first check valve bridge 5 formed by annularly connecting four check valves 1 to 4 and four check valves 6 to 9. A first check valve bridge 10 is formed by using a second check valve bridge 10 that is annularly connected and a third check valve bridge 15 that is an annular connection of four check valves 11 to 14. The connection between the two adjacent check valves 3 and 4 of the bridge 5 and the two adjacent check valves 6 and 7 of the second check valve bridge 10 is made adjacent to the second check valve bridge 10. The two check valves 8 and 9 connected to each other and the two adjacent check valves 11 and 12 of the third check valve bridge 15 are connected to each other.
Further, between the two adjacent check valves 1 and 2 of the first check valve bridge 5, a four-way switching valve 16, a compressor 17, an accumulator 18, a four-way switching valve 16, and a third check valve bridge 15. The two adjacent check valves 13 and 14 are sequentially connected.
[0005]
Then, the adjacent check valves 1 and 4 and the check valves 2 and 3 of the first check valve bridge 5 are connected via an outdoor heat exchanger 19, and the second check valve bridge 10 is connected. Between the adjacent check valves 6 and 9 and the check valves 7 and 8 via the electric expansion valve 20, and between the adjacent check valves 11 and 14 of the third check valve bridge 15. And the check valves 12 and 13 are connected via an indoor heat exchanger 21.
[0006]
In the above configuration, during cooling, the refrigerant flows as indicated by the solid line arrow by switching the four-way switching valve 16 as shown by the solid line. On the other hand, at the time of heating, the refrigerant flows as indicated by broken arrows by switching the four-way switching valve 16 as shown by broken lines. In this case, the direction of the refrigerant flowing through the outdoor heat exchanger 19, the electric expansion valve 20, and the indoor heat exchanger 21 is the same regardless of whether it is cooling or heating.
Therefore, the counter flow of the indoor / outdoor heat exchanger and the regulation of the downward flow direction of the expansion valve are performed.
[0007]
In general, during cooling operation, the refrigerant that has exited the outdoor heat exchanger is in a supercooled state, and the refrigerant that has exited the indoor heat exchanger is in an overheated state. In contrast, during the heating operation, the refrigerant that has exited the indoor heat exchanger is in a supercooled state, and the refrigerant that has exited the outdoor heat exchanger is in an overheated state. That is, regardless of the cooling operation or the heating operation, the refrigerant exiting the condenser is in a supercooled state, while the refrigerant exiting the evaporator is in an overheated state. Therefore, air conditioning is performed by performing heat exchange (supercooling heat exchange) between the refrigerant in the supercooled state and the refrigerant in the superheated state (more simply, the refrigerant that has exited the indoor / outdoor heat exchanger). The coefficient of performance of the machine can be increased. At that time, the heat exchange efficiency is better when the supercooling heat exchange is performed by a counter flow.
[0008]
FIG. 5 is a check valve bridge refrigerant circuit in which a supercooling heat exchanger 25 is provided in the check valve bridge refrigerant circuit shown in FIG. Here, the supercooling heat exchanger 25 is composed of a double-tube heat exchanger, and the outer pipe of the second check valve bridge 10 of the check valve bridge refrigerant circuit is connected to the adjacent check valves 6 and 9. Is connected to the upstream side of the electric expansion valve 20 in the refrigerant pipe connecting between the check valve 7 and the check valve 7, 8. On the other hand, the inner pipe is connected to a refrigerant pipe that connects the four-way switching valve 16 and the accumulator 18.
Here, as described above, the direction of the refrigerant toward the electric expansion valve 20 is the same regardless of whether it is cooling or heating, and the direction of the refrigerant returning to the compressor 17 is the same regardless of whether it is cooling or heating. The direction of the refrigerant toward the expansion valve 20 is the opposite direction. Therefore, the supercooling heat exchange performed by the supercooling heat exchanger 25 is performed by the counter flow regardless of the time of cooling / heating.
[0009]
[Problems to be solved by the invention]
However, the conventional check valve bridge refrigerant circuit requires a check valve bridge corresponding to the number of devices for which the flow direction is to be defined. Therefore, as described above, when the counter flow of the indoor / outdoor heat exchanger and the regulation of the expansion valve flow down direction are performed, since the number of devices for defining the flow down direction is 3, 4 check Three sets of check valve bridges consisting of valves are required, and the number of check valves used increases to twelve. Therefore, there is a problem in that the auxiliary space required and the cost are increased in addition to the original air conditioning function. In particular, it is desirable that the indoor unit 22 installed in the room be as small as possible, and it is desirable to avoid incorporating a check valve bridge as described above.
In addition, the use of many check valves increases the possibility of failure, and there is a problem that the product reliability is lowered accordingly.
[0010]
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a refrigerant circuit that can perform counter flow of an indoor / outdoor heat exchanger and regulation of the downward flow direction of an expansion valve using four check valves and two motor operated valves. There is.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, a refrigerant circuit according to a first aspect of the present invention includes a refrigerant pipe including a first check valve, an outdoor heat exchanger, and a second check valve so that a refrigerant flows in one direction. The third check valve, the fourth check valve, and the indoor heat exchanger are sequentially connected in an annular manner through the refrigerant pipe so that the refrigerant flows in one direction. The first check valve and the outdoor heat exchanger and the third check valve and the indoor heat exchanger are connected by a refrigerant pipe having a first electric expansion valve interposed therebetween, and the second check valve And the outdoor heat exchanger and the fourth check valve and the indoor heat exchanger are connected by a refrigerant pipe having a second electric expansion valve interposed therebetween, and the first check valve and the second check valve are connected to each other. Between the check valves and the discharge port of the compressor are connected by a refrigerant pipe via a four-way switching valve, and between the third check valve and the fourth check valve and the suction port of the compressor, Up It is characterized in that connected in the refrigerant pipe through the four-way switching valve.
[0012]
In the above configuration, at the time of cooling, the first electric expansion valve is fully closed and the four-way switching valve is switched so that the high-temperature and high-pressure refrigerant from the compressor is between the first check valve and the second check valve. To be supplied. Then, the refrigerant is blocked by the first electric expansion valve and passes through the second and fourth check valves because the downstream side of the second check valve and the fourth check valve is higher in pressure than the upstream side. The first check valve → the outdoor heat exchanger → the second electric expansion valve → the indoor heat exchanger → the third check valve → the four-way switching valve → the compressor.
On the other hand, at the time of heating, the second electric expansion valve is fully closed and the four-way switching valve is switched so that the refrigerant from the compressor is between the third check valve and the fourth check valve. To be supplied. Then, the refrigerant is blocked by the second electric expansion valve, and passes through the third and first check valves because the downstream side of the third check valve and the first check valve is higher in pressure than the upstream side. The fourth check valve → the indoor heat exchanger → the first electric expansion valve → the outdoor heat exchanger → the second check valve → the four-way switching valve → the compressor.
[0013]
As a result, the direction of the refrigerant passing through the outdoor heat exchanger, the indoor heat exchanger, and the first and second electric expansion valves is the same in both cases of cooling and heating. In this manner, the refrigerant circuit using the four check valves and the two electric expansion valves makes the indoor / outdoor heat exchanger counterflow and regulates the expansion valve flow direction.
[0014]
The invention according to claim 2 is the refrigerant circuit of the invention according to claim 1, wherein the first electric expansion valve and the second electric expansion valve have different sludge adhesion amounts when the refrigerant flows in one direction. It is characterized by having a structure that is smaller than the amount of adhesion when flowing in the direction.
[0015]
According to the above configuration, the direction of the refrigerant passing through the first and second electric expansion valves is the same regardless of whether it is cooling or heating. Therefore, the sludge adheres to the flow direction of the first and second electric expansion valves. The reliability of both electric expansion valves can be improved by setting the direction in which the amount is small.
[0016]
Further, the invention according to claim 3 is the refrigerant circuit of the invention according to claim 1, wherein supercooling is performed to perform supercooling heat exchange between the refrigerant that has exited the outdoor heat exchanger and the refrigerant that has exited the indoor heat exchanger. It is characterized by having a heat exchanger.
[0017]
According to the above configuration, the supercooling heat exchanger performs supercooling heat exchange between the supercooled refrigerant exiting the condenser and the superheated refrigerant exiting the evaporator. At this time, the direction of the refrigerant flowing out of the condenser and the evaporator is the same regardless of whether it is cooling or heating, so that the supercooling heat exchange can be performed in a counterflow. Thus, the coefficient of performance of the refrigerant circuit of the invention according to claim 1 is further improved.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.
<First embodiment>
FIG. 1 is a diagram showing a refrigerant circuit in the present embodiment. This refrigerant circuit has the following configuration.
That is, the check valve 31, the outdoor heat exchanger 32, and the check valve 33 are sequentially connected in an annular manner through the refrigerant pipe so that the refrigerant flows in one direction. In addition, the check valve 34, the check valve 35, and the indoor heat exchanger 36 are sequentially connected in an annular manner through the refrigerant pipe so that the refrigerant flows in one direction. And between the check valve 31 and the outdoor heat exchanger 32 and between the check valve 34 and the indoor heat exchanger 36 are connected by a refrigerant pipe provided with a first electric expansion valve 37 that can be fully closed. . Similarly, between the check valve 33 and the outdoor heat exchanger 32 and between the check valve 35 and the indoor heat exchanger 36 are connected by a refrigerant pipe provided with a second electric expansion valve 38 that can be fully closed. To do.
Further, the refrigerant valve is connected between the check valve 31 and the check valve 33 and the discharge port of the compressor 39 via the four-way switching valve 40. On the other hand, between the check valve 34 and the check valve 35 and the suction port of the compressor 39 are connected via a four-way switching valve 40 and an accumulator 41 with a refrigerant pipe.
[0019]
Here, the first electric expansion valve 37 and the second electric expansion valve 38 have a structure using a needle valve body as shown in FIG. 2, and the high-pressure liquid refrigerant from the condenser is indicated by a broken arrow B. As described above, when supplied from the base side of the needle valve body 45, the high-pressure liquid refrigerant enters between the coil 46, the rotor 47, the shaft 48, and the casing 49. Therefore, as described above, when HFC refrigerant is used and synthetic oil is used as refrigerating machine oil, impurities such as processing oil, assembly oil, rust prevention oil or cleaning oil are dissolved or metal powder is dispersed. The high-pressure liquid refrigerant / synthetic oil that has entered the gap. Then, when a stop state or a pressure equalization state is reached, the pressure is reduced and the refrigerant and synthetic oil are evaporated, and the impurities and metal powder deposited in the refrigerant / synthetic oil form sludge to form a coil 46, rotor 47, It accumulates between the shaft 48 and the casing 49 and on the surface of the needle valve body 45.
Thus, the gap between the needle valve body 45 and the valve seat 50 is clogged, or the shaft 48 malfunctions.
[0020]
On the other hand, when the high-pressure liquid refrigerant from the condenser is supplied from the front end side of the needle valve body 45 as indicated by the solid line arrow A, sludge is formed on the needle valve body 45 due to the reattachment phenomenon of the fluid flow. Adhere to. However, the flow rate of the refrigerant flowing through the gap between the needle valve body 45 and the valve seat 50 is fast, and a strong shearing force acts to prevent the attached sludge from growing and accumulating. Further, the low-pressure two-phase refrigerant / synthetic oil in which the above-described impurities and metal powder are deposited under reduced pressure does not enter between the coil 46, the rotor 47, the shaft 48, and the casing 49.
That is, the first and second electric expansion valves 37 and 38 have a structure in which sludge hardly adheres by defining the flow direction as indicated by the arrow A.
[0021]
The four check valves 31, 33, 34, 35 and the two electric expansion valves 37, 38 are arranged together with the outdoor heat exchanger 32, the compressor 39, the four-way switching valve 40 and the accumulator 41. A unit 42 is formed. On the other hand, the indoor unit 43 is formed only by the indoor heat exchanger 36. Therefore, the indoor unit 43 in the present embodiment has a minimum auxiliary space other than the original air conditioning function.
[0022]
The refrigerant circuit having the above configuration operates as follows.
(1) Cooling operation During the cooling operation, the four-way switching valve 40 is switched as indicated by a solid line, and the first electric expansion valve 37 is fully closed, while the opening degree of the second electric expansion valve 38 is controlled.
Then, as shown by a solid line arrow (A), the refrigerant that has passed through the four-way switching valve 40 is blocked by the check valve 33, passes through the check valve 31, and is fully closed by the first electric expansion valve 37. It is blocked and flows to the outdoor heat exchanger 32 side. The refrigerant condensed by the outdoor heat exchanger 32 flows to the second electric expansion valve 38 side without being able to pass through the check valve 33 because the downstream side of the check valve 33 has a higher pressure than the upstream side, and is reduced in pressure. The
[0023]
Thus, the decompressed refrigerant is blocked by the check valve 35 and flows to the indoor heat exchanger 36 side. Then, the refrigerant evaporated in the indoor heat exchanger 36 to become a gas is blocked by the first electric expansion valve 37 and flows to the check valve 34 side, and the downstream side of the check valve 35 has a higher pressure than the upstream side. In other words, it cannot flow through the check valve 35 and flows to the four-way switching valve 40 side. Thus, the refrigerant that has passed through the four-way selector valve 40 returns to the suction port of the compressor 39 via the accumulator 41.
In this way, during the cooling operation, the refrigerant flows along the normal path indicated by the solid line arrow.
[0024]
(2) Heating operation During the heating operation, the four-way switching valve 40 is switched as indicated by the broken line, and the second electric expansion valve 38 is fully closed while the opening degree of the first electric expansion valve 37 is controlled.
Then, the refrigerant that has passed through the four-way switching valve 40 as shown by the broken arrow (b) is blocked by the check valve 34 and passes through the check valve 35, and is fully closed by the second electric expansion valve 38. It is blocked and flows to the indoor heat exchanger 36 side. The refrigerant condensed by the indoor heat exchanger 36 flows to the first electric expansion valve 37 side without being able to pass through the check valve 34 because the downstream side of the check valve 34 has a higher pressure than the upstream side, and is reduced in pressure. The
[0025]
Thus, the decompressed refrigerant is blocked by the check valve 31 and flows to the outdoor heat exchanger 32 side. Then, the refrigerant evaporated in the outdoor heat exchanger 32 and turned into gas is blocked by the second electric expansion valve 38 and flows to the check valve 33 side, and the downstream side of the check valve 31 has a higher pressure than the upstream side. In other words, it cannot flow through the check valve 31 and flows to the four-way switching valve 40 side. Thus, the refrigerant that has passed through the four-way selector valve 40 returns to the suction port of the compressor 39 via the accumulator 41.
As described above, during the heating operation, the refrigerant flows along a route indicated by a broken-line arrow.
[0026]
As a result, as can be seen from FIG. 1, the refrigerant flows through the outdoor heat exchanger 32 and the indoor heat exchanger 36 in the same direction in both the cooling operation and the heating operation. Therefore, the directional relationship between the refrigerant flow and the air flow in the indoor / outdoor heat exchangers 32 and 36 can be counterflowed regardless of whether it is during cooling or heating (counterflow), and heat exchange loss can be reduced. Further, the direction of the refrigerant flowing through each electric expansion valve 37, 38 is constant. Therefore, by setting the flow-down direction of the first electric expansion valve 37 and the second electric expansion valve 38 to be the arrow A in FIG. 2, the refrigerant can flow in a direction in which sludge is difficult to adhere. It is possible to improve the reliability.
[0027]
Thus, according to the refrigerant circuit in the present embodiment, there are four check valves and two less than the case of the conventional check valve bridge refrigerant circuit using 12 check valves as shown in FIG. With the two electric expansion valves, the counter flow of the indoor / outdoor heat exchanger and the regulation of the downward flow direction of the expansion valve can be performed in the same manner as the conventional check valve bridge refrigerant circuit. Therefore, according to the present embodiment, when the counter flow of the indoor / outdoor heat exchanger and the regulation of the downward flow direction of the expansion valve are performed, an increase in the space for installing the refrigerant circuit, an increase in cost, and a decrease in product reliability are minimized. You can hold it down.
[0028]
Further, as the two electric expansion valves 37 and 38, electric expansion valves having a structure capable of reducing the adhesion of sludge by restricting the flow direction are used, and the electric expansion valve is electrically operated either during cooling or heating. By using either one of the expansion valves 37 and 38 (that is, reducing the chance of malfunctioning to 1/2), the reduction in reliability due to clogging of the electric expansion valves 37 and 38 can be greatly reduced.
Furthermore, devices other than the indoor heat exchanger 36 can be accommodated on the outdoor unit 42 side, and the indoor unit 43 can be made compact.
[0029]
<Second Embodiment>
FIG. 3 is a diagram showing a refrigerant circuit in the present embodiment. This refrigerant circuit has a structure in which a supercooling heat exchanger 62 is provided in the refrigerant circuit shown in FIG.
That is, check valve 51, outdoor heat exchanger 52, check valve 53, check valve 54, check valve 55, indoor heat exchanger 56, first electric expansion valve 57, second electric expansion valve 58, compressor 59, the four-way switching valve 60 and the accumulator 61 are the check valve 31, the outdoor heat exchanger 32, the check valve 33, the check valve 34, the check valve 35, the indoor heat in the first embodiment shown in FIG. The exchanger 36, the first electric expansion valve 37, the second electric expansion valve 38, the compressor 39, the four-way switching valve 40, and the accumulator 41 are connected in the same manner and operate in the same manner.
[0030]
In the present embodiment, the inside of the supercooling heat exchanger 62 is located upstream of the branch point a to the second electric expansion valve 58 in the refrigerant pipe connecting the outdoor heat exchanger 52 and the check valve 53. A pipe is connected. Further, an outer pipe of the supercooling heat exchanger 62 is connected upstream of the branch point b to the first electric expansion valve 57 in the refrigerant pipe connecting the indoor heat exchanger 56 and the check valve 54. . In this way, the supercooling heat exchanger 62 performs heat exchange (supercooling heat exchange) between the superheated refrigerant and the supercooled refrigerant.
[0031]
Here, as described above, the refrigerant flows from the outdoor heat exchanger 52 toward the branch point a, while flowing from the indoor heat exchanger 56 toward the branch point b, regardless of cooling and heating, and is supercooled. The directions of passage of both refrigerants in the heat exchanger 62 are reversed. Therefore, the supercooling heat exchange performed by the supercooling heat exchanger 62 is performed by the counter flow regardless of the time of cooling / heating.
[0032]
As described above, in the refrigerant circuit according to the present embodiment, the upstream side of the branch point a in the refrigerant pipe connecting the outdoor heat exchanger 52 and the check valve 53, the indoor heat exchanger 56 and the check valve 54. Is connected to the upstream side of the branch point b in the refrigerant pipe connecting the subcooling heat exchanger 62. And the direction of the refrigerant | coolant which comes out of the outdoor heat exchanger 52 and the indoor heat exchanger 56 and passes the supercooling heat exchanger 62 is always the same. Therefore, the supercooling heat exchange can be performed by the counter flow regardless of the time of cooling or heating.
That is, according to the present embodiment, in addition to the effects of the first embodiment, it is possible to further improve the coefficient of performance by the supercooling heat exchange.
[0033]
In addition, the supercooling heat exchanger in this invention is not limited to a double tube heat exchanger.
[0034]
【The invention's effect】
As is apparent from the above, the refrigerant circuit of the invention according to claim 1 uses four check valves and two electric expansion valves to fully close the first electric expansion valve during cooling, while heating Occasionally, the second electric expansion valve is fully closed, so that the refrigerant passing through the outdoor heat exchanger, the indoor heat exchanger, and the first and second electric expansion valves can be used in both cases of cooling and heating. Since the directions are the same, the refrigerant circuit using the four check valves and the two electric expansion valves defines the counter flow of the indoor / outdoor heat exchanger and defines the downward flow direction of the expansion valve. be able to.
[0035]
That is, according to the present invention, compared with a refrigerant circuit that requires three sets of check valve bridges using four check valves (that is, twelve check valves), the storage space can be reduced and the cost can be reduced. It is possible to improve the reliability and product reliability.
[0036]
Further, the refrigerant circuit of the invention according to claim 2 has a structure in which the amount of sludge attached when the refrigerant flows in one direction as the first electric expansion valve and the second electric expansion valve is smaller than that when the refrigerant flows in the other direction. Since the electric expansion valve is used and the flow-down direction of each electric expansion valve is defined, the flow-down direction of the first and second electric expansion valves is set to the one direction with a small amount of sludge attached, so that the air-cooling can be performed. In addition, it is possible to reduce clogging and malfunction of the first and second electric expansion valves regardless of heating.
Therefore, the reliability of both electric expansion valves is improved.
[0037]
Further, the refrigerant circuit of the invention according to claim 3 is configured such that the supercooling heat exchanger causes the supercooling heat between the refrigerant that has passed through the outdoor heat exchanger and the indoor heat exchanger in the same direction regardless of whether it is cooling or heating. Since the two refrigerants passing through the supercooling heat exchanger flow in opposite directions, the supercooling heat exchange between the supercooled refrigerant from the condenser and the superheated refrigerant from the evaporator is performed. Can be carried out by counter flow regardless of cooling or heating.
Therefore, according to this invention, the coefficient of performance of the refrigerant circuit of the invention according to claim 1 can be further improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of a refrigerant circuit according to the present invention.
FIG. 2 is a view showing a specific structure of the electric expansion valve in FIG. 1;
FIG. 3 is a diagram showing an embodiment different from FIG.
FIG. 4 is a view showing a conventional check valve bridge refrigerant circuit that performs counter flow of an indoor / outdoor heat exchanger and regulation of the expansion valve flow down direction.
FIG. 5 is a diagram showing a conventional check valve bridge refrigerant circuit that performs counterflow of an indoor / outdoor heat exchanger, regulation of the expansion valve flow direction, and supercooling heat exchange.
[Explanation of symbols]
31, 33, 34, 35, 51, 53, 54, 55 ... check valves,
32,52 ... outdoor heat exchanger, 36,56 ... indoor heat exchanger,
37, 57 ... first electric expansion valve, 38, 58 ... second electric expansion valve,
39,59 ... compressor, 40,60 ... four-way selector valve,
42: Outdoor unit, 43, 63 ... Indoor unit,
62 ... Supercooling heat exchanger.

Claims (3)

第1逆止弁(31,51),室外熱交換器(32,52)および第2逆止弁(33,53)を、冷媒の流れる方向が一方向になるように冷媒管を介して順次環状に接続し、
第3逆止弁(34,54),第4逆止弁(35,55)および室内熱交換器(36,56)を、冷媒の流れる方向が一方向になるように冷媒管を介して順次環状に接続し、
上記第1逆止弁(31,51)および室外熱交換器(32,52)の間と、上記第3逆止弁(34,54)および室内熱交換器(36,56)の間とを、第1電動膨張弁(37,57)が介設された冷媒管で連結し、
上記第2逆止弁(33,53)および室外熱交換器(32,52)の間と、上記第4逆止弁(35,55)および室内熱交換器(36,56)の間とを、第2電動膨張弁(38,58)が介設された冷媒管で連結し、
上記第1逆止弁(31,51)および第2逆止弁(33,53)の間と圧縮機(39,59)の吐出口とを、四路切換弁(40,60)を介して冷媒管で連結し、
上記第3逆止弁(34,54)および第4逆止弁(35,55)の間と上記圧縮機(39,59)の吸入口とを、上記四路切換弁(40,60)を介して冷媒管で連結したことを特徴とする冷媒回路。
The first check valve (31, 51), the outdoor heat exchanger (32, 52) and the second check valve (33, 53) are sequentially passed through the refrigerant pipe so that the direction of refrigerant flow is one direction. Connected in a ring,
The third check valve (34, 54), the fourth check valve (35, 55) and the indoor heat exchanger (36, 56) are sequentially passed through the refrigerant pipe so that the refrigerant flows in one direction. Connected in a ring,
Between the first check valve (31, 51) and the outdoor heat exchanger (32, 52) and between the third check valve (34, 54) and the indoor heat exchanger (36, 56). The first electric expansion valve (37, 57) is connected by a refrigerant pipe interposed,
Between the second check valve (33, 53) and the outdoor heat exchanger (32, 52) and between the fourth check valve (35, 55) and the indoor heat exchanger (36, 56). The second electric expansion valve (38, 58) is connected with a refrigerant pipe interposed,
Between the first check valve (31, 51) and the second check valve (33, 53) and the discharge port of the compressor (39, 59) are connected via a four-way switching valve (40, 60). Connect with refrigerant pipe,
Between the third check valve (34, 54) and the fourth check valve (35, 55) and the suction port of the compressor (39, 59), the four-way switching valve (40, 60) A refrigerant circuit, wherein the refrigerant circuit is connected via a refrigerant pipe.
請求項1に記載の冷媒回路において、
上記第1電動膨張弁(37,57)および第2電動膨張弁(38,58)は、冷媒を一方向に流した場合のスラッジの付着量が他方向に流した場合の付着量に比して少ない構造を有していることを特徴とする冷媒回路。
The refrigerant circuit according to claim 1,
The first electric expansion valve (37, 57) and the second electric expansion valve (38, 58) have a sludge adhesion amount when the refrigerant is flowed in one direction compared to an adhesion amount when the sludge is flowed in the other direction. A refrigerant circuit characterized by having a small structure.
請求項1に記載の冷媒回路において、
上記室外熱交換器(52)を出た冷媒と上記室内熱交換器(56)を出た冷媒との過冷却熱交換をおこなう過冷却熱交換器(62)を備えたことを特徴とする冷媒回路。
The refrigerant circuit according to claim 1,
A refrigerant comprising a supercooling heat exchanger (62) for performing supercooling heat exchange between the refrigerant exiting the outdoor heat exchanger (52) and the refrigerant exiting the indoor heat exchanger (56). circuit.
JP08643596A 1996-04-09 1996-04-09 Refrigerant circuit Expired - Fee Related JP3680225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08643596A JP3680225B2 (en) 1996-04-09 1996-04-09 Refrigerant circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08643596A JP3680225B2 (en) 1996-04-09 1996-04-09 Refrigerant circuit

Publications (2)

Publication Number Publication Date
JPH09280680A JPH09280680A (en) 1997-10-31
JP3680225B2 true JP3680225B2 (en) 2005-08-10

Family

ID=13886845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08643596A Expired - Fee Related JP3680225B2 (en) 1996-04-09 1996-04-09 Refrigerant circuit

Country Status (1)

Country Link
JP (1) JP3680225B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101228100B1 (en) * 2011-06-20 2013-02-04 한국생산기술연구원 Heat pump system having heat source of water by using water line changing and coolant line changing method
CN102980333A (en) * 2012-12-05 2013-03-20 海信(山东)空调有限公司 Air conditioner refrigerant circulating system comprising multiple four-way valves and air conditioner
US20230358446A1 (en) * 2020-11-13 2023-11-09 Mitsubishi Electric Corporation Refrigeration cycle device

Also Published As

Publication number Publication date
JPH09280680A (en) 1997-10-31

Similar Documents

Publication Publication Date Title
JP4477347B2 (en) Multi air conditioner with multiple distributors that can be shut off
US8020405B2 (en) Air conditioning apparatus
US20080060365A1 (en) Refrigeration System
EP2339269B1 (en) Air conditioner
EP0962725A1 (en) Airconditioner using inflammable refrigerant
EP1643196B1 (en) Air conditioner
JP2005274134A (en) Heat pump type floor heating air conditioner
EP2685181B1 (en) Air conditioner
JP2804527B2 (en) Air conditioner
WO2017010007A1 (en) Air conditioner
JP5186398B2 (en) Air conditioner
JP2009243842A (en) Operation method of multiple-type air conditioner and outdoor unit
JP3680225B2 (en) Refrigerant circuit
WO2004013550A1 (en) Refrigeration equipment
JP2007032857A (en) Refrigerating device
CN111059732A (en) Air conditioner and control method thereof
KR100526204B1 (en) A refrigerator
WO2007040031A1 (en) Liquid gas heat exchanger for air conditioner
JP2682500B2 (en) Air conditioner
JP3728592B2 (en) Air conditioner
JP4906885B2 (en) Refrigeration cycle equipment
JP4157027B2 (en) Heat pump refrigeration system
CN219177868U (en) Variable-frequency four-pipe air conditioning system
CN115183404B (en) Control method of air conditioning system
JP2005042980A (en) Heat accumulating type air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050502

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080527

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees