WO2019244244A1 - Phase shifter - Google Patents

Phase shifter Download PDF

Info

Publication number
WO2019244244A1
WO2019244244A1 PCT/JP2018/023292 JP2018023292W WO2019244244A1 WO 2019244244 A1 WO2019244244 A1 WO 2019244244A1 JP 2018023292 W JP2018023292 W JP 2018023292W WO 2019244244 A1 WO2019244244 A1 WO 2019244244A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
low
capacitance
side switch
input
Prior art date
Application number
PCT/JP2018/023292
Other languages
French (fr)
Japanese (ja)
Inventor
友絢 大塚
政毅 半谷
竜太 幸丸
山中 宏治
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020525119A priority Critical patent/JP6808096B2/en
Priority to PCT/JP2018/023292 priority patent/WO2019244244A1/en
Publication of WO2019244244A1 publication Critical patent/WO2019244244A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/18Networks for phase shifting
    • H03H7/20Two-port phase shifters providing an adjustable phase shift

Definitions

  • the present invention relates to a phase shifter, and more particularly, to a phase shifter having a structure in which a high-pass filter and a right / left handed composite line (CRLH line) are switched by a switch.
  • a phase shifter having a structure in which a high-pass filter and a right / left handed composite line (CRLH line) are switched by a switch.
  • CTLH line right / left handed composite line
  • phase shifter for example, in Patent Document 1, an input-side switch and an output-side switch connect a T-type high-pass filter and a T-type or ⁇ -type low-pass filter between an input terminal and an output terminal.
  • a phase shifter is shown.
  • the high-pass filter causes a phase advance
  • the low-pass filter causes a phase delay.
  • a high-pass filter and a low-pass filter are switched between a high-pass filter and a low-pass filter by an input-side switch and an output-side switch to generate a pass phase difference, and the phase shift amount is obtained from the pass phase difference.
  • the high-pass filter has a characteristic that the phase advance is large in the low-frequency region and small in the high-frequency region.
  • the filter has a characteristic of a small phase delay in a low frequency region and a large phase shift in a high frequency region.
  • the present invention has been made in view of the above-described problems, and provides a phase shifter that can reduce a phase shift amount error in a low frequency region with respect to a conventional phase shifter that switches and connects a high-pass filter and a low-pass filter.
  • the purpose is to get.
  • a phase shifter includes a first output terminal of an input-side switch having a first output terminal and a second output terminal, and an output having a first input terminal and a second input terminal.
  • a high-pass filter connected between the first input terminal of the side switch and the right hand connected between the second output terminal of the input switch and the second input terminal of the output switch ⁇ Equipped with a left-handed composite line.
  • the phase shift amount error in the high frequency region can be made smaller than that of a conventional phase shifter that switches and connects a high-pass filter and a low-pass filter.
  • FIG. 2 is a circuit diagram showing a phase shifter according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram illustrating a relationship between a frequency and a passing phase of a high-pass filter and a right-hand / left-handed composite line in the phase shifter according to the first embodiment of the present invention.
  • FIG. 3 is an equivalent circuit diagram of the right-handed / left-handed combined line in the phase shifter according to Embodiment 1 of the present invention at the time of low frequency operation.
  • FIG. 3 is an equivalent circuit diagram of the right-hand / left-hand composite line in the phase shifter according to Embodiment 1 of the present invention at the time of high-frequency operation.
  • FIG. 1 is a circuit diagram showing a phase shifter according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram illustrating a relationship between a frequency and a passing phase of a high-pass filter and a right-hand / left-handed composite line in the phase shifter according
  • FIG. 3 is a diagram illustrating a relationship between a frequency and a passing phase in the phase shifter according to the first embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a result of verifying a relationship between a frequency and a passing phase of a high-pass filter and a right-hand / left-handed composite line in the phase shifter according to the first embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a result of verifying a relationship between a frequency and a passing phase of a high-pass filter and a right-hand / left-handed composite line in the phase shifter according to the first embodiment of the present invention.
  • FIG. 9 is a circuit diagram showing a phase shifter according to Embodiment 2 of the present invention.
  • FIG. 9 is a circuit diagram showing a phase shifter according to Embodiment 3 of the present invention.
  • FIG. 13 is a circuit diagram showing a phase shifter according to Embodiment 4 of the present invention.
  • FIG. 13 is a circuit diagram showing a phase shifter according to Embodiment 5 of the present invention.
  • FIG. 16 is a circuit diagram showing a phase shifter according to Embodiment 6 of the present invention.
  • FIG. 15 is a circuit diagram showing a phase shifter according to Embodiment 7 of the present invention.
  • FIG. 1 is a diagram showing a phase shifter according to Embodiment 1 of the present invention.
  • a high-frequency signal is input to an input terminal 1.
  • a high-frequency signal is output from the output terminal 2, and a phase shift amount is obtained from a passing phase difference generated by the high-frequency signal that has passed by switching the two transmission paths.
  • the input-side switch 3 has an input terminal 3a connected to the input terminal 1, a first output terminal 3b, and a second output terminal 3c.
  • the input-side switch 3 includes, for example, an SPDT switch 4 disclosed in Patent Document 1.
  • the output-side switch 4 has a first input terminal 4a, a second input terminal 4b, and an output terminal 4c connected to the output terminal 2.
  • the output-side switch 4 is composed of, for example, an SPDT switch 5 disclosed in Patent Document 1.
  • the input-side switch 3 and the output-side switch 4 are switches that can be switched to a switching signal (not shown).
  • the input-side switch 3 When the switching signal indicates the high-frequency selection, the input-side switch 3 connects the input terminal 3a to the first output terminal 3b, and the output-side switch 4 connects the first input terminal 4a to the output terminal 4c.
  • the input-side switch 3 When the switching signal indicates low-frequency selection, the input-side switch 3 connects the input terminal 3a to the second output terminal 3c, and the output-side switch 4 connects the second input terminal 4b to the output terminal 4c. I do.
  • the high-pass filter 100 is connected between a first output terminal 3 b of the input-side switch 3 and a first input terminal 4 a of the output-side switch 4.
  • the high-pass filter 100 is arranged between the first output terminal 3b of the input-side switch 3 and the first input terminal 4a of the output-side switch 4 in order from the first output terminal 3b of the input-side switch 3.
  • a first high-frequency capacitance 101 and a second high-frequency capacitance 102 connected in series, and a connection point P1 between the first high-frequency capacitance 101 and the second high-frequency capacitance 102 and a ground node , And a first high-frequency inductor 103 connected thereto.
  • the capacitance CH of the first high-band capacitance 101 and the second high-band capacitance 102 constituting the high-pass filter 100 and the inductance LH of the first high-band inductor 103 are expressed by the following equations (1) and (1), respectively. This is shown in (2). As understood from the equations (1) and (2), the capacitance CH of the first high-band capacitance 101 and the second high-band capacitance 102 constituting the high-pass filter 100, and the first high The inductance LH of the band inductor 103 depends on the operating center frequency ⁇ 0 and the passing phase ⁇ 0.
  • the capacitance CH of the first high-band capacitance 101 and the second high-band capacitance 102 constituting the high-pass filter 100 is such that the normalized susceptance of the operating center frequency ⁇ 0 is half of the phase shift amount (pass phase) ⁇ 0. Satisfies the reciprocal of the tangent of FIG. 2 shows the relationship between the operating center frequency ⁇ 0 and the passing phase ⁇ 0. Further, the inductance LH of the first high-pass inductor 103 constituting the high-pass filter 100 is such that the normalized reactance of the center frequency satisfies the reciprocal of the sine of the phase shift amount. Note that the operation center frequency of the high-pass filter 100 is the operation center frequency ⁇ 0 of the phase shifter.
  • ⁇ 0 is the angular frequency of the operating center frequency
  • Z0 is the impedance of the power supply circuit
  • ⁇ 0 is the passing phase of the high-pass filter 100 at the operating center frequency ⁇ 0.
  • the high-pass filter 100 has a phase-advancing characteristic as shown by a characteristic curve C1 in FIG.
  • FIG. 2 is a diagram showing the relationship between the frequency and the passing phase.
  • the horizontal axis indicates the frequency and the vertical axis indicates the passing phase.
  • the phase shift has a large characteristic in a low frequency region, and the characteristic has a small transfer advance in a high frequency region.
  • a right-hand / left-hand composite line (hereinafter, referred to as a CRLH line) 200 is connected between a second output terminal 3c of the input-side switch 3 and a second input terminal 4b of the output-side switch 4.
  • the CRLH line 200 is arranged between the second output terminal 3c of the input-side switch 3 and the second input terminal 4b of the output-side switch 4 in order from the second output terminal 3c of the input-side switch 3.
  • the inductance LR of the first low-frequency inductor 201 constituting the CRLH line 200 is expressed by the following equation (3)
  • the capacitance CL of the first low-frequency capacitance 202 is expressed by the following equation (4)
  • the second low-frequency inductor 202 is expressed by the following equation (4).
  • the following equation (5) shows the inductance LL of the inductor 204
  • the following equation (6) shows the capacitance CR of the second low-frequency capacitance 203.
  • the coefficients A and ⁇ used in the equations (3) to (6) are shown in the following equations (7) and (8), respectively.
  • the boundary frequency ⁇ during the operation in the low-frequency region and the boundary frequency ⁇ during the operation in the high-frequency region are set as the operation center frequency ⁇ 0 of the phase shifter.
  • the operation center frequency of the high-pass filter 100 and the operation center frequency of the CRLH line 200 match the operation center frequency ⁇ 0 of the phase shifter.
  • the capacitance CL of the first low-frequency capacitance 202 configuring the CRLH line 200, the inductance LL of the second low-frequency inductor 204, and the The capacitance CR of the second low-frequency capacitance 203 depends on the inductance LR of the first low-frequency inductor 201.
  • the inductance LR of the first low-frequency inductor 201 depends on the operating center frequency ⁇ 0
  • the capacitance CL of the first low-frequency capacitance 202 and The inductance LL of the second low-frequency inductor 204 and the capacitance CR of the second low-frequency capacitance 203 also depend on the operating center frequency ⁇ 0.
  • the coefficient ⁇ depends on the frequency bandwidth
  • the bandwidth of the phase shifter is equal to the first low-band inductor constituting the CRLH line 200.
  • Lmim has a passing amplitude at or above the operation lower limit frequency ⁇ mim equal to or greater than Lmim.
  • ⁇ mim and ⁇ max are the angular frequencies of the operation lower limit operation frequency and the operation upper limit frequency in the CRLH line 200, respectively.
  • the first low-frequency capacitance 202 is dominant in the first low-frequency inductor 201 and the first low-frequency capacitance 202 connected in series, and the first low-frequency capacitance 202 is connected in parallel.
  • the second low-frequency capacitance 203 and the second low-frequency inductor 204 the second low-frequency inductor 204 becomes dominant. Therefore, the CRLH line 200 functions as a high-pass filter composed of the first low-pass capacitance 202 and the second low-pass inductor 204 as shown in FIG. Pretend to have.
  • the first low-frequency inductor 201 becomes dominant in the first low-frequency inductor 201 and the first low-frequency capacitance 202 that are connected in series, and the CRLH line 200 is connected in parallel.
  • the second low-frequency capacitance 203 and the second low-frequency inductor 204 the second low-frequency capacitance 203 becomes dominant. Therefore, the CRLH line 200 functions as a low-pass filter composed of the first low-pass inductor 201 and the second low-pass capacitance 203 as shown in FIG. Pretend to have.
  • the first low-frequency inductor 201 and the first low-frequency inductor 201 connected in series do not have a bandgap that is neither during operation in the low-frequency region nor during operation in the high-frequency region.
  • the resonance frequency ⁇ se of the low-band capacitance 202 and the resonance frequency ⁇ sh of the second low-band capacitance 203 and the second low-band inductor 204 connected in parallel are made the same.
  • the boundary frequency ( ⁇ point frequency) ⁇ between the operation in the low frequency region and the operation in the high frequency region the CRLH line 200 operates in the low frequency region and operates in the high frequency region for the boundary frequency ⁇ .
  • the boundary frequency ⁇ matches the resonance frequency ⁇ se and the resonance frequency ⁇ sh, the second low band connected in parallel with the series resonance by the first low band inductor 201 and the first low band capacitance 202 connected in series.
  • the passing phase of the CRLH line 200 becomes zero due to the parallel resonance caused by the capacitance 203 for the low frequency and the inductor 204 for the low frequency band. Therefore, the boundary frequency ⁇ is set to the operation center frequency ⁇ 0 of the phase shifter.
  • the CRLH line 200 behaves as a high-pass filter in the low-frequency region, acts as a low-pass filter in the high-frequency region, sets the boundary frequency ⁇ as the operating center frequency ⁇ 0 of the phase shifter, and changes the passing phase at the boundary frequency ⁇ .
  • the characteristic curve C2 in FIG. 2 the characteristic has a phase leading characteristic in a low frequency region where the frequency is lower than the boundary frequency ⁇ , and has a phase lag characteristic in a high frequency region where the frequency is higher than the boundary frequency ⁇ .
  • the passing phase difference between the two curves C1-C2 can be substantially the same from the low frequency region to the high frequency region.
  • the amount of phase shift from the phase shifter is a characteristic curve C0 shown in FIG.
  • FIG. 5 is a diagram showing the relationship between the frequency and the phase shift amount.
  • the horizontal axis indicates frequency, and the vertical axis indicates the amount of phase shift.
  • the operation center frequency ⁇ 0 of the phase shifter is the operation center frequency FC
  • the phase shift amount at the operation center frequency FC is ⁇ 0
  • the high frequency FH that is, the transfer amount error with the phase shift amount ⁇ 0 at the operation upper limit frequency ⁇ max of the CRLH line 200
  • B1 the low frequency FL, that is, the transfer amount error from the phase shift amount ⁇ 0 at the lower limit operation frequency ⁇ mim of the CRLH line 200.
  • a characteristic curve of a conventional phase shifter that switches and connects a high-pass filter and a low-pass filter is shown as Cc.
  • the operation center frequency FC that is, the phase shift amount ⁇ 0 at the operation center frequency ⁇ 0 of the phase shifter is such that the passing phase at the operation center frequency ⁇ 0 of the high-pass filter 100 is ⁇ 0, and the CRLH line 200 Is 0, the pass phase is the same as the pass phase ⁇ 0 at the operating center frequency ⁇ 0 of the high-pass filter 100.
  • the phase shift amount ⁇ 0 at the operation center frequency ⁇ 0 of the phase shifter is the phase shift amount of the phase shifter.
  • the transfer amount error B1 with the phase shift amount ⁇ 0 at the low frequency FL in the phase shifter according to the first embodiment can be made substantially the same as the transfer amount error A with the phase shift amount ⁇ 0 at the high frequency FH.
  • the shift amount error B2 with the phase shift amount PSH in the low frequency FL in the phase shifter can be reduced.
  • the phase shift amount error in the phase shifter can be suppressed within a wide frequency range from the low frequency FL to the high frequency FH.
  • the phase shifter described in the first embodiment has a flat phase shift characteristic over a wide frequency band, so that a wideband phase shifter can be realized.
  • the relationship between the frequency and the passing phase in the high-pass filter 100, the frequency and the passing phase in the CRLH line 200, and 6 and FIG. 7 show the results of verifying the relationship between the phase shifter and the frequency as the phase shifter and the amount of phase shift.
  • the verification is performed with the design values at a phase shift amount of 45 ° and a quadruple band (4 to 16 GHz).
  • the characteristic curve C1 in the high-pass filter 100 and the characteristic curve C2 in the CRLH line 200 have almost the same change in the passing phase from 4 GHz to 19 GHz.
  • the characteristic curve C0 of the phase shifter shows a flat phase shift characteristic from 4 GHz to 19 GHz.
  • the phase shifter according to the first embodiment has a flat phase shift characteristic over a wide frequency band, so that a wideband phase shifter can be realized.
  • FIG. Embodiment 2 of the present invention will be described with reference to FIG.
  • the phase shifter according to the second embodiment of the present invention differs from the phase shifter according to the first embodiment in that high-pass filter 100 is changed to high-pass filter 100a, and the other points are the same. is there.
  • the same reference numerals as those shown in FIG. 1 indicate the same or corresponding parts. Therefore, the description will focus on the high-pass filter 100a.
  • the high-pass filter 100a is arranged in series between the first output terminal 3b of the input-side switch 3 and the first input terminal 4a of the output-side switch 4 in order from the first output terminal 3b of the input-side switch 3.
  • a first high-frequency inductor 103 connected between a connection point P1 of the first and second high-frequency capacitances 102 and the ground node.
  • the high-pass filter 100a configured as described above is different from the high-pass filter 100 described in the first embodiment in that the first output terminal 3b of the input-side switch 3 and the first high-pass filter
  • the second high-frequency inductor 104 connected between the second high-frequency capacitor 101 and the third input terminal 4 a of the output-side switch 4.
  • the high-frequency inductor 105 is provided.
  • the high-pass filter 100a configured as described above uses the second high-pass inductor 104 and the third high-pass inductor 105 to connect the second high-pass inductor 104 and the third high-pass inductor 105 to each other.
  • the phase lead in the high-frequency region is smaller than that in the case where it is not provided. Therefore, the passing phase difference can be reduced in the high frequency region with respect to the phase delay of the CRLH line 200.
  • a phase shifter a transfer amount error in a high frequency region can be reduced, a flat phase shift amount characteristic in a high frequency region can be widened, and a broadband phase shifter can be realized.
  • both the second high-frequency inductor 104 and the third high-frequency inductor 105 are provided.
  • the second high-frequency inductor 104 and the third high-frequency inductor 104 are provided.
  • One provided with any one of the inductors 105 may be used.
  • the second high-pass inductor 104 or the third high-pass inductor 105 causes the phase lead in the high-frequency region to be higher than that without the second high-pass inductor 104 and the third high-pass inductor 105. Become smaller. As a result, the same effect as in the second embodiment can be obtained.
  • FIG. Third Embodiment A third embodiment of the present invention will be described with reference to FIG.
  • the phase shifter according to the third embodiment of the present invention is different from the phase shifter according to the first embodiment in that high-pass filter 100 is changed to high-pass filter 100b, and the other points are the same. is there.
  • the same reference numerals as those shown in FIG. 1 indicate the same or corresponding parts. Therefore, the description will focus on the high-pass filter 100b.
  • the high-pass filter 100b is disposed between the first output terminal 3b of the input-side switch 3 and the first input terminal 4a of the output-side switch 4 in order from the first output terminal 3b of the input-side switch 3.
  • a first high-frequency capacitance 101 and a second high-frequency capacitance 102 connected in series, and a connection point P1 between the first high-frequency capacitance 101 and the second high-frequency capacitance 102 and a ground node ,
  • a first high-frequency resistor 106 connected in parallel with the first high-frequency capacitance 101, and a second high-frequency capacitance 102 connected in parallel with the second high-frequency capacitance 102.
  • a second high-frequency resistor 107 is provided.
  • the high-pass filter 100b thus configured is different from the high-pass filter 100 described in the first embodiment in that the first high-pass filter 101b is further connected in parallel to the first high-pass capacitance 101. And a second high-frequency resistor 107 connected in parallel with the second high-frequency capacitance 102.
  • the high-pass filter 100b configured as described above can increase the passage loss in the high-pass filter 100b by providing the first high-pass resistor 106 and the second high-pass resistor 107. As a result, the passage loss of the high-pass filter 100b and the CRLH line 200 can be made equal. Therefore, the phase shifter according to the third embodiment has the same effect as the phase shifter according to the first embodiment. In addition, when the phase shifter is used for an array antenna, deterioration of the array antenna can be prevented. It has the effect of being able to do it.
  • Embodiment 4 of the present invention will be described with reference to FIG.
  • the phase shifter according to Embodiment 4 of the present invention is different from the phase shifter according to Embodiment 1 in that high-pass filter 100 is changed to high-pass filter 100c, and the other points are the same. is there.
  • FIG. 10 the same reference numerals as those shown in FIG. 1 indicate the same or corresponding parts. Therefore, the description will focus on the high-pass filter 100c.
  • the high-pass filter 100c is disposed between the first output terminal 3b of the input-side switch 3 and the first input terminal 4a of the output-side switch 4 in order from the first output terminal 3b of the input-side switch 3.
  • a first high-frequency capacitance 101 and a second high-frequency capacitance 102 connected in series, and a connection point P1 between the first high-frequency capacitance 101 and the second high-frequency capacitance 102 and a ground node
  • a first high-frequency inductor 103 and a third high-frequency resistor 108 connected in series from the connection point P1 side.
  • the high-pass filter 100c thus configured is different from the high-pass filter 100 described in the first embodiment in that the high-pass filter 100c is further connected between the first high-pass inductor 103 and the ground node. 3 is provided with a high-frequency resistor 108.
  • the high-pass filter 100c configured as described above can increase the transmission loss in the high-pass filter 100c by providing the third high-pass resistor 108. As a result, the passage loss of the high-pass filter 100c and the CRLH line 200 can be made equal. Therefore, the phase shifter according to the fourth embodiment has the same effect as the phase shifter according to the first embodiment. In addition, when the phase shifter is used for an array antenna, deterioration of the array antenna can be prevented. It has the effect of being able to do it.
  • FIG. Embodiment 5 of the present invention will be described with reference to FIG.
  • the phase shifter according to the fifth embodiment of the present invention differs from the phase shifter according to the first embodiment in that CRLH line 200 is changed to CRLH line 200a, and the other points are the same.
  • the same reference numerals as those shown in FIG. 1 indicate the same or corresponding parts. Therefore, the description will focus on the CRLH line 200a.
  • the CRLH line 200a is a so-called ⁇ -type CRLH line, and is provided between the second output terminal 3c of the input switch 3 and the second input terminal 4b of the output switch 4, And the first low-frequency inductor 201 and the first low-frequency capacitance 202 connected in series from the output terminal 3c side of the output switch 3 in parallel with the second input terminal 4b of the output-side switch 4 and the ground node.
  • the second low-frequency capacitance 203 and the second low-frequency inductor 204, and the third low-frequency capacitance connected in parallel between the second output terminal 3c of the input-side switch 3 and the ground node.
  • 205 and a third low-frequency inductor 206 are examples of the third low-frequency inductor 206.
  • the CRLH line 200a thus configured is further connected in parallel between the CRLH line 200 described in the first embodiment and the second output terminal 3c of the input-side switch 3 and the ground node.
  • a third low-frequency capacitance 205 and a third low-frequency inductor 206 are provided.
  • the CRLH line 200a configured as described above is connected to the third low-band capacitance 205 and the third low-band inductor 206 by the third low-band capacitance 205 and the third low-band inductor 206.
  • the phase lag in the high frequency region is smaller than that without the inductor 206. Therefore, the pass phase difference can be reduced in the high frequency region with respect to the phase delay of the high-pass filter 100.
  • a phase shifter a transfer amount error in a high frequency region can be reduced, a flat phase shift amount characteristic in a high frequency region can be widened, and a broadband phase shifter can be realized.
  • FIG. Embodiment 6 of the present invention will be described with reference to FIG.
  • the phase shifter according to the sixth embodiment of the present invention is different from the phase shifter according to the first embodiment in that CRLH line 200 is changed to CRLH line 200b, and the other points are the same.
  • the same reference numerals as those shown in FIG. 1 indicate the same or corresponding parts. Therefore, the description will focus on the CRLH line 200b.
  • the CRLH line 200b is connected in series from the second output terminal 3c of the input-side switch 3 to the second input terminal 4b of the output-side switch 4 in order from the second output terminal 3c of the input-side switch 3.
  • the CRLH line 200b thus configured is different from the CRLH line 200 described in the first embodiment in that the second output terminal 3c of the input-side switch 3 and the first low-band inductor A first low-frequency resistor 207 connected between the first and second low-frequency resistors 201 is provided.
  • the CRLH line 200b thus configured can increase the passage loss of the CRLH line 200b by providing the first low-frequency resistor 207.
  • the passage loss of the high-pass filter 100 and that of the CRLH line 200b can be made the same. Therefore, the phase shifter according to the sixth embodiment has the same effect as that of the phase shifter according to the first embodiment.
  • the phase shifter is used for an array antenna, deterioration of the array antenna can be prevented. It has the effect of being able to.
  • Embodiment 7 of the present invention will be described with reference to FIG.
  • the phase shifter according to the seventh embodiment of the present invention is different from the phase shifter according to the first embodiment in that CRLH line 200 is changed to CRLH line 200c, and the other points are the same.
  • the same reference numerals as those shown in FIG. 1 indicate the same or corresponding parts. Therefore, the description will focus on the CRLH line 200c.
  • the CRLH line 200c is connected in series between the second output terminal 3c of the input switch 3 and the second input terminal 4b of the output switch 4 from the second output terminal 3c of the input switch 3 in order.
  • the first low-pass inductor 201 and the first low-pass capacitance 202 connected to the second low-pass capacitor connected in parallel between the second input terminal 4b of the output-side switch 4 and the ground node. It has a capacitance 203 and a second low-frequency inductor 204, and a second low-frequency capacitance 203 and a second low-frequency resistor 208 connected in parallel with the second low-frequency inductor 204.
  • the CRLH line 200c configured as described above is further connected to the CRLH line 200 described in the first embodiment by a second low-frequency capacitance 203 and a second low-frequency inductor connected in parallel.
  • a second low-frequency resistor 208 connected in parallel with 204 is provided.
  • the CRLH line 200c thus configured can increase the passage loss of the CRLH line 200c by providing the second low-frequency resistor 208. As a result, the passage loss of the high-pass filter 100 and the CRLH line 200c can be made equal. Therefore, the phase shifter according to the seventh embodiment has the same effect as the phase shifter according to the first embodiment. In addition, when the phase shifter is used for an array antenna, deterioration of the array antenna can be prevented. It has the effect of being able to do it.
  • any combination of the embodiments can be freely combined, or any of the constituent elements of each of the embodiments can be modified, or any of the constituent elements can be omitted in each of the embodiments. .
  • phase shifter according to the present invention can be suitably applied to a phased array antenna and a multi-beam antenna.

Landscapes

  • Filters And Equalizers (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Networks Using Active Elements (AREA)

Abstract

The present invention is provided with: a high-pass filter (100) connected between a first output end (3b) of an input-side changeover switch (3) and a first input end (4a) of an output-side changeover switch (4); and a right-handed/left-handed composite line path (200) connected between a second output end (3c) of the input-side changeover switch (3) and a second input end (4b) of the output-side changeover switch (4).

Description

移相器Phase shifter
 この発明は、移相器に係り、特に、高域フィルタと右手・左手系複合線路(CRLH線路)をスイッチで切り替える構造を持つ移相器に関する。 The present invention relates to a phase shifter, and more particularly, to a phase shifter having a structure in which a high-pass filter and a right / left handed composite line (CRLH line) are switched by a switch.
 移相器として、例えば、特許文献1に、入力側切替スイッチと出力側切替スイッチとにより、T型高域フィルタとT型又はπ型低域フィルタが入力端子と出力端子の間を切替接続される移相器が示されている。
 このように構成された移相器にあっては、高域フィルタは位相進みを生じ、低域フィルタは位相遅れが生じる。その結果、高域フィルタと低域フィルタを入力側切替スイッチ及び出力側切替スイッチにより高域フィルタと低域フィルタを切り替えることにより通過位相差が生じ、この通過位相差から移相量を得ている。
As a phase shifter, for example, in Patent Document 1, an input-side switch and an output-side switch connect a T-type high-pass filter and a T-type or π-type low-pass filter between an input terminal and an output terminal. A phase shifter is shown.
In the phase shifter thus configured, the high-pass filter causes a phase advance, and the low-pass filter causes a phase delay. As a result, a high-pass filter and a low-pass filter are switched between a high-pass filter and a low-pass filter by an input-side switch and an output-side switch to generate a pass phase difference, and the phase shift amount is obtained from the pass phase difference. .
特開2002-76810号公報JP-A-2002-76810
 高域フィルタと低域フィルタを切替接続する移相器にあっては、高域フィルタが低周波領域では移相進みが大きく、高周波領域では移送進みが小さい移相進みの特性を持ち、低域フィルタが低周波領域では位相遅れが小さく、高周波では移相遅れが大きい位相遅れの特性を持つ。
 その結果、入力側切替スイッチ及び出力側切替スイッチにより高域フィルタと低域フィルタを切り替えることによる通過位相差は、設定する移相量に対し、低周波領域の移相量誤差が高周波領域の移送量誤差に対して大きくなり、設定する移相量に対して設定する移相量誤差範囲内を広い周波数領域に亘って得ることが困難であるという課題があった。
In a phase shifter that switches and connects a high-pass filter and a low-pass filter, the high-pass filter has a characteristic that the phase advance is large in the low-frequency region and small in the high-frequency region. The filter has a characteristic of a small phase delay in a low frequency region and a large phase shift in a high frequency region.
As a result, the passing phase difference caused by switching between the high-pass filter and the low-pass filter by the input-side changeover switch and the output-side changeover switch indicates that the phase shift amount error in the low frequency region is smaller than the phase shift amount to be set. However, there is a problem that it is difficult to obtain the phase shift amount error range set for the set phase shift amount over a wide frequency range.
 この発明は、上記した課題に鑑みてなされてものであり、従来の高域フィルタと低域フィルタを切替接続する移相器に対して低周波領域の移相量誤差を小さくできる移相器を得ることを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and provides a phase shifter that can reduce a phase shift amount error in a low frequency region with respect to a conventional phase shifter that switches and connects a high-pass filter and a low-pass filter. The purpose is to get.
 この発明に係る移相器は、第1の出力端と第2の出力端とを有する入力側切替スイッチの第1の出力端と、第1の入力端と第2の入力端とを有する出力側切替スイッチの第1の入力端との間に接続される高域フィルタ、及び入力側切替スイッチの第2の出力端と出力側切替スイッチの第2の入力端との間に接続される右手・左手系複合線路を備える。 A phase shifter according to the present invention includes a first output terminal of an input-side switch having a first output terminal and a second output terminal, and an output having a first input terminal and a second input terminal. A high-pass filter connected between the first input terminal of the side switch and the right hand connected between the second output terminal of the input switch and the second input terminal of the output switch・ Equipped with a left-handed composite line.
 この発明によれば、高周波領域の移相量誤差を、従来の高域フィルタと低域フィルタを切替接続する移相器に対して小さくできる。 According to the present invention, the phase shift amount error in the high frequency region can be made smaller than that of a conventional phase shifter that switches and connects a high-pass filter and a low-pass filter.
この発明の実施の形態1に係る移相器を示す回路図である。FIG. 2 is a circuit diagram showing a phase shifter according to Embodiment 1 of the present invention. この発明の実施の形態1に係る移相器における高域フィルタ及び右手・左手系複合線路の周波数と通過位相との関係を示す図である。FIG. 4 is a diagram illustrating a relationship between a frequency and a passing phase of a high-pass filter and a right-hand / left-handed composite line in the phase shifter according to the first embodiment of the present invention. この発明の実施の形態1に係る移相器における右手・左手系複合線路の低周波動作時の等価回路図である。FIG. 3 is an equivalent circuit diagram of the right-handed / left-handed combined line in the phase shifter according to Embodiment 1 of the present invention at the time of low frequency operation. この発明の実施の形態1に係る移相器における右手・左手系複合線路の高周波動作時の等価回路図である。FIG. 3 is an equivalent circuit diagram of the right-hand / left-hand composite line in the phase shifter according to Embodiment 1 of the present invention at the time of high-frequency operation. この発明の実施の形態1に係る移相器における周波数と通過位相との関係を示す図である。FIG. 3 is a diagram illustrating a relationship between a frequency and a passing phase in the phase shifter according to the first embodiment of the present invention. この発明の実施の形態1に係る移相器における高域フィルタ及び右手・左手系複合線路の周波数と通過位相との関係について検証した結果を示す図である。FIG. 4 is a diagram illustrating a result of verifying a relationship between a frequency and a passing phase of a high-pass filter and a right-hand / left-handed composite line in the phase shifter according to the first embodiment of the present invention. この発明の実施の形態1に係る移相器における高域フィルタ及び右手・左手系複合線路の周波数と通過位相との関係について検証した結果を示す図である。FIG. 4 is a diagram illustrating a result of verifying a relationship between a frequency and a passing phase of a high-pass filter and a right-hand / left-handed composite line in the phase shifter according to the first embodiment of the present invention. この発明の実施の形態2に係る移相器を示す回路図である。FIG. 9 is a circuit diagram showing a phase shifter according to Embodiment 2 of the present invention. この発明の実施の形態3に係る移相器を示す回路図である。FIG. 9 is a circuit diagram showing a phase shifter according to Embodiment 3 of the present invention. この発明の実施の形態4に係る移相器を示す回路図である。FIG. 13 is a circuit diagram showing a phase shifter according to Embodiment 4 of the present invention. この発明の実施の形態5に係る移相器を示す回路図である。FIG. 13 is a circuit diagram showing a phase shifter according to Embodiment 5 of the present invention. この発明の実施の形態6に係る移相器を示す回路図である。FIG. 16 is a circuit diagram showing a phase shifter according to Embodiment 6 of the present invention. この発明の実施の形態7に係る移相器を示す回路図である。FIG. 15 is a circuit diagram showing a phase shifter according to Embodiment 7 of the present invention.
 以下、この発明をより詳細に説明するため、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 この発明の実施の形態1に係る移相器について図1から図7を用いて説明する。
 図1は、この発明の実施の形態1に係る移相器を示す図である。
 図1において、入力端子1に高周波信号が入力される。出力端子2から高周波信号が出力され、2つの伝送経路を切り替えて通過した高周波信号により生じる通過位相差から移相量が得られる。
Hereinafter, in order to explain this invention in greater detail, the preferred embodiments of the present invention will be described with reference to the accompanying drawings.
Embodiment 1 FIG.
First Embodiment A phase shifter according to a first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a diagram showing a phase shifter according to Embodiment 1 of the present invention.
In FIG. 1, a high-frequency signal is input to an input terminal 1. A high-frequency signal is output from the output terminal 2, and a phase shift amount is obtained from a passing phase difference generated by the high-frequency signal that has passed by switching the two transmission paths.
 入力側切替スイッチ3は、入力端子1に接続される入力端3aと、第1の出力端3bと第2の出力端3cを有する。入力側切替スイッチ3は、例えば、特許文献1に示されたSPDTスイッチ4で構成される。
 出力側切替スイッチ4は、第1の入力端4aと第2の入力端4bと、出力端子2に接続される出力端4cを有する。出力側切替スイッチ4は、例えば、特許文献1に示されたSPDTスイッチ5で構成される。
 入力側切替スイッチ3及び出力側切替スイッチ4は切替信号(図示せず)に切り替えられるスイッチである。切替信号が高域選択を示すと、入力側切替スイッチ3は入力端3aと第1の出力端3bを接続し、出力側切替スイッチ4は第1の入力端4aと出力端4cを接続する。
 また、切替信号が低域選択を示すと、入力側切替スイッチ3は入力端3aと第2の出力端3cを接続し、出力側切替スイッチ4は第2の入力端4bと出力端4cを接続する。
The input-side switch 3 has an input terminal 3a connected to the input terminal 1, a first output terminal 3b, and a second output terminal 3c. The input-side switch 3 includes, for example, an SPDT switch 4 disclosed in Patent Document 1.
The output-side switch 4 has a first input terminal 4a, a second input terminal 4b, and an output terminal 4c connected to the output terminal 2. The output-side switch 4 is composed of, for example, an SPDT switch 5 disclosed in Patent Document 1.
The input-side switch 3 and the output-side switch 4 are switches that can be switched to a switching signal (not shown). When the switching signal indicates the high-frequency selection, the input-side switch 3 connects the input terminal 3a to the first output terminal 3b, and the output-side switch 4 connects the first input terminal 4a to the output terminal 4c.
When the switching signal indicates low-frequency selection, the input-side switch 3 connects the input terminal 3a to the second output terminal 3c, and the output-side switch 4 connects the second input terminal 4b to the output terminal 4c. I do.
 高域フィルタ100は、入力側切替スイッチ3の第1の出力端3bと出力側切替スイッチ4の第1の入力端4aの間に接続される。
 高域フィルタ100は、入力側切替スイッチ3の第1の出力端3bと出力側切替スイッチ4の第1の入力端4aの間に、入力側切替スイッチ3の第1の出力端3b側から順に直列接続される第1の高域用キャパシタンス101及び第2の高域用キャパシタンス102と、これら第1の高域用キャパシタンス101と第2の高域用キャパシタンス102の接続点P1と接地ノードの間に接続される第1の高域用インダクタ103を有する。
The high-pass filter 100 is connected between a first output terminal 3 b of the input-side switch 3 and a first input terminal 4 a of the output-side switch 4.
The high-pass filter 100 is arranged between the first output terminal 3b of the input-side switch 3 and the first input terminal 4a of the output-side switch 4 in order from the first output terminal 3b of the input-side switch 3. A first high-frequency capacitance 101 and a second high-frequency capacitance 102 connected in series, and a connection point P1 between the first high-frequency capacitance 101 and the second high-frequency capacitance 102 and a ground node , And a first high-frequency inductor 103 connected thereto.
 高域フィルタ100を構成する第1の高域用キャパシタンス101及び第2の高域用キャパシタンス102のキャパシタンスCHと、第1の高域用インダクタ103のインダクタンスLHをそれぞれ次式(1)及び次式(2)に示す。
 これら式(1)及び式(2)から理解されるように、高域フィルタ100を構成する第1の高域用キャパシタンス101及び第2の高域用キャパシタンス102のキャパシタンスCHと、第1の高域用インダクタ103のインダクタンスLHは、動作中心周波数ω0と通過位相Φ0に依存している。
The capacitance CH of the first high-band capacitance 101 and the second high-band capacitance 102 constituting the high-pass filter 100 and the inductance LH of the first high-band inductor 103 are expressed by the following equations (1) and (1), respectively. This is shown in (2).
As understood from the equations (1) and (2), the capacitance CH of the first high-band capacitance 101 and the second high-band capacitance 102 constituting the high-pass filter 100, and the first high The inductance LH of the band inductor 103 depends on the operating center frequency ω0 and the passing phase Φ0.
 すなわち、高域フィルタ100を構成する第1の高域用キャパシタンス101及び第2の高域用キャパシタンス102のキャパシタンスCHは、動作中心周波数ω0の規格化サセプタンスが移相量(通過位相)Φ0の半分の正接の逆数を満たす関係になっている。図2に動作中心周波数ω0と通過位相Φ0との関係を示す。
 また、高域フィルタ100を構成する第1の高域用インダクタ103のインダクタンスLHは、中心周波数の規格化リアクタンスが移相量の正弦の逆数を満たす関係になっている。
 なお、高域フィルタ100の動作中心周波数を、移相器の動作中心周波数ω0としている。
That is, the capacitance CH of the first high-band capacitance 101 and the second high-band capacitance 102 constituting the high-pass filter 100 is such that the normalized susceptance of the operating center frequency ω0 is half of the phase shift amount (pass phase) Φ0. Satisfies the reciprocal of the tangent of FIG. 2 shows the relationship between the operating center frequency ω0 and the passing phase Φ0.
Further, the inductance LH of the first high-pass inductor 103 constituting the high-pass filter 100 is such that the normalized reactance of the center frequency satisfies the reciprocal of the sine of the phase shift amount.
Note that the operation center frequency of the high-pass filter 100 is the operation center frequency ω0 of the phase shifter.
Figure JPOXMLDOC01-appb-I000001
 但し、ω0は動作中心周波数の角周波数、Z0は給電回路系インピーダンス、Φ0は動作中心周波数ω0における高域フィルタ100の通過位相である。
Figure JPOXMLDOC01-appb-I000001
Here, ω0 is the angular frequency of the operating center frequency, Z0 is the impedance of the power supply circuit, and Φ0 is the passing phase of the high-pass filter 100 at the operating center frequency ω0.
 高域フィルタ100は、図2にて特性曲線C1にて示すように移相進みの特性を持つ。図2は周波数と通過位相の関係を示す図である。横軸が周波数、縦軸が通過位相を示し、横軸より上が位相進みを下が位相遅れを示す。図2の特性曲線C1から理解されるように、低周波領域では移相進みが大きい特性を示し、高周波領域では移送進みが小さい特性を示す。 The high-pass filter 100 has a phase-advancing characteristic as shown by a characteristic curve C1 in FIG. FIG. 2 is a diagram showing the relationship between the frequency and the passing phase. The horizontal axis indicates the frequency and the vertical axis indicates the passing phase. As can be understood from the characteristic curve C1 in FIG. 2, the phase shift has a large characteristic in a low frequency region, and the characteristic has a small transfer advance in a high frequency region.
 右手・左手系複合線路(以下、CRLH線路と称す。)200は、入力側切替スイッチ3の第2の出力端3cと出力側切替スイッチ4の第2の入力端4bの間に接続される。
 CRLH線路200は、入力側切替スイッチ3の第2の出力端3cと出力側切替スイッチ4の第2の入力端4bとの間に、入力側切替スイッチ3の第2の出力端3c側から順に直列接続される第1の低域用インダクタ201及び第1の低域用キャパシタンス202と、出力側切替スイッチ4の第2の入力端4bと接地ノードとの間に並列接続される第2の低域用キャパシタンス203及び第2の低域用インダクタ204を有する。
A right-hand / left-hand composite line (hereinafter, referred to as a CRLH line) 200 is connected between a second output terminal 3c of the input-side switch 3 and a second input terminal 4b of the output-side switch 4.
The CRLH line 200 is arranged between the second output terminal 3c of the input-side switch 3 and the second input terminal 4b of the output-side switch 4 in order from the second output terminal 3c of the input-side switch 3. A first low-band inductor 201 and a first low-band capacitance 202 connected in series, and a second low-band connected in parallel between the second input terminal 4b of the output-side switch 4 and the ground node. It has a band capacitance 203 and a second low band inductor 204.
 CRLH線路200を構成する第1の低域用インダクタ201のインダクタンスLRを次式(3)に、第1の低域用キャパシタンス202のキャパシタンスCLを次式(4)に、第2の低域用インダクタ204のインダクタンスLLを次式(5)に、第2の低域用キャパシタンス203のキャパシタンスCRを次式(6)に示す。
 また、式(3)から式(6)に用いた係数A、βをそれぞれ次式(7)及び次式(8)に示す。
 なお、この実施の形態1では、後述するように、低周波領域での動作時と高周波領域での動作時の境界周波数ωγを移相器の動作中心周波数ω0としている。その結果、高域フィルタ100の動作中心周波数とCRLH線路200の動作中心周波数は、移相器の動作中心周波数ω0と一致する。
The inductance LR of the first low-frequency inductor 201 constituting the CRLH line 200 is expressed by the following equation (3), the capacitance CL of the first low-frequency capacitance 202 is expressed by the following equation (4), and the second low-frequency inductor 202 is expressed by the following equation (4). The following equation (5) shows the inductance LL of the inductor 204, and the following equation (6) shows the capacitance CR of the second low-frequency capacitance 203.
The coefficients A and β used in the equations (3) to (6) are shown in the following equations (7) and (8), respectively.
In the first embodiment, as described later, the boundary frequency ωγ during the operation in the low-frequency region and the boundary frequency ωγ during the operation in the high-frequency region are set as the operation center frequency ω0 of the phase shifter. As a result, the operation center frequency of the high-pass filter 100 and the operation center frequency of the CRLH line 200 match the operation center frequency ω0 of the phase shifter.
 これら式(4)から式(6)から理解されるように、CRLH線路200を構成する第1の低域用キャパシタンス202のキャパシタンスCLと、第2の低域用インダクタ204のインダクタンスLLと、第2の低域用キャパシタンス203のキャパシタンスCRは、第1の低域用インダクタ201のインダクタンスLRに依存している。
 また、式(3)から理解されるように、第1の低域用インダクタ201のインダクタンスLRは、動作中心周波数ω0に依存しているため、第1の低域用キャパシタンス202のキャパシタンスCLと、第2の低域用インダクタ204のインダクタンスLLと、第2の低域用キャパシタンス203のキャパシタンスCRも動作中心周波数ω0に依存している。
 さらに、式(7)及び式(8)から理解されるように、係数βは周波数帯域幅に依存することから、移相器の帯域幅はCRLH線路200を構成する第1の低域用インダクタ201のインダクタンスLRと、第1の低域用キャパシタンス202のキャパシタンスCLと、第2の低域用インダクタ204のインダクタンスLLと、第2の低域用キャパシタンス203のキャパシタンスCRに依存している。
 なお、式(7)及び式(8)から理解されるように、Lmimは動作下限周波数ωmimにおける通過振幅がLmim以上になる。
As can be understood from Expressions (4) to (6), the capacitance CL of the first low-frequency capacitance 202 configuring the CRLH line 200, the inductance LL of the second low-frequency inductor 204, and the The capacitance CR of the second low-frequency capacitance 203 depends on the inductance LR of the first low-frequency inductor 201.
Further, as can be understood from Expression (3), since the inductance LR of the first low-frequency inductor 201 depends on the operating center frequency ω0, the capacitance CL of the first low-frequency capacitance 202 and The inductance LL of the second low-frequency inductor 204 and the capacitance CR of the second low-frequency capacitance 203 also depend on the operating center frequency ω0.
Further, as can be understood from Equations (7) and (8), since the coefficient β depends on the frequency bandwidth, the bandwidth of the phase shifter is equal to the first low-band inductor constituting the CRLH line 200. It depends on the inductance LR of 201, the capacitance CL of the first low-frequency capacitance 202, the inductance LL of the second low-frequency inductor 204, and the capacitance CR of the second low-frequency capacitance 203.
As can be understood from Expressions (7) and (8), Lmim has a passing amplitude at or above the operation lower limit frequency ωmim equal to or greater than Lmim.
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000003
 但し、ωmimとωmaxはそれぞれCRLH線路200における動作下限動作周波数と動作上限周波数の角周波数である。
Figure JPOXMLDOC01-appb-I000003
Here, ωmim and ωmax are the angular frequencies of the operation lower limit operation frequency and the operation upper limit frequency in the CRLH line 200, respectively.
 CRLH線路200は、低周波領域では、直列接続される第1の低域用インダクタ201及び第1の低域用キャパシタンス202において第1の低域用キャパシタンス202が支配的となり、並列接続される第2の低域用キャパシタンス203及び第2の低域用インダクタ204において第2の低域用インダクタ204が支配的になる。そのため、CRLH線路200は、低周波領域の動作では図3に示すように第1の低域用キャパシタンス202と第2の低域用インダクタ204からなる高域フィルタとして機能し、位相進みの特性を持つように振舞う。 In the CRLH line 200, in the low-frequency region, the first low-frequency capacitance 202 is dominant in the first low-frequency inductor 201 and the first low-frequency capacitance 202 connected in series, and the first low-frequency capacitance 202 is connected in parallel. In the second low-frequency capacitance 203 and the second low-frequency inductor 204, the second low-frequency inductor 204 becomes dominant. Therefore, the CRLH line 200 functions as a high-pass filter composed of the first low-pass capacitance 202 and the second low-pass inductor 204 as shown in FIG. Pretend to have.
 一方、高周波領域では、CRLH線路200は直列接続される第1の低域用インダクタ201及び第1の低域用キャパシタンス202において第1の低域用インダクタ201が支配的となり、並列接続される第2の低域用キャパシタンス203及び第2の低域用インダクタ204において第2の低域用キャパシタンス203が支配的になる。そのため、CRLH線路200は、高周波領域の動作時では図4に示すように第1の低域用インダクタ201と第2の低域用キャパシタンス203からなる低域フィルタとして機能し、位相遅れの特性を持つように振舞う。 On the other hand, in the high-frequency region, the first low-frequency inductor 201 becomes dominant in the first low-frequency inductor 201 and the first low-frequency capacitance 202 that are connected in series, and the CRLH line 200 is connected in parallel. In the second low-frequency capacitance 203 and the second low-frequency inductor 204, the second low-frequency capacitance 203 becomes dominant. Therefore, the CRLH line 200 functions as a low-pass filter composed of the first low-pass inductor 201 and the second low-pass capacitance 203 as shown in FIG. Pretend to have.
 また、実施の形態1では、低周波領域での動作時と高周波領域での動作時のどちらでもないバンドギャップを有しないために、直列接続される第1の低域用インダクタ201及び第1の低域用キャパシタンス202の共振周波数ωseと、並列接続される第2の低域用キャパシタンス203及び第2の低域用インダクタ204の共振周波数ωshを同じにしている。 Also, in the first embodiment, the first low-frequency inductor 201 and the first low-frequency inductor 201 connected in series do not have a bandgap that is neither during operation in the low-frequency region nor during operation in the high-frequency region. The resonance frequency ωse of the low-band capacitance 202 and the resonance frequency ωsh of the second low-band capacitance 203 and the second low-band inductor 204 connected in parallel are made the same.
 すなわち、低周波領域での動作時と高周波領域での動作時の境界周波数(Γ点周波数)ωγとすると、境界周波数ωγについて、CRLH線路200が低周波領域での動作時と高周波領域での動作時のどちらでもないバンドギャップを有しないための条件はωγ=ωse=ωshとなる。
 境界周波数ωγが、共振周波数ωseと共振周波数ωshと一致すると、直列接続される第1の低域用インダクタ201及び第1の低域用キャパシタンス202による直列共振と並列接続される第2の低域用キャパシタンス203及び第2の低域用インダクタ204による並列共振によりCRLH線路200の通過位相は0となる。
 従って、境界周波数ωγを移相器の動作中心周波数ω0にしている。
That is, assuming that the boundary frequency (Γ point frequency) ωγ between the operation in the low frequency region and the operation in the high frequency region, the CRLH line 200 operates in the low frequency region and operates in the high frequency region for the boundary frequency ωγ. The condition for not having a band gap which is neither of the above is ωγ = ωse = ωsh.
When the boundary frequency ωγ matches the resonance frequency ωse and the resonance frequency ωsh, the second low band connected in parallel with the series resonance by the first low band inductor 201 and the first low band capacitance 202 connected in series. The passing phase of the CRLH line 200 becomes zero due to the parallel resonance caused by the capacitance 203 for the low frequency and the inductor 204 for the low frequency band.
Therefore, the boundary frequency ωγ is set to the operation center frequency ω0 of the phase shifter.
 従って、CRLH線路200は、低周波領域では高域フィルタとして振舞い、高周波領域では低域フィルタとして振舞い、境界周波数ωγを移相器の動作中心周波数ω0とし、かつ、境界周波数ωγの時に通過位相を0としているので、図2において特性曲線C2にて示すように、境界周波数ωγより周波数が低い低周波領域では位相進みの特性を持ち、境界周波数ωγより周波数が高い高周波領域では位相遅れの特性を持つ。
 また、図2の特性曲線C1及び特性曲線C2から理解されるように、両曲線間C1-C2の通過位相差は低周波領域から高周波領域まで略同じとすることができる。
Therefore, the CRLH line 200 behaves as a high-pass filter in the low-frequency region, acts as a low-pass filter in the high-frequency region, sets the boundary frequency ωγ as the operating center frequency ω0 of the phase shifter, and changes the passing phase at the boundary frequency ωγ. As shown by the characteristic curve C2 in FIG. 2, the characteristic has a phase leading characteristic in a low frequency region where the frequency is lower than the boundary frequency ωγ, and has a phase lag characteristic in a high frequency region where the frequency is higher than the boundary frequency ωγ. Have.
Further, as understood from the characteristic curves C1 and C2 in FIG. 2, the passing phase difference between the two curves C1-C2 can be substantially the same from the low frequency region to the high frequency region.
 この実施の形態1においては、移相器からの移相量は、図5に示す特性曲線C0となる。図5は周波数と移相量の関係を示す図である。横軸が周波数、縦軸が移相量を示す。移相器の動作中心周波数ω0を動作中心周波数FC、動作中心周波数FCにおける移相量をΦ0、高周波FH、つまり、CRLH線路200の動作上限周波数ωmaxにおける移相量Φ0との移送量誤差をA、低周波FL、つまり、CRLH線路200の動作下限周波数ωmimにおける移相量Φ0との移送量誤差をB1で示している。なお、比較のために、従来の高域フィルタと低域フィルタを切替接続する移相器における特性曲線をCcとして示している。 In the first embodiment, the amount of phase shift from the phase shifter is a characteristic curve C0 shown in FIG. FIG. 5 is a diagram showing the relationship between the frequency and the phase shift amount. The horizontal axis indicates frequency, and the vertical axis indicates the amount of phase shift. The operation center frequency ω0 of the phase shifter is the operation center frequency FC, the phase shift amount at the operation center frequency FC is Φ0, and the high frequency FH, that is, the transfer amount error with the phase shift amount Φ0 at the operation upper limit frequency ωmax of the CRLH line 200 is A. , B1, the low frequency FL, that is, the transfer amount error from the phase shift amount Φ0 at the lower limit operation frequency ωmim of the CRLH line 200. For comparison, a characteristic curve of a conventional phase shifter that switches and connects a high-pass filter and a low-pass filter is shown as Cc.
 この図5から理解されるように、動作中心周波数FC、つまり、移相器の動作中心周波数ω0における移相量Φ0は、高域フィルタ100の動作中心周波数ω0における通過位相がΦ0、CRLH線路200の通過位相が0であるので、高域フィルタ100の動作中心周波数ω0における通過位相Φ0と同じになる。
 移相器の動作中心周波数ω0における移相量Φ0が移相器の移相量となる。
 そして、実施の形態1に係る移相器における低周波FLにおける移相量Φ0との移送量誤差B1は、高周波FHにおける移相量Φ0との移送量誤差Aとほぼ同じにでき、従来の移相器における低周波FLにおける移相量PSHとの移送量誤差B2より低減できている。
 その結果、移相器における移相量誤差を低周波FLから高周波FHまでの広い周波数範囲内で低く抑えることができる。その結果、実施の形態1に示した移相器は、広い周波数帯域にわたり平坦な移相量特性を持つことになるから、広帯域な移相器を実現できる。
As understood from FIG. 5, the operation center frequency FC, that is, the phase shift amount Φ0 at the operation center frequency ω0 of the phase shifter is such that the passing phase at the operation center frequency ω0 of the high-pass filter 100 is Φ0, and the CRLH line 200 Is 0, the pass phase is the same as the pass phase Φ0 at the operating center frequency ω0 of the high-pass filter 100.
The phase shift amount Φ0 at the operation center frequency ω0 of the phase shifter is the phase shift amount of the phase shifter.
The transfer amount error B1 with the phase shift amount Φ0 at the low frequency FL in the phase shifter according to the first embodiment can be made substantially the same as the transfer amount error A with the phase shift amount Φ0 at the high frequency FH. The shift amount error B2 with the phase shift amount PSH in the low frequency FL in the phase shifter can be reduced.
As a result, the phase shift amount error in the phase shifter can be suppressed within a wide frequency range from the low frequency FL to the high frequency FH. As a result, the phase shifter described in the first embodiment has a flat phase shift characteristic over a wide frequency band, so that a wideband phase shifter can be realized.
 上記のように構成された移相器において、マイクロ波回路シミュレータ(Microwave Office, NI AWR社)を用いて、高域フィルタ100における周波数と通過位相との関係、CRLH線路200における周波数と通過位相との関係、移相器としての周波数と移相量との関係を検証した結果を図6及び図7に示す。
 検証は、設計値を移相量45°、4倍帯域(4~16GHz)にて行っている。
 図6に示すように、高域フィルタ100における特性曲線C1とCRLH線路200における特性曲線C2は、通過位相の変化が、4GHzから19GHzまでほぼ同じである。
 その結果、図7に示すように、移相器の特性曲線C0は4GHzから19GHzまで平坦な移相量特性を示している。
 以上から明らかなように、実施の形態1に係る移相器は、広い周波数帯域にわたり平坦な移相量特性を持つことになるから、広帯域な移相器を実現できる。
In the phase shifter configured as described above, using a microwave circuit simulator (Microwave Office, NI AWR), the relationship between the frequency and the passing phase in the high-pass filter 100, the frequency and the passing phase in the CRLH line 200, and 6 and FIG. 7 show the results of verifying the relationship between the phase shifter and the frequency as the phase shifter and the amount of phase shift.
The verification is performed with the design values at a phase shift amount of 45 ° and a quadruple band (4 to 16 GHz).
As shown in FIG. 6, the characteristic curve C1 in the high-pass filter 100 and the characteristic curve C2 in the CRLH line 200 have almost the same change in the passing phase from 4 GHz to 19 GHz.
As a result, as shown in FIG. 7, the characteristic curve C0 of the phase shifter shows a flat phase shift characteristic from 4 GHz to 19 GHz.
As is clear from the above, the phase shifter according to the first embodiment has a flat phase shift characteristic over a wide frequency band, so that a wideband phase shifter can be realized.
実施の形態2.
 この発明の実施の形態2について、図8を用いて説明する。
 この発明の実施の形態2に係る移相器は、実施の形態1に係る移相器に対して、高域フィルタ100を高域フィルタ100aに変更したものであり、その他の点については同じである。なお、図8において、図1に示した符号と同一符号は同一又は相当部分を示す。
 従って、高域フィルタ100aを中心に説明する。
Embodiment 2 FIG.
Embodiment 2 of the present invention will be described with reference to FIG.
The phase shifter according to the second embodiment of the present invention differs from the phase shifter according to the first embodiment in that high-pass filter 100 is changed to high-pass filter 100a, and the other points are the same. is there. In FIG. 8, the same reference numerals as those shown in FIG. 1 indicate the same or corresponding parts.
Therefore, the description will focus on the high-pass filter 100a.
 高域フィルタ100aは、入力側切替スイッチ3の第1の出力端3bと出力側切替スイッチ4の第1の入力端4aの間に、入力側切替スイッチ3の第1の出力端3bから順に直列接続される第2の高域用インダクタ104、第1の高域用キャパシタンス101、第2の高域用キャパシタンス102、及び第3の高域用インダクタ105と、これら第1の高域用キャパシタンス101と第2の高域用キャパシタンス102の接続点P1と接地ノードの間に接続される第1の高域用インダクタ103を有する。 The high-pass filter 100a is arranged in series between the first output terminal 3b of the input-side switch 3 and the first input terminal 4a of the output-side switch 4 in order from the first output terminal 3b of the input-side switch 3. The second high-frequency inductor 104, the first high-frequency capacitance 101, the second high-frequency capacitance 102, and the third high-frequency inductor 105 to be connected, and the first high-frequency capacitance 101 And a first high-frequency inductor 103 connected between a connection point P1 of the first and second high-frequency capacitances 102 and the ground node.
 すなわち、このように構成された高域フィルタ100aは、実施の形態1にて示した高域フィルタ100に対して、さらに、入力側切替スイッチ3の第1の出力端3bと第1の高域用キャパシタンス101との間に接続される第2の高域用インダクタ104と、第2の高域用キャパシタンス102と出力側切替スイッチ4の第1の入力端4aとの間に接続される第3の高域用インダクタ105を設けたものである。 That is, the high-pass filter 100a configured as described above is different from the high-pass filter 100 described in the first embodiment in that the first output terminal 3b of the input-side switch 3 and the first high-pass filter The second high-frequency inductor 104 connected between the second high-frequency capacitor 101 and the third input terminal 4 a of the output-side switch 4. The high-frequency inductor 105 is provided.
 このように構成された高域フィルタ100aは、第2の高域用インダクタ104と第3の高域用インダクタ105により、これら第2の高域用インダクタ104と第3の高域用インダクタ105を設けないものに対して、高周波領域において位相進みが小さくなる。
 従って、高周波領域にて、CRLH線路200の位相遅れに対して、通過位相差を小さくできる。その結果、移相器として、高周波領域での移送量誤差を小さくでき、高周波領域での平坦な移相量特性を広く取ることができ、広帯域な移相器を実現できる。
The high-pass filter 100a configured as described above uses the second high-pass inductor 104 and the third high-pass inductor 105 to connect the second high-pass inductor 104 and the third high-pass inductor 105 to each other. The phase lead in the high-frequency region is smaller than that in the case where it is not provided.
Therefore, the passing phase difference can be reduced in the high frequency region with respect to the phase delay of the CRLH line 200. As a result, as a phase shifter, a transfer amount error in a high frequency region can be reduced, a flat phase shift amount characteristic in a high frequency region can be widened, and a broadband phase shifter can be realized.
 なお、上記実施の形態2では、第2の高域用インダクタ104と第3の高域用インダクタ105両者を設けたものとしたが、第2の高域用インダクタ104と第3の高域用インダクタ105のいずれか一方を設けたものでも良い。
 第2の高域用インダクタ104又は第3の高域用インダクタ105により、第2の高域用インダクタ104及び第3の高域用インダクタ105を設けないものに対して、高周波領域において位相進みを小さくなる。
 その結果、実施の形態2と同様の効果が得られる。
In the second embodiment, both the second high-frequency inductor 104 and the third high-frequency inductor 105 are provided. However, the second high-frequency inductor 104 and the third high-frequency inductor 104 are provided. One provided with any one of the inductors 105 may be used.
The second high-pass inductor 104 or the third high-pass inductor 105 causes the phase lead in the high-frequency region to be higher than that without the second high-pass inductor 104 and the third high-pass inductor 105. Become smaller.
As a result, the same effect as in the second embodiment can be obtained.
実施の形態3.
  この発明の実施の形態3について、図9を用いて説明する。
 この発明の実施の形態3に係る移相器は、実施の形態1に係る移相器に対して、高域フィルタ100を高域フィルタ100bに変更したものであり、その他の点については同じである。なお、図9において、図1に示した符号と同一符号は同一又は相当部分を示す。
 従って、高域フィルタ100bを中心に説明する。
Embodiment 3 FIG.
Third Embodiment A third embodiment of the present invention will be described with reference to FIG.
The phase shifter according to the third embodiment of the present invention is different from the phase shifter according to the first embodiment in that high-pass filter 100 is changed to high-pass filter 100b, and the other points are the same. is there. In FIG. 9, the same reference numerals as those shown in FIG. 1 indicate the same or corresponding parts.
Therefore, the description will focus on the high-pass filter 100b.
 高域フィルタ100bは、入力側切替スイッチ3の第1の出力端3bと出力側切替スイッチ4の第1の入力端4aの間に、入力側切替スイッチ3の第1の出力端3b側から順に直列接続される第1の高域用キャパシタンス101及び第2の高域用キャパシタンス102と、これら第1の高域用キャパシタンス101と第2の高域用キャパシタンス102の接続点P1と接地ノードの間に接続される第1の高域用インダクタ103と、第1の高域用キャパシタンス101に並列接続される第1の高域用抵抗106と、第2の高域用キャパシタンス102に並列接続される第2の高域用抵抗107を有する。 The high-pass filter 100b is disposed between the first output terminal 3b of the input-side switch 3 and the first input terminal 4a of the output-side switch 4 in order from the first output terminal 3b of the input-side switch 3. A first high-frequency capacitance 101 and a second high-frequency capacitance 102 connected in series, and a connection point P1 between the first high-frequency capacitance 101 and the second high-frequency capacitance 102 and a ground node , A first high-frequency resistor 106 connected in parallel with the first high-frequency capacitance 101, and a second high-frequency capacitance 102 connected in parallel with the second high-frequency capacitance 102. A second high-frequency resistor 107 is provided.
 すなわち、このように構成された高域フィルタ100bは、実施の形態1にて示した高域フィルタ100に対して、さらに、第1の高域用キャパシタンス101に並列接続される第1の高域用抵抗106と、第2の高域用キャパシタンス102に並列接続される第2の高域用抵抗107を設けたものである。 That is, the high-pass filter 100b thus configured is different from the high-pass filter 100 described in the first embodiment in that the first high-pass filter 101b is further connected in parallel to the first high-pass capacitance 101. And a second high-frequency resistor 107 connected in parallel with the second high-frequency capacitance 102.
 このように構成された高域フィルタ100bは、第1の高域用抵抗106及び第2の高域用抵抗107を設けたことにより、高域フィルタ100bにおける通過損失を増やすことができる。その結果、高域フィルタ100bとCRLH線路200の通過損失を同じにできる。
 従って、この実施の形態3に係る移相器は、実施の形態1に係る移相器と同様の効果を奏する他、移相器をアレイアンテナに用いた場合、アレイアンテナの劣化を防ぐことができるという効果を奏する。
The high-pass filter 100b configured as described above can increase the passage loss in the high-pass filter 100b by providing the first high-pass resistor 106 and the second high-pass resistor 107. As a result, the passage loss of the high-pass filter 100b and the CRLH line 200 can be made equal.
Therefore, the phase shifter according to the third embodiment has the same effect as the phase shifter according to the first embodiment. In addition, when the phase shifter is used for an array antenna, deterioration of the array antenna can be prevented. It has the effect of being able to do it.
実施の形態4.
 この発明の実施の形態4について、図10を用いて説明する。
 この発明の実施の形態4に係る移相器は、実施の形態1に係る移相器に対して、高域フィルタ100を高域フィルタ100cに変更したものであり、その他の点については同じである。なお、図10において、図1に示した符号と同一符号は同一又は相当部分を示す。
 従って、高域フィルタ100cを中心に説明する。
Embodiment 4 FIG.
Embodiment 4 of the present invention will be described with reference to FIG.
The phase shifter according to Embodiment 4 of the present invention is different from the phase shifter according to Embodiment 1 in that high-pass filter 100 is changed to high-pass filter 100c, and the other points are the same. is there. In FIG. 10, the same reference numerals as those shown in FIG. 1 indicate the same or corresponding parts.
Therefore, the description will focus on the high-pass filter 100c.
  高域フィルタ100cは、入力側切替スイッチ3の第1の出力端3bと出力側切替スイッチ4の第1の入力端4aの間に、入力側切替スイッチ3の第1の出力端3b側から順に直列接続される第1の高域用キャパシタンス101及び第2の高域用キャパシタンス102と、これら第1の高域用キャパシタンス101と第2の高域用キャパシタンス102の接続点P1と接地ノードの間に、接続点P1側から順に直列接続される第1の高域用インダクタ103及び第3の高域用抵抗108を有する。 The high-pass filter 100c is disposed between the first output terminal 3b of the input-side switch 3 and the first input terminal 4a of the output-side switch 4 in order from the first output terminal 3b of the input-side switch 3. A first high-frequency capacitance 101 and a second high-frequency capacitance 102 connected in series, and a connection point P1 between the first high-frequency capacitance 101 and the second high-frequency capacitance 102 and a ground node A first high-frequency inductor 103 and a third high-frequency resistor 108 connected in series from the connection point P1 side.
 すなわち、このように構成された高域フィルタ100cは、実施の形態1にて示した高域フィルタ100に対して、さらに、第1の高域用インダクタ103と接地ノードの間に接続される第3の高域用抵抗108を設けたものである。 That is, the high-pass filter 100c thus configured is different from the high-pass filter 100 described in the first embodiment in that the high-pass filter 100c is further connected between the first high-pass inductor 103 and the ground node. 3 is provided with a high-frequency resistor 108.
 このように構成された高域フィルタ100cは、第3の高域用抵抗108を設けたことにより、高域フィルタ100cにおける通過損失を増やすことができる。その結果、高域フィルタ100cとCRLH線路200の通過損失を同じにできる。
 従って、この実施の形態4に係る移相器は、実施の形態1に係る移相器と同様の効果を奏する他、移相器をアレイアンテナに用いた場合、アレイアンテナの劣化を防ぐことができるという効果を奏する。
The high-pass filter 100c configured as described above can increase the transmission loss in the high-pass filter 100c by providing the third high-pass resistor 108. As a result, the passage loss of the high-pass filter 100c and the CRLH line 200 can be made equal.
Therefore, the phase shifter according to the fourth embodiment has the same effect as the phase shifter according to the first embodiment. In addition, when the phase shifter is used for an array antenna, deterioration of the array antenna can be prevented. It has the effect of being able to do it.
実施の形態5.
 この発明の実施の形態5について、図11を用いて説明する。
 この発明の実施の形態5に係る移相器は、実施の形態1に係る移相器に対して、CRLH線路200をCRLH線路200aに変更したものであり、その他の点については同じである。なお、図11において、図1に示した符号と同一符号は同一又は相当部分を示す。
 従って、CRLH線路200aを中心に説明する。
Embodiment 5 FIG.
Embodiment 5 of the present invention will be described with reference to FIG.
The phase shifter according to the fifth embodiment of the present invention differs from the phase shifter according to the first embodiment in that CRLH line 200 is changed to CRLH line 200a, and the other points are the same. In FIG. 11, the same reference numerals as those shown in FIG. 1 indicate the same or corresponding parts.
Therefore, the description will focus on the CRLH line 200a.
 CRLH線路200aは、いわゆるπ型CRLH線路であり、入力側切替スイッチ3の第2の出力端3cと出力側切替スイッチ4の第2の入力端4bの間に、入力側切替スイッチ3の第2の出力端3c側から順に直列接続される第1の低域用インダクタ201及び第1の低域用キャパシタンス202と、出力側切替スイッチ4の第2の入力端4bと接地ノードの間に並列接続される第2の低域用キャパシタンス203及び第2の低域用インダクタ204と、入力側切替スイッチ3の第2の出力端3cと接地ノードの間に並列接続される第3の低域用キャパシタンス205及び第3の低域用インダクタ206を有する。 The CRLH line 200a is a so-called π-type CRLH line, and is provided between the second output terminal 3c of the input switch 3 and the second input terminal 4b of the output switch 4, And the first low-frequency inductor 201 and the first low-frequency capacitance 202 connected in series from the output terminal 3c side of the output switch 3 in parallel with the second input terminal 4b of the output-side switch 4 and the ground node. The second low-frequency capacitance 203 and the second low-frequency inductor 204, and the third low-frequency capacitance connected in parallel between the second output terminal 3c of the input-side switch 3 and the ground node. 205 and a third low-frequency inductor 206.
 すなわち、このように構成されたCRLH線路200aは、実施の形態1にて示したCRLH線路200に対して、さらに、入力側切替スイッチ3の第2の出力端3cと接地ノードの間に並列接続される第3の低域用キャパシタンス205及び第3の低域用インダクタ206を設けたものである。 That is, the CRLH line 200a thus configured is further connected in parallel between the CRLH line 200 described in the first embodiment and the second output terminal 3c of the input-side switch 3 and the ground node. A third low-frequency capacitance 205 and a third low-frequency inductor 206 are provided.
 このように構成されたCRLH線路200aは、並列接続される第3の低域用キャパシタンス205及び第3の低域用インダクタ206により、これら第3の低域用キャパシタンス205及び第3の低域用インダクタ206を設けないものに対して、高周波領域において位相遅れが小さくなる。
 従って、高周波領域にて、高域フィルタ100の位相遅れに対して、通過位相差を小さくできる。その結果、移相器として、高周波領域での移送量誤差を小さくでき、高周波領域での平坦な移相量特性を広く取ることができ、広帯域な移相器を実現できる。
The CRLH line 200a configured as described above is connected to the third low-band capacitance 205 and the third low-band inductor 206 by the third low-band capacitance 205 and the third low-band inductor 206. The phase lag in the high frequency region is smaller than that without the inductor 206.
Therefore, the pass phase difference can be reduced in the high frequency region with respect to the phase delay of the high-pass filter 100. As a result, as a phase shifter, a transfer amount error in a high frequency region can be reduced, a flat phase shift amount characteristic in a high frequency region can be widened, and a broadband phase shifter can be realized.
実施の形態6.
 この発明の実施の形態6について、図12を用いて説明する。
 この発明の実施の形態6に係る移相器は、実施の形態1に係る移相器に対して、CRLH線路200をCRLH線路200bに変更したものであり、その他の点については同じである。なお、図12において、図1に示した符号と同一符号は同一又は相当部分を示す。
 従って、CRLH線路200bを中心に説明する。
Embodiment 6 FIG.
Embodiment 6 of the present invention will be described with reference to FIG.
The phase shifter according to the sixth embodiment of the present invention is different from the phase shifter according to the first embodiment in that CRLH line 200 is changed to CRLH line 200b, and the other points are the same. In FIG. 12, the same reference numerals as those shown in FIG. 1 indicate the same or corresponding parts.
Therefore, the description will focus on the CRLH line 200b.
 CRLH線路200bは、入力側切替スイッチ3の第2の出力端3cと出力側切替スイッチ4の第2の入力端4bの間に、入力側切替スイッチ3の第2の出力端3c側から順に直列接続される第1の低域用抵抗207、第1の低域用インダクタ201、及び第1の低域用キャパシタンス202と、出力側切替スイッチ4の第2の入力端4bと接地ノードの間に並列接続される第2の低域用キャパシタンス203及び第2の低域用インダクタ204を有する。 The CRLH line 200b is connected in series from the second output terminal 3c of the input-side switch 3 to the second input terminal 4b of the output-side switch 4 in order from the second output terminal 3c of the input-side switch 3. The first low-frequency resistor 207, the first low-frequency inductor 201, and the first low-frequency capacitance 202 to be connected, and between the second input terminal 4b of the output-side switch 4 and the ground node It has a second low-band capacitance 203 and a second low-band inductor 204 connected in parallel.
 すなわち、このように構成されたCRLH線路200bは、実施の形態1にて示したCRLH線路200に対して、さらに、入力側切替スイッチ3の第2の出力端3cと第1の低域用インダクタ201の間に接続される第1の低域用抵抗207を設けたものである。 That is, the CRLH line 200b thus configured is different from the CRLH line 200 described in the first embodiment in that the second output terminal 3c of the input-side switch 3 and the first low-band inductor A first low-frequency resistor 207 connected between the first and second low-frequency resistors 201 is provided.
 このように構成されたCRLH線路200bは、第1の低域用抵抗207を設けたことにより、CRLH線路200bの通過損失を増やすことができる。その結果、高域フィルタ100とCRLH線路200bの通過損失を同じにできる。
 従って、この実施の形態6に係る移相器は、実施の形態1に係る移相器と同様の効果を奏する他、移相器をアレイアンテナに用いた場合、アレイアンテナの劣化を防ぐことができるという効果を奏する。
The CRLH line 200b thus configured can increase the passage loss of the CRLH line 200b by providing the first low-frequency resistor 207. As a result, the passage loss of the high-pass filter 100 and that of the CRLH line 200b can be made the same.
Therefore, the phase shifter according to the sixth embodiment has the same effect as that of the phase shifter according to the first embodiment. In addition, when the phase shifter is used for an array antenna, deterioration of the array antenna can be prevented. It has the effect of being able to.
実施の形態7.
 この発明の実施の形態7について、図13を用いて説明する。
 この発明の実施の形態7に係る移相器は、実施の形態1に係る移相器に対して、CRLH線路200をCRLH線路200cに変更したものであり、その他の点については同じである。なお、図12において、図1に示した符号と同一符号は同一又は相当部分を示す。
 従って、CRLH線路200cを中心に説明する。
Embodiment 7 FIG.
Embodiment 7 of the present invention will be described with reference to FIG.
The phase shifter according to the seventh embodiment of the present invention is different from the phase shifter according to the first embodiment in that CRLH line 200 is changed to CRLH line 200c, and the other points are the same. In FIG. 12, the same reference numerals as those shown in FIG. 1 indicate the same or corresponding parts.
Therefore, the description will focus on the CRLH line 200c.
 CRLH線路200cは、入力側切替スイッチ3の第2の出力端3cと出力側切替スイッチ4の第2の入力端4bの間に、入力側切替スイッチ3の第2の出力端3c側から順に直列接続される第1の低域用インダクタ201及び第1の低域用キャパシタンス202と、出力側切替スイッチ4の第2の入力端4bと接地ノードの間に並列接続される第2の低域用キャパシタンス203及び第2の低域用インダクタ204と、並列接続される第2の低域用キャパシタンス203及び第2の低域用インダクタ204と並列接続される第2の低域用抵抗208を有する。 The CRLH line 200c is connected in series between the second output terminal 3c of the input switch 3 and the second input terminal 4b of the output switch 4 from the second output terminal 3c of the input switch 3 in order. The first low-pass inductor 201 and the first low-pass capacitance 202 connected to the second low-pass capacitor connected in parallel between the second input terminal 4b of the output-side switch 4 and the ground node. It has a capacitance 203 and a second low-frequency inductor 204, and a second low-frequency capacitance 203 and a second low-frequency resistor 208 connected in parallel with the second low-frequency inductor 204.
 すなわち、このように構成されたCRLH線路200cは、実施の形態1にて示したCRLH線路200に対して、さらに、並列接続される第2の低域用キャパシタンス203及び第2の低域用インダクタ204と並列接続される第2の低域用抵抗208を設けたものである。 That is, the CRLH line 200c configured as described above is further connected to the CRLH line 200 described in the first embodiment by a second low-frequency capacitance 203 and a second low-frequency inductor connected in parallel. A second low-frequency resistor 208 connected in parallel with 204 is provided.
 このように構成されたCRLH線路200cは、第2の低域用抵抗208を設けたことにより、CRLH線路200cの通過損失を増やすことができる。その結果、高域フィルタ100とCRLH線路200cの通過損失を同じにできる。
 従って、この実施の形態7に係る移相器は、実施の形態1に係る移相器と同様の効果を奏する他、移相器をアレイアンテナに用いた場合、アレイアンテナの劣化を防ぐことができるという効果を奏する。
The CRLH line 200c thus configured can increase the passage loss of the CRLH line 200c by providing the second low-frequency resistor 208. As a result, the passage loss of the high-pass filter 100 and the CRLH line 200c can be made equal.
Therefore, the phase shifter according to the seventh embodiment has the same effect as the phase shifter according to the first embodiment. In addition, when the phase shifter is used for an array antenna, deterioration of the array antenna can be prevented. It has the effect of being able to do it.
 なお、本発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 In the present invention, within the scope of the invention, any combination of the embodiments can be freely combined, or any of the constituent elements of each of the embodiments can be modified, or any of the constituent elements can be omitted in each of the embodiments. .
 この発明に係る移相器は、特に、フェーズドアレーアンテナ及びマルチビームアンテナに対し、好適に適用できる。 The phase shifter according to the present invention can be suitably applied to a phased array antenna and a multi-beam antenna.
 1 入力端子、2 出力端子、3 入力側切替スイッチ、3a 入力端、3b 第1の出力端、3c 第2の出力端、4 出力側切替スイッチ、4a 第1の入力端、4b 第2の入力端、4c 出力端、100,100a,100b,100c, 高域フィルタ、101 第1の高域用キャパシタンス、102 第2の高域用キャパシタンス、103 第1の高域用インダクタ、104 第2の高域用インダクタ、105 第3の高域用インダクタ、106 第1の高域用抵抗、107 第2の高域用抵抗、108 第3の高域用抵抗、200,200a,200b,200c, CRLH線路、201 第1の低域用インダクタ、202 第1の低域用キャパシタンス、203 第2の低域用キャパシタンス、204 第2の低域用インダクタ、205 第3の低域用キャパシタンス、206 第3の低域用インダクタ、207 第1の低域用抵抗、208 第2の低域用抵抗。 1 input terminal, 2 output terminal, 3 input switch, 3a input terminal, 3b first output terminal, 3c second output terminal, 4 output switch, 4a first input terminal, 4b second input Terminal, 4c} output terminal, 100, 100a, 100b, 100c, {high-pass filter, 101} first high-band capacitance, 102} second high-band capacitance, 103 {first high-band inductor, 104} second high Band inductor, 105 # third high band inductor, 106 # first high band resistor, 107 # second high band resistor, 108 # third high band resistor, 200, 200a, 200b, 200c, @CRLH line , 201 {first low-band inductor, 202} first low-band capacitance, 203 {second low-band capacitance, 204} second low-band inductor 205, a third low-frequency capacitance, 206, a third low-frequency inductor, 207, a first low-frequency resistor, and 208, a second low-frequency resistor.

Claims (14)

  1.  第1の出力端と第2の出力端とを有する入力側切替スイッチの第1の出力端と、第1の入力端と第2の入力端とを有する出力側切替スイッチの第1の入力端の間に接続される高域フィルタ、
     前記入力側切替スイッチの第2の出力端と前記出力側切替スイッチの第2の入力端の間に接続される右手・左手系複合線路を備える移相器。
    A first output terminal of an input-side switch having a first output terminal and a second output terminal, and a first input terminal of an output-side switch having a first input terminal and a second input terminal. A high-pass filter connected between
    A phase shifter comprising a right-hand / left-handed composite line connected between a second output terminal of the input-side switch and a second input terminal of the output-side switch.
  2.  前記高域フィルタは、
     前記入力側切替スイッチの第1の出力端と前記出力側切替スイッチの第1の入力端の間に直列接続される第1の高域用キャパシタンス及び第2の高域用キャパシタンスと、
     これら第1の高域用キャパシタンスと第2の高域用キャパシタンスの接続点と接地ノードの間に接続される第1の高域用インダクタを有することを特徴とする請求項1記載の移相器。
    The high-pass filter is
    A first high-frequency capacitance and a second high-frequency capacitance connected in series between a first output terminal of the input-side switch and a first input terminal of the output-side switch;
    2. The phase shifter according to claim 1, further comprising a first high-frequency inductor connected between a ground node and a connection point between the first high-frequency capacitance and the second high-frequency capacitance. .
  3.  前記高域フィルタは、
     前記第1の高域用キャパシタンス及び第2の高域用キャパシタンスのキャパシタンスは、動作中心周波数の規格化サセプタンスが移相量の半分の正接の逆数を満たす関係になっており、
     前記第1の高域用インダクタのインダクタンスは、前記動作中心周波数の規格化リアクタンスが前記移相量の正弦の逆数を満たす関係になっていることを特徴とする請求項2記載の移相器。
    The high-pass filter is
    The capacitance of the first high-frequency capacitance and the second high-frequency capacitance is such that the normalized susceptance of the operating center frequency satisfies the reciprocal of the tangent of half of the phase shift amount,
    3. The phase shifter according to claim 2, wherein the inductance of the first high-frequency inductor is such that the normalized reactance of the operating center frequency satisfies the reciprocal of the sine of the phase shift amount. 4.
  4.  前記高域フィルタは、
     前記入力側切替スイッチの第1の出力端と前記出力側切替スイッチの第1の入力端の間に、前記入力側切替スイッチの第1の出力端から順に直列接続される第2の高域用インダクタ、第1の高域用キャパシタンス、及び第2の高域用キャパシタンスと、
     これら第1の高域用キャパシタンスと第2の高域用キャパシタンスの接続点と接地ノードの間に接続される第1の高域用インダクタを有することを特徴とする請求項1記載の移相器。
    The high-pass filter is
    A second high-pass filter connected in series from a first output terminal of the input-side switch between a first output terminal of the input-side switch and a first input terminal of the output-side switch. An inductor, a first high-frequency capacitance, and a second high-frequency capacitance;
    2. The phase shifter according to claim 1, further comprising a first high-frequency inductor connected between a ground node and a connection point between the first high-frequency capacitance and the second high-frequency capacitance. .
  5.  前記高域フィルタは、
     前記入力側切替スイッチの第1の出力端と前記出力側切替スイッチの第1の入力端の間に、前記入力側切替スイッチの第1の出力端から順に直列接続される第1の高域用キャパシタンス、第2の高域用キャパシタンス、及び第3の高域用インダクタと、
     これら第1の高域用キャパシタンスと第2の高域用キャパシタンスの接続点と接地ノードの間に接続される第1の高域用インダクタを有することを特徴とする請求項1記載の移相器。
    The high-pass filter is
    A first high-pass filter connected in series from a first output terminal of the input-side switch between a first output terminal of the input-side switch and a first input terminal of the output-side switch. A capacitance, a second high-frequency capacitance, and a third high-frequency inductor;
    2. The phase shifter according to claim 1, further comprising a first high-frequency inductor connected between a ground node and a connection point between the first high-frequency capacitance and the second high-frequency capacitance. .
  6.  前記高域フィルタは、
     前記入力側切替スイッチの第1の出力端と前記出力側切替スイッチの第1の入力端の間に、前記入力側切替スイッチの第1の出力端から順に直列接続される第2の高域用インダクタ、第1の高域用キャパシタンス、第2の高域用キャパシタンス、及び第3の高域用インダクタと、
     これら第1の高域用キャパシタンスと第2の高域用キャパシタンスの接続点と接地ノードの間に接続される第1の高域用インダクタを有することを特徴とする請求項1記載の移相器。
    The high-pass filter is
    A second high-pass filter connected in series from a first output terminal of the input-side switch between a first output terminal of the input-side switch and a first input terminal of the output-side switch. An inductor, a first high-frequency capacitance, a second high-frequency capacitance, and a third high-frequency inductor;
    2. The phase shifter according to claim 1, further comprising a first high-frequency inductor connected between a ground node and a connection point between the first high-frequency capacitance and the second high-frequency capacitance. .
  7.  前記高域フィルタは、
     前記第1の高域用キャパシタンスに並列接続される第1の高域用抵抗と、
     前記第2の高域用キャパシタンスに並列接続される第2の高域用抵抗を有することを特徴とする請求項1から請求項6のいずれか1項に記載の移相器。
    The high-pass filter is
    A first high-frequency resistor connected in parallel to the first high-frequency capacitance;
    The phase shifter according to any one of claims 1 to 6, further comprising a second high-frequency resistor connected in parallel to the second high-frequency capacitance.
  8.  前記高域フィルタは、前記第1の高域用インダクタと接地ノードの間に接続される第3の高域用抵抗を有することを特徴とする請求項1から請求項7のいずれか1項に記載の移相器。 8. The high-pass filter according to claim 1, wherein the high-pass filter has a third high-pass resistor connected between the first high-pass inductor and a ground node. 9. The phase shifter as described.
  9.  前記右手・左手系複合線路は、
     前記入力側切替スイッチの第2の出力端と前記出力側切替スイッチの第2の入力端の間に直列接続される第1の低域用インダクタ及び第1の低域用キャパシタンスと、
     前記出力側切替スイッチの第2の入力端と接地ノードの間に並列接続される第2の低域用キャパシタンス及び第2の低域用インダクタを有することを特徴とする請求項1から請求項8のいずれか1項に記載の移相器。
    The right / left hand composite line is
    A first low-frequency inductor and a first low-frequency capacitance connected in series between a second output terminal of the input-side switch and a second input terminal of the output-side switch;
    9. The device according to claim 1, further comprising a second low-frequency capacitance and a second low-frequency inductor connected in parallel between a second input terminal of the output-side switch and a ground node. 10. The phase shifter according to any one of the preceding claims.
  10.  前記直列接続される第1の低域用インダクタ及び第1の低域用キャパシタンスの共振周波数と、前記並列接続される第2の低域用キャパシタンス及び第2の低域用インダクタの共振周波数が同じであることを特徴とする請求項9記載の移相器。 The resonance frequency of the first low-band inductor and the first low-band capacitance connected in series is the same as the resonance frequency of the second low-band capacitance and the second low-band inductor connected in parallel. The phase shifter according to claim 9, wherein
  11.  前記右手・左手系複合線路は、
     前記入力側切替スイッチの第2の出力端と接地ノードの間に並列接続される第3の低域用キャパシタンス及び第3の低域用インダクタを有することを特徴とする請求項9記載の移相器。
    The right / left hand composite line is
    10. The phase shift according to claim 9, further comprising a third low-pass capacitance and a third low-pass inductor connected in parallel between a second output terminal of the input-side switch and a ground node. vessel.
  12.  前記右手・左手系複合線路は、
     前記第1の低域用インダクタ及び前記第1の低域用キャパシタンスが、前記入力側切替スイッチの第2の出力端から順に直列接続され、
     さらに、前記入力側切替スイッチの第2の出力端と前記第1の低域用インダクタの間に接続される第1の低域用抵抗を有することを特徴とする請求項9又は請求項11に記載の移相器。
    The right / left hand composite line is
    The first low-band inductor and the first low-band capacitance are connected in series from a second output terminal of the input-side switch,
    12. The device according to claim 9, further comprising a first low-frequency resistor connected between a second output terminal of the input-side switch and the first low-frequency inductor. The phase shifter as described.
  13.  前記右手・左手系複合線路は、前記並列接続される第2の低域用キャパシタンス及び第2の低域用インダクタと並列接続される第2の低域用抵抗を有することを特徴とする請求項9、請求項11又は請求項12のいずれか1項に記載の移相器。 The said right-handed / left-handed composite line has a second low-pass capacitance connected in parallel with the second low-pass resistor and a second low-pass resistor connected in parallel with the second low-pass inductor. 9. The phase shifter according to claim 11 or claim 12.
  14.  第1の出力端と第2の出力端とを有する入力側切替スイッチの第1の出力端と、第1の入力端と第2の入力端とを有する出力側切替スイッチの第1の入力端の間に接続され、動作中心周波数において通過位相Φ0を有し、移相進みの特性を持つ高域フィルタ、
     前記入力側切替スイッチの第2の出力端と前記出力側切替スイッチの第2の入力端との間に接続され、低周波領域での動作時は位相進みの特性を持ち、高周波領域での動作時は位相遅れの特性を持ち、前記低周波領域での動作時と前記高周波領域での動作時の境界周波数における通過位相が0であり、前記境界周波数が前記動作中心周波数である右手・左手系複合線路を備える移相器。
    A first output terminal of an input-side switch having a first output terminal and a second output terminal, and a first input terminal of an output-side switch having a first input terminal and a second input terminal. A high-pass filter having a pass phase Φ 0 at the operating center frequency and having a phase shift leading characteristic,
    It is connected between a second output terminal of the input-side switch and a second input terminal of the output-side switch, has a phase lead characteristic when operating in a low-frequency region, and operates in a high-frequency region. Has a phase lag characteristic, the passing phase at the boundary frequency at the time of operation in the low frequency region and the operation at the high frequency region is 0, and the right hand / left hand system in which the boundary frequency is the operation center frequency. Phase shifter with composite line.
PCT/JP2018/023292 2018-06-19 2018-06-19 Phase shifter WO2019244244A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020525119A JP6808096B2 (en) 2018-06-19 2018-06-19 Phaser
PCT/JP2018/023292 WO2019244244A1 (en) 2018-06-19 2018-06-19 Phase shifter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/023292 WO2019244244A1 (en) 2018-06-19 2018-06-19 Phase shifter

Publications (1)

Publication Number Publication Date
WO2019244244A1 true WO2019244244A1 (en) 2019-12-26

Family

ID=68983532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023292 WO2019244244A1 (en) 2018-06-19 2018-06-19 Phase shifter

Country Status (2)

Country Link
JP (1) JP6808096B2 (en)
WO (1) WO2019244244A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003188671A (en) * 2001-12-14 2003-07-04 Mitsubishi Electric Corp High-pass/low-pass changeover phase shifter
JP2006019823A (en) * 2004-06-30 2006-01-19 Nec Compound Semiconductor Devices Ltd Phase shifter
JP2011071577A (en) * 2009-09-24 2011-04-07 Yazaki Corp Composite left/right handed transmission line
JP2011259215A (en) * 2010-06-09 2011-12-22 Toshiba Corp Phase shifter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003188671A (en) * 2001-12-14 2003-07-04 Mitsubishi Electric Corp High-pass/low-pass changeover phase shifter
JP2006019823A (en) * 2004-06-30 2006-01-19 Nec Compound Semiconductor Devices Ltd Phase shifter
JP2011071577A (en) * 2009-09-24 2011-04-07 Yazaki Corp Composite left/right handed transmission line
JP2011259215A (en) * 2010-06-09 2011-12-22 Toshiba Corp Phase shifter

Also Published As

Publication number Publication date
JP6808096B2 (en) 2021-01-06
JPWO2019244244A1 (en) 2020-12-17

Similar Documents

Publication Publication Date Title
US10079587B2 (en) Phase shifter, impedance matching circuit, multi/demultiplexer, and communication terminal apparatus
US8350642B2 (en) Power splitter/combiner
US9985682B2 (en) Broadband isolation low-loss ISM/MB-HB tunable diplexer
US9543630B2 (en) Electronic device
US9059681B2 (en) Unbalanced-balanced conversion circuit element
JP6668332B2 (en) Filter with improved linearity
US20150117281A1 (en) Rf diplexer
US9698750B2 (en) Circuit
WO2015045882A1 (en) Variable-frequency filter
JP2004222250A (en) Frequency selective balun (balanced-unbalanced) transformer
WO2017074777A1 (en) Optimal response reflectionless filters
WO2015052838A1 (en) Decoupling circuit
CN110783672B (en) Balance adjustable dual-mode band-pass filter based on double-sided parallel strip line structure
AU2008201195A1 (en) Power divider/combiner and power dividing/combining method using the same
WO2019244244A1 (en) Phase shifter
WO2019176551A1 (en) Antenna device
US8729980B2 (en) Band-pass filter based on CRLH resonator and duplexer using the same
CN106207331A (en) High-performance tunable filter based on Zero order resonator
TWI656732B (en) Adjustable filter
WO2014171219A1 (en) Ultrasonic transducer
JP6866454B2 (en) PCB-structured wideband filter to minimize signal phase balance
JP7099628B2 (en) Phase shifter
US20170085242A1 (en) Phase shift circuit
JP2010124095A (en) Reflected wave absorption type filter
US20190089333A1 (en) Saw filter with a large bandwidth

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923700

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525119

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18923700

Country of ref document: EP

Kind code of ref document: A1