WO2019242600A1 - 有机电致发光显示面板、其制作方法及显示装置 - Google Patents

有机电致发光显示面板、其制作方法及显示装置 Download PDF

Info

Publication number
WO2019242600A1
WO2019242600A1 PCT/CN2019/091676 CN2019091676W WO2019242600A1 WO 2019242600 A1 WO2019242600 A1 WO 2019242600A1 CN 2019091676 W CN2019091676 W CN 2019091676W WO 2019242600 A1 WO2019242600 A1 WO 2019242600A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflective
display panel
base substrate
organic electroluminescence
pixel region
Prior art date
Application number
PCT/CN2019/091676
Other languages
English (en)
French (fr)
Inventor
宋振
王国英
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/652,037 priority Critical patent/US20200251678A1/en
Publication of WO2019242600A1 publication Critical patent/WO2019242600A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/824Cathodes combined with auxiliary electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • H10K59/1315Interconnections, e.g. wiring lines or terminals comprising structures specially adapted for lowering the resistance
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/621Providing a shape to conductive layers, e.g. patterning or selective deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to an organic electroluminescence display panel, a manufacturing method thereof, and a display device.
  • OLED Organic Light Emitting Diode
  • the reflective anode is usually a three-layer stack structure, such as ITO / Ag / ITO.
  • each laminated material of the reflective anode structure is made by continuous deposition and continuous etching, and there is a gap of 5-7um between the reflective anodes corresponding to each sub-pixel, so the backplane cannot be realized after the display panel is lit.
  • the TFT is completely shielded, reducing the reliability of the backplane.
  • An embodiment of the present disclosure provides an organic electroluminescence display panel including a base substrate including a plurality of pixel regions and a non-pixel region located between adjacent pixel regions; wherein each pixel region Including a reflective anode; the non-pixel region includes a support portion and a reflective portion on top of the support portion; and wherein, for each reflective anode and a reflective portion directly adjacent to the reflective anode, the reflective anode and the reflective portion There is a gap between them, and the orthographic projection of the reflective anode on the base substrate and the orthographic projection of the reflective portion on the base substrate have a common edge.
  • an area of an orthographic projection of a surface of the supporting portion facing the reflecting portion on the base substrate is larger than a surface of the supporting portion facing away from the reflecting portion on the base substrate. Orthographic area.
  • the supporting portion includes an upper section and a lower section; the upper section is located between the reflecting section and the lower section, and an area of an orthographic projection of the upper section on the substrate is larger than the lower section An area of the orthographic projection on the base substrate.
  • the material of the lower stage is SiOx
  • the material of the upper stage is SiNx
  • the material of the reflective portion and the material of the reflective anode are the same.
  • the organic electroluminescence display panel further includes: a cathode covering the plurality of pixel regions and the non-pixel region; wherein the cathode and the reflecting portion are in direct contact.
  • the non-pixel region further includes a pixel-defining layer located on the reflective portion; a portion of the pixel-defining layer corresponding to the reflective portion has an opening; and the cathode is in contact with the opening in the opening.
  • the reflecting portion is in direct contact.
  • an area of an orthographic projection of the opening on the base substrate is smaller than an area of an orthographic projection of the reflection portion on the base substrate.
  • the organic electroluminescence display panel further includes: a package cover plate disposed opposite to the base substrate, and a spacer layer located on a side of the package cover plate facing the base substrate. ; Wherein the spacer layer corresponds to the opening.
  • the organic electroluminescence display panel further includes: an auxiliary electrode and a conductive layer; wherein the auxiliary electrode is located between the spacer layer and the package cover, and the auxiliary electrode is in The area of the orthographic projection on the base substrate is larger than the area of the orthographic projection of the spacer layer on the base substrate, and the conductive layer is electrically connected to the auxiliary electrode and covers the spacer layer. And the package cover.
  • An embodiment of the present disclosure also provides a display device.
  • the display device includes the organic electroluminescence display panel according to the above embodiment.
  • the embodiments of the present disclosure also provide a method for manufacturing an organic electroluminescence display panel as described in the above embodiments.
  • the method includes: providing a base substrate including a plurality of pixel regions and a non-pixel region between adjacent pixel regions; forming a support portion in the non-pixel region; and in each pixel region A reflective anode is formed thereon and a reflective portion is formed on top of the support portion.
  • a reflective anode is formed thereon and a reflective portion is formed on top of the support portion.
  • an area of an orthographic projection of a surface of the supporting portion facing the reflecting portion on the base substrate is larger than a surface of the supporting portion facing away from the reflecting portion on the base substrate. Orthographic area.
  • the supporting portion includes an upper section and a lower section; the upper section is located between the reflecting section and the lower section.
  • Forming a support portion in the non-pixel region includes forming a stacked first dielectric layer and a second dielectric layer in the non-pixel region. The second dielectric layer is formed between the first dielectric layer and the base substrate.
  • Forming the upper segment by performing a dry etching process on the first dielectric layer; and performing a wet etching process on the second dielectric layer by using the upper segment as a mask pattern to form the lower segment .
  • the area of the orthographic projection of the upper segment on the base substrate is larger than the area of the orthographic projection of the lower segment on the base substrate.
  • a material of the second dielectric layer is SiOx, and a material of the first dielectric layer is SiNx.
  • forming a reflective anode in each pixel region and forming a reflective portion on top of the support portion includes: using the same patterning process, forming a reflective anode in each pixel region and forming a reflection on top of the support portion unit.
  • FIG. 1 is a schematic structural diagram of an organic electroluminescence display panel according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of an organic electroluminescence display panel according to another embodiment of the present disclosure.
  • FIG. 3 is a top view of a reflective anode and a reflective portion of an organic electroluminescence display panel according to an embodiment of the present disclosure
  • FIG. 4 is a flowchart of a method for manufacturing an organic electroluminescence display panel according to an embodiment of the present disclosure
  • FIG. 5 is a flowchart of a manufacturing method of an organic electroluminescence display panel according to another embodiment of the present disclosure.
  • 6a to 6e are structural schematic diagrams corresponding to each step of a method for manufacturing an organic electroluminescence display panel provided by an embodiment of the present disclosure.
  • the organic electroluminescence display panel includes a base substrate 1 including a plurality of pixel areas AA and a non-pixel area BB located between adjacent pixel areas AA.
  • each pixel region AA includes a reflective anode 2
  • the non-pixel region BB includes a support portion 3 and a reflective portion 4 on top of the support portion 3; and wherein, for each reflective anode 2 and the reflective anode 2 2 A directly adjacent reflective portion 4 having a gap between the reflective anode 2 and the reflective portion 4, and an orthographic projection of the reflective anode 2 on the base substrate 1 and the reflective portion 4 on the base substrate
  • the orthographic projections on 1 have a common edge.
  • a support portion is provided in a non-pixel region. Accordingly, when the material of the reflective anode is deposited, a gap is automatically formed between the reflective anode and a reflective portion directly adjacent to the reflective anode. A reflective anode is formed in the pixel region, and a reflective portion is formed in the non-pixel region. In this way, not only an independent reflective anode is formed, but the reflective anode and the reflective portion completely cover the multiple pixel regions and non-pixel regions, which improves the device (such as a thin film transistor) on an organic electroluminescence display panel. ) Improves the reliability of the organic electroluminescence display panel.
  • a reflection portion 4 is formed between adjacent pixel areas AA, and a reflective anode 2 is formed in the pixel area AA. It can be seen that for each reflective anode 2 and the reflective portion 4 directly adjacent to the reflective anode 2, there is a gap between the reflective anode 2 and the reflective portion 4, and the reflective anode 2 is on the base substrate 1.
  • the orthographic projection on the substrate and the orthographic projection of the reflecting portion 4 on the base substrate 1 have a common edge. Therefore, the reflective anode and the reflective portion completely cover the multiple pixel regions and non-pixel regions, improving the light shielding effect on devices (such as thin film transistors) on the organic electroluminescence display panel, and improving the light shielding effect. The reliability of the organic electroluminescence display panel is described.
  • an area of an orthographic projection of a surface of the supporting portion facing the reflecting portion on the base substrate is larger than a surface of the supporting portion facing away from the reflecting portion on the base substrate. Orthographic area.
  • the support portion 3 faces the reflective
  • the area of the orthographic projection of the surface of the portion 4 on the base substrate 1 is larger than the area of the orthographic projection of the surface of the support portion 3 facing away from the reflection portion 4 on the base substrate 1. Since the supporting portion 3 has a certain thickness, a gap is automatically formed between the reflective anode and the reflective portion directly adjacent to the reflective anode when the material of the reflective anode is deposited.
  • a reflective anode is formed in the pixel region, and a reflective portion is formed in the non-pixel region.
  • the reflective anode and the reflective portion completely cover the multiple pixel regions and non-pixel regions, which improves the device (such as a thin film transistor) on an organic electroluminescence display panel. ) Improves the reliability of the organic electroluminescence display panel.
  • the supporting portion includes an upper section and a lower section; the upper section is located between the reflecting section and the lower section, and an area of an orthographic projection of the upper section on the base substrate is larger than the lower section An area of the orthographic projection on the base substrate.
  • the above organic electroluminescence display panel provided in the embodiment of the present disclosure, as shown in FIG. Including the upper section 31 and the lower section 32; the upper section 31 is located between the reflecting portion 4 and the lower section 32, and the area of the orthographic projection of the upper section 31 on the substrate 1 is larger than that of the lower section 32 The area of the orthographic projection on the base substrate 1 will be described.
  • the supporting portion 3 includes an upper section 31 and a lower section 32.
  • the supporting portion may also have other shapes, as long as the area of the orthographic projection of the surface of the supporting portion facing the reflecting portion on the base substrate is larger than the supporting portion facing away from the supporting portion. The area of the orthographic projection of the surface of the reflecting portion on the base substrate may be sufficient.
  • the material of the lower stage is SiOx
  • the material of the upper stage is SiNx
  • the material of the lower segment 32 is SiOx
  • the material of the upper segment 31 is SiNx.
  • the SiNx material is only longitudinally etched during dry etching. Therefore, dry etching can be used to form the upper section 31 near the reflective portion 4.
  • the SiOx material can be etched laterally during wet etching, so the wet etching can be used to form the lower section 32. Accordingly, when the material of the reflective anode is deposited, a gap is automatically formed between the reflective anode and a reflective portion directly adjacent to the reflective anode. A reflective anode is formed in the pixel region, and a reflective portion is formed in the non-pixel region.
  • the reflective anode and the reflective portion completely cover the multiple pixel regions and non-pixel regions, which improves the device (such as a thin film transistor) on an organic electroluminescence display panel. ) Improves the reliability of the organic electroluminescence display panel.
  • the material of the reflective portion and the material of the reflective anode are the same. According to some embodiments of the present disclosure, the same patterning process may be used to simultaneously form the reflective portion and the reflective anode, thereby further simplifying a manufacturing process.
  • the organic electroluminescence display panel further includes: a cathode covering the plurality of pixel regions and the non-pixel region; wherein the cathode and the reflecting portion are in direct contact.
  • the non-pixel region further includes a pixel-defining layer located on the reflective portion; a portion of the pixel-defining layer corresponding to the reflective portion has an opening; and the cathode is in contact with the opening in the opening.
  • the reflecting portion is in direct contact.
  • the non-pixel region further includes a reflective portion.
  • the pixel defining layer 5 on 4; the pixel defining layer 5 defines a pixel region and a non-pixel region.
  • the organic electroluminescence display panel may further include a cathode 6 located on the pixel defining layer 5 and covering the reflective anode 2 and the reflective portion 4.
  • the organic electroluminescence further includes a light emitting layer 18 located between the reflective anode 2 and the cathode 6.
  • the portion of the pixel defining layer 5 corresponding to the reflection portion 4 has an opening 51; the cathode 6 is in direct contact with the reflection portion 4 in the opening 51.
  • the material of the reflective portion is the same as that of the reflective anode, so the material of the reflective portion may be a conductive material such as a metal.
  • the reflecting portion 4 is in direct contact with the cathode 6, which increases the effective thickness of the cathode 6, thereby reducing the resistance of the cathode 6. Therefore, the problem of a large voltage drop due to the large resistance of the cathode 6 can be avoided, and the problem of damaging the display panel due to the large voltage drop can be avoided.
  • the area of the orthographic projection of the opening 51 on the base substrate 1 is smaller than the area of the orthographic projection of the reflective portion 4 on the base substrate 1. In this way, the opening 51 of the pixel defining layer 5 can expose the partially reflecting portion 4.
  • the distance between the reflective portion 4 and the cathode 6 can be made small due to the pressure applied by the spacer layer on the packaging cover.
  • the organic electroluminescence display panel further includes a package cover plate 7 disposed opposite to the substrate substrate 1, and a spacer located on the package cover plate 7 side facing the substrate substrate 1.
  • the problem of large voltage drop due to the large resistance of the cathode 6 is avoided, and further, the problem of damaging the display panel due to the large voltage drop can be avoided.
  • the deformation of the support portion 3 after receiving the pressure from the spacer layer 8 is smaller than that of the pixel-defining layer 5. Therefore, the pressure of the package cover 7 and the substrate 1 on the box after the box is pressed against the spacer layer 8 The closed position is not easy to cause the cathode 6 to crack, which improves the yield of the display panel.
  • the organic electroluminescence display panel provided in the embodiment of the present disclosure, as shown in FIG. 2, further includes: an auxiliary electrode 9 and a conductive layer 10; wherein the auxiliary electrode 9 is located at Between the spacer layer 8 and the package cover plate 7, the area of the orthographic projection of the auxiliary electrode 9 on the base substrate 1 is larger than the area of the orthographic projection of the spacer layer 8 on the base substrate 1.
  • the conductive layer 10 and the auxiliary The electrode 9 is electrically connected and covers the spacer layer 8 and the package cover 7. In this way, when the display panel faces the box, the auxiliary electrode 9 is in electrical contact with the cathode 6 through the conductive layer 10, thereby further reducing the cathode resistance. Therefore, the problem of a large voltage drop due to the large resistance of the cathode 6 is further avoided, and further, the problem of damaging the display panel due to the large voltage drop can be avoided.
  • the organic electroluminescence display panel further includes a thin film transistor for driving the display panel to emit light.
  • the thin film transistor It includes an active layer 11 on the base substrate 1, a gate insulating layer 12 on the active layer 11, a gate 13 on the gate insulating layer 12, and a source-drain electrode 14 electrically connected to the active layer 11.
  • the electroluminescent display panel further includes an interlayer dielectric layer 15 between the active layer 11 and the source-drain electrode 14, a passivation layer 16 covering the source-drain electrode layer 15, and a passivation layer 16 between the passivation layer 16 and the support portion 3.
  • the planarization layer 17 and the reflective anode 2 are connected to the source-drain electrode 14 through vias penetrating the passivation layer 16 and the planarization layer 17, which is not limited herein.
  • the organic electroluminescence display panel further includes a frame area of the display panel for sealing the organic electroluminescence display panel.
  • the frame sealant 18 is not limited herein.
  • the materials of the reflective anode, the reflective portion, the cathode, the auxiliary electrode, and the conductive layer of the present disclosure may be common metal materials, such as Ag, Cu, Al, Mo, etc., or multilayer metals such as MoNb / Cu / MoNb, etc.
  • alloy materials of the above metals, such as A1Nd, MoNb, etc. can also be a stacked structure such as ITO / Ag / ITO, etc. formed by a metal and a transparent conductive oxide (such as ITO, AZO, etc.);
  • organic electroluminescence display panel provided by the embodiments of the present disclosure is suitable for device structures such as top-gate TFT, back channel etch (BCE) TFT, and etch stop structure (ESL) TFT.
  • device structures such as top-gate TFT, back channel etch (BCE) TFT, and etch stop structure (ESL) TFT.
  • the embodiments of the present disclosure are applicable to TFTs using various oxides, silicon materials, or organic materials as the active layer.
  • the materials of the active layer may include a-IGZO, ZnON, IZTO, a-Si, p- Various materials such as Si, hexathiophene, or polythiophene are suitable for backplane TFTs manufactured based on Oxide technology, silicon technology, or organic technology.
  • the materials of the gate insulating layer, the interlayer dielectric layer, and the passivation layer in the embodiments of the present disclosure include, but are not limited to, conventional dielectric materials such as SiOx, SiNx, and SiON, or various new-type organic insulating materials, or high dielectric constants. (High) materials such as A10x, HfOx, TaOx, etc .; not limited here.
  • the flattening layer in the embodiment of the present disclosure includes, but is not limited to, a material having a flattening effect such as a silicone-based material, an acrylic-based material, or a polyimide-based material; it is not limited herein.
  • embodiments of the present disclosure also provide a method for manufacturing an organic electroluminescence display panel.
  • the method includes the following steps: S401 provides a base substrate including a plurality of pixel regions and a non-pixel region between adjacent pixel regions; and S402 in the non-pixel region Forming a support portion; and S403 forming a reflective anode in each pixel region and forming a reflection portion on top of the support portion.
  • S401 provides a base substrate including a plurality of pixel regions and a non-pixel region between adjacent pixel regions
  • S402 in the non-pixel region Forming a support portion
  • S403 forming a reflective anode in each pixel region and forming a reflection portion on top of the support portion.
  • a support portion is provided in a non-pixel region. Accordingly, when the material of the reflective anode is deposited, a gap is automatically formed between the reflective anode and a reflective portion directly adjacent to the reflective anode. A reflective anode is formed in the pixel region, and a reflective portion is formed in the non-pixel region. In this way, not only an independent reflective anode is formed, but the reflective anode and the reflective portion completely cover the multiple pixel regions and non-pixel regions, which improves the device (such as a thin film transistor) on an organic electroluminescence display panel. ) Improves the reliability of the organic electroluminescence display panel.
  • an area of an orthographic projection of a surface of the supporting portion facing the reflecting portion on the base substrate is larger than a surface of the supporting portion facing away from the reflecting portion on the base substrate. Orthographic area.
  • the support portion includes an upper section and a lower section; the upper section is located between the reflection section and the lower section.
  • forming a support portion in the non-pixel region includes: S501 forming a stacked first dielectric layer and a second dielectric layer in the non-pixel region, and the second dielectric layer is formed on the substrate. Between the first dielectric layer and the base substrate; S502 forms the upper segment by performing a dry etching process on the first dielectric layer; and S503 applies the upper segment as a mask pattern to the first segment The two dielectric layers perform a wet etching process to form the lower section.
  • the area of the orthographic projection of the upper segment on the base substrate is larger than the area of the orthographic projection of the lower segment on the base substrate.
  • a material of the second dielectric layer is SiOx, and a material of the first dielectric layer is SiNx.
  • the material of the lower segment 32 ie, the second dielectric layer
  • the upper segment 31 ie, the The material of the first dielectric layer
  • the SiNx material is only longitudinally etched during dry etching. Therefore, dry etching can be used to form the upper section 31 near the reflective portion 4.
  • the SiOx material can be etched laterally during wet etching, so the wet etching can be used to form the lower section 32. Accordingly, when the material of the reflective anode is deposited, a gap is automatically formed between the reflective anode and a reflective portion directly adjacent to the reflective anode.
  • a reflective anode is formed in the pixel region, and a reflective portion is formed in the non-pixel region. In this way, not only an independent reflective anode is formed, but the reflective anode and the reflective portion completely cover the multiple pixel regions and non-pixel regions, which improves the device (such as a thin film transistor) on an organic electroluminescence display panel. ) Improves the reliability of the organic electroluminescence display panel.
  • forming a reflective anode in each pixel region and forming a reflective portion on top of the support portion includes: using the same patterning process, forming a reflective anode in each pixel region and forming a reflection on top of the support portion unit.
  • the same patterning process may be used to simultaneously form the reflective portion and the reflective anode, thereby further simplifying a manufacturing process.
  • the method of manufacturing the organic electroluminescence display panel provided by the embodiment of the present disclosure will be described in detail below by taking the structure of the organic electroluminescence display panel shown in FIG. 2 as an example.
  • the manufacturing method of the organic electroluminescence display panel shown in FIG. 2 may include the following steps.
  • a planarization layer 17 is formed on the base substrate on which the thin-film crystal is formed, and a via hole is formed at a position of the planarization layer 17 corresponding to the source-drain electrode 14 of the thin-film crystal.
  • a first dielectric layer and a second dielectric layer are successively deposited in a non-pixel region of the base substrate 1 on which the planarization layer 17 is formed, and the second dielectric layer is on the first dielectric layer. And the substrate.
  • the thickness of the second dielectric layer may be greater than the thickness of the first dielectric layer.
  • a photoresist 01 is applied on the first dielectric layer near the reflecting portion 4, and a dry etching process is performed on the first dielectric layer to form the pattern of the upper section 31.
  • the photoresist 01 is retained, and the upper segment 31 is used as a mask pattern, and a wet etching process is performed on the second dielectric layer to form a pattern of the lower segment 32.
  • the area of the orthographic projection of the upper segment on the base substrate is larger than the area of the orthographic projection of the lower segment on the base substrate.
  • the material of the second dielectric layer may be SiOx, and the material of the first dielectric layer may be SiNx.
  • a material of a reflective anode is deposited on the base substrate 1 on which the support portion 3 is formed. Due to the existence of the support portion 3 in the non-pixel area, the material of the reflective anode is automatically disconnected in the non-pixel area, an independent reflective anode 2 is formed in the pixel area, and the reflective portion 4 is formed in the non-pixel area.
  • the reflective anode 2 is connected to the source-drain electrode 14 of the thin film transistor through a via hole in the planarization layer 17.
  • a pixel defining layer 5 is formed on the base substrate 1 on which the reflecting portion 4 is formed.
  • An opening 51 is formed on the pixel defining layer 5 by a photolithography process to expose the reflecting portion 4, and the opening 51 is on the substrate.
  • the area of the orthographic projection on 1 is smaller than the area of the orthographic projection of the reflecting portion 4 on the base substrate 1.
  • a light emitting layer 18 is formed on the base substrate 1 on which the pixel defining layer 5 is formed, and a cathode 6 is formed on the pixel defining layer 5 and covers the reflective anode 2 and the reflective portion 4.
  • the package cover 7 formed with the spacer layer 8, the auxiliary electrode 9, and the conductive layer 10 and the base substrate 1 shown in FIG. 6e are used to seal the box with the frame sealant, and the organic electricity as shown in FIG. 2 can be obtained.
  • the patterning process may include only a photolithography process, or may include a photolithography process and an etching step, and may also include printing, inkjet, and other applications.
  • the photolithography process refers to a process of forming a pattern using a photoresist, a mask, an exposure machine, and the like, including processes such as film formation, exposure, and development.
  • a corresponding patterning process may be selected according to the structure formed in the present disclosure.
  • an embodiment of the present disclosure further provides a display device including an organic electroluminescence display panel provided by any embodiment of the present disclosure.
  • the advantages of the display device are similar to the foregoing organic electroluminescence display panel, and the implementation of the display device can refer to the implementation of the foregoing organic electroluminescence display panel, and duplicated details will not be repeated here.
  • the display device provided in the embodiments of the present disclosure may be any product or component having a display function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • a display function such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • Other essential components of the display device are understood by those of ordinary skill in the art, and are not repeated here, and should not be used as a limitation on the present disclosure.
  • a support portion is provided in a non-pixel region. Accordingly, when the material of the reflective anode is deposited, a gap is automatically formed between the reflective anode and a reflective portion directly adjacent to the reflective anode. A reflective anode is formed in the pixel region, and a reflective portion is formed in the non-pixel region. In this way, not only an independent reflective anode is formed, but the reflective anode and the reflective portion completely cover the multiple pixel regions and non-pixel regions, which improves the device (such as a thin film transistor) on an organic electroluminescence display panel. ) Improves the reliability of the organic electroluminescence display panel.

Abstract

一种有机电致发光显示面板、其制作方法及显示装置。所述有机电致发光显示面板包括:衬底基板(1),所述衬底基板(1)包括多个像素区域(AA)以及位于相邻的像素区域(AA)之间的非像素区域(BB)。每个像素区域(AA)包括反射阳极(2);所述非像素区域(BB)包括支撑部(3)以及位于所述支撑部(3)顶部的反射部(4)。对于每个反射阳极(2)和与该反射阳极(2)直接相邻的反射部(4),该反射阳极(2)和该反射部(4)之间具有间隙,且该反射阳极(2)在所述衬底基板(1)上的正投影和该反射部(4)在所述衬底基板(1)上的正投影具有共同的边线。由此,所述反射阳极(2)和所述反射部(4)完整地覆盖了所述多个像素区域(AA)和非像素区域(BB),改善了对有机电致发光显示面板上的器件(例如薄膜晶体管)的遮光效果,提高了所述有机电致发光显示面板的可靠性。

Description

有机电致发光显示面板、其制作方法及显示装置
相关申请
本申请要求保护在2018年6月20日提交的申请号为201810638529.4的中国专利申请的优先权,该申请的全部内容以引用的方式结合到本文中。
技术领域
本公开涉及显示技术领域,特别涉及一种有机电致发光显示面板、其制作方法及显示装置。
背景技术
在平板显示面板中,有机发光二极管(Organic Light Emitting Diode,OLED)显示面板因具有自发光、反应快、视角广、亮度高、色彩艳、轻薄等优点而得到人们的广泛重视。在大尺寸OLED屏幕制作中,由于底发射型OLED器件受到开口率的影响,难以实现较高的分辨率。因此,越来越多的厂商通过开发顶发射型OLED器件以实现更高的分辨率。
在顶发射型OLED器件中,反射阳极通常是三层的堆栈结构,如ITO/Ag/ITO等。相关技术中,反射阳极结构的各层叠材料是通过连续沉积和连续刻蚀制作的,各子像素对应的反射阳极之间存在5~7um的空隙,因此在显示面板点亮后无法实现对背板TFT完全遮光,降低了背板的可靠度。
发明内容
本公开实施例提供了一种有机电致发光显示面板,包括衬底基板,所述衬底基板包括多个像素区域以及位于相邻的像素区域之间的非像素区域;其中,每个像素区域包括反射阳极;所述非像素区域包括支撑部以及位于所述支撑部顶部的反射部;并且其中,对于每个反射阳极和与该反射阳极直接相邻的反射部,该反射阳极和该反射部之间具有间隙,且该反射阳极在所述衬底基板上的正投影和该反射部在所述衬底基板上的正投影具有共同的边线。
在一些实施例中,所述支撑部面对所述反射部的表面在所述衬底基板上的正投影的面积大于所述支撑部背离所述反射部的表面在所述衬底基板上的正投影的面积。
在一些实施例中,所述支撑部包括上段和下段;所述上段位于所述反射部和所述下段之间,并且所述上段在所述衬底基板上的正投影的面积大于所述下段在所述衬底基板上的正投影的面积。
在一些实施例中,所述下段的材料为SiOx,所述上段的材料为SiNx。
在一些实施例中,所述反射部的材料和所述反射阳极的材料相同。
在一些实施例中,所述有机电致发光显示面板还包括:覆盖所述多个像素区域和所述非像素区域的阴极;其中,所述阴极和所述反射部直接接触。
在一些实施例中,所述非像素区域还包括位于所述反射部上的像素界定层;所述像素界定层对应于所述反射部的部分具有开口;所述阴极在所述开口中与所述反射部直接接触。
在一些实施例中,所述开口在所述衬底基板上的正投影的面积小于所述反射部在所述衬底基板上的正投影的面积。
在一些实施例中,所述有机电致发光显示面板还包括:与所述衬底基板相对设置的封装盖板,以及位于所述封装盖板朝向所述衬底基板一侧的隔垫物层;其中,所述隔垫物层对应于所述开口。
在一些实施例中,所述有机电致发光显示面板还包括:辅助电极和导电层;其中,所述辅助电极位于所述隔垫物层与所述封装盖板之间,所述辅助电极在所述衬底基板上的正投影的面积大于所述隔垫物层在所述衬底基板上的正投影的面积,所述导电层与所述辅助电极电连接且覆盖所述隔垫物层和所述封装盖板。
本公开的实施例还提供了一种显示装置。所述显示装置包括如以上实施例所述的有机电致发光显示面板。
本公开的实施例还提供了一种如以上实施例所述的有机电致发光显示面板的制作方法。所述方法包括:提供衬底基板,所述衬底基板包括多个像素区域以及位于相邻的像素区域之间的非像素区域;在所述非像素区域形成支撑部;以及在每个像素区域中形成反射阳极并在所述支撑部顶部形成反射部。其中,对于每个反射阳极和与该反射阳极直接相邻的反射部,该反射阳极和该反射部之间具有间隙,且该反 射阳极在所述衬底基板上的正投影和该反射部在所述衬底基板上的正投影具有共同的边线。
在一些实施例中,所述支撑部面对所述反射部的表面在所述衬底基板上的正投影的面积大于所述支撑部背离所述反射部的表面在所述衬底基板上的正投影的面积。
在一些实施例中,所述支撑部包括上段和下段;所述上段位于所述反射部和所述下段之间。在所述非像素区域形成支撑部包括:在所述非像素区域形成层叠的第一电介质层和第二电介质层,所述第二电介质层在所述第一电介质层和所述衬底基板之间;通过对所述第一电介质层执行干法刻蚀工艺,形成所述上段;以及通过将所述上段作为掩模图案对所述第二电介质层执行湿法刻蚀工艺,形成所述下段。其中,所述上段在所述衬底基板上的正投影的面积大于所述下段在所述衬底基板上的正投影的面积。
在一些实施例中,所述第二电介质层的材料为SiOx,所述第一电介质层的材料为SiNx。
在一些实施例中,在每个像素区域中形成反射阳极并在所述支撑部顶部形成反射部包括:利用同一构图工艺,在每个像素区域中形成反射阳极并在所述支撑部顶部形成反射部。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的有机电致发光显示面板的结构示意图;
图2为本公开另一实施例提供的有机电致发光显示面板的结构示意图;
图3为本公开实施例提供的有机电致发光显示面板的反射阳极与反射部的俯视图;
图4为本公开实施例提供的有机电致发光显示面板的制作方法流程图;
图5为本公开另一实施例提供的有机电致发光显示面板的制作方法流程图;以及
图6a-图6e分别为对应于本公开实施例提供的有机电致发光显示面板的制作方法各步骤的结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
附图中各层薄膜厚度、大小和形状不反映显示面板的真实比例,目的只是示意说明本公开内容。
本公开实施例提供了一种有机电致发光显示面板。如图1至图3所示,所述有机电致发光显示面板包括衬底基板1,所述衬底基板1包括多个像素区域AA以及位于相邻的像素区域AA之间的非像素区域BB;其中,每个像素区域AA包括反射阳极2;所述非像素区域BB包括支撑部3以及位于所述支撑部3顶部的反射部4;并且其中,对于每个反射阳极2和与该反射阳极2直接相邻的反射部4,该反射阳极2和该反射部4之间具有间隙,且该反射阳极2在所述衬底基板1上的正投影和该反射部4在所述衬底基板1上的正投影具有共同的边线。
根据本公开实施例提供的有机电致发光显示面板,在沉积反射阳极之前,在非像素区域中设置支撑部。由此,在沉积反射阳极的材料时,在反射阳极和与该反射阳极直接相邻的反射部之间自动形成了间隙。在像素区域形成了反射阳极,在非像素区域形成了反射部。这样不仅形成了独立的反射阳极,并且所述反射阳极和所述反射部完整地覆盖了所述多个像素区域和非像素区域,改善了对有机电致发光显示面板上的器件(例如薄膜晶体管)的遮光效果,提高了所述有机电致发光显示面板的可靠性。
如图3所示,反射部4形成在相邻像素区域AA之间,反射阳极2形成在像素区域AA中。可以看出,对于每个反射阳极2和与该反射阳极2直接相邻的反射部4,该反射阳极2和该反射部4之间具有间隙, 且该反射阳极2在所述衬底基板1上的正投影和该反射部4在所述衬底基板1上的正投影具有共同的边线。因此,所述反射阳极和所述反射部完整地覆盖了所述多个像素区域和非像素区域,改善了对有机电致发光显示面板上的器件(例如薄膜晶体管)的遮光效果,提高了所述有机电致发光显示面板的可靠性。
在一些实施例中,所述支撑部面对所述反射部的表面在所述衬底基板上的正投影的面积大于所述支撑部背离所述反射部的表面在所述衬底基板上的正投影的面积。
为了在沉积反射阳极时,相邻像素区域的反射阳极能够自动分离,在本公开实施例提供的上述有机电致发光显示面板中,如图1所示,所述支撑部3面对所述反射部4的表面在所述衬底基板1上的正投影的面积大于所述支撑部3背离所述反射部4的表面在所述衬底基板1上的正投影的面积。由于支撑部3具有一定的厚度,在沉积反射阳极的材料时,在反射阳极和与该反射阳极直接相邻的反射部之间自动形成了间隙。在像素区域形成了反射阳极,在非像素区域形成了反射部。这样不仅形成了独立的反射阳极,并且所述反射阳极和所述反射部完整地覆盖了所述多个像素区域和非像素区域,改善了对有机电致发光显示面板上的器件(例如薄膜晶体管)的遮光效果,提高了所述有机电致发光显示面板的可靠性。
在一些实施例中,所述支撑部包括上段和下段;所述上段位于所述反射部和所述下段之间,并且所述上段在所述衬底基板上的正投影的面积大于所述下段在所述衬底基板上的正投影的面积。
为了在沉积反射阳极时,能够更好的使相邻像素区域的反射阳极能够自动分离,在本公开实施例提供的上述有机电致发光显示面板中,如图1所示,所述支撑部3包括上段31和下段32;所述上段31位于所述反射部4和所述下段32之间,并且所述上段31在所述衬底基板1上的正投影的面积大于所述下段32在所述衬底基板1上的正投影的面积。
在本公开实施例提供的上述有机电致发光显示面板中,所述支撑部3包括上段31和下段32。本领域技术人员能够理解,所述支撑部还可以具有其他形状,只要所述支撑部面对所述反射部的表面在所述衬底基板上的正投影的面积大于所述支撑部背离所述反射部的表面在所 述衬底基板上的正投影的面积即可。
在一些实施例中,所述下段的材料为SiOx,所述上段的材料为SiNx。
在本公开实施例提供的上述有机电致发光显示面板中,如图1所示,所述下段32的材料为SiOx,所述上段31的材料为SiNx。SiNx材料在干法刻蚀时只进行纵向刻蚀,因此可以采用干法刻蚀形成靠近反射部4的上段31。SiOx材料在湿法刻蚀时可以实现横向刻蚀,因此可以采用湿法刻蚀形成所述下段32。由此,在沉积反射阳极的材料时,在反射阳极和与该反射阳极直接相邻的反射部之间自动形成了间隙。在像素区域形成了反射阳极,在非像素区域形成了反射部。这样不仅形成了独立的反射阳极,并且所述反射阳极和所述反射部完整地覆盖了所述多个像素区域和非像素区域,改善了对有机电致发光显示面板上的器件(例如薄膜晶体管)的遮光效果,提高了所述有机电致发光显示面板的可靠性。
在一些实施例中,所述反射部的材料和所述反射阳极的材料相同。根据本公开的一些实施例,可以使用同一构图工艺,同时地形成所述反射部和所述反射阳极,从而进一步简化制作工艺。
在一些实施例中,所述有机电致发光显示面板还包括:覆盖所述多个像素区域和所述非像素区域的阴极;其中,所述阴极和所述反射部直接接触。
在一些实施例中,所述非像素区域还包括位于所述反射部上的像素界定层;所述像素界定层对应于所述反射部的部分具有开口;所述阴极在所述开口中与所述反射部直接接触。
为了避免有机电致发光显示面板的各像素区域之间发生混光的现象,在本公开实施例提供的上述有机电致发光显示面板中,如图1所示,非像素区域还包括位于反射部4上的像素界定层5;像素界定层5限定出像素区域与非像素区域。所述有机电致发光显示面板还可以包括:位于像素界定层5上且覆盖反射阳极2与反射部4的阴极6。本领域技术人员能够理解,所述有机电致发光还包括位于反射阳极2与阴极6之间的发光层18。所述像素界定层5对应于所述反射部4的部分具有开口51;所述阴极6在所述开口51中与所述反射部4直接接触。所述反射部的材料和所述反射阳极的材料相同,因此所述反射部的材料可以是诸如金属的导电材料。反射部4与阴极6直接接触,增大了 阴极6的有效厚度,从而可以减小阴极6的电阻。由此,可以避免由于阴极6电阻较大而导致的电压降较大的问题,进而可以避免由于电压降较大而损坏显示面板的问题。
在一些实施例中,所述开口51在衬底基板1上的正投影的面积小于反射部4在衬底基板1上的正投影的面积。这样像素界定层5的开口51可以将部分反射部4显露出来。在后续工艺中对所述显示面板执行对盒工艺时,由于封装盖板上的隔垫物层施加的压力,可以使得反射部4与阴极6之间的距离较小。
在一些实施例中,如图2所示,所述有机电致发光显示面板还包括与衬底基板1相对设置的封装盖板7,以及位于封装盖板7朝向衬底基板1一侧的隔垫物层8;其中,隔垫物层8对应于所述开口51。这样,在封装盖板7与有机电致发光显示面板对盒时,隔垫物层8与像素界定层5的开口51处显露处的反射部4对位。利用对盒时的压力,反射部4与阴极6之间的距离缩短。反射部4与阴极6直接接触,从而可以减小阴极6的电阻。由此,避免了由于阴极6电阻较大而导致的电压降较大的问题,进而可以避免由于电压降较大而损坏显示面板的问题。并且,支撑部3在受到隔垫物层8的压力后的形变量相对像素界定层5的形变量较小,因此封装盖板7与衬底基板1对盒后在隔垫物层8的压合位置不容易产生阴极6碎裂,提升显示面板的良率。
进一步地,为了进一步减小阴极6的电阻,在本公开实施例提供的上述有机电致发光显示面板中,如图2所示,还包括:辅助电极9和导电层10;其中辅助电极9位于隔垫物层8与封装盖板7之间,辅助电极9在衬底基板1上的正投影的面积大于隔垫物层8在衬底基板1上的正投影的面积,导电层10与辅助电极9电连接且覆盖隔垫物层8和封装盖板7。这样,在显示面板对盒时,辅助电极9通过导电层10与阴极6电接触,进一步减小了阴极电阻。由此,进一步避免了由于阴极6电阻较大而导致的电压降较大的问题,进而可以避免由于电压降较大而损坏显示面板的问题。
具体实施时,在本公开实施例提供的上述有机电致发光显示面板中,如图1和图2所示,有机电致发光显示面板还包括用于驱动显示面板发光的薄膜晶体管,该薄膜晶体管包括位于衬底基板1上的有源层11、位于有源层11上的栅绝缘层12、位于栅绝缘层12上的栅极13、 与有源层11电连接的源漏电极14,有机电致发光显示面板还包括位于有源层11与源漏电极14之间的层间介质层15、覆盖源漏电极层15的钝化层16以及位于钝化层16与支撑部3之间的平坦化层17,反射阳极2通过贯穿钝化层16与平坦化层17的过孔与源漏电极14相连,在此不做限定。
具体实施时,在本公开实施例提供的上述有机电致发光显示面板中,如图2所示,有机电致发光显示面板还包括位于显示面板的边框区域用于封框有机电致发光显示面板的封框胶18,在此不做限定。
具体实施时,本公开的反射阳极、反射部、阴极、辅助电极以及导电层的材料可以是常用的金属材料,如Ag、Cu、Al、Mo等,或多层金属如MoNb/Cu/MoNb等,或上述金属的合金材料,如A1Nd、MoNb等,也可以是金属和透明导电氧化物(如ITO、AZO等)形成的堆栈结构如ITO/Ag/ITO等;在此不做限定。
需要说明的是,本公开实施例提供的有机电致发光显示面板适用于顶栅型TFT、背沟道刻蚀型(BCE)TFT、刻蚀阻挡结构(ESL)TFT等器件结构。
需要说明的是,本公开实施例适用于以各种氧化物、硅材料或有机物材料作为有源层的TFT,有源层的材料可以包括a-IGZO、ZnON、IZTO、a-Si、p-Si、六噻吩或聚噻吩等各种材料,即同时适用于基于Oxide技术、硅技术或有机物技术制造的背板TFT。
本公开实施例中的栅绝缘层、层间介质层以及钝化层的材料包括但不限于常规的如SiOx、SiNx、SiON等介质材料,或各种新型的有机绝缘材料,或高介电常数(High k)材料如A10x,HfOx,TaOx等;在此不做限定。
本公开实施例中的平坦化层包含但不限于聚硅氧烷系材料,亚克力系材料,或聚酰亚胺系材料等具有平坦化效果的材料;在此不做限定。
基于同一构思,本公开实施例还提供了一种有机电致发光显示面板的制作方法。如图4所示,所述方法包括以下步骤:S401提供衬底基板,所述衬底基板包括多个像素区域以及位于相邻的像素区域之间的非像素区域;S402在所述非像素区域形成支撑部;以及S403在每个像素区域中形成反射阳极并在所述支撑部顶部形成反射部。其中,对 于每个反射阳极和与该反射阳极直接相邻的反射部,该反射阳极和该反射部之间具有间隙,且该反射阳极在所述衬底基板上的正投影和该反射部在所述衬底基板上的正投影具有共同的边线。
根据本公开实施例提供的有机电致发光显示面板的制作方法,在沉积反射阳极之前,在非像素区域中设置支撑部。由此,在沉积反射阳极的材料时,在反射阳极和与该反射阳极直接相邻的反射部之间自动形成了间隙。在像素区域形成了反射阳极,在非像素区域形成了反射部。这样不仅形成了独立的反射阳极,并且所述反射阳极和所述反射部完整地覆盖了所述多个像素区域和非像素区域,改善了对有机电致发光显示面板上的器件(例如薄膜晶体管)的遮光效果,提高了所述有机电致发光显示面板的可靠性。
在一些实施例中,所述支撑部面对所述反射部的表面在所述衬底基板上的正投影的面积大于所述支撑部背离所述反射部的表面在所述衬底基板上的正投影的面积。
进一步地,在一些实施例中,所述支撑部包括上段和下段;所述上段位于所述反射部和所述下段之间。如图5所示,在所述非像素区域形成支撑部(即步骤S402)包括:S501在所述非像素区域形成层叠的第一电介质层和第二电介质层,所述第二电介质层在所述第一电介质层和所述衬底基板之间;S502通过对所述第一电介质层执行干法刻蚀工艺,形成所述上段;以及S503通过将所述上段作为掩模图案对所述第二电介质层执行湿法刻蚀工艺,形成所述下段。其中,所述上段在所述衬底基板上的正投影的面积大于所述下段在所述衬底基板上的正投影的面积。
在一些实施例中,所述第二电介质层的材料为SiOx,所述第一电介质层的材料为SiNx。
在本公开实施例提供的上述有机电致发光显示面板中,如图1所示,所述下段32(即,所述第二电介质层)的材料为SiOx,所述上段31(即,所述第一电介质层)的材料为SiNx。SiNx材料在干法刻蚀时只进行纵向刻蚀,因此可以采用干法刻蚀形成靠近反射部4的上段31。SiOx材料在湿法刻蚀时可以实现横向刻蚀,因此可以采用湿法刻蚀形成所述下段32。由此,在沉积反射阳极的材料时,在反射阳极和与该反射阳极直接相邻的反射部之间自动形成了间隙。在像素区域形成了 反射阳极,在非像素区域形成了反射部。这样不仅形成了独立的反射阳极,并且所述反射阳极和所述反射部完整地覆盖了所述多个像素区域和非像素区域,改善了对有机电致发光显示面板上的器件(例如薄膜晶体管)的遮光效果,提高了所述有机电致发光显示面板的可靠性。
在一些实施例中,在每个像素区域中形成反射阳极并在所述支撑部顶部形成反射部包括:利用同一构图工艺,在每个像素区域中形成反射阳极并在所述支撑部顶部形成反射部。
根据本公开的一些实施例,可以使用同一构图工艺,同时地形成所述反射部和所述反射阳极,从而进一步简化制作工艺。
下面以图2所示的有机电致发光显示面板的结构为例,对本公开实施例提供的有机电致发光显示面板的制作方法进行详细说明。
图2所示的有机电致发光显示面板的制作方法可以包括如下的步骤。
如图6a所示,在形成有薄膜晶体的衬底基板上形成平坦化层17,并在平坦化层17对应于薄膜晶体的源漏电极14的位置形成过孔。
如图6b所示,在形成有平坦化层17的衬底基板1的非像素区域连续地沉积层叠的第一电介质层和第二电介质层,所述第二电介质层在所述第一电介质层和所述衬底基板之间。所述第二电介质层的厚度可以大于所述第一电介质层的厚度。在靠近反射部4的第一电介质层上涂光刻胶01,对所述第一电介质层进行干法刻蚀工艺形成所述上段31的图形。保留光刻胶01,以所述上段31作为掩模图案,对所述第二电介质层进行湿法刻蚀工艺形成所述下段32的图形。其中,所述上段在所述衬底基板上的正投影的面积大于所述下段在所述衬底基板上的正投影的面积。所述第二电介质层的材料可以为SiOx,所述第一电介质层的材料可以为SiNx。
如图6c所示,在形成有支撑部3的衬底基板1上沉积反射阳极的材料。由于非像素区域的支撑部3的存在,反射阳极的材料在非像素区域会自动断开,在像素区域形成独立的反射阳极2,并在非像素区域形成反射部4。反射阳极2通过平坦化层17上的过孔与薄膜晶体管的源漏电极14相连。
如图6d所示,在形成反射部4的衬底基板1上形成像素界定层5,采用光刻工艺在像素界定层5上形成开口51使反射部4显露出来,且 开口51在衬底基板1上的正投影的面积小于反射部4在衬底基板1上的正投影的面积。
如图6e所示,在形成有像素界定层5的衬底基板1上形成发光层18,形成位于像素界定层5上且覆盖反射阳极2与反射部4的阴极6。
将形成有隔垫物层8、辅助电极9以及导电层10的封装盖板7与如图6e所示的衬底基板1通过封框胶对盒,即可得到如图2所示的有机电致发光显示面板。
需要说明的是,在本公开实施例提供的上述制备方法中,构图工艺可只包括光刻工艺,或,也可以包括光刻工艺与刻蚀步骤,同时还可以包括打印、喷墨等其他用于形成预定图形的工艺。光刻工艺是指包括成膜、曝光、显影等工艺过程的利用光刻胶、掩模板、曝光机等形成图形的工艺。在具体实施时,可根据本公开中所形成的结构选择相应的构图工艺。
基于同一构思,本公开实施例还提供了一种显示装置,包括本公开任一实施例提供的有机电致发光显示面板。该显示装置的优点与前述有机电致发光显示面板相似,并且该显示装置的实施可以参见前述有机电致发光显示面板的实施,重复之处在此不再赘述。
在具体实施时,本公开实施例提供的显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。对于该显示装置的其它必不可少的组成部分均为本领域的普通技术人员应该理解具有的,在此不做赘述,也不应作为对本公开的限制。
根据本公开实施例提供的有机电致发光显示面板、其制作方法及显示装置,在沉积反射阳极之前,在非像素区域中设置支撑部。由此,在沉积反射阳极的材料时,在反射阳极和与该反射阳极直接相邻的反射部之间自动形成了间隙。在像素区域形成了反射阳极,在非像素区域形成了反射部。这样不仅形成了独立的反射阳极,并且所述反射阳极和所述反射部完整地覆盖了所述多个像素区域和非像素区域,改善了对有机电致发光显示面板上的器件(例如薄膜晶体管)的遮光效果,提高了所述有机电致发光显示面板的可靠性。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于 本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (16)

  1. 一种有机电致发光显示面板,包括:
    衬底基板,所述衬底基板包括多个像素区域以及位于相邻的像素区域之间的非像素区域;
    其中,每个像素区域包括反射阳极;所述非像素区域包括支撑部以及位于所述支撑部顶部的反射部;
    并且其中,对于每个反射阳极和与该反射阳极直接相邻的反射部,该反射阳极和该反射部之间具有间隙,且该反射阳极在所述衬底基板上的正投影和该反射部在所述衬底基板上的正投影具有共同的边线。
  2. 如权利要求1所述的有机电致发光显示面板,其中,所述支撑部面对所述反射部的表面在所述衬底基板上的正投影的面积大于所述支撑部背离所述反射部的表面在所述衬底基板上的正投影的面积。
  3. 如权利要求1或2所述的有机电致发光显示面板,其中,所述支撑部包括上段和下段;所述上段位于所述反射部和所述下段之间,并且所述上段在所述衬底基板上的正投影的面积大于所述下段在所述衬底基板上的正投影的面积。
  4. 如权利要求3所述的有机电致发光显示面板,其中,所述下段的材料为SiOx,所述上段的材料为SiNx。
  5. 如权利要求1所述的有机电致发光显示面板,其中,所述反射部的材料和所述反射阳极的材料相同。
  6. 如权利要求1或5所述的有机电致发光显示面板,还包括:覆盖所述多个像素区域和所述非像素区域的阴极;
    其中,所述阴极和所述反射部直接接触。
  7. 如权利要求6所述的有机电致发光显示面板,其中,所述非像素区域还包括位于所述反射部上的像素界定层;所述像素界定层对应于所述反射部的部分具有开口;所述阴极在所述开口中与所述反射部直接接触。
  8. 如权利要求7所述的有机电致发光显示面板,其中,所述开口在所述衬底基板上的正投影的面积小于所述反射部在所述衬底基板上的正投影的面积。
  9. 如权利要求7或8所述的有机电致发光显示面板,还包括:与 所述衬底基板相对设置的封装盖板,以及位于所述封装盖板朝向所述衬底基板一侧的隔垫物层;
    其中,所述隔垫物层对应于所述开口。
  10. 如权利要求9所述的有机电致发光显示面板,还包括:辅助电极和导电层;
    其中,所述辅助电极位于所述隔垫物层与所述封装盖板之间,所述辅助电极在所述衬底基板上的正投影的面积大于所述隔垫物层在所述衬底基板上的正投影的面积,所述导电层与所述辅助电极电连接且覆盖所述隔垫物层和所述封装盖板。
  11. 一种显示装置,包括如权利要求1-10任一项所述的有机电致发光显示面板。
  12. 一种如权利要求1-10任一项所述的有机电致发光显示面板的制作方法,包括:
    提供衬底基板,所述衬底基板包括多个像素区域以及位于相邻的像素区域之间的非像素区域;
    在所述非像素区域形成支撑部;以及
    在每个像素区域中形成反射阳极并在所述支撑部顶部形成反射部;
    其中,对于每个反射阳极和与该反射阳极直接相邻的反射部,该反射阳极和该反射部之间具有间隙,且该反射阳极在所述衬底基板上的正投影和该反射部在所述衬底基板上的正投影具有共同的边线。
  13. 如权利要求12所述的制作方法,其中,所述支撑部面对所述反射部的表面在所述衬底基板上的正投影的面积大于所述支撑部背离所述反射部的表面在所述衬底基板上的正投影的面积。
  14. 如权利要求12所述的制作方法,其中,所述支撑部包括上段和下段;所述上段位于所述反射部和所述下段之间;
    在所述非像素区域形成支撑部包括:在所述非像素区域形成层叠的第一电介质层和第二电介质层,所述第二电介质层在所述第一电介质层和所述衬底基板之间;通过对所述第一电介质层执行干法刻蚀工艺,形成所述上段;以及通过将所述上段作为掩模图案对所述第二电介质层执行湿法刻蚀工艺,形成所述下段;
    其中,所述上段在所述衬底基板上的正投影的面积大于所述下段在所述衬底基板上的正投影的面积。
  15. 如权利要求14所述的制作方法,其中,所述第二电介质层的材料为SiOx,所述第一电介质层的材料为SiNx。
  16. 如权利要求12-15任一项所述的制作方法,其中,在每个像素区域中形成反射阳极并在所述支撑部顶部形成反射部包括:
    利用同一构图工艺,在每个像素区域中形成反射阳极并在所述支撑部顶部形成反射部。
PCT/CN2019/091676 2018-06-20 2019-06-18 有机电致发光显示面板、其制作方法及显示装置 WO2019242600A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/652,037 US20200251678A1 (en) 2018-06-20 2019-06-18 Organic electroluminescent display panel, manufacturing method thereof and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810638529.4A CN108831914B (zh) 2018-06-20 2018-06-20 一种有机发光显示面板、其制作方法及显示装置
CN201810638529.4 2018-06-20

Publications (1)

Publication Number Publication Date
WO2019242600A1 true WO2019242600A1 (zh) 2019-12-26

Family

ID=64141630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091676 WO2019242600A1 (zh) 2018-06-20 2019-06-18 有机电致发光显示面板、其制作方法及显示装置

Country Status (3)

Country Link
US (1) US20200251678A1 (zh)
CN (1) CN108831914B (zh)
WO (1) WO2019242600A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108831914B (zh) * 2018-06-20 2020-08-04 京东方科技集团股份有限公司 一种有机发光显示面板、其制作方法及显示装置
CN110752243B (zh) * 2019-10-31 2023-01-10 武汉天马微电子有限公司 一种显示面板、其制作方法及显示装置
CN111834545B (zh) * 2020-06-30 2022-10-14 湖北长江新型显示产业创新中心有限公司 显示面板和显示装置
CN112117321B (zh) * 2020-10-21 2024-03-01 维信诺科技股份有限公司 显示面板及显示面板的制造方法
CN112670247B (zh) * 2020-12-23 2024-02-02 武汉天马微电子有限公司 一种显示面板的制备方法、显示面板及显示装置
CN113035915A (zh) * 2021-03-01 2021-06-25 京东方科技集团股份有限公司 3d显示组件及其显示面板、显示面板的制作方法
US11864402B2 (en) * 2021-04-30 2024-01-02 Sharp Kabushiki Kaisha Combined auxiliary electrode and partially scattering bank for three-dimensional QLED pixel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1454034A (zh) * 2002-04-25 2003-11-05 Lg.菲利浦Lcd株式会社 有机电致发光显示装置及其制造方法
CN1964064A (zh) * 2005-11-07 2007-05-16 三星电子株式会社 显示装置及其制造方法
CN102668706A (zh) * 2009-11-17 2012-09-12 夏普株式会社 有机el显示器
US20150287957A1 (en) * 2012-11-08 2015-10-08 Pioneer Corporation Mirror device
US20170104181A1 (en) * 2015-10-13 2017-04-13 Samsung Display Co., Ltd. Organic light emitting display panel and method of manufacturing the same
CN108831914A (zh) * 2018-06-20 2018-11-16 京东方科技集团股份有限公司 一种有机发光显示面板、其制作方法及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1454034A (zh) * 2002-04-25 2003-11-05 Lg.菲利浦Lcd株式会社 有机电致发光显示装置及其制造方法
CN1964064A (zh) * 2005-11-07 2007-05-16 三星电子株式会社 显示装置及其制造方法
CN102668706A (zh) * 2009-11-17 2012-09-12 夏普株式会社 有机el显示器
US20150287957A1 (en) * 2012-11-08 2015-10-08 Pioneer Corporation Mirror device
US20170104181A1 (en) * 2015-10-13 2017-04-13 Samsung Display Co., Ltd. Organic light emitting display panel and method of manufacturing the same
CN108831914A (zh) * 2018-06-20 2018-11-16 京东方科技集团股份有限公司 一种有机发光显示面板、其制作方法及显示装置

Also Published As

Publication number Publication date
CN108831914A (zh) 2018-11-16
US20200251678A1 (en) 2020-08-06
CN108831914B (zh) 2020-08-04

Similar Documents

Publication Publication Date Title
WO2019242600A1 (zh) 有机电致发光显示面板、其制作方法及显示装置
US20210351375A1 (en) Flexible display apparatus
US11387261B2 (en) Array substrate and display device
EP3678206A1 (en) Organic electroluminescent display substrate and manufacturing method thereof, and display device
JP7331016B2 (ja) 表示基板及びその製造方法、表示装置
US10090326B2 (en) Flexible display substrate and a manufacturing method thereof, as well as a flexible display device
WO2018205651A1 (zh) Oled触控显示面板及其制作方法、触控显示装置
WO2020047978A1 (zh) 显示面板及其制作方法
CN109378326B (zh) 显示面板及其制作方法
US11217767B2 (en) Organic light emitting display panel, manufacturing method thereof, and display device
US11043545B2 (en) Display substrate, fabricating method thereof, and display device
KR20190066648A (ko) 표시 장치 및 그 제조 방법
WO2016095639A1 (zh) 阵列基板及其制造方法、显示装置
US11385732B2 (en) Array substrate, manufacturing method thereof, touch display panel and touch display device
US20200066813A1 (en) Electroluminescent display panel, manufacturing method thereof and display device
CN113707725B (zh) 薄膜晶体管及其制备方法、阵列基板、显示装置
US20240114728A1 (en) Organic light-emitting diode display substrate and manufacturing method thereof, and display panel
US20190157606A1 (en) Display device and manufacturing method therefor
KR102152846B1 (ko) 유기전계 발광소자 및 이의 제조 방법
WO2022141444A1 (zh) 显示面板及显示装置
JP2023518622A (ja) 表示基板及びその製造方法、表示マザーボード並びに表示装置
US20230350255A1 (en) Display substrate and display panel
JP2016054046A (ja) 表示装置および電子機器
KR100623703B1 (ko) 하나의 패널로 서로 다른 방향으로 화상을 표시할 수 있는유기전계발광표시장치 및 그의 제조방법
US20210233978A1 (en) Method of fabricating array substrate, array substrate, and display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19823365

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19823365

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14.05.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19823365

Country of ref document: EP

Kind code of ref document: A1