WO2019242191A1 - 水力割缝与多级燃烧冲击波联合致裂煤体瓦斯抽采方法 - Google Patents
水力割缝与多级燃烧冲击波联合致裂煤体瓦斯抽采方法 Download PDFInfo
- Publication number
- WO2019242191A1 WO2019242191A1 PCT/CN2018/112293 CN2018112293W WO2019242191A1 WO 2019242191 A1 WO2019242191 A1 WO 2019242191A1 CN 2018112293 W CN2018112293 W CN 2018112293W WO 2019242191 A1 WO2019242191 A1 WO 2019242191A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- impact
- shock wave
- gas
- coal
- gas injection
- Prior art date
Links
- 238000000605 extraction Methods 0.000 title claims abstract description 63
- 230000035939 shock Effects 0.000 title claims abstract description 52
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 40
- 238000005520 cutting process Methods 0.000 title claims abstract description 13
- 239000003245 coal Substances 0.000 claims abstract description 53
- 238000002347 injection Methods 0.000 claims abstract description 43
- 239000007924 injection Substances 0.000 claims abstract description 43
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 26
- 238000005553 drilling Methods 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 18
- 238000007789 sealing Methods 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 239000007789 gas Substances 0.000 abstract description 67
- 230000035699 permeability Effects 0.000 abstract description 7
- 238000003860 storage Methods 0.000 abstract description 2
- 230000002708 enhancing effect Effects 0.000 abstract 1
- 239000003034 coal gas Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000005065 mining Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000005422 blasting Methods 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000006880 cross-coupling reaction Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/006—Production of coal-bed methane
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/166—Injecting a gaseous medium; Injecting a gaseous medium and a liquid medium
- E21B43/168—Injecting a gaseous medium
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/24—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
- E21B43/243—Combustion in situ
- E21B43/247—Combustion in situ in association with fracturing processes or crevice forming processes
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/25—Methods for stimulating production
- E21B43/26—Methods for stimulating production by forming crevices or fractures
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/25—Methods for stimulating production
- E21B43/26—Methods for stimulating production by forming crevices or fractures
- E21B43/2605—Methods for stimulating production by forming crevices or fractures using gas or liquefied gas
Definitions
- the invention relates to coal fracturing and gas drainage, and in particular to a method for coal fracturing coal gas drainage using hydraulic cutting seam and multi-stage combustion shock wave.
- Coalbed methane is one of the main factors that cause deep mine dynamic disasters.
- Global coalbed methane reserves are about 250 trillion cubic meters.
- Coalbed methane is not only an efficient clean energy source, but also a greenhouse gas. Its greenhouse effect is about It is 25-30 times of carbon dioxide, and coalbed methane has explosion and prominent danger. In order to improve the energy utilization rate and reduce the occurrence of mine disasters, it is very necessary to improve the drilling gas extraction efficiency.
- Borehole gas drainage is the main method to realize gas resource utilization in coal mines, and it is also an important method to prevent gas disasters.
- coal seams in China are low-permeability coal seams, especially after mining into the deep, the permeability of the coal seams is even worse, resulting in the limited impact range of ordinary drilling extraction, low pressure relief, small drilling flow, and large attenuation coefficient.
- the current coal pressure relief and anti-reflection technology mainly includes deep-hole blasting technology.
- deep-hole blasting technology has certain dangers. The situation in the mine is more complicated and volatile, especially in the deep hole. If it is not operated properly, accidents may occur .
- the present invention provides a high safety and cost Enhanced gas drainage method for low-level, easy-to-operate coal mine multistage combustion shock wave-induced cracked coal body.
- Method for gas drainage of coal fractured coal body by hydraulic cutting slot and multi-stage combustion shock wave including steps:
- step S1 specifically includes: constructing impact drilling and ordinary drilling in the coal seam, the ordinary drilling is located around the impact drilling;
- step S2 specifically includes: placing a porous cylinder with a piston in the impact drilling, Insert one end of the gas injection extraction pipe through the piston into the porous cylinder, and the other end of the gas injection extraction pipe protruding out of the impact borehole; place one end of the shock wave introduction pipe into the porous cylinder to introduce the shock wave
- the other end of the tube is connected to the combustion chamber outside the impact borehole, and the shock wave introduction tube does not pass through the piston; put one end of the ordinary extraction pipe into the ordinary borehole and seal the hole, and connect the other end of the ordinary extraction pipe to the extraction system Connected.
- step S8 is also included: after the coal body around the impact borehole forms a fracture network, the gas injection extraction pipe is opened and the gas injection extraction pipe is connected to the extraction system for gas extraction.
- shock wave introduction pipe is further provided with a solenoid valve, and the solenoid valve is adjusted by the control system.
- the opening pressure value of the solenoid valve is 30 MPa.
- the combustible gas is methane
- the auxiliary gas is dry air
- the present invention relates to a method for extracting coal gas by using a hydraulic cutting slot and a multi-stage combustion shock wave, which uses high temperature and high pressure generated by mixed combustion of methane and dry air in a high temperature and high pressure combustion chamber.
- Shock wave multi-stage impact piston squeezes N 2 or CO 2 , so that a large number of cracks are generated around the impact drilling hole under the guidance of the slot, and the original crack opening is increased, and the penetrability of the crack network is enhanced.
- Slots are cut in the boreholes to reduce the pressure and increase the permeability of the coal body and increase the storage space of N 2 or CO 2 ; by multi-stage impact compression cracking of the coal body around the impact borehole, the original cracks are increased
- the opening degree enhances the permeability of the fracture network in the coal body and significantly improves the pressure relief range of the drainage borehole.
- the residual high-temperature and high-pressure shock wave can promote the desorption and flow of coal seam gas, which is better.
- the method and equipment have the advantages of high safety, low cost, and easy operation. At the same time, the method and equipment are suitable for depressurizing and increasing permeability of through-hole drilling and down-hole drilling in coal mines. With a wider scope.
- FIG. 1 is a schematic diagram of a device structure and an installation position used in a method for extracting coal gas by using a hydraulic slit and a multi-stage combustion shock wave in Embodiment 1 of the present invention
- Figure 1 1-high temperature and high pressure combustion chamber, 2-dry air gas cylinder, 3-methane gas cylinder, 4-control system, 5-solenoid valve, 6-gas injection extraction pipe, 7-valve, 8-shock wave introduction Tube, 9-porous cylinder, 10- ordinary extraction tube.
- a multi-stage combustion shock wave-cracked coal body enhanced gas drainage device for underground coal mines includes a porous cylinder 9 with a piston, a gas injection extraction pipe 6, a general extraction pipe 10, and a shock wave introduction pipe 8 And combustion shock device.
- One end of the gas injection extraction pipe 6 passes through the piston in the porous cylinder 9 and extends into the porous cylinder 9, and the other end of the gas injection extraction pipe 6 extends out of the porous cylinder 9.
- the production pipe 6 slides, and the valve 7 is installed on the gas injection extraction pipe 6.
- One end of the shock wave introduction pipe 8 is connected to the combustion shock device, and the other end of the shock wave introduction pipe projects into the porous cylinder but does not pass through the piston.
- the ordinary extraction pipe 10 is connected to the extraction system.
- the combustion shock device includes a high-temperature and high-pressure combustion chamber 1, a first gas injection pipe, a second gas injection pipe, and a control system 4.
- One end of the first gas injection pipe and the second gas injection pipe are respectively connected to the high-temperature and high-pressure combustion chamber 1, and the other ends thereof are respectively connected to the methane gas cylinder 3 and the dry air gas cylinder 2.
- the ignition device of the control system 4 extends into the combustion.
- the first gas injection pipe is used to inject methane into the high-temperature and high-pressure combustion chamber 1.
- the second gas injection pipe is used to inject dry air into the high-temperature and high-pressure combustion chamber 1.
- the control system 4 is used to detonate. Methane from the high-temperature and high-pressure combustion chamber 1.
- the solenoid valve 5 is mounted on the shock wave introduction pipe 8, and the solenoid valve 5 is controlled by the control system 4.
- Example 1 Using the equipment in Example 1 to perform a multi-stage combustion shock wave-cracked coal body enhanced gas drainage method in a coal mine, the specific steps are as follows:
- Ordinary drilling and impact drilling are alternately constructed in the coal seam. Ordinary drilling is located around the impact drilling, and high-pressure water jet cutting equipment is used to cut a large number of slots around the impact drilling;
- a porous cylinder 9 with a piston is placed in the impact drilling, and the wall of the porous cylinder 9 is closely attached to the impact drilling;
- the gas injection extraction pipe 6 is placed in the porous cylinder 9 and then placed together in the impact borehole.
- the shock wave introduction pipe 8 is closely connected with the piston, and then the sealing operation is performed. After the sealing operation is completed,
- the ordinary extraction pipe 10 is connected to the extraction system to prepare for extraction of gas; the control system 4 sets the starting pressure value of the solenoid valve 5 to 30 MPa.
- the solenoid valve 5 automatically opens, and the high-temperature and high-pressure shock wave is instantly released.
- the piston is impacted by the shock wave introduction pipe 8 and the piston slides and squeezes N 2 or CO 2 along the gas injection extraction pipe. A large number of cracks are generated around the impact drilling hole under the guidance of the slot, and the original crack opening is increased to enhance the penetrability of the crack network;
Landscapes
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Geochemistry & Mineralogy (AREA)
- Fluid Mechanics (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Fluidized-Bed Combustion And Resonant Combustion (AREA)
- Geophysics And Detection Of Objects (AREA)
- Drilling And Exploitation, And Mining Machines And Methods (AREA)
- Earth Drilling (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
Claims (6)
- 水力割缝与多级燃烧冲击波联合致裂煤体瓦斯抽采方法,其特征在于,包括步骤:S1:在煤层中施工冲击钻孔,通过高压水射流割缝设备在冲击钻孔周围切割大量缝槽;S2:在冲击钻孔中放置带有活塞的多孔圆筒,将注气抽采管的一端穿过活塞放入多孔圆筒内,注气抽采管的另一端伸出到冲击钻孔外;将冲击波导入管的一端放入多孔圆筒内,冲击波导入管的另一端与冲击钻孔外的燃烧室相连,冲击波导入管不穿过活塞;S3:将冲击钻孔封孔后,通过注气抽采管向冲击钻孔内注入N 2或CO 2,之后关闭注气抽采管;S4:向燃烧室内注入可燃气体和辅助气体;S5:通过控制系统引爆燃烧室内的可燃气体,可燃气体燃烧产生的冲击波通过冲击波导入管传入多孔圆筒内冲击活塞,活塞沿注气抽采管滑动挤压冲击钻孔内的N 2或CO 2,使冲击钻孔周围在缝槽的导向作用下产生大量裂隙;S6:打开注气抽采管向冲击钻孔内继续注入N 2或CO 2挤压活塞使活塞复位,之后关闭注气抽采管;S7:重复步骤S5和S6,多次冲击压缩N 2或CO 2致裂煤体,使冲击钻孔周围煤体形成裂隙网络。
- 根据权利要求1所述的水力割缝与多级燃烧冲击波联合致裂煤体瓦斯抽采方法,其特征在于:所述步骤S1具体包括:在煤层中施工冲击钻孔和普通钻孔,普通钻孔位于冲击钻孔周围;所述步骤S2具体包括:在冲击钻孔中放置带有活塞的多孔圆筒,将注气抽采管的一端穿过活塞放入多孔圆筒内,注气抽采管的另一端伸出到冲击钻孔外;将冲击波导入管的一端放入多孔圆筒内,将冲击波导入管的另一端与冲击钻孔外的燃烧室相连,冲击波导入管不穿过活塞;将普通抽采管的一端放入普通钻孔并封孔,将普通抽采管的另一端与抽采系统相连。
- 根据权利要求2所述的水力割缝与多级燃烧冲击波联合致裂煤体瓦斯抽采方法,其特征在于,还包括步骤S8:冲击钻孔周围煤体形成裂隙网络后,打开注气抽采管并将注气抽采管连入抽采系统进行瓦斯抽采。
- 根据权利要求1所述的水力割缝与多级燃烧冲击波联合致裂煤体瓦斯抽采方法,其特征在于,所述冲击波导入管上还装有电磁阀,所述电磁阀通过所述控制系统进行设定调控。
- 根据权利要求4所述的水力割缝与多级燃烧冲击波联合致裂煤体瓦斯抽采方法,其 特征在于,所述电磁阀的开启压力值为30MPa。
- 根据权利要求1所述的水力割缝与多级燃烧冲击波联合致裂煤体瓦斯抽采方法,其特征在于,所述可燃气体为甲烷,所述辅助气体为干空气。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2020115253A RU2735711C1 (ru) | 2018-06-22 | 2018-10-29 | Способ добычи газа путем разрыхления угольного пласта за счет объединения гидравлического прорезания канавок и воздействующей в несколько этапов ударной волны горения |
US16/759,733 US11131172B2 (en) | 2018-06-22 | 2018-10-29 | Method for extracting gas by fracturing coal seam through combination of hydraulic slotting and multi-stage combustion impact wave |
AU2018428500A AU2018428500B2 (en) | 2018-06-22 | 2018-10-29 | Method for extracting gas by fracturing coal seam through combination of hydraulic slotting and multi-stage combustion impact wave |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810653556.9A CN109025937B (zh) | 2018-06-22 | 2018-06-22 | 水力割缝与多级燃烧冲击波联合致裂煤体瓦斯抽采方法 |
CN201810653556.9 | 2018-06-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019242191A1 true WO2019242191A1 (zh) | 2019-12-26 |
Family
ID=64610201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/112293 WO2019242191A1 (zh) | 2018-06-22 | 2018-10-29 | 水力割缝与多级燃烧冲击波联合致裂煤体瓦斯抽采方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11131172B2 (zh) |
CN (1) | CN109025937B (zh) |
AU (1) | AU2018428500B2 (zh) |
RU (1) | RU2735711C1 (zh) |
WO (1) | WO2019242191A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112832728A (zh) * | 2021-01-08 | 2021-05-25 | 中国矿业大学 | 一种基于甲烷多级燃爆的页岩储层压裂方法 |
CN112963125A (zh) * | 2021-03-16 | 2021-06-15 | 重庆大学 | 水力冲孔造穴与co2爆破致裂驱替协同强化煤层瓦斯抽采方法 |
CN113790080A (zh) * | 2021-10-11 | 2021-12-14 | 辽宁工程技术大学 | 低透难解吸煤层爆破与注气联合增强瓦斯抽采装置及方法 |
CN114151038A (zh) * | 2021-12-09 | 2022-03-08 | 太原理工大学 | 一种煤层瓦斯抽采钻孔自动吸水封堵封孔装置 |
CN114183187A (zh) * | 2021-12-06 | 2022-03-15 | 中铁十七局集团第三工程有限公司 | 瓦斯隧道施工用的瓦斯处理设备 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110242256B (zh) * | 2019-06-19 | 2021-08-13 | 河南理工大学 | 一种钻孔分段高效抽采瓦斯装置 |
CN111395964B (zh) * | 2020-03-27 | 2021-03-23 | 中国石油大学(北京) | 煤层气水平井水平段造穴喷枪、管柱以及造穴方法 |
CN112268818B (zh) * | 2020-11-11 | 2021-04-13 | 中国科学院地质与地球物理研究所 | 岩石真三轴可控冲击波压裂试验系统及方法 |
CN112483060B (zh) * | 2020-12-14 | 2024-04-12 | 兖矿能源集团股份有限公司 | 煤层水射流交替行走式割缝装置及行走式煤层钻孔割缝卸压方法 |
CN113047899B (zh) * | 2021-04-09 | 2022-02-01 | 中国矿业大学 | 一种深孔多级松动爆破致裂方法 |
CN113047900B (zh) * | 2021-04-09 | 2022-02-15 | 中国矿业大学 | 一种钻孔内燃烧煤体卸压增透装置及其使用方法 |
CN113294134B (zh) * | 2021-05-31 | 2022-03-11 | 中国矿业大学 | 一种水力压裂与甲烷原位燃爆协同致裂增透方法 |
CN113389523A (zh) * | 2021-06-11 | 2021-09-14 | 华能煤炭技术研究有限公司 | 可控冲击波增透与二氧化碳驱替联合瓦斯抽采方法及设备 |
CN114293989B (zh) * | 2021-11-23 | 2022-09-02 | 北京科技大学 | 一种近直立巨厚煤层分段水力压裂区域防冲方法 |
CN114016984B (zh) * | 2021-12-07 | 2023-06-16 | 开滦(集团)有限责任公司 | 一种基于水力压裂多分支水平井的注热增产煤层气方法 |
CN114737922A (zh) * | 2022-04-12 | 2022-07-12 | 中国煤炭地质总局勘查研究总院 | 煤层气开采增透装置及方法 |
CN116398106B (zh) * | 2023-04-26 | 2024-05-07 | 中国矿业大学 | 页岩储层原位解析甲烷高效利用及多级聚能燃爆压裂方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2211920C2 (ru) * | 2001-10-08 | 2003-09-10 | Афиногенов Юрий Алексеевич | Способ гидроразрыва пласта и повышения проницаемости горных пород и оборудование для его осуществления (варианты) |
CN104314606A (zh) * | 2014-08-15 | 2015-01-28 | 中国矿业大学 | 一种钻孔内水力割缝与瓦斯爆炸致裂煤体联合强化抽采方法 |
RU2547892C1 (ru) * | 2014-03-26 | 2015-04-10 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ гидравлического разрыва пласта в горизонтальном стволе скважины |
CN104612746A (zh) * | 2015-01-12 | 2015-05-13 | 中国矿业大学 | 一种钻孔内割-爆耦合式煤体增透方法 |
CN105507938A (zh) * | 2015-12-31 | 2016-04-20 | 河南理工大学 | 钻孔内水力冲孔与预裂爆破联合增透抽采系统的施工方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4537256A (en) * | 1983-06-13 | 1985-08-27 | Franklin Beard | Sonic fracing process and means to carry out said process |
CN102691494B (zh) * | 2012-06-08 | 2014-10-22 | 四川大学 | 页岩气开采的气动脆裂法与设备 |
US9228738B2 (en) * | 2012-06-25 | 2016-01-05 | Orbital Atk, Inc. | Downhole combustor |
US20140060831A1 (en) * | 2012-09-05 | 2014-03-06 | Schlumberger Technology Corporation | Well treatment methods and systems |
US9377012B2 (en) * | 2013-03-28 | 2016-06-28 | Baker Hughes Incorporated | High pressure pump |
RU2540709C1 (ru) * | 2013-12-10 | 2015-02-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный минерально-сырьевой университет "Горный" | Способ ударно-волнового разрушения угольного пласта через скважины пробуренные из горных выработок |
CN103867166B (zh) * | 2014-04-01 | 2015-03-11 | 中国石油大学(华东) | 一种超临界二氧化碳高压射流解堵增渗的方法 |
CN104314605B (zh) * | 2014-08-15 | 2016-04-13 | 中国矿业大学 | 一种钻孔内多级瓦斯爆炸致裂煤体强化抽采方法 |
CN104632106A (zh) * | 2014-11-18 | 2015-05-20 | 山西潞安环保能源开发股份有限公司 | 一种煤层气相压裂装置的导向装置 |
-
2018
- 2018-06-22 CN CN201810653556.9A patent/CN109025937B/zh active Active
- 2018-10-29 AU AU2018428500A patent/AU2018428500B2/en active Active
- 2018-10-29 RU RU2020115253A patent/RU2735711C1/ru active
- 2018-10-29 WO PCT/CN2018/112293 patent/WO2019242191A1/zh active Application Filing
- 2018-10-29 US US16/759,733 patent/US11131172B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2211920C2 (ru) * | 2001-10-08 | 2003-09-10 | Афиногенов Юрий Алексеевич | Способ гидроразрыва пласта и повышения проницаемости горных пород и оборудование для его осуществления (варианты) |
RU2547892C1 (ru) * | 2014-03-26 | 2015-04-10 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ гидравлического разрыва пласта в горизонтальном стволе скважины |
CN104314606A (zh) * | 2014-08-15 | 2015-01-28 | 中国矿业大学 | 一种钻孔内水力割缝与瓦斯爆炸致裂煤体联合强化抽采方法 |
CN104612746A (zh) * | 2015-01-12 | 2015-05-13 | 中国矿业大学 | 一种钻孔内割-爆耦合式煤体增透方法 |
CN105507938A (zh) * | 2015-12-31 | 2016-04-20 | 河南理工大学 | 钻孔内水力冲孔与预裂爆破联合增透抽采系统的施工方法 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112832728A (zh) * | 2021-01-08 | 2021-05-25 | 中国矿业大学 | 一种基于甲烷多级燃爆的页岩储层压裂方法 |
CN112832728B (zh) * | 2021-01-08 | 2022-03-18 | 中国矿业大学 | 一种基于甲烷多级燃爆的页岩储层压裂方法 |
CN112963125A (zh) * | 2021-03-16 | 2021-06-15 | 重庆大学 | 水力冲孔造穴与co2爆破致裂驱替协同强化煤层瓦斯抽采方法 |
CN113790080A (zh) * | 2021-10-11 | 2021-12-14 | 辽宁工程技术大学 | 低透难解吸煤层爆破与注气联合增强瓦斯抽采装置及方法 |
CN113790080B (zh) * | 2021-10-11 | 2023-12-05 | 辽宁工程技术大学 | 低透难解吸煤层爆破与注气联合增强瓦斯抽采装置及方法 |
CN114183187A (zh) * | 2021-12-06 | 2022-03-15 | 中铁十七局集团第三工程有限公司 | 瓦斯隧道施工用的瓦斯处理设备 |
CN114151038A (zh) * | 2021-12-09 | 2022-03-08 | 太原理工大学 | 一种煤层瓦斯抽采钻孔自动吸水封堵封孔装置 |
CN114151038B (zh) * | 2021-12-09 | 2023-07-18 | 太原理工大学 | 一种煤层瓦斯抽采钻孔自动吸水封堵封孔装置 |
Also Published As
Publication number | Publication date |
---|---|
AU2018428500B2 (en) | 2021-07-22 |
US11131172B2 (en) | 2021-09-28 |
US20210148205A1 (en) | 2021-05-20 |
AU2018428500A1 (en) | 2020-07-30 |
CN109025937A (zh) | 2018-12-18 |
RU2735711C1 (ru) | 2020-11-06 |
CN109025937B (zh) | 2020-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019242191A1 (zh) | 水力割缝与多级燃烧冲击波联合致裂煤体瓦斯抽采方法 | |
WO2019242190A1 (zh) | 多级燃烧冲击波致裂煤体与注热交变强化瓦斯抽采方法 | |
AU2014336858B2 (en) | Method for enhanced fuel gas extraction by coal mine underground gas-liquid dual-phase alternating phase-driven fracturing of coal body | |
CN104314606B (zh) | 一种钻孔内水力割缝与瓦斯爆炸致裂煤体联合强化抽采方法 | |
CN104314605B (zh) | 一种钻孔内多级瓦斯爆炸致裂煤体强化抽采方法 | |
CN104612746B (zh) | 一种钻孔内割-爆耦合式煤体增透方法 | |
CN109025936A (zh) | 煤矿井下燃烧冲击波致裂煤体强化瓦斯抽采方法与设备 | |
CN104234739B (zh) | 一种钻孔内瓦斯爆炸致裂煤体强化抽采方法 | |
CN112878974B (zh) | 一种非常规天然气井水平分段甲烷多级脉冲燃爆压裂强化抽采方法 | |
CN103334790B (zh) | 基于高压气体爆破的煤层顶板超前预裂方法 | |
CN112761586B (zh) | 一种钻孔甲烷自循环燃爆压裂强化抽采方法 | |
CN105332684A (zh) | 一种高压水爆与co2压裂相结合的煤层气驱替抽采工艺 | |
WO2024103622A1 (zh) | 一种基于水平井甲烷原位燃爆压裂的煤系气开发方法 | |
CN112761587B (zh) | 一种钻孔甲烷多级脉冲聚能燃爆强化抽采方法 | |
CN101215964A (zh) | 一种煤层深部爆燃方法 | |
CN203531877U (zh) | 煤矿井下压裂连接装置 | |
CN116398106B (zh) | 页岩储层原位解析甲烷高效利用及多级聚能燃爆压裂方法 | |
Fang et al. | Gas mixture enhance coalbed methane recovery technology: pilot tests | |
CN109025938B (zh) | 一种煤矿井下多级燃烧冲击波致裂煤体强化瓦斯抽采方法 | |
CN102213083A (zh) | 负压射孔与泵抽超负压生产一体化生产工艺 | |
CN113338888B (zh) | 一种水平分支井燃爆压裂促进竖井页岩气开采的方法 | |
CN111287721A (zh) | 一种高压气动力诱导起裂与水力压裂联作的压裂方法 | |
CN207148068U (zh) | 一种二氧化碳预裂爆破及抑爆性能实验装置 | |
CN116025408A (zh) | 一种地面长钻孔多级水封松动爆破致裂装置及方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18923652 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018428500 Country of ref document: AU Date of ref document: 20181029 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18923652 Country of ref document: EP Kind code of ref document: A1 |