AU2014336858B2 - Method for enhanced fuel gas extraction by coal mine underground gas-liquid dual-phase alternating phase-driven fracturing of coal body - Google Patents

Method for enhanced fuel gas extraction by coal mine underground gas-liquid dual-phase alternating phase-driven fracturing of coal body Download PDF

Info

Publication number
AU2014336858B2
AU2014336858B2 AU2014336858A AU2014336858A AU2014336858B2 AU 2014336858 B2 AU2014336858 B2 AU 2014336858B2 AU 2014336858 A AU2014336858 A AU 2014336858A AU 2014336858 A AU2014336858 A AU 2014336858A AU 2014336858 B2 AU2014336858 B2 AU 2014336858B2
Authority
AU
Australia
Prior art keywords
fracturing
gas
water
borehole
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
AU2014336858A
Other versions
AU2014336858A1 (en
Inventor
Quangui LI
Baiquan LIN
Guanhua NI
Shen Peng
Xu Yu
Cheng ZHAI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology CUMT
Original Assignee
China University of Mining and Technology CUMT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology CUMT filed Critical China University of Mining and Technology CUMT
Publication of AU2014336858A1 publication Critical patent/AU2014336858A1/en
Application granted granted Critical
Publication of AU2014336858B2 publication Critical patent/AU2014336858B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/261Separate steps of (1) cementing, plugging or consolidating and (2) fracturing or attacking the formation
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/295Gasification of minerals, e.g. for producing mixtures of combustible gases
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F7/00Methods or devices for drawing- off gases with or without subsequent use of the gas for any purpose

Abstract

A method for enhanced gas extraction by coal mine underground gas-liquid dual-phase alternating phase-driven fracturing of a coal body. Constructed in a present coal seam or a permeable stratum are a fracturing borehole and a water guiding hole, where both boreholes are sealed to withstand high pressures. Fracturing equipment is connected, pressurized water of no more than 3 MPa is injected into the fracturing borehole, and, a water pump is shut off after 10 minutes of hydraulic fracturing of the fracturing borehole, thus stopping the hydraulic fracturing. An air pressure booster is turned on for gas-phase fracturing of the fracturing borehole, and, when the pressure reaches 3 MPa, the air pressure booster is turned off, thus stopping the gas-phase fracturing. This is repeated for multiple times, when water flows out of the water guiding hole distanced from a side of the fracturing borehole, the hydraulic fracturing is stopped, while the gas-phase fracturing is continued, and, when water ceases to flow out of the water guiding hole or when a gas erupts therefrom, the gas-phase fracturing is stopped. A fuel gas extraction pipe network is connected to the fracturing borehole and the water guiding hole for fuel gas extraction. The method effectively solves the problem of fuel gas release and analysis being impeded by residual water when only hydraulic fracturing is used, thus allowing cracks within a coal body to be fully developed to an improved degree, and enhancing coal seam air permeability and fuel gas extraction effects.

Description

WO 2015/054984 1 PCT/CN2014/072187 2014336858 28 Apr 2017
Method for Enhanced Fuel Gas Extraction by Coal Mine Underground Gas-Liquid Dual-Phase Alternating Phase-Driven Fracturing of Coal Body
Field of the Invention
The present invention relates to a method for enhancing gas extraction by underground gas-liquid dual-phase alternating phase-driven fracturing of a coal body, belongs to the field of gas control in underground areas in coal mine, and is especially applicable to pressure relief and permeability enhancement of underground coal seam with high gas concentration and low air permeability in coal mine.
Background Art
Gas in the coal seam in China has characteristics including microporosity, low permeability and high absorptivity, and 80% or more coal seams in China are coal seams with high gas concentration and low air permeability. The exploitation of coal seams with high gas concentration and low air permeability is often accompanied by the eruption of a great deal of gases. Especially, as the coal production becomes more efficient and intensive, and the mining depth increases, the erupted amount of gas becomes more and more, and the risk of gas explosion and gas outburst becomes higher and higher. A key measure for solving the gas problem in the mining of coal seam with high gas concentration and low air permeability is gas extraction from the coal seam in advance. Conventional gas extraction methods usually have a small effective coverage, involve high workload of boring at the working face, have low extraction efficiency, and can not attain an ideal effect for coal seam with high gas concentration and low air permeability. To reach the standard for gas extraction and eliminate gas disasters in coal seam, permeability improving measures must be taken, and the effective coverage per borehole must be enlarged, so as to improve the gas extraction effect. At present, commonly used pressure relief and permeability enhancement measures for coal seam with high gas concentration and low air permeability involve loosening the original coal body artificially in advance to enhance the air permeability of the coal seam, mainly utilizing deep-hole loose blasting technique, water-jet cutting technique, hydraulic flushing technique, and underground coal seam hydraulic fracturing technique, etc. Deep-hole loose blasting technique, water-jet cutting technique, and hydraulic flushing technique have drawbacks including small effective coverage of borehole, high workload, complex construction process, and low extraction efficiency, etc.
As one of the major oil yield increasing measures, the hydraulic fracturing technique has been widely applied in the modem petroleum industry, and has attained some effects in the underground application in coal mine. As the field of application is expanded, the coal seam occurrence conditions become complex, and coal seam with low air permeability increases, the hydraulic fracturing technique has encountered its limitations, mainly represented in: after high pressure water enters into the coal body in a loose coal seam, it is difficult to discharge the water under the capillary action of the coal body; consequently, the gas erupting channels are blocked, and the effect for enhancing gas extraction by the coal body permeability improvement of hydraulic fracturing is weakened.
At present, the research and application of underground gas fracturing in coal mine mainly focus on high-energy gas fracturing (CO2, N2, etc.), which has attained some
8957319 1 (GHMatters) P102801.AU 2014336858 28 Apr 2017 WO 2015/054984 2 PCT/CN2014/072187 effects for permeability improvement for coal body. However, there are difficulties in the preparation and transmission of high-energy gas and the fracturing control, hampering the wide application of high-energy gas fracturing.
Borrowing from the ideal of high-energy gas fracturing, using the air pressure provided by an underground compressed air system, and utilizing an air pressure booster in combination with the hydraulic fracturing technique, the present invention puts forth a technique for enhancing gas extraction by underground gas-liquid dual-phase alternating phase-driven fracturing of a coal body in a coal mine.
Summary of the Invention
In view of the drawbacks in the hydraulic fracturing technique applied for loose coal seam with high gas concentration and low air permeability in the prior art, there is provided a method for enhancing gas extraction by underground gas-liquid dual-phase alternating phase-driven fracturing of a coal body in a coal mine, which employs a gas-liquid dual-phase alternating phase-driven fracturing technique to improve the air permeability of the coal seam and thereby enhancing the gas extraction effect.
The method for enhancing gas extraction by underground gas-liquid dual-phase alternating phase-driven fracturing of a coal body in a coal mine put forth in an aspect of the present invention comprises the following steps: a. constructing a borehole as a fracturing borehole in a coal seam or a permeable stratum, constructing another borehole having the same parameters as a water guiding hole at a distance L=2-4m from a side of the fracturing borehole, installing a fracturing pipeline with conventional techniques, and sealing both boreholes to withstand high pressures; b. connecting fracturing equipment to a mouth of the fracturing borehole, the fracturing equipment comprises a water supply apparatus composed of an auto-control water tank and a water pump, and an air pressure booster, a water discharge pipe of the water supply apparatus is connected with an air discharge pipe of the air pressure booster via a Y-tee joint, an outlet of the Y-tee joint is connected to the fracturing pipeline via a high-pressure rubber hose, the water discharge pipe of the water supply apparatus, the air discharge pipe of the air pressure booster, and the inlet pipe of the fracturing pipeline are provided with a check valve respectively, and the high-pressure rubber hose is provided with an overflow valve; c. adjusting an overflow of the overflow valve, starting the water pump, and injecting pressurized water at pressure not higher than 3 MPa into the fracturing borehole via the fracturing pipeline for hydraulic fracturing of fracturing borehole, and, shutting off the water pump after 10 minutes of hydraulic fracturing of the fracturing borehole, thus stopping the hydraulic fracturing; d. turning on the air pressure booster for gas-phase fracturing of the fracturing borehole, and turning off the air pressure booster when the pressure reaches 3 MPa, thus stopping the gas-phase fracturing; e. repeating the steps c and d for multiple times, and increasing the water pressure and air pressure by 2-3 MPa in each time, stopping hydraulic fracturing when water flows out of the water guiding hole distanced from the side of the fracturing borehole but continuing the gas-phase fracturing, and, stopping the gas-phase
8957319_1 (GHMatters) P102801.AU 2014336858 28 Apr 2017 WO 2015/054984 3 PCT/CN2014/072187 fracturing when the water flow from the water guiding hole ceases or when gas erupts therefrom; f. closing a valve on the fracturing pipeline, removing the fracturing equipment, and connecting the fracturing borehole and the water guiding hole into a gas extraction pipeline network for gas extraction.
The method put forth in an embodiment of the present invention employs water-gas two-phase alternating phase-driven fracturing of a coal body to promote the development, extension, and inter-connection of fractures in the coal body, utilizes hydraulic fracturing to expel the gas, and then uses gas-phase fracturing to expel the water; thus, the method may effectively solve the problem of gas release and analysis impeded by residual water when hydraulic fracturing is solely used, and may thereby improve the gas extraction effect. In addition, the gas-liquid dual-phase alternating phase-driven fracturing technique may take full advantage of the two phases, and the fracturing pressure may be increased step by step; thus, the fractures in the coal body may develop more fully, and the permeability improvement effect for the coal body may be greatly improved. The method may be simple, easy to operate, and may have extensive practicability in the field of application.
Description of the Drawings
An embodiment will now be described by way of example only with reference to the accompanying non-limiting Figure in which:
Fig. 1 is a layout diagram of the method for enhancing gas extraction by underground gas-liquid dual-phase alternating phase-driven fracturing of a coal body in a coal mine put forth in the present invention.
In the figure: 1 - fracturing borehole; 2 - water guiding hole; 3 - auto-control water tank; 4 - water pump; 5 - air pressure booster; 6-1 - check valve I; 6-2 - check valve II; 6-3 - check valve III; 7 - Y-tee joint; 8 - high-pressure rubber hose; 9 - overflow valve; 10 - fracturing pipeline; 11 - valve.
Detailed Description of the Embodiments
Hereunder the present invention will be further detailed in an embodiment, with reference to the accompanying drawings.
The method for enhancing gas extraction by underground gas-liquid dual-phase alternating phase-driven fracturing of coal body in coal mine put forth in an embodiment of the present invention is as follows: a. a borehole is constructed as a fracturing borehole 1 in the present coal seam or a permeable stratum, another borehole having the same parameters is constructed as a water guiding hole 2 at a distance L=2-4m from a side of the fracturing borehole 1, a fracturing pipeline 10 is installed with conventional techniques, and both boreholes are sealed to withstand high pressures; b. fracturing equipment is connected to the mouth of the fracturing borehole 1 and the performance of the hydraulic fracturing equipment and gas fracturing equipment is checked and tested, the fracturing equipment comprises a water supply apparatus composed of an auto-control water tank 3 and a water pump 4, and an air pressure booster 5, the water discharge pipe of the water supply apparatus is connected with the air discharge pipe of the air pressure booster 5 via
8957319_1 (GHMatters) P102801.AU 2014336858 28 Apr 2017 WO 2015/054984 4 PCT/CN2014/072187 a Y-tee joint 7, the outlet of the Y-tee joint 7 is connected to a fracturing pipeline 10 via a high-pressure rubber 8, the water discharge pipe of the water supply apparatus is provided with a check valve 16-1, the air discharge pipe of the air pressure booster 5 is provided with a check valve II 6-2, and the inlet pipe of the fracturing pipeline 10 is provided with a check valve III 6-3, and the high-pressure rubber 8 via which the Y-tee joint 7 is connected to the fracturing pipeline 10 is provided with an overflow valve 9; c. the overflow discharge of the overflow valve 9 is adjusted, the water pump 4 is started, and pressurized water is injected at pressure not higher than 3 MPa into the fracturing borehole 1 via the check valve 6-1, the Y-tee joint 7, the high-pressure rubber 8, and the fracturing pipeline 10 sequentially for hydraulic fracturing, and, the water pump 4 is shut off after 10 minutes of hydraulic fracturing of the fracturing borehole 1, thus the hydraulic fracturing is stopped; d. the air pressure booster 5 is turned on for gas-phase fracturing of the fracturing borehole 1, and the pressure is adjusted by means of the overflow valve 9; the air pressure booster 5 is turned off when the pressure reaches 3 MPa, thus the gas-phase fracturing is stopped; e. the steps c and d are repeated for multiple times, and the water pressure and the air pressure are increased by 2-3 MPa in each time; the hydraulic fracturing is stopped when water flows out of the water guiding hole 2 distanced from the side of the fracturing borehole 1 but the gas-phase fracturing is continued, and the gas-phase fracturing is stopped when the water flow from the water guiding hole 2 ceases or when gas erupts therefrom; for example, after 10 minutes hydraulic fracturing of the fracturing borehole at 3MPa low pressure, the fracturing is switched to gas-phase fracturing; when the gas-phase pressure reaches the maximum pressure of the hydraulic fracturing, the fracturing is switched to hydraulic fracturing, and the water pressure is increased to 6 MPa; after 10 minutes hydraulic fracturing, the fracturing is switched to gas-phase fracturing; when the gas-phase pressure reaches to the maximum pressure of the hydraulic fracturing, the fracturing is switched to hydraulic fracturing, and the water pressure is increased to 9 MPa; after lOminutes hydraulic fracturing, the fracturing is switched to gas-phase fracturing; and, when the gas-phase pressure reaches to the maximum pressure of the hydraulic fracturing, the fracturing is switched to hydraulic fracturing. The hydraulic fracturing is stopped when water flows out of the water guiding hole 2, and the fracturing is switched to gas-phase fracturing; the fracturing work is stopped when the water flow from the water guiding hole ceases. f. the valve 11 on the fracturing pipeline 10 is closed, the fracturing equipment is removed, and the fracturing borehole 1 and the water guiding hole 2 are connected into a gas extraction pipeline network for gas extraction.
It is to be understood that, if any prior art publication is referred to herein, such reference does not constitute an admission that the publication forms a part of the common general knowledge in the art, in Australia or any other country.
In the claims which follow and in the preceding description of the invention, except where the context requires otherwise due to express language or necessary implication,
8957319_1 (GHMatters) P102801.AU 2014336858 28 Apr 2017 the word “comprise” or variations such as “comprises” or “comprising” is used in an inclusive sense, i.e. to specify the presence of the stated features but not to preclude the presence or addition of further features in various embodiments of the invention. 8957319 WO 2015/054984 5 PCT/CN2014/072187
(GHMatters) P102801.AU

Claims (2)

  1. Claims
  2. 1. A method for enhancing gas extraction by underground gas-liquid dual-phase alternating phase-driven fracturing of a coal body in a coal mine comprises the following steps: a. constructing a borehole as a fracturing borehole in a coal seam or a permeable stratum, constructing another borehole having the same parameters as a water guiding hole at a distance L=2-4m from a side of the fracturing borehole, installing a fracturing pipeline with conventional techniques, and sealing both boreholes to withstand high pressures; b. connecting fracturing equipment to a mouth of the fracturing borehole, the fracturing equipment comprises a water supply apparatus composed of an auto-control water tank and a water pump, and an air pressure booster, a water discharge pipe of the water supply apparatus is connected with an air discharge pipe of the air pressure booster via a Y-tee joint, an outlet of the Y-tee joint is connected to the fracturing pipeline via a high-pressure rubber, the water discharge pipe of the water supply apparatus, the air discharge pipe of the air pressure booster, and an inlet pipe of the fracturing pipeline are provided with a check valve respectively, and the high-pressure rubber is provided with an overflow valve; c. adjusting an overflow discharge of the overflow valve, starting the water pump, and injecting pressurized water at pressure not higher than 3 MPa into the fracturing borehole via the fracturing pipeline for hydraulic fracturing, and shutting off the water pump after 10 minutes of hydraulic fracturing of the fracturing borehole, thus stopping the hydraulic fracturing; d. turning on the air pressure booster for gas-phase fracturing of the fracturing borehole, and turning off the air pressure booster when the pressure reaches 3 MPa, thus stopping the gas-phase fracturing; e. repeating the steps c and d for multiple times, and increasing the water pressure and the air pressure by 2-3 MPa in each time; stopping the hydraulic fracturing when water flows out of the water guiding hole distanced from the side of the fracturing borehole and continuing the gas-phase fracturing, and stopping the gas-phase fracturing when the water flow from the water guiding hole ceases or when gas erupts therefrom; f. closing a valve on the fracturing pipeline, removing the fracturing equipment, and connecting the fracturing borehole and the water guiding hole into a gas extraction pipeline network for gas extraction.
AU2014336858A 2013-10-16 2014-02-18 Method for enhanced fuel gas extraction by coal mine underground gas-liquid dual-phase alternating phase-driven fracturing of coal body Active AU2014336858B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201310483277.XA CN103541710B (en) 2013-10-16 2013-10-16 Underground coal mine gas-liquid two-phase alternately drives pressure break coal body strengthening gas pumping method mutually
CN201310483277.X 2013-10-16
PCT/CN2014/072187 WO2015054984A1 (en) 2013-10-16 2014-02-18 Method for enhanced fuel gas extraction by coal mine underground gas-liquid dual-phase alternating phase-driven fracturing of coal body

Publications (2)

Publication Number Publication Date
AU2014336858A1 AU2014336858A1 (en) 2016-05-19
AU2014336858B2 true AU2014336858B2 (en) 2017-06-08

Family

ID=49965523

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2014336858A Active AU2014336858B2 (en) 2013-10-16 2014-02-18 Method for enhanced fuel gas extraction by coal mine underground gas-liquid dual-phase alternating phase-driven fracturing of coal body

Country Status (5)

Country Link
CN (1) CN103541710B (en)
AU (1) AU2014336858B2 (en)
RU (1) RU2616635C1 (en)
WO (1) WO2015054984A1 (en)
ZA (1) ZA201601542B (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103541710B (en) * 2013-10-16 2016-01-20 中国矿业大学 Underground coal mine gas-liquid two-phase alternately drives pressure break coal body strengthening gas pumping method mutually
CN103912255B (en) * 2014-03-18 2017-01-04 中国石油集团川庆钻探工程有限公司工程技术研究院 A kind of Oil/gas Well hydraulic oscillation fracturing technology
CN103993901B (en) * 2014-04-25 2018-04-20 河南理工大学 A kind of projecting coal bed drilling waterpower is handled up anti-reflection method
CN104153745B (en) * 2014-07-11 2016-02-10 山西晋城无烟煤矿业集团有限责任公司 A kind of colliery minery surface well integrated form extraction system
CN104564125B (en) * 2014-12-02 2016-06-22 河南理工大学 Cherry coal reservoir gas enhanced gas extraction contrast experiment's device and experimental technique
CN104632270B (en) * 2015-01-06 2016-11-16 中国矿业大学 A kind of oscillating impulse formula high enegry gas fracturing and heat injection alternation mash gas extraction method
CN105114116B (en) * 2015-07-30 2018-01-05 山东科技大学 A kind of hydrothermal reaction coupling pressure break strengthening region gas pumping method
CN105156085B (en) * 2015-09-11 2018-02-02 重庆大学 The coal mine underground coal bed tree-shaped uniform anti-reflection method of drilling composite fracturing
CN106121604B (en) * 2016-06-27 2018-08-17 中国矿业大学 It is a kind of to utilize CO2Drive away the method for coal-bed gas and residual gas with modified water
CN106285599B (en) * 2016-08-05 2018-06-29 河南能源化工集团研究院有限公司 A kind of anti-reflection draining coal seam gas method of waterpower changing of the relative positions release
CN106593384B (en) * 2016-11-29 2019-03-26 中国石油大学(北京) Hydraulic fracturing physical simulating method with spiral perforated horizontal wells
CN106930746B (en) * 2017-03-06 2019-06-04 中国矿业大学 Drilling acetone invades the alternative expression coal seam anti-reflection method combined with hydraulic fracturing
CN106869891B (en) * 2017-03-09 2019-03-15 杨世梁 A kind of coal bed methane exploring method and device of ice-cleat pressure regulation
CN106930724B (en) * 2017-04-17 2019-03-15 山东科技大学 One kind being rich in water borehole sealing and gas drainage integral method
CN108708694B (en) * 2018-05-28 2021-02-02 四川省煤炭产业集团有限责任公司 High-pressure gas-liquid microbubble permeability increasing method for low-permeability coal seam
CN109505565B (en) * 2018-12-18 2021-01-26 中国矿业大学 Method for extracting coal seam gas by water injection and gas injection alternating displacement
CN111236917B (en) * 2020-01-14 2022-06-21 西安科技大学 Complete equipment and method for coal rock water-acid high-pressure presplitting softening scour prevention and permeability increase
CN111237007A (en) * 2020-02-19 2020-06-05 中煤科工集团重庆研究院有限公司 Hydraulic fracturing method for underground deep low-permeability coal reservoir
CN113622890A (en) * 2020-05-09 2021-11-09 中国石油化工股份有限公司 Ejector, well entering pipe column, three-fork joint and alternate jet fracturing method
CN111894540B (en) * 2020-06-23 2021-08-06 中国矿业大学 Up-hole drilling negative pressure forward type low-temperature fluid injection staged circulating fracturing method
CN112832845B (en) * 2021-01-11 2022-09-02 重庆工程职业技术学院 Gas extraction device and method for upper corner of coal mining working face of coal mine
CN113107447B (en) * 2021-04-14 2022-05-03 中煤科工集团重庆研究院有限公司 Downhole porous section parallel dynamic fracturing system and construction method thereof
CN113323715A (en) * 2021-06-11 2021-08-31 中煤科工集团西安研究院有限公司 Hard roof strong mine pressure and goaf gas disaster cooperative treatment method
CN114592829A (en) * 2022-03-04 2022-06-07 中煤科工集团重庆研究院有限公司 Gas injection displacement enhanced gas extraction method
CN114737939B (en) * 2022-03-25 2023-10-10 华北科技学院(中国煤矿安全技术培训中心) Solid-gas mixed air cannon suitable for coal seam permeability improvement
CN115637953B (en) * 2022-12-26 2023-03-10 华北理工大学 Deep coal bed CO 2 Hole-blocking permeability-increasing strong-moistening system for curing solution and application method
CN116398106A (en) * 2023-04-26 2023-07-07 中国矿业大学 Shale reservoir in-situ analysis methane high-efficiency utilization and multistage energy-gathering combustion explosion fracturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102155254A (en) * 2011-02-28 2011-08-17 中国矿业大学 Method for extracting gas in low air permeability coal layer by pulse fracture anti-reflection

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2357727A1 (en) * 1976-07-05 1978-02-03 Mo Gorny I Reducing gas and dust emission from a coal seam - using methane-oxidising bacteria and sealing with a polymer
US4391337A (en) * 1981-03-27 1983-07-05 Ford Franklin C High-velocity jet and propellant fracture device for gas and oil well production
SU1511435A1 (en) * 1987-09-18 1989-09-30 Московский Горный Институт Method of degassing coal seam
SU1550174A1 (en) * 1988-08-16 1990-03-15 Институт горного дела им.А.А.Скочинского Method of degassing a rock body
US5014788A (en) * 1990-04-20 1991-05-14 Amoco Corporation Method of increasing the permeability of a coal seam
RU2041347C1 (en) * 1991-12-05 1995-08-09 Ефим Вульфович Крейнин Method for action on coal seam
RU2054557C1 (en) * 1992-12-24 1996-02-20 Индивидуальное частное предприятие Научно-технический центр "Полигаз" Method for degassing the coal seam
RU2205272C2 (en) * 2001-06-13 2003-05-27 ОАО "Промгаз" Method of thermohydrodynamic stimulation of gas- bearing bed
US7104320B2 (en) * 2003-12-04 2006-09-12 Halliburton Energy Services, Inc. Method of optimizing production of gas from subterranean formations
CN101644166A (en) * 2009-07-14 2010-02-10 中国矿业大学 Method for extracting gas from high gas low permeability coal seam by punching, slotting, pressure releasing, and permeability increasing
CN102094671A (en) * 2011-02-27 2011-06-15 山东新矿赵官能源有限责任公司 Three-dimensional gas extraction method for coal seams with low-permeability and low possibility of gas extraction
CN202064924U (en) * 2011-04-29 2011-12-07 中国矿业大学 Hydraulic fracturing equipment in coal mine
CN103075180B (en) * 2013-01-15 2014-12-10 中国矿业大学 Gas-liquid two-phase jet slotting system and method
CN103541710B (en) * 2013-10-16 2016-01-20 中国矿业大学 Underground coal mine gas-liquid two-phase alternately drives pressure break coal body strengthening gas pumping method mutually

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102155254A (en) * 2011-02-28 2011-08-17 中国矿业大学 Method for extracting gas in low air permeability coal layer by pulse fracture anti-reflection

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG, BAOJUN et al., 'Study and application of the compound fracturing technique', Shiyou-zuancai-gongyi, 1998, Vol 20 No. 1, ISSN 1000-7393, pages 69-73 *

Also Published As

Publication number Publication date
AU2014336858A1 (en) 2016-05-19
WO2015054984A1 (en) 2015-04-23
CN103541710B (en) 2016-01-20
CN103541710A (en) 2014-01-29
ZA201601542B (en) 2019-01-30
RU2616635C1 (en) 2017-04-18

Similar Documents

Publication Publication Date Title
AU2014336858B2 (en) Method for enhanced fuel gas extraction by coal mine underground gas-liquid dual-phase alternating phase-driven fracturing of coal body
WO2021159666A1 (en) Deep low-permeability high gassy seam drilling-slitting-sealing-fracturing drilling device and method
WO2019242191A1 (en) Hydraulic cutting seam and multistage combustion shock wave combined coal-fracturing gas extraction method
CN105422164B (en) Hydrofracturing is anti-reflection to aid in coal seam efficient water injection method and apparatus
CN106988719B (en) Anti-reflection system and anti-reflection method for circularly injecting hot water and liquid nitrogen into coal seam
CN105332684A (en) High-pressure water burst and CO2 fracturing combined coal bed gas displacement extraction technology
CN108643877A (en) Coal mine underground coal bed long drilled holes staged fracturing is anti-reflection and mash gas extraction method
CN106761740A (en) A kind of hard coal seam top board couples fracturing method
CN111472832B (en) Coal bed gas self-circulation gas injection yield increasing method
CN102704905A (en) Segmental hydraulic fracturing coal seam pressure releasing device and method
CN105507940A (en) Slotting, plugging and fracturing integrated type intensified marsh gas extraction device and method
CN105239984A (en) Method for controlling coal mine underground fracturing crack propagation
CN111441817B (en) Method for reinforcing gas extraction by synergistic effect of coal seam drilling jet fracturing and mining pressure
CN110344805A (en) A kind of down-hole drilling directional fracturing device and method
CN114165197B (en) Pressure-relief and permeability-increasing device and method for pulse hydraulic fracturing coal seam
CN115539130B (en) Coal seam gas exploitation and CO (carbon monoxide) enhancement of non-shearable layer 2 Sealing method
CN103306657A (en) Coal-seam slotting pressure-relief anti-reflection and slit groove retaining device and method
CN203531877U (en) Underground coal mine fracturing connecting device
CN114165198B (en) Directional hydraulic fracturing coal seam pressure relief and permeability increase device and pressure relief and permeability increase method
CN110924900A (en) Method for hydraulic power-liquid nitrogen composite uniform fracturing of coal body
CN109113701A (en) Using air as the anti-reflection technology of pulsating pressure-air creep pressure break and device of medium
CN106968664A (en) A kind of floor undulation destruction band deep drilling water filling detection method
RU2511329C1 (en) Method of action on coal bed
CN103541679B (en) Method for sealing underground hydraulic fracture drilled hole of coal mine in combined manner
CN205477511U (en) Prevent releasing hydraulic fracturing hole sealing device

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)