WO2019242157A1 - 光伏组件、光伏系统、屋面板及交通工具 - Google Patents

光伏组件、光伏系统、屋面板及交通工具 Download PDF

Info

Publication number
WO2019242157A1
WO2019242157A1 PCT/CN2018/108633 CN2018108633W WO2019242157A1 WO 2019242157 A1 WO2019242157 A1 WO 2019242157A1 CN 2018108633 W CN2018108633 W CN 2018108633W WO 2019242157 A1 WO2019242157 A1 WO 2019242157A1
Authority
WO
WIPO (PCT)
Prior art keywords
photovoltaic
photovoltaic module
power generation
generation unit
cable
Prior art date
Application number
PCT/CN2018/108633
Other languages
English (en)
French (fr)
Inventor
吴中华
唐立闯
Original Assignee
汉能晖煜新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 汉能晖煜新能源科技有限公司 filed Critical 汉能晖煜新能源科技有限公司
Publication of WO2019242157A1 publication Critical patent/WO2019242157A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/23Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the disclosure relates to the field of photovoltaics, and in particular to a photovoltaic module, a photovoltaic system, a roof panel and a vehicle.
  • a photovoltaic device is usually formed by directly bonding a backlight surface of a photovoltaic power generation unit with a metal roof or a car roof by using adhesive.
  • adhesive When encountering strong wind weather, it is easy to cause local open glue and cause deformation of the photovoltaic power generation unit. Even the photovoltaic power generation unit is blown up by the wind, causing economic losses to the user and even causing casualties.
  • the cables are usually fixed to the side of the photovoltaic power generation unit facing away from the metal roof or roof, and are exposed to the outside of the photovoltaic device, affecting the appearance of the photovoltaic device; the cables electrically connected to the photovoltaic power generation unit are randomly placed and exposed to The exterior of photovoltaic devices leads to aging and corrosion.
  • a photovoltaic module including: a photovoltaic power generation unit and a support member, the support member being connected to a non-photoelectric conversion surface of the photovoltaic power generation unit and used to support the photovoltaic power generation unit, wherein the photovoltaic The non-photoelectric conversion surface of the power generation unit is thermally connected to the support member.
  • the supporting member includes a bearing portion, and the photovoltaic power generation unit is thermally connected to the bearing portion.
  • the support member further includes a fixing portion, the fixing portion is connected to the bearing portion and is in the same plane as the bearing portion, and the fixing portion extends beyond the edge of the photovoltaic power generation unit .
  • the photovoltaic module further includes a bead fixedly connected to the fixing portion; an edge of the photovoltaic power generation unit is sandwiched between the bead and the support member.
  • the photovoltaic module further includes a buffer member disposed between the photovoltaic power generation unit and the bead.
  • the supporting member further includes a reinforcing portion, which is connected to an end portion of the fixing portion away from the bearing portion, and is directed along the direction of the photovoltaic power generation unit toward the supporting member. extend.
  • the support member further includes a reinforced connection portion for fixedly connecting adjacent reinforced portions.
  • the photovoltaic module further includes an auxiliary supporting member, and the auxiliary supporting member is fixedly connected to a side of the supporting member facing away from the photovoltaic power generation unit.
  • a photovoltaic system including the photovoltaic module of the first aspect, a cable electrically connected to the first end of the photovoltaic module, and a support member located on the photovoltaic module facing away from the photovoltaic power generation unit.
  • the tank body further includes a first connection portion, and the first connection portion is formed by an edge of the cable placing portion close to the first end of the photovoltaic module, and the edge of the cable placing portion is adjacent to the photovoltaic power generation unit.
  • the non-photoelectric conversion surface extends in a parallel direction; the groove is directly or indirectly fixedly connected to the first end of the photovoltaic module through the first connection portion.
  • a first lead hole is provided on the first connection portion, and a second end of the cable is placed in the cable placement portion through the first lead hole.
  • the photovoltaic system further includes a transition reinforcing portion, and the first connection portion is indirectly connected to the first end of the photovoltaic module through the transition reinforcing portion; A second lead hole is provided, and the second end of the cable is placed in the cable placement portion through the second lead hole.
  • the photovoltaic system includes a plurality of the photovoltaic modules disposed along an extending direction of the tank, and adjacent photovoltaic modules are connected in series for connecting two adjacent photovoltaic modules in series.
  • the second ends of each of the cables are electrically connected in the cable placement portion.
  • the photovoltaic system includes at least two slots arranged in a direction perpendicular to the extending direction of the slots, and at least one photovoltaic module disposed along the slot arrangement direction; each The first end of the photovoltaic module is connected to the first connection portion of one of the slots adjacent to the photovoltaic module, and the second end of each photovoltaic module is connected to the first end of another of the slots adjacent thereto.
  • the two connecting portions are connected; wherein the second connecting portion of the groove body extends along the other edge of the groove body opposite to the edge where the first connecting portion is located and is opposite to the first connecting portion; each The second end of each of the photovoltaic modules is opposite to the first end.
  • a roof panel including the roof panel body, and further comprising the photovoltaic system according to the second aspect, or the photovoltaic module according to the first aspect; wherein the photovoltaic system or the photovoltaic module is provided On the outer surface of the roof panel body.
  • a vehicle including the vehicle body, and further comprising the photovoltaic system according to the second aspect, or the photovoltaic module according to the first aspect; wherein the photovoltaic system or the photovoltaic component is provided On the outer surface of the vehicle body.
  • FIG. 1 is a schematic structural diagram of a photovoltaic module according to an embodiment of the disclosure
  • FIG. 2 is a schematic structural diagram of a photovoltaic module according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a photovoltaic module according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic side view of a photovoltaic module according to an embodiment of the disclosure.
  • 5a is a schematic top view of a bead according to an embodiment of the disclosure.
  • 5b is a schematic top view of a bead according to an embodiment of the disclosure.
  • 5c is a schematic top view of a bead according to an embodiment of the disclosure.
  • 6a is a schematic side view of a photovoltaic module according to an embodiment of the disclosure.
  • 6b is a schematic side view of a photovoltaic module according to an embodiment of the disclosure.
  • 6c is a schematic side view of a photovoltaic module according to an embodiment of the disclosure.
  • FIG. 7 is a schematic structural diagram of a photovoltaic module according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic cross-sectional view taken in the direction W1-W2 in FIG. 7;
  • FIG. 9 is a schematic top view of a supporting member according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a photovoltaic module according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic cross-sectional view taken in the direction of P1-P2 in FIG. 10;
  • FIG. 12 is a schematic structural diagram of a photovoltaic system according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a photovoltaic system according to an embodiment of the present disclosure.
  • FIG. 14a is a schematic structural diagram of a tank provided by an embodiment of the present disclosure.
  • FIG. 14b is a schematic structural diagram of a tank body provided by an embodiment of the present disclosure.
  • 15a is a schematic cross-sectional view taken in the direction of B1-B2 in FIG. 12;
  • 15b is a schematic cross-sectional view taken along the direction B1-B2 in FIG. 12;
  • 15c is a schematic cross-sectional view of a position avoiding the first lead hole in FIG. 12;
  • 16a is a schematic cross-sectional view taken in the direction of C1-C2 in FIG. 13;
  • 16b is a schematic cross-sectional view taken in the direction of C1-C2 in FIG. 13;
  • 16c is a schematic cross-sectional view of a position avoiding the first lead hole in FIG. 13;
  • 17 is a schematic cross-sectional view taken along the direction B1-B2 in FIG. 12;
  • 18a is a schematic side view of a photovoltaic system according to an embodiment of the present disclosure.
  • 18b is a schematic side view of a photovoltaic system according to an embodiment of the present disclosure.
  • 19a is a schematic side view of a photovoltaic system according to an embodiment of the present disclosure.
  • 19b is a schematic side view of a photovoltaic system according to an embodiment of the present disclosure.
  • FIG. 20 is a schematic top view of a photovoltaic system according to an embodiment of the present disclosure.
  • FIG. 21 is a schematic structural diagram of a transfer reinforcement section according to an embodiment of the present disclosure.
  • FIG. 22 is a schematic top view of a photovoltaic system according to an embodiment of the present disclosure.
  • FIG. 23 is a schematic structural diagram of a transfer reinforcement section according to an embodiment of the present disclosure.
  • FIG. 24 is a schematic top view of a photovoltaic system according to an embodiment of the present disclosure.
  • FIG. 25 is a schematic structural diagram of a transfer reinforcement section according to an embodiment of the present disclosure.
  • 26 is a schematic structural diagram of a photovoltaic system according to an embodiment of the present disclosure.
  • FIG. 27 is a schematic structural diagram of a photovoltaic system according to an embodiment of the present disclosure.
  • FIG. 28 is a schematic structural diagram of a photovoltaic system according to an embodiment of the present disclosure.
  • FIG. 29 is a schematic structural diagram of a transfer reinforcement section according to an embodiment of the present disclosure.
  • FIG. 30 is a schematic side view of a photovoltaic system according to an embodiment of the present disclosure.
  • FIG. 31 is a schematic side view of a photovoltaic system according to an embodiment of the present disclosure.
  • FIG. 32 is a schematic side view of a photovoltaic system according to an embodiment of the present disclosure.
  • FIG. 33 is a schematic side view of a photovoltaic system according to an embodiment of the present disclosure.
  • FIG. 34 is a schematic top view of a photovoltaic system according to an embodiment of the present disclosure.
  • 35 is a schematic top view of a photovoltaic system according to an embodiment of the present disclosure.
  • 36 is a schematic top view of a photovoltaic system according to an embodiment of the present disclosure.
  • FIG. 37 is a schematic top view of a photovoltaic system according to an embodiment of the present disclosure.
  • FIG. 38 is a schematic cross-sectional view taken in the direction of M1-M2 in FIG. 37;
  • 39 is a schematic cross-sectional view taken in the direction of M3-M4 in FIG. 37;
  • FIG. 40 is a schematic cross-sectional view taken in the direction of M1-M2 in FIG. 37.
  • the embodiments disclosed in the present invention provide a photovoltaic module, a photovoltaic system, a roof panel and a vehicle to solve the technical problems that the photovoltaic power generation unit is easy to partially open and deform in the prior art.
  • the photovoltaic module includes a photovoltaic power generation unit 10 and a support member 20 connected to a non-photoelectric conversion surface of the photovoltaic power generation unit 10 and used to support the photovoltaic power generation unit 10.
  • the non-photoelectric conversion surface of the power generation unit 10 is thermally connected to the support member 20.
  • the non-photoelectric conversion surface of the photovoltaic power generation unit 10 and the support member 20 are thermally connected, and the non-photoelectric conversion surface of the photovoltaic power generation unit 10 and the support member 20 are combined by thermal fusion lamination, so that the support member 20 and the photovoltaic power generation unit are combined. 10 blends into an indivisible whole.
  • the photovoltaic power generation unit 10 and the support member 20 are thermally laminated for 20 to 40 minutes under the conditions of 0.5 to 1 atmosphere and 100 to 200 ° C.
  • the photovoltaic power generation unit 10 and the supporting member 20 are thermally fused and laminated for 30 minutes under the conditions of 1 atmosphere and 160 ° C.
  • the support member 20 includes a bearing portion 21, and the photovoltaic power generation unit 10 is specifically heat-sealed to the bearing portion 21.
  • the supporting member 20 when the supporting member 20 includes only the bearing portion 21, the supporting member 20 can be all heat-sealed to the photovoltaic power generation unit 10; as shown in FIG. 2 and FIG. 3, the supporting member 20 may also be partially thermally connected to the photovoltaic power generation unit 10 as long as the photovoltaic power generation unit 10 and the support member 20 can be an integral part.
  • the material of the support member 20 is not limited, as long as the support member 20 can be thermally connected with the photovoltaic module 10 as a whole, and the support member 20 will not melt during the heat sealing process.
  • the supporting member 20 may be made of metal.
  • the support member 20 made of metal not only does not melt at high temperatures, but also has a lightning protection effect.
  • the material of the same volume, the weight of the metal is relatively large, which can prevent the photovoltaic power generation unit 10 thermally connected to the support member 20 in strong winds. Deformed by strong wind.
  • the photovoltaic power generation unit 10 proposed in the embodiment of the present disclosure may be a flexible photovoltaic power generation unit or a crystalline silicon photovoltaic power generation unit.
  • the material of the flexible photovoltaic power generation unit may include copper indium gallium selenium, a material of the crystalline silicon photovoltaic power generation unit.
  • it may be single crystal silicon or polysilicon.
  • the flexible photovoltaic power generation unit has the advantages of good flexibility, lightness, low light resistance, adjustable color, and shape plasticity, etc., and can improve the adaptability and practicability of the photovoltaic power generation unit 10.
  • the photoelectric conversion surface of the photovoltaic power generation unit 10 refers to the side of the photovoltaic power generation unit 10 that can perform photoelectric conversion when receiving light.
  • the surface of the photovoltaic power generation unit 10 that is opposite (opposite) to the photoelectric conversion surface is the non-photoelectric conversion surface.
  • An embodiment of the present disclosure provides a photovoltaic module including a photovoltaic power generation unit 10 and a support member 20 thermally connected to a non-photoelectric conversion surface of the photovoltaic power generation unit 10.
  • the embodiment of the present disclosure uses a thermally In this way, the photovoltaic power generation unit 10 and the supporting member 20 can be more firmly connected. In this way, even in strong wind weather, the photovoltaic power generating unit 10 will be fixed on the supporting member 20 without deformation; and The area of the unit 10 is usually large. If adhesive bonding is used, a large amount of adhesive is required, which is not conducive to saving manufacturing costs. Therefore, compared with adhesive bonding, heat-sealing connection can reduce preparation. Production cost of photovoltaic modules.
  • the photovoltaic power generation unit 10 and the support member 20 become an integral part, the overall weight of the photovoltaic module 10 and the support member 20 can be increased. In this way, even in strong wind weather, strong wind is not easy to make photovoltaic power generation The unit 10 and the support member 20 are moved, so that unnecessary injuries and economic losses can be avoided.
  • the supporting member 20 further includes a fixing portion 22, which is connected to the bearing portion 21 in the same plane and extends beyond the edge of the photovoltaic power generation unit 10.
  • the fixing portion 22 is connected to the bearing portion 21 and is in the same plane as the bearing portion 21, and the fixing portion 22 extends beyond the edge of the photovoltaic power generation unit 10.
  • the fixing portion 22 and the bearing portion 21 may be an integrally molded structure.
  • the fixing portion 22 may exceed one, or two, or three, or four edges of the photovoltaic power generation unit 10.
  • the fixing portion 22 extends beyond the edge of the photovoltaic power generation unit 10, when the photovoltaic module is fixed on the mounting carrier, damage to the photovoltaic power generation unit 10 can be avoided.
  • the photovoltaic module further includes a bead 30 fixedly connected to the fixing portion 22; an edge of the photovoltaic power generation unit 10 is sandwiched between the bead 30 and the support member 20.
  • connection manner of the bead 30 and the fixing portion 22 is not limited.
  • the bead 30 and the fixing portion 22 may be fixedly connected by means of screw connection, snap-in connection, or strong magnetic attraction.
  • FIG. 4 shows only the case where the bead 30 and the fixing portion 22 are connected by screws.
  • the bead 30 may be a continuous whole; as shown in FIG. 5b and FIG. 5c, the bead 30 may be disconnected, which is not limited.
  • the bead 30 may be provided on the fixed portion 22 in a complete circle; as shown in FIG. 5c, the bead 30 may be intermittently provided on the fixed portion 22, which is not limited. As long as the bead 30 can be fixed on the fixing portion 22 and the edge of the photovoltaic power generation unit 10 is sandwiched between the support member 20 and the bead 30.
  • the bead 30 is disposed on the side where the photovoltaic power generation unit 10 can perform photoelectric conversion, and the bead 30 has limited light transmittance or even does not transmit light, the bead 30 only covers the edge of the photovoltaic module 10 so that The photoelectric conversion surface of the photovoltaic power generation unit 10 normally receives the irradiation of light.
  • the material of the bead 30 is not limited, as long as the edge of the photovoltaic power generation unit 10 can be sandwiched between the bead 30 and the support member 20 using the bead 30.
  • a portion of the photovoltaic power generation unit 10 sandwiched between the bead 30 and the support member 20 is a seal region of the photovoltaic power generation unit.
  • the bead 30 may be made of a metal material to achieve a lightning protection effect.
  • the bead 30 may be an aluminum alloy profile.
  • the edge of the photovoltaic power generation unit 10 is sandwiched between the bead 30 and the fixing portion 22, so that the photovoltaic power generation unit 10 and the supporting member 20 can be more firmly fixed; meanwhile, the bead 30 also has a certain weight, so In addition, the overall weight of the photovoltaic power generation unit 10, the bead 30, and the support member 20 can be increased, so as to avoid the photovoltaic power generation unit 10, the bead 30, and the support member 20 from moving in strong wind weather, and cause unnecessary casualties and economic losses.
  • the photovoltaic module further includes a buffer member 40 disposed between the photovoltaic power generation unit 10 and the bead 30.
  • the buffer member 40 may be sandwiched by the bead 30 to cover the entire area of the photovoltaic power generation unit 10; as shown in FIG. 6b, the buffer member 40 may also be sandwiched by the bead 30 to cover the photovoltaic Part of the power generating unit 10; as shown in FIG. 6c, the buffer member 40 may also extend from the area between the bead 30 and the photovoltaic power generating unit 10 to the area between the bead 30 and the fixing portion 22.
  • FIG. 6a the buffer member 40 may be sandwiched by the bead 30 to cover the entire area of the photovoltaic power generation unit 10; as shown in FIG. 6b, the buffer member 40 may also be sandwiched by the bead 30 to cover the photovoltaic Part of the power generating unit 10; as shown in FIG. 6c, the buffer member 40 may also extend from the area between the bead 30 and the photovoltaic power generating unit 10 to the area between the bead 30 and the fixing portion 22.
  • a certain moving space can be reserved for the bead 30 to adjust the position of the bead 30 when the bead 30 is set
  • the bead 30 is placed at an appropriate position; and the position of the bead 30 can be prevented from changing due to thermal expansion and contraction of the buffer member 40.
  • the material of the buffer member 40 is not limited, as long as the buffer member 40 can play a buffering role and avoid the bead 30 from damaging the surface of the photovoltaic power generation unit 10.
  • the buffer member 40 may be a rubber strip, and the material of the rubber strip may be Ethylene-Propylene-Diene Monomer (referred to as EPDM).
  • EPDM Ethylene-Propylene-Diene Monomer
  • the buffer member 40 has a certain flexibility, and may be disposed between the photovoltaic power generation unit 10 and the bead 30, and the photovoltaic power generation unit 10 and the bead 30 are spaced apart to play a buffer function and prevent the bead 30 from damaging the photovoltaic The surface of the power generating unit 10.
  • the supporting member 20 further includes a reinforcing portion 23, which is connected to an end of the fixing portion 22 away from the bearing portion 21 and points toward the supporting member 20 along the photovoltaic power generation unit 10. (Ie, extending in a downward direction or an oblique downward direction in FIG. 8).
  • an included angle range between the reinforcing portion 23 and the fixing portion 22 may be 30 ° to 150 °.
  • an included angle between the reinforcing portion 23 and the fixing portion 22 is 60 ° or 90 ° , Or 120 °.
  • FIG. 8 shows only the case where the included angle between the reinforcing portion 23 and the fixing portion 22 is 90 °.
  • the angle between the reinforcing portion 23 and the fixing portion 22 refers to the angle between the surface of the fixing portion 22 away from the photovoltaic power generation unit 10 and the reinforcing portion 23.
  • one support member 20 may include one, or two, or three, or four reinforcing portions 23.
  • the reinforcing portion 23 may be an integrally formed structure with the bearing portion 21 and the fixing portion 22, or may be connected to form an integrated structure.
  • a flat plate may be formed first; then, as shown in FIG. 9, four corners of the plate are cut (according to the number of reinforcing portions) (Different, it can be one, or two, or three corners); Finally, the portion where the reinforcing portion 23 is to be formed is bent to form the supporting member 20 shown in FIGS. 7 and 8.
  • the overall rigidity of the supporting member 20 can be increased, and the photovoltaic module can be effectively prevented from being deformed.
  • the supporting member 20 further includes a reinforced connecting portion, and the reinforced connecting portion is used to fixedly connect the adjacent reinforced portion 23.
  • the reinforcing connection portion may include an L-shaped corner code 400 and a fixing member 401, and two adjacent reinforcing portions 23 may be fixedly connected through the L-shaped corner code 400 and the fixing member 401.
  • the reinforcing connection portion may be provided on an inner side wall of two adjacent reinforcing portions 23, or may be provided on an outer side wall of two adjacent reinforcing portions 23.
  • FIG. 10 only shows a case where the reinforcing connection portion is provided on the outer side wall of two adjacent reinforcing portions 23.
  • one supporting member 20 includes at least two reinforcing portions 23 and the two reinforcing portions 23 are adjacent to each other, the reinforcing connecting portions may be used to fix the two adjacent reinforcing portions 23.
  • the strength of the reinforcing portion 23 can be further increased by strengthening the connecting portion. Further, the strength of the supporting member 20 can be increased to effectively prevent deformation of the photovoltaic module.
  • the photovoltaic module further includes an auxiliary supporting member 800, and the auxiliary supporting member 800 and the side of the supporting member 20 facing away from the photovoltaic power generation unit 10 are fixedly connected.
  • the auxiliary supporting member 800 corresponds to the bearing portion 21 and is fixedly connected; when the supporting member includes the bearing portion 21 and the fixing portion 22, the auxiliary supporting member 800 may be connected to the bearing portion 21 and the fixed portion 22 are both correspondingly and fixedly connected, or the auxiliary support member 800 may be fixedly connected to only the fixed portion 22.
  • the auxiliary supporting part 800 is connected to the supporting part 21 by an adhesive method. As shown in FIG. 11, when the supporting member includes the supporting part 21, the fixing part 22, and the reinforcing part 23, the auxiliary supporting part 800 and the supporting part 21 The portion 21, the fixing portion 22, and the reinforcing portion 23 are correspondingly and fixedly connected.
  • the auxiliary supporting member 800 is fixedly connected to the fixing portion 22 and / or the reinforcing portion 23. Further, optionally, the auxiliary supporting portion 800 is connected to the bearing portion 21. They are connected by gluing. Those skilled in the art can understand that the components selected for the fixed connection above can be modified as long as the purpose of supporting the supporting component 20 can be achieved.
  • the overall strength of the photovoltaic module can be enhanced by the auxiliary support member 800 to effectively prevent the photovoltaic power generation unit 10 from deforming, to avoid affecting the appearance of the photovoltaic module due to the deformation of the photovoltaic power generating unit 10, and affecting the photoelectric conversion performance of the photovoltaic power generating unit 10. .
  • An embodiment of the present disclosure provides a photovoltaic system, as shown in FIGS. 12-16c, including: the photovoltaic module according to any of the foregoing embodiments, a cable electrically connected to the first end of the photovoltaic module, and a support located at the photovoltaic module.
  • the component 20 faces away from the slot body 60 on the side of the photovoltaic power generation unit 10; wherein the second end of the cable is placed in the cable placement portion 62 of the slot body 60.
  • the cable includes a positive cable 51 and a negative cable 52.
  • the first end of the positive cable 51 is electrically connected to the positive terminal of the photovoltaic module 10, and the first end of the negative cable 52 is connected to the negative terminal of the photovoltaic module 10. Electrical connection.
  • the second end of the cable is first put into the cable placement portion 62 through the first lead hole 621 in the groove 60. After that, the photovoltaic module and the tank 60 are fixedly connected.
  • the second end of the cable can be directly placed into the cable placement portion 62, and then the photovoltaic module and the slot 60 are fixedly connected.
  • the slot 60 is provided with a drain port 61, as shown in FIGS. 15a-16c.
  • the drain port 61 may be provided on a surface of the tank body 60 away from the support member 20.
  • the number of the drainage openings 61 in the tank 60 should be related to the size of the tank 60 and the practical application. For example, when the size of the tank 60 is relatively small, a drainage port 61 may be provided on the tank 60; When the size of the groove body 60 is relatively large, a plurality of drainage openings 61 may be opened in the groove body 60 at intervals.
  • the material of the groove body 60 is not limited.
  • the groove body 60 is made of a metal material, and the groove body 60 made of metal material can play a lightning protection effect, and the rigidity of the metal material is relatively large.
  • the photovoltaic power generation unit 10 and the supporting member 20 may be supported by the tank 60.
  • the material of the groove body 60 is an aluminum alloy.
  • the groove body 60 can directly contact and be fixedly connected to the supporting member 20.
  • the structure of the groove body 60 shown in FIGS. 15a and 16a corresponds to the groove body 60 shown in FIG. 14a.
  • the second end of the cable enters the cable placement portion 62 through the opening on the upper surface of the slot 60.
  • the structure of the slot 60 shown in FIGS. 15b and 16b corresponds to the slot 60 shown in FIG. 14b.
  • the trough body 60 may also be disposed at a distance from the support member 20 and indirectly fixedly connected to the photovoltaic module through other components in the photovoltaic system, for example, other components are square-pass structures and the like.
  • the slot 60 includes a first lead hole 621, and the second end of the cable can be placed in the cable placement portion 62 through the lead hole 621.
  • FIGS. 15b and 16b show cross-sectional views at the first lead hole 621
  • FIGS. 15c and 16c show A cross-sectional view of parts other than the first lead hole 621 can be seen from FIGS. 15b and 16b that the first lead hole 621 does not completely occupy one side wall of the cable placement portion 62.
  • the portion of the cable that can be placed in the slot 60 can be referred to as the second end of the cable.
  • the position of the slot 60 relative to the support member 20 and the photovoltaic power generation unit 10 is not limited, as long as the second end of the cable can be placed in the slot 60, in some implementations
  • the groove body 60 also supports the support member 20.
  • the slot 60 can be set closer to the first end of the cable so that the cable can be placed as much as possible. Cable placement section 62.
  • the slot body 60 further includes a first connection portion 63.
  • the first connection portion 63 is formed by the edge of the cable placement portion 62 near the first end of the photovoltaic module, and the edge of the first connection portion 63 is connected to the photovoltaic power generation unit 10
  • the non-photoelectric conversion surface extends in a parallel direction; the slot 60 is fixedly connected to the first end of the photovoltaic module through the first connection portion 63.
  • the first connection portion 63 may extend to a side closer to the edge opposite to the edge of the cable placement portion 62 where it is located. As shown in Figs. 15a-16c, the first connection portion 63 may also It extends to a side away from the edge of the cable placement portion 62 where it is located.
  • the groove 60 when the supporting member includes only the bearing portion 21, the groove 60 is fixedly connected to the bearing portion 21 through the first connecting portion 63; when the supporting member includes only the bearing portion 21 and the fixing portion 22, the groove 60 can pass through the first The connecting portion 63 is fixedly connected to the fixing portion 22.
  • the groove 60 can be fixedly connected to the reinforcing portion 23 through the first connecting portion 63.
  • the photovoltaic module can be connected to the mounting carrier through the groove body 60.
  • the end of the tank 60 remote from the photovoltaic module is connected to the mounting carrier.
  • connection manner between the first connection portion 63 and the photovoltaic module is not limited.
  • the groove 60 and the photovoltaic module may be fixedly connected by means of screw connection or snap-in.
  • the embodiment of the present disclosure provides a photovoltaic system.
  • the cable By setting the second end of the cable in the cable placement portion 62, the cable can be prevented from being exposed to the outside for a long time.
  • the cable is neatly placed in the cable placement portion 62.
  • the appearance of the photovoltaic system can be more beautiful; on the other hand, it can also prevent the cable from aging and corrosion; on this basis, by providing a drainage port 61 on the tank 60, rainwater can be prevented from accumulating In the cable placement portion 62, corrosion of the cables in the cable placement portion 62 is avoided.
  • the trough body 60 further includes a support fixing portion 65.
  • the support fixing portion 65 is used to make the drainage opening 61 and the mounting carrier have a certain height, so that the water in the trough 60 passes through the drainage opening 61. discharge.
  • the first connecting portion 63 is provided with a first lead hole 621, and the second end of the cable is placed in the cable placing portion 62 through the first lead hole 621.
  • the trough body 60 by directly contacting the trough body 60 with the photovoltaic module and directly fixing the trough body 60 to the photovoltaic module through the first connection portion 63, the trough body 60 can be used to support the photovoltaic module.
  • the photovoltaic system may further include a transfer reinforcement portion, and the first connection portion 63 is connected to the first end of the photovoltaic module through the transfer reinforcement portion; as shown in FIGS. 18a-19b, the transfer reinforcement portion 70 is provided with a first Two lead holes 71, the second end of the cable is placed in the cable placement portion 62 through the second lead hole 71.
  • the transfer reinforcing portion 70 may be fixedly connected to the first connecting portion 63 of the groove body 60.
  • the material and specific structure of the transfer reinforcement portion 70 are not limited, as long as the second end of the cable can pass through the transfer reinforcement portion 70.
  • the transfer reinforcement portion 70 may be a square through, and the material thereof may be a metal material. In this way, the transfer reinforcement portion 70 not only has a lightning protection effect, but also supports the photovoltaic module.
  • the position of the transfer reinforcement portion 70 corresponds to the positions of the slot body 60 and the support member 20.
  • the transfer reinforcing portions 70 may be arranged in a block-like interval, and a block-shaped transfer reinforcing portion 70 includes a second lead hole 71; as shown in FIGS. 22 and 23
  • the transfer reinforcing portion 70 may also be strip-shaped.
  • the strip-shaped first connecting portion 70 includes one or more second lead holes 71; as shown in FIG. 24 and FIG. In addition, one or more second lead holes 71 are included.
  • the photovoltaic module and the tank 60 can be fixedly connected through the transfer reinforcing portion 70, and the transfer reinforcing portion 70 can also play a role of supporting the photovoltaic module.
  • the transfer reinforcing portion 70 is as shown in FIG. 25
  • the transfer reinforcing portion 70 also plays an auxiliary reinforcing role to the supporting member 20 to avoid deformation of the photovoltaic power generation unit.
  • FIGS. 26-29 there is a gap between the photovoltaic module and the tank 60, and the second end of the cable 50 is placed in the cable placement portion 62 through the gap.
  • a plurality of transfer reinforcing portions 70 are provided to fixedly connect the photovoltaic module and the tank 60.
  • There is a gap between the plurality of transition reinforcements 70 and there is a gap between the photovoltaic module and the tank 60, so that the second end of the cable 50 passes through the gap between the photovoltaic module and the tank 60 and the two transition reinforcements
  • a gap between 70 is placed in the cable placement portion 62.
  • the transfer reinforcing portion 70 may include a first fixing portion 701 and a second fixing portion 702.
  • the first fixing portion 701 is fixedly connected to a side wall of the support member 20, and the second fixing portion 702 and a groove are fixed.
  • the first connection portion 63 of the body 60 is fixedly connected.
  • the first fixing portion 701 is fixedly connected to the side wall of the bearing portion 21; when the supporting member 20 includes the bearing portion 21 and the fixing portion 22, the first The fixing portion 701 is fixedly connected to the fixing portion 22.
  • the first fixing portion 701 is fixed to the sidewall of the reinforcing portion 23.
  • the number of the transfer reinforcing portions 70 corresponding to one photovoltaic module may be one or plural.
  • connection manner of the fixed reinforcing portion 70 with the first connecting portion 63 and the supporting member 20 is not limited.
  • the fixed reinforcing portion 70 may be fixedly connected with the first connecting portion 63 and the supporting member 20 by screws, for example.
  • the second fixing portion 702 is disposed on the side of the first connection portion 63 near the photovoltaic module (ie, the upper surface of the first connection portion 63); as shown in FIG. 28, the second fixing portion 702 The portion 702 may also be disposed on a side of the first connection portion 63 away from the photovoltaic module (ie, the lower surface of the first connection portion 63).
  • the photovoltaic system further includes a junction box 80
  • the support member 20 may include a hollowed-out area
  • the junction box 80 is disposed in the hollowed-out area and fixed to the support member 20
  • the connection, that is, the junction box 80 is in direct contact with the photovoltaic module 10, and the first end of the cable 50 is electrically connected to the photovoltaic module 10 through the junction box 80.
  • the first end of the cable 50 is electrically connected to the terminal in the junction box 80, and the terminal in the junction box 80 is electrically connected to the positive terminal (or negative terminal) of the photovoltaic module 10.
  • each photovoltaic module has a positive terminal and a negative terminal
  • each junction box 80 can have one terminal, of course, it can also have two terminals; under normal circumstances, the wiring with one terminal Box 80, whose terminal is electrically connected to only one of the positive terminal and the negative terminal in the photovoltaic module 10; a terminal box 80 having two terminals, the two terminals of which can be respectively connected to the positive terminal of the photovoltaic module It is electrically connected to the negative terminal.
  • the distance between the positive terminal and the negative terminal in the photovoltaic module 10 should not be too large to ensure that the two terminals of the junction box 80 can be electrically connected to the positive terminal and the negative terminal, respectively. connection.
  • the appearance of the photovoltaic system can be made more beautiful by arranging the junction box 80 in the hollowed-out area of the support member 20, that is, the junction box 80 is disposed on the non-photoelectric conversion surface of the photovoltaic module.
  • the photovoltaic system includes a plurality of photovoltaic modules disposed along the extending direction of the tank 60, adjacent photovoltaic modules are connected in series, and two cables for connecting two adjacent photovoltaic modules in series are connected in series.
  • the second end of 50 is electrically connected in the cable placement portion 62.
  • the second ends of the plurality of cables 50 electrically connected to the plurality of photovoltaic modules disposed along the extending direction of the slot body 60 can be put into the slot body 60.
  • the photovoltaic system includes at least two tank bodies 60 arranged along an extending direction perpendicular to the tank body 60, and correspondingly, the photovoltaic system includes at least one photovoltaic device arranged along the tank body 60 in the arrangement direction.
  • each photovoltaic module is connected to the first connection portion 63 of a slot 60 adjacent to it, and the second end of each photovoltaic module is connected to the second connection portion of another slot 60 adjacent to it 64 connecting; wherein, the second connecting portion 64 of the slot body 60 extends along the other edge of the slot body 60 opposite to the edge where the first connecting portion 63 is located, and is opposite to the first connecting portion 63, in each photovoltaic module The second end is opposite to the first end.
  • the extending direction of the second connecting portion 64 and the first connecting portion 63 may be the same or different.
  • the first connecting portion 63 extends toward the side closer to the second connecting portion 64, and the second connecting portion 64 extends away from the first connecting portion 63.
  • the first connection portion 63 extends to the side away from the second connection portion 64, and the second connection portion 64 extends to the side closer to the first connection portion 63.
  • the first connecting portion 63 extends toward the side closer to the second connecting portion 64, and the second connecting portion 63 extends toward the side closer to the first connecting portion;
  • the first connection portion 63 extends to a side away from the second connection portion 64, and the second connection portion 63 extends to a side away from the first connection portion.
  • the second end of the photovoltaic module is connected to the second connection portion 64 of another slot body 60 adjacent to it, since the second end of the photovoltaic module does not include a positive terminal and a negative terminal, In a direction perpendicular to the extending direction of the tank body, the two photovoltaic modules adjacent to the same tank body 60 are not in a series relationship.
  • the photovoltaic module may be fixed on the mounting carrier through two slots 60 adjacent to the photovoltaic module.
  • the second end of the summary cable in the cable 50 of a plurality of photovoltaic modules connected in series is placed in the summary cable slot 200, and the summary cable slot 200 is provided with a photovoltaic
  • the positive cable 51 and the negative cable 52 of the summary cable are respectively connected to corresponding interfaces.
  • the second end of the summary cable 50 placed in the summary cable slot 200 is the second end of the cable 50 electrically connected to the photovoltaic module closest to the summary cable slot 200 among the plurality of photovoltaic modules. .
  • the size of the first lead hole 621 of the slot 60 should be greater than or equal to the size of the second end of the cable 50.
  • the second end of the cable 50 is allowed to enter the slot body 60 through the first lead hole 621; and when a transfer reinforcing portion 70 is provided between the slot body 60 and the support member 20, the second lead hole on the transfer strengthening portion 70
  • the size of 71 and the size of the opening 622 of the slot 60 should be greater than or equal to the size of the second end of the cable 50 so that the second end of the cable enters the cable slot 60 through the second lead hole 71 and the opening 622.
  • the widths of the first and second lead holes 621 and 71 are set to 12 mm to 16 mm.
  • the first lead hole 621 and the second lead hole 71 may be set to one of 14mm, 15mm, and 16mm), and the width of the cable slot opening 622 is set to 20 to 26mm (for example, Width is 20mm).
  • the photovoltaic system includes a plurality of support members 20, during the process of putting the second end of the cable 50 into the cable groove 60, the cable ends of the cables 50 may pass between the adjacent support members 20. Therefore, the size of the distance between the adjacent support members 20 should also be greater than or equal to the size of the cable head in the second end of the cable 50.
  • An embodiment of the present disclosure provides a roof panel including a roof panel body and further including a photovoltaic system according to any one of the foregoing embodiments, or a photovoltaic module according to any one of the foregoing embodiments; wherein the photovoltaic system or the photovoltaic module is disposed on the roof panel The outer surface of the body.
  • An embodiment of the present disclosure provides a vehicle, including a vehicle body, and further including a photovoltaic system according to any one of the preceding embodiments, or a photovoltaic module according to any one of the preceding embodiments; wherein the photovoltaic system or the photovoltaic module is disposed in a traffic area.
  • the outer surface of the tool body is disposed in a traffic area.
  • the photovoltaic system includes only the photovoltaic power generation unit 10 and the support member 20, the photovoltaic system is installed on the roof panel body (or vehicle body) through the connection member, or the support member 20 and the roof panel body (or vehicle) The body) has a magnetic area, and the supporting member 20 is fixedly installed on the roof panel body (or the vehicle body) by magnetic force.
  • the photovoltaic system includes the photovoltaic power generating unit 10, the supporting member 20, and the tank 60
  • the photovoltaic system passes through the tank 60.
  • the photovoltaic device further includes a connecting member 90.
  • the connecting member 90 is used to fix the photovoltaic module or the photovoltaic system to the roof panel body 100 (or the vehicle body). 100).
  • the tank body 60 may correspond to one connection member 90 or a plurality of connection members 90.
  • the water in the tank body 60 may be drained to the roof panel body 100 (or the vehicle body 100) through the drainage opening 61, Finally, they are collected in the drainage ditch of the roof panel body 100 (or the vehicle body 100).
  • the connecting member 90 may be composed of a bolt 91, an adapter 92, The connector 92 connects the photovoltaic system (or photovoltaic module) and the roof panel body 100; as shown in FIGS. 39-40, since the surface of the side of the vehicle body 100 near the photovoltaic module 10 is generally a flat surface, the connector 90 may include only screws The photovoltaic module or the photovoltaic system is fixed to the vehicle body 100 using screws.
  • the materials of the roof panel body 100 and the vehicle body 100 may be aluminum alloy, aluminum-magnesium alloy, stainless steel, galvanized steel, and the like.
  • the embodiment of the present disclosure provides a roof panel, which has the same technical effect as the aforementioned photovoltaic system, and will not be repeated here.
  • the embodiment of the present disclosure provides a vehicle, which has the same technical effect as the aforementioned photovoltaic system, and is not described herein again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)

Abstract

一种光伏组件、光伏系统、屋面板及交通工具。光伏组件包括光伏发电单元(10)和与所述光伏发电单元(10)的非光电转换面连接且用于支撑所述光伏发电单元(10)的支撑部件(20),所述光伏发电单元(10)的非光电转换面与所述支撑部件(20)热合连接。

Description

光伏组件、光伏系统、屋面板及交通工具 技术领域
本发明公开涉及光伏领域,尤其涉及一种光伏组件、光伏系统、屋面板及交通工具。
背景技术
随着社会的进步,人们对舒适的建筑及交通环境的追求越来越高,导致采暖、空调等的能耗日益增长,因此,建筑节能及交通工具节能的发展已成为现代建筑及交通工具发展的趋势。建筑屋面及交通工具上光能资源的利用,可以为建筑及交通工具提供清洁的电力能源。
目前,通常是利用背胶直接将光伏发电单元的背光面与金属屋面或车顶粘结在一起形成光伏装置。当遇到强风天气时,容易造成局部开胶,并导致光伏发电单元变形,甚至光伏发电单元被风吹起给用户带来经济损失甚至导致人员伤亡。此外,线缆通常固定连接在光伏发电单元背离金属屋面或车顶的一侧,并暴露于光伏装置的外部,影响光伏装置的外观;与光伏发电单元电连接的线缆因随意放置、暴露于光伏装置的外部,导致易老化、腐蚀。
公开内容
本发明公开的实施例采用如下技术方案:
第一方面,提供一种光伏组件,包括:光伏发电单元和支撑部件,所述支撑部件与所述光伏发电单元的非光电转换面连接且用于支撑所述光伏发电单元,其中,所述光伏发电单元的非光电转换面与所述支撑部件热合连接。
在一些实施例中,所述支撑部件包括承载部,所述光伏发电单元与所述承载部热合连接。
在一些实施例中,所述支撑部件还包括固定部,所述固定部与所述承载部相连接并与所述承载部处于同一平面内,并且所述固定部超出所述光伏发电单元的边缘。
在一些实施例中,所述光伏组件还包括与所述固定部固定连接的压条;所述光伏发电单元的边缘夹设在所述压条与所述支撑部件之间。
在一些实施例中,所述光伏组件还包括设置于所述光伏发电单元与所述压条之间的缓冲部件。
在一些实施例中,所述支撑部件还包括加强部,所述加强部与所述固定部远离所述承载部一侧的端部连接、并沿所述光伏发电单元指向所述支撑部件的方向延伸。
在一些实施例中,所述支撑部件还包括加强连接部,所述加强连接部用于固定连接相邻所述加强部。
在一些实施例中,所述光伏组件还包括辅助支撑部件,所述辅助支撑部件与所述支撑部件背离所述光伏发电单元的一侧固定连接。
第二方面,提供一种光伏系统,包括:第一方面的所述的光伏组件、与所述光伏组件的第一端电连接的线缆、以及位于所述光伏组件的支撑部件背离光伏发电单元一侧的槽体;其中,所述线缆的第一端与所述光伏组件的第一端电连接,所述线缆的第二端放置于所述槽体的线缆放置部中。
在一些实施例中,所述槽体还包括第一连接部,所述第一连接部由所述线缆放置部的靠近所述光伏组件的第一端的边沿,沿与所述光伏发电单元的非光电转换面平行的方向延伸;所述槽体通过所述第一连接部直接或间接地与所述光伏组件的第一端固定连接。
在一些实施例中,所述第一连接部上设有第一引线孔,所述线缆的第二端通过所述第一引线孔放置于所述线缆放置部中。
在一些实施例中,所述光伏系统还包括转接加强部,所述第一连接部通过所述转接加强部间接地与所述光伏组件的第一端连接;所述转接加强部上设有第二引线孔,所述线缆的第二端通过所述第二引线孔放置于所述线缆放置部中。
在一些实施例中,所述光伏组件与所述槽体之间具有间隙,所述线缆的第二端通过所述间隙放置于所述线缆放置部中。
在一些实施例中,所述光伏系统包括沿所述槽体的延伸方向设 置的多个所述光伏组件,相邻所述光伏组件串联连接,用于串联相邻两个所述光伏组件的两个所述线缆的第二端在所述线缆放置部中电连接。
在一些实施例中,所述光伏系统包括至少两个沿垂直于所述槽体的延伸方向排列的所述槽体,以及沿所述槽体排列方向设置的至少一个所述光伏组件;每个所述光伏组件的第一端和与其相邻的一个所述槽体的所述第一连接部连接,每个所述光伏组件的第二端和与其相邻的另一个所述槽体的第二连接部连接;其中,所述槽体的第二连接部沿与所述第一连接部所在的边沿相对的所述槽体的另一边沿延伸、并与所述第一连接部相对;每个所述光伏组件中的第二端与第一端相对。
第三方面,提供一种屋面板,包括屋面板本体,还包括如第二方面所述的光伏系统,或如第一方面所述的光伏组件;其中,所述光伏系统或所述光伏组件设置于所述屋面板本体的外表面。
第四方面,提供一种交通工具,包括交通工具本体,还包括如第二方面所述的光伏系统,或如第一方面所述的光伏组件;其中,所述光伏系统或所述光伏组件设置于所述交通工具本体的外表面。
附图说明
为了更清楚地说明本发明公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明公开实施例提供的一种光伏组件的结构示意图;
图2为本发明公开实施例提供的一种光伏组件的结构示意图;
图3为本发明公开实施例提供的一种光伏组件的结构示意图;
图4为本发明公开实施例提供的一种光伏组件的侧视示意图;
图5a为本发明公开实施例提供的一种压条的俯视示意图;
图5b为本发明公开实施例提供的一种压条的俯视示意图;
图5c为本发明公开实施例提供的一种压条的俯视示意图;
图6a为本发明公开实施例提供的一种光伏组件的侧视示意图;
图6b为本发明公开实施例提供的一种光伏组件的侧视示意图;
图6c为本发明公开实施例提供的一种光伏组件的侧视示意图;
图7为本发明公开实施例提供的一种光伏组件的结构示意图;
图8为图7中W1-W2向的剖视示意图;
图9为本公开实施例提供的一种支撑部件的俯视示意图;
图10为本公开实施例提供的一种光伏组件的结构示意图;
图11为图10中P1-P2向的剖视示意图;
图12为本公开实施例提供的一种光伏系统的结构示意图;
图13为本公开实施例提供的一种光伏系统的结构示意图;
图14a为本公开实施例提供的一种槽体的结构示意图;
图14b为本公开实施例提供的一种槽体的结构示意图;
图15a为图12中B1-B2向的剖视示意图;
图15b为图12中B1-B2向的剖视示意图;
图15c为图12中避开第一引线孔位置的剖视示意图;
图16a为图13中C1-C2向的剖视示意图;
图16b为图13中C1-C2向的剖视示意图;
图16c为图13中避开第一引线孔位置的剖视示意图;
图17为图12中B1-B2向的剖视示意图;
图18a为本公开实施例提供的一种光伏系统的侧视示意图;
图18b为本公开实施例提供的一种光伏系统的侧视示意图;
图19a为本公开实施例提供的一种光伏系统的侧视示意图;
图19b为本公开实施例提供的一种光伏系统的侧视示意图;
图20为本公开实施例提供的一种光伏系统的俯视示意图;
图21为本公开实施例提供的一种转接加强部的结构示意图;
图22为本公开实施例提供的一种光伏系统的俯视示意图;
图23为本公开实施例提供的一种转接加强部的结构示意图;
图24为本公开实施例提供的一种光伏系统的俯视示意图;
图25为本公开实施例提供的一种转接加强部的结构示意图;
图26为本公开实施例提供的一种光伏系统的结构示意图;
图27为本公开实施例提供的一种光伏系统的结构示意图;
图28为本公开实施例提供的一种光伏系统的结构示意图;
图29为本公开实施例提供的一种转接加强部的结构示意图;
图30为本公开实施例提供的一种光伏系统的侧视示意图;
图31为本公开实施例提供的一种光伏系统的侧视示意图;
图32为本公开实施例提供的一种光伏系统的侧视示意图;
图33为本公开实施例提供的一种光伏系统的侧视示意图;
图34为本公开实施例提供的一种光伏系统的俯视示意图;
图35为本公开实施例提供的一种光伏系统的俯视示意图;
图36为本公开实施例提供的一种光伏系统的俯视示意图;
图37为本公开实施例提供的一种光伏系统的俯视示意图;
图38为图37中M1-M2向的剖视示意图;
图39为图37中M3-M4向的剖视示意图;
图40为图37中M1-M2向的剖视示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本发明公开的实施例为解决现有技术中光伏发电单元容易局部开胶、易变形的技术问题,提供一种光伏组件、光伏系统、屋面板及交通工具。
本公开实施例提供一种光伏组件,如图1-3所示,包括光伏发电单元10和与光伏发电单元10的非光电转换面连接、且用于支撑光伏发电单元10的支撑部件20,光伏发电单元10的非光电转换面与支撑部件20热合连接。
此处,光伏发电单元10的非光电转换面与支撑部件20热合连接,是光伏发电单元10的非光电转换面与支撑部件20通过热熔层压结合在一起,使支撑部件20与光伏发电单元10融为不可分割的整体。
示例的,在0.5~1个大气压、100~200℃的条件下,对光伏发电单元10和支撑部件20热熔层压20~40分钟。
例如,当支撑部件20为金属材质时,在1个大气压、160℃的条件下,对光伏发电单元10和支撑部件20热熔层压30分钟。
可选的,支撑部件20包括承载部21,光伏发电单元10具体与承载部21热合连接。
需要说明的是,第一,如图1所示,当支撑部件20仅包括承载部21时,支撑部件20可以全部热合连接于光伏发电单元10上;如图2和图3所示,支撑部件20也可以部分热合连接于光伏发电单元10上,只要光伏发电单元10与支撑部件20可成为一不可分割的整体即可。
第二,不对支撑部件20的材料进行限定,只要支撑部件20可与光伏组件10热合连接为一个整体,且支撑部件20不会在热合过程中融化即可。
具体的,支撑部件20可以是金属材质。金属材质的支撑部件20不但不会在高温情况下融化,还具有防雷效果,且相同体积的材料,金属的重量比较大,可防止在强风天气,与支撑部件20热合连接的光伏发电单元10被强风吹变形。
第三,本公开实施例提出的光伏发电单元10可以是柔性光伏发电单元,也可以是晶硅光伏发电单元,柔性光伏发电单元的材料例如可以包括铜铟镓硒,晶硅光伏发电单元的材料例如可以是单晶硅或多晶硅。
其中,柔性光伏发电单元具有柔韧性好、轻薄、弱光性好、颜色可调、形状可塑性等优点,可提高光伏发电单元10的适应性及实用性。
第四,本领域的技术人员应该知道,光伏发电单元10的光电转 换面是指:光伏发电单元10中在接受光照时可进行光电转换的一面。光伏发电单元10中与光电转换面相对(相反)的面即为非光电转换面。
本公开实施例提供一种光伏组件,包括光伏发电单元10和与光伏发电单元10的非光电转换面热合连接的支撑部件20,相较于采用背胶粘接,本公开实施例采用热合连接的方式,可以使光伏发电单元10与支撑部件20连接的更加牢固,这样一来,即使遇到强风天气,光伏发电单元10也会固定在支撑部件20上,不会发生变形;并且,由于光伏发电单元10的面积通常较大,若采用背胶粘接,则需耗费非常多的背胶,不利于节省制备成本,因此,相较于采用背胶粘接,采用热合连接的方式,可减少制备光伏组件的制备成本。
在此基础上,由于光伏发电单元10和支撑部件20成为一个不可分割的整体,可增加光伏组件10和支撑部件20的整体重量,这样一来,即使遇到强风天气,强风也不易使光伏发电单元10和支撑部件20移动,从而可避免不必要的人员伤亡和经济损失。
可选的,如图2和图3所示,支撑部件20还包括固定部22,固定部22与承载部21连接于同一平面内、且超出光伏发电单元10的边缘。换言之,固定部22与承载部21相连接并与承载部21处于同一平面内,并且固定部22超出光伏发电单元10的边缘。
此处,固定部22与承载部21可以是一体成型结构。
需要说明的是,固定部22可以超出光伏发电单元10的一个、或两个、或三个、或四个边缘。
本公开实施例中,由于固定部22超出光伏发电单元10的边缘,因此,在将光伏组件固定在安装载体上时,可避免对光伏发电单元10造成损坏。
进一步可选的,如图4所示,光伏组件还包括与固定部22固定连接的压条30;光伏发电单元10的边缘夹设在压条30与支撑部件20之间。
需要说明的是,第一,不对压条30与固定部22的连接方式进行限定,例如,可以通过螺钉连接、或卡接、或强磁吸引等方式将 压条30与固定部22固定连接起来。图4仅示出压条30与固定部22通过螺钉连接的情况。
第二,如图5a所示,压条30可以是一连续的整体;如图5b和图5c所示,压条30也可以是断开的,对此不进行限定。
第三,如图5a和5b所示,压条30可以围成完整的一周设置在固定部22上;如图5c所示,压条30也可以间断设置在固定部22上,对此不进行限定,只要压条30可以固定在固定部22上并使光伏发电单元10的边缘夹设在支撑部件20与压条30之间即可。
第四,考虑到压条30设置于光伏发电单元10可以进行光电转换面的一侧,且压条30具有透光率有限,甚至不透光,因此,压条30仅覆盖光伏组件10的边缘,以使得光伏发电单元10的光电转换面正常接收光线的照射。
第五,不对压条30的材料进行限定,只要可以利用压条30将光伏发电单元10的边缘夹设于压条30与支撑部件20之间即可。
本实施例中,光伏发电单元10夹设在压条30和支撑部件20之间的部分是光伏发电单元的封胶区。
具体的,压条30可以是金属材质,以起到防雷效果,例如压条30可以是铝合金型材。
本公开实施例通过使光伏发电单元10的边缘夹设在压条30与固定部22之间,可以使光伏发电单元10与支撑部件20固定的更加牢固;同时,由于压条30也具有一定重量,因此,还可增加光伏发电单元10、压条30、以及支撑部件20的整体重量,以避免在强风天气光伏发电单元10、压条30、以及支撑部件20移动,并造成不必要的人员伤亡和经济损失。
进一步可选的,如图6a-6c所示,光伏组件还包括设置于光伏发电单元10与压条30之间的缓冲部件40。
需要说明的是,第一,如图6a所示,缓冲部件40可以夹设在压条30覆盖光伏发电单元10的全部区域;如图6b所示,缓冲部件40也可以夹设在压条30覆盖光伏发电单元10的部分区域;如图6c所示,缓冲部件40还可以从压条30与光伏发电单元10之间的区域, 延伸至压条30与固定部22之间的区域。其中,如图6b所示,当缓冲部件40夹设在压条30覆盖光伏发电单元10的部分区域时,可以为压条30预留一定的移动空间,以在设置压条30时,调整压条30的位置,使压条30放置在适当的位置;并且,还可以防止缓冲部件40热胀冷缩导致压条30的位置发生变化。
第二,不对缓冲部件40的材料进行限定,只要缓冲部件40可以起到缓冲作用,避免压条30损坏光伏发电单元10的表面即可。
示例的,缓冲部件40可以是胶条,胶条的材料可以是三元乙丙橡胶(Ethylene-Propylene-Diene Monomer,简称EPDM)。
本公开实施例中,缓冲部件40具有一定的柔韧性,可设置在光伏发电单元10与压条30之间,将光伏发电单元10与压条30间隔开,以起到缓冲作用,避免压条30损坏光伏发电单元10的表面。
可选的,如图7和图8所示,支撑部件20还包括加强部23,加强部23与固定部22远离承载部21一侧的端部连接、并沿光伏发电单元10指向支撑部件20的方向延伸(即在图8中沿正向下或斜向下的方向延伸)。
需要说明的是,第一,加强部23与固定部22之间的夹角范围可以为30°~150°,例如,加强部23与固定部22之间的夹角为60°、或者90°、或者120°。图8仅示出加强部23与固定部22之间的夹角为90°的情况。
其中,加强部23与固定部22之间的夹角,是指:固定部22远离光伏发电单元10一侧的表面与加强部23之间的夹角。
第二,一个支撑部件20中,可以包括一个、或两个、或三个、或四个加强部23。
第三,加强部23可以与承载部21和固定部22为一体成型结构,也可以经过连接形成一体结构。
当加强部23可以与承载部21和固定部22为一体成型结构时,可先形成平面状的板材;之后,如图9所示,裁剪所述板材的四个角(根据加强部的个数不同,也可以是一个、或两个、或三个角);最后,使待形成加强部23的部分弯折,形成图7和图8所示的支撑 部件20。
本公开实施例中,通过设置加强部23可增大支撑部件20的整体刚度,有效防止光伏组件变形。
进一步可选的,如图10所示,支撑部件20还包括加强连接部,加强连接部用于固定连接相邻加强部23。
此处,如图10所示,加强连接部可包括L形角码400和固定件401,通过L形角码400和固定件401可使相邻的两个加强部23固定连接。
其中,加强连接部可设置在相邻两个加强部23的内侧壁,也可以设置在相邻两个加强部23的外侧壁。图10仅示出加强连接部设置在相邻两个加强部23的外侧壁的情况。
需要说明的是,当一个支撑部件20至少包括两个加强部23、且两个加强部23相邻时,可利用加强连接部固定相邻的两个加强部23。
本公开实施例中,通过加强连接部可进一步增大加强部23的强度,进一步的,增大支撑部件20的强度,可有效防止光伏组件变形。
可选的,如图11所示,光伏组件还包括辅助支撑部件800,辅助支撑部件800与支撑部件20背离光伏发电单元10的一侧固定连接。
需要说明的是,当支撑部件20仅包括承载部21时,辅助支撑部件800与承载部21对应且固定连接;当支撑部件包括承载部21和固定部22时,辅助支撑部件800可以与承载部21和固定部22均对应且固定连接,或者,辅助支撑部件800也可以仅与固定部22固定连接。可选的,辅助支持部800与承载部21之间通过胶粘方式连接;如图11所示,当支撑部件包括承载部21、固定部22、以及加强部23时,辅助支撑部件800与承载部21、固定部22、以及加强部23对应且固定连接,可选的,辅助支撑部件800与固定部22和/或加强部23固定连接,进一步可选的,辅助支持部800与承载部21之间通过胶粘方式连接。本领域技术人员可以理解,以上所选择的用于固定连接的部件可以更改,只要能够达到对支撑部件20进行辅助支撑的目的即可。
本公开实施例中,可以通过辅助支撑部件800加强光伏组件的整体强度,以有效防止光伏发电单元10变形,避免因光伏发电单元10变形影响光伏组件的外观以及影响光伏发电单元10的光电转换性能。
本公开实施例提供一种光伏系统,如图12-16c所示,包括:前述任一实施例所述的光伏组件、与光伏组件的第一端电连接的线缆、以及位于光伏组件的支撑部件20背离光伏发电单元10一侧的槽体60;其中,线缆的第二端放置于槽体60的线缆放置部62中。
其中,线缆包括正极线缆51和负极线缆52,正极线缆51的第一端与光伏组件10的正极接线端电连接,负极线缆52的第一端与光伏组件10的负极接线端电连接。
此处,对于图12、图15b、图16b所示的光伏系统,在组装光伏系统时,先将线缆的第二端通过槽体60上的第一引线孔621放入线缆放置部62中,之后,再将光伏组件与槽体60固定连接。
对于图13、图15a、图16a所示的光伏系统,在组装光伏系统时,可直接将线缆的第二端放入线缆放置部62中,然后将光伏组件与槽体60固定连接。
在此基础上,槽体60设有排水口61,如图15a-16c所示,虽然本公开实施例没有说明槽体60中排水口61的具体位置,但本领域的技术人员应该知道,为了使槽体60内无积水,可将排水口61设置在槽体60远离支撑部件20的一侧表面。并且,槽体60中排水口61的个数,应与槽体60的大小、以及实际应用有关,例如,当槽体60的尺寸比较小时,在槽体60上设一个排水口61即可;当槽体60的尺寸比较大时,可在槽体60上间隔开设多个排水口61。
需要说明的是,第一,不对槽体60的材料进行限定,可选的,槽体60为金属材质,金属材质的槽体60可以起到防雷的效果,且金属材质的刚性较大,可以利用槽体60支撑光伏发电单元10和支撑部件20。例如,槽体60的材料为铝合金。
第二,如图15a-图16c所示,槽体60可以与支撑部件20直接接触并固定连接,其中,图15a和16a所示的槽体60的结构与图14a 所示的槽体60对应,线缆的第二端通过槽体60上表面的开口进入线缆放置部62,图15b和图16b所示的槽体60的结构与图14b所示的槽体60对应。当然,槽体60也可以与支撑部件20间隔设置,并通过光伏系统中的其他部件间接地与光伏组件固定连接,例如其它部件为方通等结构。
此处,如图14b所示,槽体60包括第一引线孔621,线缆的第二端可通过引线孔621放置于线缆放置部62中。为了说明槽体60的引线孔621仅占据线缆放置部62的侧壁的部分区域,图15b和图16b示出了在第一引线孔621处的剖视图,图15c和图16c示出了在除第一引线孔621以外的其他部分的剖视图,从图15b和图16b中可以看出,第一引线孔621并未完全占据线缆放置部62的一个侧壁。
第三,线缆中可以放置在槽体60中的部分都可以称为线缆的第二端。
第四,如图12-16c所示,不对槽体60相对于支撑部件20和光伏发电单元10的位置进行限定,只要线缆的第二端可以放置在槽体60中即可,在一些实施例中,槽体60还对支撑部件20起到支撑的作用。
此处,考虑到线缆长期暴露在外,既影响美观,又容易老化,因此,可将槽体60设置在距离线缆的第一端较近的位置,以使得线缆尽可能多的放置在线缆放置部62中。
进一步的,如图14a-16c所示,槽体60还包括第一连接部63,第一连接部63由线缆放置部62的靠近光伏组件的第一端的边沿,沿与光伏发电单元10的非光电转换面平行的方向延伸;槽体60通过第一连接部63与光伏组件的第一端固定连接。
其中,如图18a-19b所示,第一连接部63可以向靠近与其所在的线缆放置部62的边沿相对的边沿一侧延伸,如图15a-16c所示,第一连接部63也可以向远离与其所在的线缆放置部62的边沿相对的边沿一侧延伸。
此处,当支撑部件仅包括承载部21时,槽体60通过第一连接部63与承载部21固定连接;当支撑部件仅包括承载部21和固定部 22时,槽体60可通过第一连接部63与固定部22固定连接;当支撑部件包括承载部21、固定部22、以及加强部23时,槽体60可通过第一连接部63与加强部23固定连接。
第五,由于槽体60设置于支撑部件20远离光伏发电单元10一侧,因此,光伏组件可以通过槽体60与安装载体连接。其中,槽体60远离光伏组件的一端与安装载体连接。
第六,不对第一连接部63与光伏组件的连接方式进行限定,例如,可以通过螺钉连接或卡接等方式将槽体60与光伏组件固定连接起来。
本公开实施例提供一种光伏系统,通过将线缆的第二端设置在线缆放置部62中,可以避免线缆长期暴露在外,一方面,由于线缆整齐放置在线缆放置部62中,而非暴露在外,可使光伏系统的外观更加美观;另一方面,还可以防止线缆老化、腐蚀;在此基础上,通过在槽体60上设置排水口61,可防止雨水等积在线缆放置部62中,避免对线缆放置部62中的线缆造成腐蚀。
在此基础上,如图17所示,槽体60还包括支撑固定部65,支撑固定部65用于使排水口61与安装载体具有一定高度,以方便槽体60中的水通过排水口61排出。
进一步可选的,如图15b和16b所示,第一连接部63上设有第一引线孔621,线缆的第二端通过第一引线孔621放置于线缆放置部62中。
本公开实施例中,通过使槽体60与光伏组件直接接触,并使槽体60通过第一连接部63直接地与光伏组件固定连接,可利用槽体60对光伏组件起到支撑作用。
可选的,光伏系统还可以包括转接加强部,第一连接部63通过转接加强部与光伏组件的第一端连接;如图18a-19b所示,转接加强部70上设有第二引线孔71,线缆的第二端通过第二引线孔71放置于线缆放置部62中。
其中,如图18a-19b所示,转接加强部70可与槽体60的第一连接部63固定连接。
需要说明的是,第一,不对转接加强部70的材料及具体结构进行限定,只要线缆的第二端可以通过转接加强部70即可。
具体的,转接加强部70可以是方通,其材质可以是金属材质,这样一来,转接加强部70不但具有防雷效果,还可以对光伏组件起到支撑作用。
第二,由于槽体60通过转接加强部70与支撑部件20固定连接,因此,转接加强部70的位置与槽体60和支撑部件20的位置对应。
具体的,如图20和图21所示,转接加强部70可以呈块状间隔设置,一个块状的转接加强部70上包括一个第二引线孔71;如图22和图23所示,转接加强部70也可以呈条状,条状的第一连接部70上包括一个或多个第二引线孔71;如图24和图25所示,转接加强部70围成四周,且包括一个或多个第二引线孔71。
本公开实施例中,可通过转接加强部70使得光伏组件与槽体60固定连接,转接加强部70还可起到支撑光伏组件的作用,当转接加强部70为如图25所示的围成四周结构时,转接加强部70还起到对支撑部件20的辅助加强作用,避免光伏发电单元变形。
或者,如图26-29所示,光伏组件与槽体60之间具有间隙,线缆50的第二端通过该间隙放置于线缆放置部62中。进一步,如图27所示,设置多个转接加强部70(图示为2个)将光伏组件与槽体60固定连接。多个转接加强部70之间具有间隙,光伏组件与槽体60之间也具有间隙,从而线缆50的第二端通过光伏组件与槽体60之间的间隙以及两个转接加强部70之间的间隙放置于线缆放置部62中。
此处,如图29所示,转接加强部70可以包括第一固定部701和第二固定部702,第一固定部701与支撑部件20的侧壁固定连接,第二固定部702与槽体60的第一连接部63固定连接。
需要说明的是,第一,当支撑部件20仅包括承载部21时,第一固定部701与承载部21的侧壁固定连接;当支撑部件20包括承载部21和固定部22时,第一固定部701与固定部22固定连接;当支撑部件20包括承载部21、固定部22、以及加强部23时,第一固 定部701与加强部23的侧壁固定连接。
第二,根据光伏组件的尺寸,与一个光伏组件对应的转接加强部70的个数可以是一个,也可以是多个。
第三,不对固定加强部70与第一连接部63和支撑部件20的连接方式进行限定,例如可以利用螺钉使固定加强部70分别与第一连接部63和支撑部件20固定连接。
第四,如图26和图27所示,第二固定部702设置于第一连接部63靠近光伏组件一侧(即第一连接部63的上表面);如图28所示,第二固定部702也可以设置于第一连接部63远离光伏组件一侧(即第一连接部63的下表面)。
对于上述任一实施例,如图30-33所示,所述光伏系统还包括接线盒80,支撑部件20可以包括镂空区域,接线盒80设置于所述镂空区域中、并与支撑部件20固定连接,即,接线盒80与光伏组件10直接接触,线缆50的第一端通过接线盒80与光伏组件10电连接。
其中,线缆50的第一端与接线盒80中的接线端子电连接,接线盒80中的接线端子与光伏组件10的正极接线端(或负极接线端)电连接。
需要说明的是,每个光伏组件上具有正极接线端和负极接线端,每个接线盒80可以具有一个接线端子,当然,也可以具有两个接线端子;通常情况下,具有一个接线端子的接线盒80,其接线端子只与光伏组件10中的正极接线端、负极接线端中的一个电连接;具有两个接线端子的接线盒80,其两个接线端子可以分别与光伏组件的正极接线端和负极接线端电连接,此时光伏组件10中的正极接线端和负极接线端之间的间距不宜过大,以保证接线盒80的两个接线端子能够分别与正极接线端和负极接线端电连接。
本公开实施例通过将接线盒80设置在支撑部件20的镂空区域中,即,接线盒80设置在光伏组件的非光电转换面,可以使光伏系统的外观更加美观。
可选的,如图34所示,所述光伏系统包括沿槽体60的延伸方 向设置的多个光伏组件,相邻光伏组件串联连接,用于串联相邻两个光伏组件的两个线缆50的第二端在线缆放置部62中电连接。
本公开实施例中,与沿槽体60延伸方向设置的多个光伏组件电连接的多个线缆50,其第二端均可放入该槽体60中。
进一步可选的,如图35所示,光伏系统包括至少两个沿垂直于槽体60的延伸方向排列的槽体60,以及相应地,光伏系统包括沿槽体60排列方向设置的至少一个光伏组件;每个光伏组件的第一端和与其相邻的一个槽体60的第一连接部63连接,每个光伏组件的第二端和与其相邻的另一个槽体60的第二连接部64连接;其中,槽体60的第二连接部64沿与第一连接部63所在的边沿相对的该槽体60的另一边沿延伸、并与第一连接部63相对,每个光伏组件中的第二端与第一端相对。
需要说明的是,第一,如图14a和图14b所示,第二连接部64与第一连接部63的延伸方向可以相同,也可以不相同。
示例的,当第二连接部64与第一连接部63的延伸方向相同时,第一连接部63向靠近第二连接部64一侧延伸,第二连接部64向远离第一连接部63一侧延伸;或者,第一连接部63向远离第二连接部64一侧延伸,第二连接部64向靠近第一连接部63一侧延伸。
当第二连接部64与第一连接部63的延伸方向不相同时,第一连接部63向靠近第二连接部64一侧延伸,第二连接部63向靠近第一连接部一侧延伸;或者,第一连接部63向远离第二连接部64一侧延伸,第二连接部63向远离第一连接部一侧延伸。
第二,虽然光伏组件的第二端和与其相邻的另一个槽体60的第二连接部64连接,但由于光伏组件的第二端并不包括正极接线端和负极接线端,因此,在垂直于槽体的延伸方向上,与同一个槽体60相邻的两个光伏组件之间并非串联关系。
本公开实施例中,可通过与一个光伏组件相邻的两个槽体60将该光伏组件固定在安装载体上。
进一步可选的,如图36和图37所示,串联多个光伏组件的线缆50中汇总线缆的第二端置于汇总线缆槽200中,汇总线缆槽200 中设有与光伏电器系统连接的接口,汇总线缆的正极线缆51和负极线缆52分别与对应的接口连接。
需要说明的是,放入汇总线缆槽200中的汇总线缆50的第二端,为与多个光伏组件中最靠近汇总线缆槽200的光伏组件电联接的线缆50的第二端。
在此基础上,对于上述任一实施例,在槽体60与光伏组件直接接触的情况下,槽体60的第一引线孔621的尺寸应大于或等于线缆50的第二端的尺寸,以使得线缆50第二端通过第一引线孔621进入槽体60;在槽体60与支撑部件20之间设有转接加强部70的情况下,转接加强部70上的第二引线孔71的尺寸、以及槽体60的开口622的尺寸应大于或等于线缆50的第二端的尺寸,以使得线缆第二端通过第二引线孔71和开口622进入线缆槽60。
例如,考虑到线缆50第二端的宽度一般为16mm,线缆第一端和第二端的尺寸一般为10mm,因此,上述第一引线孔621、第二引线孔71的宽度设置为12mm-16mm(例如,第一引线孔621、第二引线孔71可设置为14mm、15mm、16mm中的一种),上述线缆槽开口622的宽度设置为20~26mm(例如,线缆槽开口622的宽度为20mm)。
此处,当光伏系统包括多个支撑部件20时,在将线缆50的第二端放入线缆槽60的过程中,线缆50的线缆头可能穿过相邻支撑部件20之间的间距,因此,相邻支撑部件20之间的间距的尺寸也应大于或等于线缆50的第二端中线缆头的尺寸。
本公开实施例提供一种屋面板,包括屋面板本体还包括前述任一实施例所述的光伏系统,或前述任一实施例所述的光伏组件;其中,光伏系统或光伏组件设置于屋面板本体的外表面。
本公开实施例提供一种交通工具,包括交通工具本体,还包括前述任一实施例所述的光伏系统,或前述任一实施例所述的光伏组件;其中,光伏系统或光伏组件设置于交通工具本体的外表面。
需要说明的是,当光伏系统仅包括光伏发电单元10和支撑部件20时,光伏系统通过连接件安装于屋面板本体(或交通工具本体) 上,或者支撑部件20与屋面板本体(或交通工具本体)均具有磁性区域,支撑部件20通过磁力固定安装于屋面板本体(或交通工具本体)上;当光伏系统包括光伏发电单元10、支撑部件20和槽体60时,光伏系统通过槽体60安装于屋面板本体(或交通工具本体)上;如图38-图39所示,当槽体60包括支撑固定部65时,光伏系统通过支撑固定部65安装于屋面板本体100(或交通工具本体100)上。
可选的,如图38-图40所示,上述光伏装置还包括连接件90,所述连接件90用于将所述光伏组件、或光伏系统系统固定于屋面板本体100(或交通工具本体100)上。
其中,槽体60可与一个连接件90对应,也可与多个连接件90对应;此外,槽体60中的水可以通过排水口61排到屋面板本体100(或交通工具本体100),最后汇聚到屋面板本体100(或交通工具本体100)的排水沟中。
如图38所示,由于屋面板本体100靠近光伏组件10一侧通常设有多个间隔设置的凸起300,因此,连接件90可以由螺栓91、转接件92组成,由螺栓91、转接件92连接光伏系统(或光伏组件)和屋面板本体100;如图39-图40所示,由于交通工具本体100靠近光伏组件10一侧表面通常为一平面,连接件90可以仅包括螺钉,使用螺钉将光伏组件或光伏系统固定到交通工具本体100上。
其中,屋面板本体100和交通工具本体100的材料可以是铝合金、铝镁合金、不锈钢、镀锌钢等。
本公开实施例提供一种屋面板,与前述光伏系统具有相同的技术效果,在此不再赘述。
本公开实施例提供一种交通工具,与前述光伏系统具有相同的技术效果,在此不再赘述。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (17)

  1. 一种光伏组件,包括:光伏发电单元和支撑部件,所述支撑部件与所述光伏发电单元的非光电转换面连接且用于支撑所述光伏发电单元,其中,
    所述光伏发电单元的非光电转换面与所述支撑部件热合连接。
  2. 根据权利要求1所述的光伏组件,其中,所述支撑部件包括承载部,所述光伏发电单元与所述承载部热合连接。
  3. 根据权利要求2所述的光伏组件,其中,所述支撑部件还包括固定部,所述固定部与所述承载部相连接并与所述承载部处于同一平面内,并且所述固定部超出所述光伏发电单元的边缘。
  4. 根据权利要求3所述的光伏组件,还包括与所述固定部固定连接的压条;
    所述光伏发电单元的边缘夹设在所述压条与所述支撑部件之间。
  5. 根据权利要求4所述的光伏组件,还包括设置于所述光伏发电单元与所述压条之间的缓冲部件。
  6. 根据权利要求3所述的光伏组件,其中,所述支撑部件还包括加强部,所述加强部与所述固定部远离所述承载部一侧的端部连接、并沿所述光伏发电单元指向所述支撑部件的方向延伸。
  7. 根据权利要求6所述的光伏组件,其中,所述支撑部件还包括加强连接部,所述加强连接部用于固定连接相邻所述加强部。
  8. 根据权利要求2-7任一项所述的光伏组件,还包括辅助支撑部件,所述辅助支撑部件与所述支撑部件背离所述光伏发电单元的一侧固定连接。
  9. 一种光伏系统,包括:权利要求1-8任一项所述的光伏组件、与所述光伏组件的第一端电连接的线缆、以及位于所述光伏组件的支撑部件背离光伏发电单元一侧的槽体;
    其中,所述线缆的第一端与所述光伏组件的第一端电连接,所述线缆的第二端放置于所述槽体的线缆放置部中。
  10. 根据权利要求9所述的光伏系统,其中,所述槽体还包括 第一连接部,所述第一连接部由所述线缆放置部的靠近所述光伏组件的第一端的边沿,沿与所述光伏发电单元的非光电转换面平行的方向延伸;
    所述槽体通过所述第一连接部直接或间接地与所述光伏组件的第一端固定连接。
  11. 根据权利要求10所述的光伏系统,其中,所述第一连接部上设有第一引线孔,所述线缆的第二端通过所述第一引线孔放置于所述线缆放置部中。
  12. 根据权利要求10所述的光伏系统,还包括转接加强部,所述第一连接部通过所述转接加强部间接地与所述光伏组件的第一端连接;
    所述转接加强部上设有第二引线孔,所述线缆的第二端通过所述第二引线孔放置于所述线缆放置部中。
  13. 根据权利要求10所述的光伏系统,其中,所述光伏组件与所述槽体之间具有间隙,所述线缆的第二端通过所述间隙放置于所述线缆放置部中。
  14. 根据权利要求9-13所述的光伏系统,其中,所述光伏系统包括沿所述槽体的延伸方向设置的多个所述光伏组件,相邻所述光伏组件串联连接,用于串联相邻两个所述光伏组件的两个所述线缆的第二端在所述线缆放置部中电连接。
  15. 根据权利要求14所述的光伏系统,其中,所述光伏系统包括至少两个沿垂直于所述槽体的延伸方向排列的所述槽体,以及沿所述槽体排列方向设置的至少一个所述光伏组件;
    每个所述光伏组件的第一端和与其相邻的一个所述槽体的所述第一连接部连接,每个所述光伏组件的第二端和与其相邻的另一个所述槽体的第二连接部连接;
    其中,所述槽体的第二连接部沿与所述第一连接部所在的边沿相对的所述槽体的另一边沿延伸、并与所述第一连接部相对;每个所述光伏组件中的第二端与第一端相对。
  16. 一种屋面板,包括屋面板本体,还包括如权利要求9-15中任一项所述的光伏系统,或如权利要求1-8中任一项所述的光伏组 件;
    其中,所述光伏系统或所述光伏组件设置于所述屋面板本体的外表面。
  17. 一种交通工具,包括交通工具本体,还包括如权利要求9-15中任一项所述的光伏系统,或如权利要求1-8中任一项所述的光伏组件;
    其中,所述光伏系统或所述光伏组件设置于所述交通工具本体的外表面。
PCT/CN2018/108633 2018-06-22 2018-09-29 光伏组件、光伏系统、屋面板及交通工具 WO2019242157A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810654994.7A CN108566143A (zh) 2018-06-22 2018-06-22 一种光伏组件、光伏系统、屋面板及交通工具
CN201810654994.7 2018-06-22

Publications (1)

Publication Number Publication Date
WO2019242157A1 true WO2019242157A1 (zh) 2019-12-26

Family

ID=63554524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108633 WO2019242157A1 (zh) 2018-06-22 2018-09-29 光伏组件、光伏系统、屋面板及交通工具

Country Status (2)

Country Link
CN (1) CN108566143A (zh)
WO (1) WO2019242157A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108631702A (zh) * 2018-06-22 2018-10-09 汉能晖煜新能源科技有限公司 一种光伏组件、光伏系统、屋面板、交通工具
CN108566143A (zh) * 2018-06-22 2018-09-21 汉能晖煜新能源科技有限公司 一种光伏组件、光伏系统、屋面板及交通工具

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1186894A (zh) * 1996-09-06 1998-07-08 佳能株式会社 太阳能电池与屋顶部件的组合及其安装方法
CN104167983A (zh) * 2014-08-08 2014-11-26 北京京东方能源科技有限公司 一种太阳能电池组件
CN206116421U (zh) * 2016-08-26 2017-04-19 江苏东鋆光伏科技有限公司 高性能耐候性复合材料封装光伏组件
US20170331415A1 (en) * 2014-11-13 2017-11-16 Dow Global Technologies Llc Integrated frame for photovoltaic module
CN108566143A (zh) * 2018-06-22 2018-09-21 汉能晖煜新能源科技有限公司 一种光伏组件、光伏系统、屋面板及交通工具
CN207939447U (zh) * 2018-06-22 2018-10-02 汉能晖煜新能源科技有限公司 一种光伏组件、光伏系统、屋面板及交通工具

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201695589U (zh) * 2010-05-25 2011-01-05 湖南红太阳新能源科技有限公司 太阳能光伏瓦
CN203026533U (zh) * 2013-01-07 2013-06-26 燕山大学 一种光伏瓦
JP6501072B2 (ja) * 2013-03-29 2019-04-17 パナソニックIpマネジメント株式会社 太陽電池システム
CN206128531U (zh) * 2016-10-15 2017-04-26 深圳园林股份有限公司 一种太阳能屋顶
CN107086847A (zh) * 2017-05-05 2017-08-22 无锡市翱宇特新科技发展有限公司 一种斜屋顶光伏板固定支架

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1186894A (zh) * 1996-09-06 1998-07-08 佳能株式会社 太阳能电池与屋顶部件的组合及其安装方法
CN104167983A (zh) * 2014-08-08 2014-11-26 北京京东方能源科技有限公司 一种太阳能电池组件
US20170331415A1 (en) * 2014-11-13 2017-11-16 Dow Global Technologies Llc Integrated frame for photovoltaic module
CN206116421U (zh) * 2016-08-26 2017-04-19 江苏东鋆光伏科技有限公司 高性能耐候性复合材料封装光伏组件
CN108566143A (zh) * 2018-06-22 2018-09-21 汉能晖煜新能源科技有限公司 一种光伏组件、光伏系统、屋面板及交通工具
CN207939447U (zh) * 2018-06-22 2018-10-02 汉能晖煜新能源科技有限公司 一种光伏组件、光伏系统、屋面板及交通工具

Also Published As

Publication number Publication date
CN108566143A (zh) 2018-09-21

Similar Documents

Publication Publication Date Title
US20100101634A1 (en) Thin profile solar panel roof tile
US20090014051A1 (en) System and Method Utilizing Re-Deployable Insulated Self-Ballasted Photovoltaic Assemblies
WO2019242157A1 (zh) 光伏组件、光伏系统、屋面板及交通工具
JP5025125B2 (ja) 太陽光利用機器用フレーム及びそれを用いた太陽光利用機器の設置方法
JP2023501864A (ja) 屋根型太陽電池の基板、屋根型太陽電池、及び太陽光発電屋根
JP5385856B2 (ja) 太陽光パネルを用いた屋根構造
CN207939447U (zh) 一种光伏组件、光伏系统、屋面板及交通工具
WO2019242158A1 (zh) 光伏系统、屋面板、交通工具
JP2011238761A (ja) 太陽電池モジュール
JP2000297509A (ja) 太陽電池モジュール、その取付け方法およびその取付け構造
US9647159B2 (en) Photovoltaic panel
CN213585646U (zh) 适于建筑光伏一体化的光伏组件边框、光伏组件及其系统
JP4127610B2 (ja) 太陽電池モジュール
CN211473092U (zh) 一种光伏瓦
CN208143140U (zh) 一种光伏组件、光伏系统、屋面板、交通工具
CN211473125U (zh) 一种太阳能光伏建筑的bhpv光伏阵列安装结构
JP2003064829A (ja) 太陽電池屋根材
EP2852982B1 (en) Solar panel module and assembly
CN208143181U (zh) 一种光伏系统、屋面板、交通工具
CN215452863U (zh) 一种光伏组件上接线结构及光伏组件和光伏系统
JP7033189B2 (ja) 太陽電池モジュールおよび太陽光発電システム
JP2006278535A (ja) 太陽電池モジュールの固定構造
AU2018211333B2 (en) Solar sheeting for roofing or walling
CN210807143U (zh) 一种光伏瓦紧固机构
JPH11101005A (ja) 太陽光発電アレイを屋根に備えた住宅の設置構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923595

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/05/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18923595

Country of ref document: EP

Kind code of ref document: A1