WO2019241986A1 - 高吸收性树脂及其制备方法 - Google Patents

高吸收性树脂及其制备方法 Download PDF

Info

Publication number
WO2019241986A1
WO2019241986A1 PCT/CN2018/092326 CN2018092326W WO2019241986A1 WO 2019241986 A1 WO2019241986 A1 WO 2019241986A1 CN 2018092326 W CN2018092326 W CN 2018092326W WO 2019241986 A1 WO2019241986 A1 WO 2019241986A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
resin
blood
sodium polyacrylate
aluminum
Prior art date
Application number
PCT/CN2018/092326
Other languages
English (en)
French (fr)
Inventor
杨志亮
杨昊
马廷玉
杨阳
张香
姚美芹
姚金水
Original Assignee
山东昊月新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东昊月新材料股份有限公司 filed Critical 山东昊月新材料股份有限公司
Priority to US17/254,560 priority Critical patent/US20210268139A1/en
Priority to PCT/CN2018/092326 priority patent/WO2019241986A1/zh
Priority to CN201880096198.4A priority patent/CN112543789B/zh
Priority to JP2020571554A priority patent/JP7128302B2/ja
Priority to EP18923152.5A priority patent/EP3812422A4/en
Publication of WO2019241986A1 publication Critical patent/WO2019241986A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/24Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/60Liquid-swellable gel-forming materials, e.g. super-absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/245Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/04Materials for stopping bleeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/68Superabsorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof

Definitions

  • the invention relates to a superabsorbent resin and a preparation method thereof.
  • it relates to a highly absorbent resin for blood-sucking with a gradual hierarchical structure.
  • the present invention relates to a sodium polyacrylate superabsorbent resin and a preparation method thereof.
  • Superabsorbent resins especially sodium polyacrylate superabsorbent resins, have been widely used in sanitary products, such as sanitary napkins and diapers, due to their excellent water absorption and liquid absorption. In addition, they are used in agriculture, industry, construction, medicine, light Industry, chemical and other fields also have a wide range of uses.
  • a highly absorbent resin For a highly absorbent resin, it is generally required to have a high absorption rate, excellent absorption speed, liquid permeability, and high gel strength when contacting body fluids and the like.
  • Earlier particulate water-absorbing resins were easily adhered to the surface after they contacted the aqueous solution, causing the granular polymer to clump together, which easily caused "fish eyes", which caused the so-called gel blocking effect, which hindered the further development of water molecules. Infiltration is not conducive to the resin fully exerting water absorption performance, affecting its water absorption rate and water absorption rate.
  • Another disadvantage of the particulate water-absorbing resin is that its gel strength is not high and cannot meet the needs for use.
  • U.S. Patent No. 4,051,086 discloses the use of alcohols as dispersants and glyoxal as cross-linking agents for surface treatment, which can significantly improve the water absorption rate and gel strength of the resin, but the environmental protection issues of aldehydes are more prominent. It is particularly difficult to apply to human hygiene products.
  • European patent EP91302895.7 discloses that a water-absorbing resin is placed in a high-speed agitator, and a treatment solution prepared by a polyhydric alcohol cross-linking agent is sprayed on the surface of the water-absorbing resin. Increases water absorption, but requires expensive equipment.
  • Japanese patent JP7242709 discloses dissolving the post-treatment solution in a hydrophilic solvent, heating it into a hot air stream, and passing the hot air stream through the resin powder in a heated state to react with its surface; this method significantly improves the water absorption rate, but the treatment process More complicated and difficult to operate.
  • the technologies disclosed in the above patent documents are all methods of surface cross-linking using a treatment liquid including a single cross-linking component, and the cross-linking layer formed is relatively single, and it is difficult to effectively solve the problems mentioned above.
  • Chinese patent CN 1696181A discloses chemical treatment using polyhydric alcohols or epoxy compounds and coordinated crosslinking using polyvalent metal salts to treat sodium polyacrylate resin. Although they can obtain better results, the two There is a compatibility problem between the cross-linking methods. As a result, it is only a physical superposition of the two cross-linking methods and does not carry out any necessary structural design, resulting in poor overall performance, unable to guarantee gel strength, water absorption rate, Performance indicators such as water absorption rate were also improved.
  • the present inventors have developed a new superabsorbent resin, which is combined with organic cross-linking and inorganic cross-linking to perform surface modification so that the resin has a graded hierarchical structure, thereby While achieving excellent blood absorption properties, it has good gel strength and other properties.
  • the present invention relates to a highly absorbent resin, wherein when a blood simulating liquid is used as the detection medium, the blood absorbing amount of the blood simulating liquid is ⁇ 18.0 g / g, and is preferably measured according to ISO 19699-1: 2017 (E). ⁇ 18.5g / g; the absorption rate of blood simulating fluid is ⁇ 45s, preferably ⁇ 40s, and more preferably ⁇ 38s.
  • the human blood absorption is ⁇ 8.0g / g, preferably ⁇ 8.3g / g, more preferably 8.6g / g; human blood absorption rate ⁇ 45s It is preferably ⁇ 40s, more preferably ⁇ 35s, and most preferably ⁇ 25s.
  • the superabsorbent resin based on acrylic acid, the residual amount of monomers thereof is ⁇ 1000 mg / kg; the volatile matter content is ⁇ 10.0%; and the pH value is 5.0- 8.0; particle size distribution: particle size sample content ⁇ 150 ⁇ m of ⁇ 5wt%, the content of the sample particle size ⁇ 106 ⁇ m of ⁇ 1wt%; bulk density was 0.65g / cm 3 -0.80g / cm 3 ; and / or whiteness ⁇ 70%.
  • the superabsorbent resin is a surface-modified sodium polyacrylate resin.
  • the present invention relates to a method for preparing a superabsorbent resin, including the following steps:
  • a cross-linking reaction is performed to obtain a surface-modified sodium polyacrylate superabsorbent resin having a graded hierarchical structure.
  • the sodium polyacrylate resin is an absorptive resin having an internal crosslinked structure without surface modification
  • the sodium polyacrylate superabsorbent resin is a surface modified (surface crosslinked) superabsorbent resin of the present invention.
  • the particle size of the sodium polyacrylate resin used in the present invention is preferably 120 ⁇ m to 830 ⁇ m, and more preferably 150 ⁇ m to 380 ⁇ m.
  • the surface dispersant is selected from methanol, ethanol, acetone or fumed silica, preferably methanol or ethanol.
  • the mass ratio of the surface dispersant to the sodium polyacrylate resin is (1-15): 100, preferably (1-10): 100, and more preferably (1-5): 100.
  • the aluminum salt of solution A is selected from the group consisting of aluminum chloride, aluminum sulfate, aluminum ammonium sulfate, aluminum nitrate, and alum, preferably aluminum sulfate or aluminum ammonium sulfate.
  • the solvent of the solution A is selected from water, acetone and a polyhydric alcohol; preferably water and / or glycerol, and the mass ratio of glycerol to water is (0-0.7): 1.
  • the mass concentration of the aluminum salt in the solution A is 3% -25%, preferably 8% -25%, and more preferably 10% -20%.
  • the mass ratio of aluminum salt to sodium polyacrylate resin is (0.010-0.050): 1, preferably (0.025-0.030): 1
  • the role of the aluminum salt is to form coordination crosslinks on the surface of the resin. If the amount is too low, the crosslinked layer will be too loose to achieve the effect of cross-linking modification; if the amount is too high, the crosslinked layer will be too tight and the pore size will be reduced, thereby reducing the absorption amount and slowing the absorption rate.
  • the epoxy group-containing compound of solution B is selected from the group consisting of epoxy resin, epichlorohydrin, propylene oxide, glycidyl ether, polyethylene glycol diglycidyl ether, and ethylene glycol diglycidyl. Glyceryl ether; epichlorohydrin, glycidyl ether or polyethylene glycol diglycidyl ether is preferred.
  • the solvent of solution B is selected from alcohols and ketones; preferably methanol, ethanol, isopropanol, acetone or methyl ethyl ketone; more preferably ethanol or methanol.
  • the mass concentration of the compound containing an epoxy group in the solution B is 10% to 25%.
  • the mass ratio of the epoxy group-containing compound to the sodium polyacrylate resin is (0.001-0.006): 1, preferably (0.002-0.004): 1, and more preferably 0.003: 1.
  • the content of the compound containing epoxy groups in solution B determines the content of the resin dense crosslinked layer and the size of the pores. If the content is too low, it will cause the crosslinked layer to become loose and the gel strength cannot be guaranteed. If the amount is too high, it will Making the crosslinked layer too dense, although the gel strength increases, it will seriously affect the absorption amount and absorption rate.
  • the mass ratio of the aluminum salt of the solution A, the compound containing the epoxy group in the solution B to the sodium polyacrylate resin is as important as the mass concentration of the aluminum salt in the solution A, and the mass concentration of the compound containing the epoxy group in the solution B. They are all used to form a graded hierarchical structure with a suitable crosslink density on the surface of the sodium polyacrylate resin to ensure that the resin has excellent comprehensive properties.
  • step (4) the surface dispersant, solution A, and solution B are mixed uniformly and then mixed with the sodium polyacrylate resin; or, the surface dispersant, solution A, and solution B are sequentially mixed with polyacrylic acid Sodium resin is mixed; or, surface dispersant, solution B, and solution A are sequentially mixed with sodium polyacrylate resin; or, surface dispersant and solution B are first mixed with sodium polyacrylate resin uniformly, and then solution A is mixed with the previously obtained mixture well mixed.
  • the surface dispersant is first mixed with the solution B, and is uniformly mixed with the sodium polyacrylate resin at room temperature; then, the solution A is heated to 60-100 ° C, preferably 60-80 ° C, and at the same temperature as above The obtained mixture is mixed uniformly.
  • the temperature of the cross-linking reaction in step (5) is 50-200 ° C, preferably 80-185 ° C, more preferably 120-140 ° C; the time is 20-210min, preferably 25mim-120min, more preferably 30 -90min.
  • the operation time is not within this time range; when heating in the continuous automated production equipment, the connection time of the automatic input and output heating equipment of the material is not in this time range Inside.
  • the present invention relates to a superabsorbent article comprising the superabsorbent resin of the present invention.
  • the product may be, for example, a sanitary napkin, a medical blood absorbing product, or the like.
  • the invention relates to the use of said article for absorbing blood.
  • the invention combines organic cross-linking and inorganic cross-linking with surface modification of super absorbent resin, and this combination is not a simple physical superposition, but an innovative "organic” combination.
  • the two modified solutions A and B were sprayed on the surface of the super absorbent resin.
  • the modified A solution was mainly based on inorganic coordination cross-linking. This type of cross-linking was relatively loose and could form a "soft" cross-linking layer.
  • the B modified solution is an epoxy compound that is prone to chemical cross-linking. Such cross-linking can form a relatively "hard” cross-linked layer with a relatively large degree of cross-linking.
  • this gradual hierarchical structure also allows large molecules such as proteins in the blood to pass through its micropores with water and other small molecules. Infiltrating into the resin together, it guarantees its excellent blood-sucking performance, and its absorption speed is fast, meanwhile, it has high gel strength and viscous liquid absorption rate.
  • step (4) Put the resin treated in step (4) into a tray, and enter the oven for a cross-linking reaction.
  • the reaction temperature is 120 ° C and the reaction time is 90 minutes to obtain the surface-modified superabsorbent resin of the present invention. .
  • Example 1 The concentration of the solution A in Example 1 was changed to 20%, and the concentration of the solution B was 25%. The others are the same as in Example 1.
  • Example 1 The solution A in Example 1 was changed to an aqueous solution of ammonium alum (aluminum ammonium sulfate dodecahydrate) having a mass concentration of 25%, and entered into an oven for a crosslinking reaction.
  • the reaction temperature was 140 ° C and the reaction time was 60 minutes. 1.
  • Example 2 The solution A in Example 2 was changed to an ammonium alum (aluminum ammonium sulfate dodecahydrate) aqueous solution with a mass concentration of 20%, and the reaction was carried out in an oven at a reaction temperature of 140 ° C and a reaction time of 60 minutes. 2.
  • ammonium alum aluminum ammonium sulfate dodecahydrate
  • Example 4 The solution A in Example 4 was changed to a solution of ammonium alum (aluminum ammonium sulfate dodecahydrate) in water and glycerol, the mass concentration of which was 11%, wherein the mass ratio of glycerol to water was 1: 6, Enter the oven to perform the cross-linking reaction.
  • the reaction temperature is 140 ° C and the reaction time is 50 minutes.
  • Others are the same as in Example 4.
  • Example 1 the mass ratio of methanol to sodium polyacrylate resin was changed to 1:50, the solution B was changed to an ethanol solution having a mass concentration of epichlorohydrin of 25%, and the solvent of solution A was glycerol and water. The ratio is 3: 5, and the others are the same as in Example 1.
  • Example 6 The solution A in Example 6 was changed to a solution of ammonium alum (aluminum ammonium sulfate dodecahydrate) in water and glycerol, the mass concentration of which was 11%, wherein the mass ratio of glycerol to water was 1: 6, Enter the oven to perform the cross-linking reaction.
  • the reaction temperature is 140 ° C and the reaction time is 50 minutes.
  • Others are the same as in Example 6.
  • Example 7 The surfactant in Example 7 was changed to ethanol, and the mass ratio of ethanol to sodium polyacrylate resin was changed to 3: 100. The others are the same as in Example 7.
  • Example 1 After mixing methanol, solution A, and solution B in Example 1, and then mixing with sodium polyacrylate resin, the solution A was changed to an alum aqueous solution, and the mass ratio of methanol to sodium polyacrylate resin was changed to 1:10, and other conditions were the same.
  • Example 1 After mixing methanol, solution A, and solution B in Example 1, and then mixing with sodium polyacrylate resin, the solution A was changed to an alum aqueous solution, and the mass ratio of methanol to sodium polyacrylate resin was changed to 1:10, and other conditions were the same.
  • Example 1 After mixing methanol, solution A, and solution B in Example 1, and then mixing with sodium polyacrylate resin, the solution A was changed to an alum aqueous solution, and the mass ratio of methanol to sodium polyacrylate resin was changed to 1:10, and other conditions were the same.
  • Example 1 After mixing methanol, solution A, and solution B in Example 1, and then mixing with sodium polyacrylate resin, the solution A was changed to an alum
  • Example 1 The methanol, solution B, and solution A in Example 1 were sequentially stirred and mixed with the sodium polyacrylate resin, and the solution A was changed to an aqueous solution of aluminum nitrate.
  • the other conditions were the same as those in Example 1.
  • Example 3 The methanol, solution A, and solution B in Example 3 were mixed, and then mixed with the sodium polyacrylate resin, and the compounds containing the epoxy group in solution B were changed to glycidyl ether, glycidyl ether and sodium polyacrylate resin.
  • the mass ratio was 0.0060: 1, and other conditions were the same as in Example 3.
  • Example 3 The methanol, solution B, and solution A in Example 3 were sequentially mixed with the sodium polyacrylate resin in order, and other conditions were the same as in Example 3.
  • Example 1 the mass ratio of methanol to sodium polyacrylate resin was changed to 3:20, the reaction temperature was changed to 185 ° C, the reaction time was 20 minutes, and the solution B was changed to a methanol solution of epichlorohydrin, and the mass solubility was 10 %,
  • the ratio of propylene oxide to sodium polyacrylate resin is 0.0010: 1, and other conditions are the same as in Example 1.
  • Example 1 The mass concentration of aluminum sulfate in solution A in Example 1 was changed to 10%, and the mass ratio of aluminum sulfate to sodium polyacrylate resin was changed to 0.010: 1, and other conditions were the same as those in Example 1.
  • Example 3 The mass concentration of ammonium alum of solution A in Example 3 was changed to 3%, and the mass ratio of ammonium alum to polyacrylic resin was changed to 0.045: 1, and other conditions were the same as those in Example 3.
  • Example 1 The heating temperature of the solution A in Example 1 was changed to 80 ° C., the heating temperature in step (5) was changed to 80 ° C., and the time was changed to 180 minutes.
  • the other conditions were the same as those in Example 1.
  • acetone as dispersant, epichlorohydrin as cross-linking agent, and DMP-30 as cross-linking accelerator; dispersant, cross-linking agent, and cross-linking accelerator are placed in a glass container and stirred to prepare treatment liquid A.
  • the mass concentration of epichlorohydrin is 12%;
  • treatment liquid B The mass concentration of aluminum sulfate is 15%;
  • the detection medium uses human blood and blood simulating fluid to test the blood absorption amount and blood absorption rate of the super absorbent resin of the present invention, respectively.
  • the blood simulating solution is prepared according to the preparation method described in ISO 19699-1: 2017 (E), and the test method is tested according to the blood absorption and blood absorption rate test methods described in ISO 19699-1: 2017 (E).
  • the specific method is as follows.
  • the blood simulation liquid is prepared according to the main physical properties of human blood, and has similar flow and viscosity characteristics, and can well simulate human blood performance.
  • the chemical composition of blood simulating fluid includes the following substances:
  • the blood simulating fluid will meet the requirements in the following table:
  • A.4.1 Using an analytical balance, weigh 10.00g of sodium chloride, 40.00g of sodium carbonate, 1.00g of sodium benzoate, and 5.00g of sodium carboxymethylcellulose, and pour them into a 2000mL beaker in sequence;
  • A.4.2 Using a 250ml graduated cylinder, measure 140.00ml of glycerol and pour it into the beaker in A.4.1, and use an analytical balance to weigh 860g of deionized water into the A.4.1 beaker and stir well.
  • A.4.3 Use a 500ml graduated cylinder to measure 300ml of the mixed solution in A.4.2 each time, pour it into the blender, turn on the switch and start the timer with a stopwatch, stir for 7 minutes to turn off the switch, pour out the mixed solution, and stir the remaining liquid in this way. Under the mixture.
  • A.4.4 Stir the mixed liquid in A.4.3 with the stirrer again according to the method of A.4.3, and then add to the stirred liquid
  • the amount of liquid absorbed by the superabsorbent resin for absorbing blood over a certain period of time was measured in a blood simulating solution by a weighing method.
  • the blood simulating solution should be prepared as described above.
  • the measuring range is 100g, and the sensitivity is 0.0001g.
  • B.3.2 Nylon tea bag a bag made of nylon filter cloth with a size of 100mm ⁇ 150mm and a mesh size of 300 mesh, with a basis weight of 58g / m 2 .
  • Timing range is 60min, accurate to 0.1s.
  • Thermometer The measuring range is 100 ° C.
  • the topmost layer (about 20 cm) should be removed. Take 500 grams of the test sample with a spoon and place it in a suitable closed container within 3 minutes.
  • the blood simulation fluid absorption can be calculated according to formula (4):
  • m the amount of blood simulated fluid absorbed by the sample, in grams per gram (g / g);
  • m 1 the mass of the tea bag containing the sample after absorbing liquid, the unit is gram (g);
  • the rate of absorbing blood simulating liquid was measured by the liquid immobile method in the blood simulating liquid, and the time required for 1 g of sodium polyacrylate resin to absorb 5.0 ml of blood simulating liquid.
  • the timing range is 60min, accurate to 0.1s.
  • Appropriate protective equipment such as dust masks or ventilated kitchens should be used when handling samples larger than 10 g.
  • the topmost layer (about 20 cm) should be removed. Take 1000 grams of the test sample with a spoon and place it in a suitable closed container within 3 minutes.
  • the sample Before testing the sample, it should be placed in a closed container to equilibrate with the ambient temperature of the laboratory.
  • the recommended test conditions are (23 ⁇ 1) ° C and (50 ⁇ 10)% relative humidity (ISO291, class II).
  • the blood simulating fluid absorption rate is calculated by using 1gSAP to absorb 5.0ml of blood simulating fluid.
  • the superabsorbent resin of the present invention has excellent absorption performance and gel strength regardless of whether the detection medium is tested using a blood simulating solution or real human blood.
  • the blood sucking amount was significantly higher than that of the comparative example, and the blood sucking rate was much faster than that of the comparative example.
  • the residual amount of monomers (based on acrylic acid) of the superabsorbent resins of Examples 1-8 of the present invention ⁇ 800mg / kg; the monomers of the superabsorbent resins of Examples 9-16 of the present invention Residual amount (based on acrylic acid) ⁇ 1000mg / kg.
  • the volatile content of the superabsorbent resins of Examples 1-16 of the present invention is ⁇ 10.0%.
  • the pH values of the superabsorbent resins of Examples 1-16 of the present invention are ⁇ 5.0 and ⁇ 8.0.
  • the test method is as follows:
  • the quantitative superabsorbent resin is divided into specific particle size components. Each component is weighed and reported as a percentage of the total.
  • Standard sieve A stainless steel sieve with a diameter of 200mm and a pore size of 45 ⁇ m, 106 ⁇ m, and 150 ⁇ m with a bottom collecting tray and an upper cover.
  • Stopwatch range 60min, accurate to 0.1s.
  • Caution Use appropriate protective equipment such as dust masks or fume hoods when handling more than 10g samples.
  • the uppermost layer (about 20 cm) should be removed. Sampling with a spoon, put it in a suitable closed container within 3min after sampling.
  • the sample Before testing the sample, it should be placed in a closed container to equilibrate with the ambient temperature of the laboratory.
  • the recommended test conditions are: (23 ⁇ 2) ° C and relative humidity (50 ⁇ 10)%. If the above conditions are not met, the temperature and relative temperature shall be recorded.
  • the particle size distribution of the superabsorbent resins of Examples 1 to 16 of the present invention is ⁇ 5% (sample content of particle diameter ⁇ 150 ⁇ m), and ⁇ 1% (sample content of particle diameter ⁇ 106 ⁇ m).
  • the bulk density of the superabsorbent resins of Examples 1-16 of the present invention is ⁇ 0.65 g / cm 3 and ⁇ 0.80 g / cm 3 .
  • the whiteness of the superabsorbent resins of Examples 1-16 of the present invention is ⁇ 70%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Hematology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Analytical Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种具有渐变式层级结构的吸血用聚丙烯酸钠高吸收性树脂,以及其制备方法。所述高吸收性树脂为经表面改性的聚丙烯酸钠树脂,所述表面改性包括使用由多价金属盐溶液A,以及由含有环氧基团的化合物和溶剂配制成的溶液B进行表面交联。

Description

高吸收性树脂及其制备方法 技术领域
本发明涉及高吸收性树脂及其制备方法。具体涉及一种具有渐变式层级结构的吸血用高吸收性树脂,更特别地,本发明涉及聚丙烯酸钠高吸收性树脂及其制备方法。
背景技术
高吸收性树脂、尤其是聚丙烯酸钠高吸收性树脂,由于其优异的吸水性和吸液性,已经广泛应用于卫生用品,如卫生巾、纸尿裤,此外在农业、工业、建筑、医药、轻工、化工等领域也具有广泛的用途。
对于高吸收性树脂,一般要求其在接触体液等时具有较高的吸收倍率、优异的吸收速度、通液性和较高的凝胶强度。早先的颗粒状吸水树脂在其接触水溶液后,表面容易粘结而使颗粒状聚合物粘结成块,容易产生“鱼眼”,即造成所谓的凝胶阻塞效应,从而阻碍了水分子的进一步渗入,不利于树脂充分发挥吸水性能,影响其吸水倍率和吸水速率等。所述颗粒状吸水树脂的另一个缺点在于其凝胶强度不高,无法满足使用需要。后来,为解决上述问题,人们采用了多种方法改善吸水树脂的性能,表面交联技术就是其中的一种。这种方法通过对吸水树脂进行表面化学处理来提高吸水速率,并克服凝胶强度低等缺点,使其更具应用价值。
例如,美国专利US4051086公开了以醇类物质为分散剂,以乙二醛为交联剂进行表面处理,其可以明显提高树脂的吸水速率和凝胶强度,但是醛类物质的环保问题比较突出,尤其难以应用于人类卫生用品。欧洲专利EP91302895.7公开了将吸水树脂置于高速搅拌器中,将由多元醇类交联剂配制的处理液喷洒于吸水树脂表面,经过搅拌后放入烘箱加热进行交联反应;该方法极大地提高了吸水速率,但是需要用到昂贵的设备。日本专利JP7242709公开了将后处理液溶解在亲水溶剂里,加热变成热气流,使热气流通过加热状态下的树脂粉末,与其表面进行反应;该方法显著地提高了吸水倍率,但是处理工艺比较复杂,难以操作。而且在上述专利文献中公开的技术都是采用包括单一交联组分的处理液进行表面交联的方法,其所形成的交联层较为单一,难以有效解决在上文中所提及的问题。
此外,中国专利CN 1696181A公开了采用多元醇或者环氧类化合物进行化学交联并采用多价金属盐进行配位交联来处理聚丙烯酸钠树脂,其虽然能够获得较好的效果,但这两类交联方式之间存在相容性问题,结果,其只是两种交联方式的物理叠加,并没有进行任何必要的结构设计,导致综合性能不甚理想,无法保证凝胶强度、吸水倍率、吸水速率等性能指标同时得到改善。
最为重要的是,如上所述的这些高吸收性树脂一般只具有较强的吸水性能,当这些树脂用于例如卫生巾、手术吸血等需要吸收血液的场合时,在吸收速率和吸收量等方面均无法达到吸血性能方面的要求。究其原因,是因为上述树脂仅能有效地吸收血液中的水分,当血液中的水分被吸收后,其他物质便容易凝结成块,这就极大地妨碍了舒适感等方面的体验,吸收速率、吸收量等也无法达到吸血性能方面的要求。
发明内容
为解决如上所述的技术问题,本发明人开发出一种新的高吸收性树脂,通过将有机交联和无机交联结合起来进行表面改性以使所述树脂具有渐变 式层级结构,从而在实现优异的吸收血液性能的同时,具有很好的凝胶强度等性能。
在第一方面中,本发明涉及一种高吸收性树脂,其中,检测介质使用血液模拟液时,根据ISO 19699-1:2017(E)测定,血液模拟液吸血量≥18.0g/g,优选≥18.5g/g;血液模拟液吸收速率≤45s,优选≤40s,更优选≤38s。
检测介质使用人体血液时,根据ISO 19699-1:2017(E)测定,人体血液吸收量≥8.0g/g,优选≥8.3g/g,更优选≥8.6g/g;人体血液吸收速率≤45s,优选≤40s,更优选≤35s,最优选≤25s。
其中,相对于上述第一方面而言,在优选的实施方式,所述高吸收性树脂:以丙烯酸计,其单体残留量≤1000mg/kg;挥发物含量≤10.0%;pH值为5.0-8.0;粒径分布:粒径<150μm的试样含量≤5wt%,粒径<106μm的试样含量≤1wt%;堆积密度为0.65g/cm 3-0.80g/cm 3;和/或白度≥70%。
在优选的实施方式中,所述高吸收性树脂为经表面改性的聚丙烯酸钠树脂。
在第二方面中,本发明涉及一种高吸收性树脂的制备方法,包括如下步骤:
(1)称取表面分散剂;
(2)称取多价金属盐,优选铝盐、钙盐、镁盐或锌盐,更优选铝盐,配制成溶液A;
(3)称取含有环氧基团的化合物,配制成溶液B;
(4)混合表面分散剂、溶液A和溶液B以及聚丙烯酸钠树脂;
(5)进行交联反应,得到具有渐变式层级结构的经表面改性的聚丙烯酸钠高吸收性树脂。
其中,聚丙烯酸钠树脂为未经表面改性的、具有内部交联结构的吸收性树脂,聚丙烯酸钠高吸收性树脂为本发明经表面改性(表面交联)的高 吸收性树脂。本发明所使用的聚丙烯酸钠树脂粒径优选为120μm-830μm,更优选为150μm-380μm。
在优选的实施方式中,表面分散剂选自甲醇、乙醇、丙酮或气相二氧化硅,优选甲醇或乙醇。表面分散剂与聚丙烯酸钠树脂质量比为(1-15):100,优选为(1-10):100,更优选为(1-5):100。
在优选的实施方式中,溶液A的铝盐选自氯化铝、硫酸铝、硫酸铝铵、硝酸铝和明矾,优选硫酸铝或硫酸铝铵。溶液A的溶剂选自水、丙酮和多元醇;优选水和/或丙三醇,丙三醇与水的质量比为(0-0.7):1。溶液A中铝盐的质量浓度为3%-25%,优选8%-25%,更优选10%-20%。铝盐与聚丙烯酸钠树脂的质量比为(0.010-0.050):1,优选(0.025-0.030):1
铝盐的作用是在树脂的表面形成配位交联。如果用量过低,将导致交联层过于疏松,无法实现交联改性的效果;如果用量过高,则导致交联层过于紧密,孔径减小,从而减少吸收量、减慢吸收速率。
在优选的实施方式中,溶液B的含有环氧基团的化合物选自环氧树脂、环氧氯丙烷、环氧丙烷、缩水甘油醚、聚乙二醇二缩水甘油醚和乙二醇二缩水甘油醚;优选环氧氯丙烷、缩水甘油醚或聚乙二醇二缩水甘油醚。溶液B的溶剂选自醇和酮;优选甲醇、乙醇、异丙醇、丙酮或丁酮;更优选乙醇或甲醇。溶液B中含有环氧基团的化合物的质量浓度为10%-25%。含有环氧基团的化合物与聚丙烯酸钠树脂的质量比为(0.001-0.006):1,优选为(0.002-0.004):1,更优选为0.003:1。
溶液B中含有环氧基团的化合物的含量决定了树脂致密交联层的含量和孔道的大小,如果含量过低,会导致交联层疏松,无法保证凝胶强度,如果用量过高,会使得交联层过于致密,虽然凝胶强度增加,但是会严重影响吸收量及吸收速率。
溶液A铝盐、溶液B含有环氧基团的化合物与聚丙烯酸钠树脂的质量比与溶液A中铝盐的质量浓度、溶液B中含有环氧基团的化合物的质量浓度是 同等重要的,其都是为了在聚丙烯酸钠树脂表面形成交联密度合适的渐变式层级结构,保证树脂具有优良的综合性能。
在优选的实施方式中,在步骤(4)中:表面分散剂、溶液A、溶液B混合均匀后,再与聚丙烯酸钠树脂混合;或者,表面分散剂、溶液A、溶液B依次与聚丙烯酸钠树脂混合;或者,表面分散剂、溶液B、溶液A依次与聚丙烯酸钠树脂混合;或者,表面分散剂与溶液B首先与聚丙烯酸钠树脂混合均匀,再使溶液A与在先获得的混合物混合均匀。优选地,首先混合表面分散剂与溶液B,在室温下,与聚丙烯酸钠树脂混合均匀;随后,将溶液A加热至60-100℃、优选60-80℃,并在所述温度下与如上所述获得的混合物混合均匀。
在优选的实施方式中,步骤(5)中交联反应的温度为50-200℃、优选80-185℃、更优选120-140℃;时间为20-210min、优选25mim-120min、更优选30-90min。当人工操作把物料放入与取出加温设备中时,操作时间不在此时间范围内;当在连续自动化生产设备中加温时,物料的自动输入与输出加温设备的衔接时间不在此时间范围内。
在第三方面中,本发明涉及一种高吸收性制品,所述制品包含本发明的高吸收性树脂。
在优选的实施方式中,所述制品例如可以是卫生巾、医疗用吸收血液制品等。
在第四方面中,本发明涉及所述制品在吸收血液中的应用。
本发明将高吸水树脂表面改性的有机交联和无机交联结合起来,而且这种结合不是简单的物理叠加,而是一种创新性的“有机”的结合。采用A和B两种改性溶液先后喷洒于高吸水树脂的表面上,A改性液以无机配位交联为主,这种交联相对比较疏松,可以形成比较“软”的交联层,而B改性液是易于发生化学交联的环氧化合物,这种交联可以形成交联度比较大的相对较“硬”的交联层。A、B处理液分别喷洒后,再一起进行一定时间的热处理, 以使得两种交联反应进行完全。由于这种加料工艺和后处理工艺的精巧设计,一方面这两种交联层有里外顺序,即较为致密的交联层在核层,保证了树脂的凝胶强度,而较为疏松的交联层在壳层,保证了吸水通道,也就保证了吸水速率;另一方面由于采用多步处理工艺,这两层的分布由于扩散作用的结果,呈现一种渐变式层级结构,而不是完全孤立的两层结构,从而实现了吸水速率和凝胶强度的完美结合,同时,这种渐变式层级结构的形成,也使得血液中的蛋白质等大分子能够通过其微观孔道与水分、其他小分子一起渗入树脂内部,保证了其优异的吸血性能,且对其吸收速快,同时拥有很高的凝胶强度与粘稠液体吸收倍率。
显然这种工艺综合了现有技术的优势,而且其工艺更加简单,易于操作,无需特殊的处理设备,从而大大降低了成本。
具体实施方式
下文将对本发明的实施例进行进一步的描述,其中,各实施例仅为本发明示例性的和/或优选的实施方式,并不意图构成对本发明范围的限定。本领域技术人员可以根据上文的说明以及下文对实施例的描述作出多种不同的改进和变形,其均不会背离本发明的精神和实质。据此,本发明的范围仅意图通过各项权利要求所要求保护的范围来进行限定。
实施例1
(1)称取甲醇,甲醇与聚丙烯酸钠树脂的质量比为1:20;
(2)称取硫酸铝,配制成质量浓度为25%的水溶液A;溶液A中硫酸铝与聚丙烯酸钠树脂的质量比为0.025:1;
(3)称取聚乙二醇二缩水甘油醚,配制为质量浓度为20%的乙醇溶液B;溶液B中聚乙二醇二缩水甘油醚与聚丙烯酸钠树脂的质量比为0.0030:1;
(4)首先将甲醇与溶液B混合均匀,然后在室温下与聚丙烯酸钠树脂混合均匀,;随后将溶液A加热至60℃,并在60℃下与上述混合物混合均 匀;
(5)将经步骤(4)处理后的树脂放入托盘中,进入烘箱进行交联反应,反应温度为120℃,反应时间为90分钟,即得到本发明经表面改性的高吸收性树脂。
实施例2
将实施例1中的溶液A浓度改为20%,溶液B浓度为25%,其他同实施例1。
实施例3
将实施例1中的溶液A改为质量浓度为25%的铵明矾(十二水合硫酸铝铵)水溶液,进入烘箱进行交联反应,反应温度为140℃,反应时间为60分钟其他同实施例1。
实施例4
将实施例2中的溶液A改为质量浓度为20%的铵明矾(十二水合硫酸铝铵)水溶液,进入烘箱进行交联反应,反应温度为140℃,反应时间为60分钟其他同实施例2。
实施例5
将实施例4中的溶液A改为铵明矾(十二水合硫酸铝铵)在水与丙三醇中溶液,其质量浓度为11%,其中丙三醇与水的质量比为1:6,进入烘箱进行交联反应,反应温度为140℃,反应时间为50分钟;其他同实施例4。
实施例6
将实施例1中甲醇与聚丙烯酸钠树脂的质量比改为1:50,溶液B改为环氧氯丙烷质量浓度为25%的乙醇溶液,溶液A的溶剂为丙三醇与水,其质量比为3:5,其他同实施例1。
实施例7
将实施例6中的溶液A改为铵明矾(十二水合硫酸铝铵)在水与丙三 醇中溶液,其质量浓度为11%,其中丙三醇与水的质量比为1:6,进入烘箱进行交联反应,反应温度为140℃,反应时间为50分钟;其他同实施例6。
实施例8
将实施例7中表面活性剂改为乙醇,乙醇与聚丙烯酸钠树脂的质量比改为3:100,其他同实施例7。
实施例9
将实施例1中甲醇、溶液A、溶液B混合后,再与聚丙烯酸钠树脂搅拌混合均匀,溶液A改为明矾水溶液,甲醇与聚丙烯酸钠树脂的质量比改为1:10,其他条件同实施例1。
实施例10
将实施例1中的甲醇、溶液B、溶液A依次与聚丙烯酸钠树脂搅拌混合均匀,溶液A改为硝酸铝的水溶液,其他条件同实施例1。
实施例11
将实施例3中甲醇、溶液A、溶液B混合后,再与聚丙烯酸钠树脂搅拌混合均匀,溶液B的含有环氧基团的化合物改为缩水甘油醚,缩水甘油醚与聚丙烯酸钠树脂的质量比为0.0060:1,其他条件同实施例3。
实施例12
将实施例3中的甲醇、溶液B、溶液A依次与聚丙烯酸钠树脂搅拌混合均匀,其他条件同实施例3。
实施例13
将实施例1中甲醇与聚丙烯酸钠树脂的质量比改为3:20,反应温度改为185℃,反应时间为20分钟,溶液B改为环氧氯丙烷的甲醇溶液,质量溶度为10%,环氧丙烷与聚丙烯酸钠树脂的比例为0.0010:1,其他条件同实施例1。
实施例14
将实施例1中溶液A的硫酸铝质量浓度改为10%,硫酸铝与聚丙烯酸钠树脂的质量比改为0.010:1,其他条件同实施例1。
实施例15
将实施例3中溶液A的铵明矾质量浓度改为3%,铵明矾与聚丙烯酸树脂的质量比改为0.045:1,其他条件同实施例3。
实施例16
将实施例1中溶液A的加热温度改为80℃,步骤(5)加热温度改为80℃,时间改为180分钟,其他条件同实施例1。
对比例1
具体过程按照CN 1696181A中公开的进行,步骤如下:
1)、配制处理液A:
选用丙酮作为分散剂,选用环氧氯丙烷作为交联剂,DMP-30作为交联促进剂;将分散剂、交联剂、交联促进剂置于玻璃容器中搅拌,配制成处理液A,环氧氯丙烷的质量浓度为12%;
2)、配制处理液B:
将去离子水置于玻璃容器中加热到90℃,称取硫酸铝盐及第二交联剂甘油加入上述去离子水中搅拌,配制成处理液B,硫酸铝的质量浓度为15%;
3)、处理液对树脂的处理:
称取60kg聚丙烯酸钠树脂,置于300转/分搅拌器中,在搅拌的同时将处理液A、处理液B按先后顺序喷洒于吸水树脂表面,随后将树脂放入托盘中,进入烘箱加热进行交联反应,反应温度为120℃,反应时间为100分钟,即完成聚丙烯酸钠树脂的表面改性。
下文将详细说明根据实施例1-16制得的本发明高吸收性树脂以及根据对比例1制得的聚丙烯酸钠树脂的各项性能/指标及其测试方法。
1、吸血量、吸血速率及凝胶强度
检测介质分别使用人体血液和血液模拟液测试本发明高吸收性树脂的吸血量和吸血速率。
人体血液购买自医院,根据ISO 19699-1:2017(E)记载的测试方法测试其吸血量和吸血速率(将ISO 19699-1:2017(E)中所记载测试方法中的血液模拟液替换为人体血液进行测试),具体方法如下。
血液模拟液根据ISO 19699-1:2017(E)记载的配制方法来配制,并且其测试方法根据ISO 19699-1:2017(E)记载的吸血量、吸血速率测试方法来测试,具体方法如下。
人体血液物理性能:
经测试,本发明所使用人体血液的相应参数如下:
Figure PCTCN2018092326-appb-000001
血液模拟液的配制方法:
A.1原理
该血液模拟液系根据人体血液的主要物理性能配制,具有与其相似的流动及粘度特性,可以很好地模拟人体血液性能。
A.2配方
除特殊注明,以下试剂只能使用标明为化学纯的试剂。血液模拟液的化学成分包括以下物质:
Figure PCTCN2018092326-appb-000002
A.3血液模拟液的物理性能
在(23±1)℃时,血液模拟液将满足下表中的要求:
Figure PCTCN2018092326-appb-000003
A.4配制方法
A.4.1用分析天平称量10.00g氯化钠、40.00g碳酸钠、1.00g苯甲酸钠、5.00g羧甲基纤维素钠,依次倒入2000mL的烧杯中;
A.4.2用250ml量筒量取140.00ml丙三醇倒入A.4.1中的烧杯中,并用分析天平称量860g去离子水倒入A.4.1烧杯中,搅拌均匀。
A.4.3用500ml量筒每次量取300ml A.4.2中的混合液,倒入搅拌器中,打开开关同时用秒表开始计时,搅拌7min关闭开关,将此混合液倒出,按此方法搅拌剩下的混合液。
A.4.4将A.4.3中搅拌后的混合液按A.4.3的方法再用搅拌器搅拌一次,然后向搅拌后的液体中加入
10.0ml标准媒剂和0.05ml蓝色色素,搅拌均匀放置24h后即可使用。
血液模拟液吸收量的测定方法:
B.1一般原则
在血液模拟液中用称重法测定吸收血液用高吸收性树脂在一定时间内的吸液量。
B.2试剂
B.2.1血液模拟液
血液模拟液应按照如上所述的方法配制。
B.3设备
B.3.1分析天平:量程为100g,感量为0.0001g。
B.3.2尼龙茶袋:尺寸为100mm×150mm,用300目孔径的尼龙滤布制作的袋,基重为58g/m 2
B.3.3玻璃烧杯:容量2000ml。
B.3.4计时器:计时范围60min,精确到0.1s。
B.3.5干燥架带夹线、夹子。
B.3.6温度计:量程为100℃。
B.4取样
为确保从大包装袋或大容器中取得的样品具有代表性,应将最上层移去(约20cm)。用勺子取测试样500克,取后3min内放在适当的密闭容器中。
在将样品进行测试前,应将样品放在密闭容器中与实验室环境温度达到平衡。推荐的试验条件参照ISO291。如不符合上述条件,应记录温度及相对湿度。
B.5测定步骤
B.5.1称取(1.000±0.005)g试样,准确至0.0001g,并将该样品质量记作m 0,将试样全部倒入茶(4.8.3.2)中并平铺在茶袋底部(附着在茶袋内侧的试样也应全部倒入茶袋底部),沿茶袋开口边缘热缝合约3-5cm。
B.5.2在玻璃烧杯(4.8.3.3)中注入1800mL的血液模拟液(4.8.2.1),将茶袋依次按编号放入盛有血液模拟液的烧杯中,使液体浸没茶袋并高出2.0cm,并同时按下秒表计时。(每个烧杯中最多放2组,即4个茶袋)。
B.5.3 30min后,按茶袋编号依次取出,将茶袋左上角向下折约1/2,并用夹子悬挂在干燥架上,倾斜约45°角悬挂。
B.5.4挂悬10min后,按悬挂顺序依次取下称量质量记为m 1,多个样品同时测试时,不能互相接触。
B.5.5按照上述方法,在不放入试样的条件下,对上述使用的茶袋进行空白值测定,空白茶袋吸收液体后的质量记作m 2
B.6测定结果的表示
血液模拟液吸收量可按式(4)计算:
Figure PCTCN2018092326-appb-000004
式中:
m—样品的血液模拟液吸收量,单位为克每克(g/g);
m 1—装有试样的茶袋吸收液体后的质量,单位为克(g);
m 2—空白试验茶袋的质量,单位为克(g);
m 0—称取的试样质量,单位为克(g);
同时进行两次测定,并取其算术平均值作为测定结果,结果修约至小数点后一位。
血液模拟液吸收速率的测定方法:
C.1一般原则
在血液模拟液中用液体不流动法测定吸收血液模拟液的速率,1g聚丙烯酸钠树脂吸收5.0ml血液模拟液所需要的时间。
C.2试剂
C.2.1血液模拟液:应按照如上所述的方法配制。
C.3设备
C.3.1分析天平:量程为100g,精度为0.0001g。
C.3.2玻璃烧杯:容量100mL。
C.3.3玻璃量筒,容量5.0mL的A型或B型(实验室玻璃制品)(精确至0.1ml)。
C.3.4计时器:计时范围60min,精确到0.1s。
C.4取样
处理超过10g样品时应使用适宜的防护用品,如防尘面罩或通风厨。
为确保从大包装袋或大容器中取得的样品具有代表性,应将最上层移去(约20cm)。用勺子取测试样1000克,取后3min内放在适当的密闭容器中。
在将样品进行测试前,应将样品放在密闭容器中与实验室环境温度达到平衡。推荐的试验条件温度为(23±1)℃,相对湿度为(50±10)%(ISO 291,class II)。
C.5测试步骤
按照下面的程序至少进行两次测试:
C.5.1用分析天平(C.3.1)称取(1.000±0.005)g待测试样,准确至0.001g,倒入烧杯(C.3.2)中。
C.5.2用手晃动或轻拍烧杯使试样均匀平铺在烧杯底部。
C.5.3用量筒(C.3.3)量取(23±1)℃的血液模拟液(C.2.1)5.0mL。倒入(C.5.2)底部中心(倒入时控制速度不要让液体溅到烧杯内壁上),同时开始计时。
C.5.4待杯内液体流动性消失时,按停秒表,记录所用时间t。
判断完全吸收的一个方法是稍微倾斜烧杯,观察是由有液体流动。
C.6结果的表示
根据模拟血液吸收速率测量值计算算术平均值,并修约至整数,以秒表示。
血液模拟液吸收速率是用1gSAP吸收完5.0ml血液模拟液时所用时间来计算。
凝胶强度根据朱友良等人报道的文献(朱友良,吾国强,具有核壳型结构吸水树脂的合成,塑料,2005,34(1):23-26)所记载的方法进行测试。测试结果见表1。
表1.树脂性能测试结果
Figure PCTCN2018092326-appb-000005
Figure PCTCN2018092326-appb-000006
从表1中所列数据可以明显看出,本发明的高吸收性树脂,无论检测介质是使用血液模拟液还是使用真实的人体血液进行测试,均具有优异的吸收性能和凝胶强度。其中,吸血量明显高于对比例,吸血速率远远快于对比例。
2、单体残留量
根据GB/T20405.2-2006测定,本发明实施例1-8高吸收性树脂的单体残留量(以丙烯酸计)≤800mg/kg;本发明实施例9-16高吸收性树脂的单体残留量(以丙烯酸计)≤1000mg/kg。
3、挥发物含量
根据GB/T20405.4-2006测定,本发明实施例1-16高吸收性树脂的挥发物含量≤10.0%。
4、pH值
根据GB/T20405.1-2006测定,本发明实施例1-16高吸收性树脂的pH值≥5.0且≤8.0。
5、粒径分布
测试方法如下:
5.1总则
通过一系列标准筛,将定量的高吸收性树脂分成若干特定的粒径组分。称量每一组份,以占总量的百分数形式报告。
5.2设备
5.2.1分析天平:量程1000g,精度0.01g。
5.2.2烧杯:玻璃或塑料制,容量250mL。
5.2.3振动筛机:Retsch VE1000型及相当类型。能装载3个直径200mm的标准筛,带底部收集盘和上盖,接地以防止静电。
5.2.4标准筛:直径φ200mm的不锈钢筛,孔径为45μm,106μm,150μm带底部收集盘和上盖。
5.2.5刷子:可有骆驼毛制成。用于清理标准筛。
5.2.6秒表:量程60min,精确至0.1s。
5.3取样
警示:处理超过10g样品时应使用适宜的防护用品,如防尘面罩或通风橱。
为确保从大包装袋或大容器中取得的样品具有代表性,应将最上层移取(约20cm)。用匙取样,取样后3min内放在适当的密闭容器中。
在将样品进行测试前,应将样品放在密闭容器中与实验室环境温度达到平衡。推荐的试验条件是:(23±2)℃,相对湿度(50±10)%。如不符合上述条件,应记录温度及相对温度。
在将试样从容器中取出进行测试前,摇动容器3~5次以保证试样均匀,然后放置5min,开盖取出试样。
5.4步骤
5.4.1确保筛子干燥。将每个筛子对光检查是否损坏和干净。筛子如有损坏应更换。用刷子清除筛子上的残留颗粒。
5.4.2将底盘和筛子,按照底盘、45μm、106μm、150μm从下到上的顺序放在标准振动机上。
5.4.3称量(100±0.01)g高吸收性树脂试样,记为m s,放入烧杯中。
5.4.4将5.4.3烧杯中的试样全部倒入顶层筛子中。
5.4.5将上盖盖好并依据标准振动筛机说明书进行密封。
5.4.6确保设备接地防止静电。
5.4.7按下列条件设置振动筛机:
——强度:(70±2)%(为Retsch VE1000型设置)。
——幅度:1.0mm。
——振荡时间:10min。
5.4.8启动振动筛机。振荡10min后,称量残留在106μm筛子上试样的质量记为m 1,称量残留在45μm筛子上试样的质量记为m 2,称量残留在底盘上试样的质量记为m 3
5.5计算
各部分百分数按照下式计算:
150μm筛网以下试样含量:X 1=[(m 1+m 2+m 3)/m s]*100%
106μm筛网以下试样含量:X 2=[(m 2+m 3)/m s]*100%
45μm筛网以下试样含量:X 3=[m 3/m s]*100%
其中:
X 1-150μm筛网以下试样的含量,以%表示;
m 1-残留在106μm筛子上试样的质量,以g表示;
m 2-残留在45μm筛子上试样的质量,以g表示;
m 3-残留在底盘上试样的质量,以g表示;
m s-试样总质量,以g表示;
X 2-106μm筛网以下试样的含量,以%表示;
X 3-45μm筛网以下试样的含量,以%表示;
同时进行两次测定,并取其算数平均值作为测定结果,结果修约至小数点后一位。
经测定,本发明实施例1-16高吸收性树脂的粒径分布≤5%(粒径<150μm的试样含量),并且≤1%(粒径<106μm的试样含量)。
6、堆积密度
根据ISO17190-9测定,本发明实施例1-16高吸收性树脂的堆积密度≥0.65g/cm 3且≤0.80g/cm 3
7、白度
根据GB/T22427.6-2008测定,本发明实施例1-16高吸收性树脂的白度≥70%。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (20)

  1. 一种高吸收性树脂,其特征在于:检测介质使用血液模拟液时,根据ISO 19699-1:2017(E)测定,血液模拟液吸收量≥18.0g/g,优选≥18.5g/g;血液模拟液吸收速率≤45s,优选≤40s,更优选≤38s。
  2. 一种高吸收性树脂,其特征在于:检测介质使用人体血液时,根据ISO 19699-1:2017(E)测定,人体血液吸收量≥8.0g/g,优选≥8.3g/g,更优选≥8.6g/g;人体血液吸收速率≤45s,优选≤40s,更优选≤35s,最优选≤25s。
  3. 根据权利要求2所述的高吸收性树脂,其特征在于:检测介质使用血液模拟液时,根据ISO 19699-1:2017(E)测定,血液模拟液吸收量≥18.0g/g,优选≥18.5g/g;血液模拟液吸收速率≤45s,优选≤40s,更优选≤38s。
  4. 根据权利要求1至3任一项所述的高吸收性树脂,其特征在于:所述高吸收性树脂:以丙烯酸计,其单体残留量≤1000mg/kg,优选≤800mg/kg;挥发物含量≤10.0%;pH值为5.0-8.0;粒径分布:粒径<150μm的试样含量≤5wt%,粒径<106μm的试样含量≤1wt%;堆积密度为0.65g/cm 3-0.80g/cm 3;和/或白度≥70%。
  5. 根据权利要求1至4任一项所述的高吸收性树脂,其特征在于:所述高吸收性树脂为经表面改性的聚丙烯酸钠树脂。
  6. 根据权利要求5所述的高吸收性树脂,其特征在于:所述表面改性包括使用由多价金属盐溶液,优选铝盐、钙盐、镁盐、锌盐溶液,更优选铝盐溶液A,以及由含有环氧基团的化合物和溶剂配制成的溶液B进行表面交联。
  7. 一种高吸收性树脂的制备方法,其特征在于:包括如下步骤:
    (1)称取表面分散剂;
    (2)称取多价金属盐,优选铝盐、钙盐、镁盐或锌盐,更优选铝盐,配制成溶液A;
    (3)称取含有环氧基团的化合物,配制成溶液B;
    (4)混合表面分散剂、溶液A、溶液B以及聚丙烯酸钠树脂;
    (5)进行交联反应,得到具有渐变式层级结构的经表面改性的聚丙烯酸钠高吸收性树脂。
  8. 根据权利要求7所述的方法,其特征在于:所述聚丙烯酸钠树脂的粒径为120μm-830μm,更优选为150μm-380μm。
  9. 根据权利要求7或8所述的方法,其特征在于:所述表面分散剂选自甲醇、乙醇、丙酮或气相二氧化硅,优选甲醇或乙醇;
    表面分散剂与聚丙烯酸钠树脂的质量比为(1-15):100,优选为(1-10):100,更优选为(1-5):100。
  10. 根据权利要求7至9任一项所述的方法,其特征在于:溶液A的铝盐选自氯化铝、硫酸铝、硫酸铝铵、硝酸铝和明矾,优选硫酸铝或硫酸铝铵;
    溶液A的溶剂选自水、丙酮和多元醇;优选水和/或丙三醇,丙三醇与水的质量比为(0-0.7):1;
    溶液A中铝盐的质量浓度为3%-25%,优选10%-25%,更优选10%-20%;
    铝盐与聚丙烯酸钠树脂的质量比为(0.010-0.050):1,优选(0.025-0.030):1。
  11. 根据权利要求7至10任一项所述的方法,其特征在于:溶液B的含有环氧基团的化合物选自环氧树脂、环氧氯丙烷、环氧丙烷、缩水甘油醚、聚乙二醇二缩水甘油醚和乙二醇二缩水甘油醚,优选环氧氯丙烷、缩水甘油醚或聚乙二醇二缩水甘油醚;
    溶液B的溶剂选自醇和酮,优选甲醇、乙醇、异丙醇、丙酮或丁酮,更优选乙醇或甲醇;
    溶液B中含有环氧基团的化合物的质量浓度为10%-25%;
    含有环氧基团的化合物与聚丙烯酸钠树脂的质量比为(0.001-0.006):1, 优选为(0.002-0.004):1,更优选为0.003:1。
  12. 根据权利要求7至11任一项所述的方法,其特征在于:在步骤(4)中,
    表面分散剂、溶液A、溶液B混合均匀后,再与聚丙烯酸钠树脂混合;
    或者,表面分散剂、溶液A、溶液B依次与聚丙烯酸钠树脂混合;
    或者,表面分散剂、溶液B、溶液A依次与聚丙烯酸钠树脂混合;
    或者,表面分散剂与溶液B首先与聚丙烯酸钠树脂混合均匀,再使溶液A与在先获得的混合物混合均匀。
  13. 根据权利要求12所述的方法,其特征在于:首先混合表面分散剂与溶液B,在室温下,与聚丙烯酸钠树脂混合均匀;
    随后,将溶液A加热至60-100℃、优选60-80℃,并在所述温度下与如上所述获得的混合物混合均匀。
  14. 根据权利要求7至13任一项所述的方法,其特征在于:步骤(5)中交联反应的温度为50-200℃、优选80-185℃、更优选120-140℃;时间为20-210min、优选25mim-120min、更优选30-90min。
  15. 根据权利要求7至14任一项所述的方法,其特征在于:检测介质使用人体血液时,根据ISO 19699-1:2017(E)测定,人体血液吸收量≥8.0g/g,优选≥8.3g/g,更优选≥8.6g/g;人体血液吸收速率≤45s,优选≤40s,更优选≤35s,最优选≤25s。
  16. 根据权利要求15所述的方法,其特征在于:检测介质使用血液模拟液时,根据ISO 19699-1:2017(E)测定,血液模拟液吸收量≥18.0g/g,优选≥18.5g/g;血液模拟液吸收速率≤45s,优选≤40s,更优选≤38s。
  17. 根据权利要求15或16所述的方法,其特征在于:所述高吸收性树脂:以丙烯酸计,其单体残留量≤1000mg/kg,优选≤800mg/kg;挥发物含量≤10.0%;pH值为5.0-8.0;粒径分布:粒径<150μm的试样含量≤5wt%, 粒径<106μm的试样含量≤1wt%;堆积密度为0.65g/cm 3-0.80g/cm 3;和/或白度≥70%。
  18. 一种高吸收性制品,其特征在于:所述制品包含根据权利要求1-6任一项所述的高吸收性树脂,或者根据权利要求7-17任一项所述的方法制备获得的聚丙烯酸钠高吸收性树脂。
  19. 根据权利要求18所述的制品,其特征在于:所述制品包括卫生巾和/或医疗用吸收血液制品。
  20. 根据权利要求18或19所述的制品在吸收血液中的应用。
PCT/CN2018/092326 2018-06-22 2018-06-22 高吸收性树脂及其制备方法 WO2019241986A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/254,560 US20210268139A1 (en) 2018-06-22 2018-06-22 Super absorbent resin and preparation method thereof
PCT/CN2018/092326 WO2019241986A1 (zh) 2018-06-22 2018-06-22 高吸收性树脂及其制备方法
CN201880096198.4A CN112543789B (zh) 2018-06-22 2018-06-22 高吸收性树脂及其制备方法
JP2020571554A JP7128302B2 (ja) 2018-06-22 2018-06-22 高吸収性樹脂及びその製造方法
EP18923152.5A EP3812422A4 (en) 2018-06-22 2018-06-22 RESIN WITH HIGH ABSORPTION AND MANUFACTURING PROCESS FOR IT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/092326 WO2019241986A1 (zh) 2018-06-22 2018-06-22 高吸收性树脂及其制备方法

Publications (1)

Publication Number Publication Date
WO2019241986A1 true WO2019241986A1 (zh) 2019-12-26

Family

ID=68983082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092326 WO2019241986A1 (zh) 2018-06-22 2018-06-22 高吸收性树脂及其制备方法

Country Status (5)

Country Link
US (1) US20210268139A1 (zh)
EP (1) EP3812422A4 (zh)
JP (1) JP7128302B2 (zh)
CN (1) CN112543789B (zh)
WO (1) WO2019241986A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113136636B (zh) * 2021-05-12 2023-05-23 福建省福地化纤科技有限公司 一种超吸水es复合纤维及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4051086A (en) 1976-03-25 1977-09-27 Hercules Incorporated Absorption rate of absorbent polymers by treating with glyoxal
JPH07242709A (ja) 1994-03-03 1995-09-19 Toagosei Co Ltd 吸水性樹脂の製造方法
CN1696181A (zh) 2005-06-14 2005-11-16 济南昊月树脂有限公司 聚丙烯酸钠吸水树脂表面改性方法
CN106749803A (zh) * 2016-12-28 2017-05-31 山东昊月新材料股份有限公司 一种提高sap制备效率的工艺方法
CN107501580A (zh) * 2017-08-29 2017-12-22 山东昊月新材料股份有限公司 一种具有渐变式层级结构的吸血用聚丙烯酸钠高吸收性树脂及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH078882B2 (ja) * 1985-08-30 1995-02-01 花王株式会社 耐久性に優れた高吸水性樹脂の製造法
JP2002035580A (ja) 1999-06-24 2002-02-05 Sanyo Chem Ind Ltd 吸収剤組成物および吸収性物品
US20090012486A1 (en) 2005-12-28 2009-01-08 Basf Se Process for Production of a Water-Absorbing Material
CN101511916A (zh) * 2006-08-31 2009-08-19 巴斯夫欧洲公司 聚胺涂覆的超吸收性聚合物
JP2008247949A (ja) 2007-03-29 2008-10-16 San-Dia Polymer Ltd 吸収性樹脂粒子、吸収体及び吸収性物品
EP2683760B1 (de) 2011-03-08 2018-02-28 Basf Se Verfahren zur herstellung von wasserabsorbierenden polymerpartikeln mit verbesserter permeabilität
CN103131028A (zh) 2011-11-25 2013-06-05 上海华谊丙烯酸有限公司 高吸水性树脂、其制备方法和用途
JP7120739B2 (ja) 2016-08-04 2022-08-17 Sdpグローバル株式会社 吸収性樹脂組成物粒子及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4051086A (en) 1976-03-25 1977-09-27 Hercules Incorporated Absorption rate of absorbent polymers by treating with glyoxal
JPH07242709A (ja) 1994-03-03 1995-09-19 Toagosei Co Ltd 吸水性樹脂の製造方法
CN1696181A (zh) 2005-06-14 2005-11-16 济南昊月树脂有限公司 聚丙烯酸钠吸水树脂表面改性方法
CN106749803A (zh) * 2016-12-28 2017-05-31 山东昊月新材料股份有限公司 一种提高sap制备效率的工艺方法
CN107501580A (zh) * 2017-08-29 2017-12-22 山东昊月新材料股份有限公司 一种具有渐变式层级结构的吸血用聚丙烯酸钠高吸收性树脂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3812422A4
ZHU YOULIANGWU GUOQIANG: "Synthesis of water absorption resin with core-shell structure", PLASTICS, vol. 34, no. 1, 2005, pages 23 - 26

Also Published As

Publication number Publication date
JP7128302B2 (ja) 2022-08-30
EP3812422A1 (en) 2021-04-28
CN112543789A (zh) 2021-03-23
US20210268139A1 (en) 2021-09-02
EP3812422A4 (en) 2021-07-07
JP2021528543A (ja) 2021-10-21
CN112543789B (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
RU2106153C1 (ru) Порошкообразная смола, способ ее получения, изделие
US8247491B2 (en) Water-absorbent resin composition and its production process
JP2005113117A (ja) 吸水性樹脂組成物とその製造方法
US6964998B2 (en) Water-absorbing agent and its production process and use
BR112015025560B1 (pt) Composição de polímero superabsorvente particulado, e seu processo de produção
US8686216B2 (en) Superabsorbent composition with metal salicylate for odor control
MXPA05004173A (es) Materiales super absorbentes secados por congelamiento.
BRPI0507563B1 (pt) Agente de absorção de água particulado possuindo forma pulverizada de modo irregular, método para produção do mesmo e artigo absorvente
JP2010234368A (ja) 吸水剤およびそれを用いた衛生材料
EP0949290A2 (en) Crosslinked polymer particle and its production process and use
MX2013014784A (es) Articulo absorbente que tiene propiedades de absorcion mejoradas.
EP1286764A2 (en) Surface-treated superabsorbent polymer particles
CN111867538B (zh) 具有降低的湿度水平的吸收制品
JP4422509B2 (ja) 吸水性樹脂組成物、その用途およびその製造方法
BR112013014730B1 (pt) método de produção de resina absorvente de água
CN102772821A (zh) 一种具有组织诱导性且可吸收、止血的多功能颗粒及其制备和应用
TW200529894A (en) Superabsorbent polymer having delayed free water absorption
JP2003105092A (ja) 吸水剤およびその製造方法、並びに、衛生材料
WO2019241986A1 (zh) 高吸收性树脂及其制备方法
CN107501580B (zh) 一种具有渐变式层级结构的吸血用聚丙烯酸钠高吸收性树脂及其制备方法
TW443926B (en) Absorbent article having adsorbent for use in handling complex fluids
AU2018307477A1 (en) Nanoporous superabsorbent particles
JP4979879B2 (ja) 吸水剤およびそれを用いた衛生材料
JP2005154758A (ja) 粒子状吸水性樹脂組成物およびその製造方法
JP2022104702A (ja) 複合吸収体及び衛生用品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923152

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020571554

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018923152

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018923152

Country of ref document: EP

Effective date: 20210122