WO2019241961A1 - 一种通信的方法、基站及终端 - Google Patents

一种通信的方法、基站及终端 Download PDF

Info

Publication number
WO2019241961A1
WO2019241961A1 PCT/CN2018/092195 CN2018092195W WO2019241961A1 WO 2019241961 A1 WO2019241961 A1 WO 2019241961A1 CN 2018092195 W CN2018092195 W CN 2018092195W WO 2019241961 A1 WO2019241961 A1 WO 2019241961A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency resource
frequency
uplink
segment
Prior art date
Application number
PCT/CN2018/092195
Other languages
English (en)
French (fr)
Inventor
韩金侠
李振宇
李铮
南杨
张武荣
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201880094752.5A priority Critical patent/CN112292904B/zh
Priority to PCT/CN2018/092195 priority patent/WO2019241961A1/zh
Priority to EP18922998.2A priority patent/EP3790348A4/en
Publication of WO2019241961A1 publication Critical patent/WO2019241961A1/zh
Priority to US17/129,354 priority patent/US20210153258A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a communication method, a base station, and a terminal.
  • Unlicensed Spectrum-Narrow-Band-Internet of Things (NB-IoT-U) technology based on unlicensed spectrum is a technology applied to the narrow-band IoT in the MulteFire Alliance (MulteFire Alliance). It has a narrow-band IoT (Narrow Band) -Internet of Things (NB-IoT), but because it works on unlicensed spectrum, in order to adapt to unlicensed spectrum regulations, NB-IoT-U has made some adaptive spectrum based on the NB-IoT design Design of regulations.
  • ETSI European Telecommunications Standards Institute
  • the equivalent radiated power (or effective radiated power) (ERP) is 27dBm at the maximum, and the duty cycle is 10% at the maximum within one hour.
  • ERP effective radiated power
  • the equivalent radiated power is 27dBm at most Within one hour, the maximum duty cycle of the network access point is 10%, and the duty cycle of the non-network access point is 2.5%.
  • ETSI supports at least a single carrier design at band54, and may support two carrier designs of band54 and band47b in the future, or even more carrier designs, but in order to ensure Compatibility, even in the multi-carrier design, band54 is the anchor carrier, that is, the Primary Synchronization Signal (PSS), the Secondary Synchronization Signal (SSS), and the system information are sent on band54, of which
  • the system information includes a master information block (master information block (MIB)) and a system information block (system information block (SIB)).
  • MIB master information block
  • SIB system information block
  • the MIB is transmitted through a physical broadcast channel (PBCH).
  • PBCH physical broadcast channel
  • Figure 1 is a schematic diagram of the NB-IoT-U single-carrier design in ETSI
  • Figure 2 is a schematic diagram of the NB-IoT-U two-carrier design in ETSI.
  • an anchor segment period is 1280ms
  • the anchor segment length is fixed at 20ms.
  • the downlink synchronization signal PSS / SSS occupies 10ms
  • the physical downlink broadcast channel Physical Channel (PBCH) occupies 10ms, so the total length of the data segment (data segment) is 1260ms.
  • PBCH Physical Channel
  • each data frame in the data segment, can be 20ms, 40ms, or 80ms, and each data frame contains a downlink frame (shown as D in the figure) and an uplink.
  • Frame shown as U in the figure, if the data frame length is 20ms, it contains 2ms downlink and 18ms uplink; if the data frame length is 40ms, it contains 4ms downlink and 36ms uplink; if the data frame is 80ms, then Including 8ms downlink and 72ms uplink.
  • one anchor segment contains one anchor segment and 63 data frames; but when the data frame length is 40ms, one anchor segment period Contains 1 anchor segment and 31 data frames and 1 20ms incomplete data frame. Similarly, when the data frame frame length is 80ms, one anchor segment period includes 1 anchor segment and 15 data frames and 1 60ms. Incomplete data frame.
  • the incomplete data frame here is understood as: a frame with a length different from other defined data frame lengths. For example, if the data frame length is defined as 40ms, but there is a frame length other than 40ms in the data segment, the frame is incomplete. Frame, other frames can be called complete frames.
  • the MFA has not discussed how to deal with incomplete data frames.
  • One possible solution is for an incomplete data frame, and the duration occupied by the downlink is the same as that of other complete data frames, and the remaining duration is uplink. That is, when the data frame length is 40ms, the incomplete data frame length is 20ms, of which 4ms is the downlink, and 16ms is the uplink; when the data frame frame length is 80ms, the incomplete data frame length is 60ms, of which 8ms is the downlink and 52ms. Ascending.
  • the duration of the anchor segment is different from the duration of the data frame.
  • communication devices such as base stations or terminals need to set timers of different lengths when switching frames between the anchor segment and the data frame. the complexity.
  • the terminal when the terminal receives the segment anchor, initialize the timer 1 at the segment boundary start t1, and set the timer duration to T1.
  • the timer timing is equal to the T1 duration (that is, 20ms), reset timer 1 and Set the timer duration to T2.
  • the timer duration is equal to the T2 duration (that is, 20ms or 40ms or 80ms)
  • set the timer duration to T2. 40ms or 80ms
  • reset timer 1 At the same time, timer 2 needs to be initialized at the segment boundary start point t1.
  • timer 1 needs to be reset.
  • the timer duration is set to T5.
  • the timer 1 When the timer duration is equal to the T5 duration (that is, 20ms or 60ms), the timer 1 is reset and the next segment anchor processing cycle is entered.
  • the uplink time is different between the complete data frame and the incomplete data frame, in actual applications, it may be necessary to use a timer to distinguish the two scenarios, further increase the processing operation of the timer, and increase the processing complexity of the base station and the terminal. .
  • the duty cycle is required to be 10%.
  • the current MFA frame structure has a downlink proportion of 10%, but because the frame length of the incomplete data frame is less than the complete The data frame is long, but the downlink duration is the same, resulting in the downlink transmission duty cycle of the incomplete frame being greater than 10%.
  • the technical problem to be solved in the embodiments of the present application is to provide a communication method, a base station, and a terminal, so as to reduce the complexity of information processing when the base station and the terminal communicate with each other, so that the duty cycle during communication meets the requirements of the ETSI regulations.
  • the base station receives a random access request message sent by the terminal based on a preset frame structure
  • the preset frame structure includes a first time-frequency resource segment and a second time-frequency resource segment.
  • the first time-frequency resource segment includes time-frequency resources for sending a synchronization signal and a physical broadcast channel PBCH, and also includes idle time.
  • the second time-frequency resource segment includes an integer number of data frames with the same duration, and the duration of the first time-frequency resource segment is equal to the second time
  • the duration of any data frame in the frequency resource segment, the data frame includes downlink time-frequency resources for sending downlink information and uplink time-frequency resources for sending uplink information; the random access request message and the RRC connection
  • the request message is carried by the uplink time-frequency resource of the first time-frequency resource segment and / or the uplink time-frequency resource of the second time-frequency resource segment, and the random access response message and the competition resolution message pass by the Downlink time-frequency resource bearer in the second time-frequency resource segment.
  • the method before the base station receives a random access request message sent by the terminal based on a preset frame structure, the method further includes:
  • the downlink time-frequency resources of the base station in the second time-frequency resource segment send system information to the terminal through a physical downlink shared channel PDSCH.
  • the method further includes:
  • the base station switches to other frequency points to complete signal quality measurement or interference level measurement during the idle time-frequency resource.
  • the base station does not receive the RRC connection request message, the downlink time-frequency resources of the base station in the second time-frequency resource segment are transmitted to The terminal sends a retransmission instruction;
  • the base station Receiving, by the base station, the RRC connection request retransmitted by the terminal through the physical uplink shared channel PUSCH in the uplink time-frequency resource of the first time-frequency resource segment and / or the uplink time-frequency resource of the second time-frequency resource segment Message.
  • the method further includes:
  • the uplink data is carried by the uplink time-frequency resource of the first time-frequency resource segment and / or the uplink time-frequency resource of the second time-frequency resource segment, and the downlink data is transmitted by the second time-frequency resource.
  • Downlink time-frequency resource of the segment is carried by the uplink time-frequency resource of the first time-frequency resource segment and / or the uplink time-frequency resource of the second time-frequency resource segment, and the downlink data is transmitted by the second time-frequency resource.
  • a time domain position of the uplink time-frequency resource and / or an idle time-frequency resource is located behind a time-frequency resource that sends a synchronization signal and a PBCH;
  • the time domain position of the uplink time-frequency resource and / or the idle time-frequency resource is located before the time-frequency resource for sending the synchronization signal and the PBCH.
  • a period of the preset frame structure is 1280 milliseconds, and a duration of the first time-frequency resource segment is 40 milliseconds.
  • uplink time-frequency resources and The total duration of idle time-frequency resources is equal to 20 milliseconds, and the second time-frequency resource segment includes 31 data frames, and each data frame has a duration of 40 milliseconds; or
  • the period of the preset frame structure is 1280 milliseconds, and the duration of the first time-frequency resource segment is 80 milliseconds.
  • the first time-frequency resource the total duration of uplink time-frequency resources and / or idle time-frequency resources Equal to 60 milliseconds
  • the second time-frequency resource segment includes 15 data frames, and the duration of each data frame is 80 milliseconds; or
  • the period of the preset frame structure is 1280 milliseconds, and the duration of the first time-frequency resource segment is 20 milliseconds.
  • the first time-frequency resource the total duration of uplink time-frequency resources and / or idle time-frequency resources Equal to 0 milliseconds
  • the second time-frequency resource segment includes 63 data frames, and the duration of each data frame is 20 milliseconds.
  • an embodiment of the present application provides a communication method, which may include:
  • the preset frame structure includes a first time-frequency resource segment and a second time-frequency resource segment.
  • the first time-frequency resource segment includes time-frequency resources for sending a synchronization signal and a physical broadcast channel PBCH, and also includes idle time.
  • the second time-frequency resource segment includes an integer number of data frames with the same duration, and the duration of the first time-frequency resource segment is equal to the second time
  • the duration of any data frame in the frequency resource segment, the data frame includes downlink time-frequency resources for sending downlink information and uplink time-frequency resources for sending uplink information; the random access request message and the RRC connection
  • the request message is carried by the uplink time-frequency resource of the first time-frequency resource segment and / or the uplink time-frequency resource of the second time-frequency resource segment, and the random access response message and the competition resolution message pass by the Downlink time-frequency resource bearer in the second time-frequency resource segment.
  • the method before the random access request message sent by the terminal to the base station based on a preset frame structure, the method further includes:
  • the method further includes:
  • the terminal switches to other frequency points in the idle time-frequency resource to complete the signal quality measurement of the neighboring cell.
  • the terminal receives downlink time-frequency resources of the base station in the second time-frequency resource segment, A retransmission indication sent through the physical downlink control channel PDCCH;
  • the terminal retransmits the RRC connection request message to the base station through the physical uplink shared channel PUSCH in the uplink time-frequency resource of the first time-frequency resource segment and / or the uplink time-frequency resource of the second time-frequency resource segment .
  • the method further includes:
  • the uplink data is carried by the uplink time-frequency resource of the first time-frequency resource segment and / or the uplink time-frequency resource of the second time-frequency resource segment, and the downlink data is transmitted by the second time-frequency resource.
  • Downlink time-frequency resource of the segment is carried by the uplink time-frequency resource of the first time-frequency resource segment and / or the uplink time-frequency resource of the second time-frequency resource segment, and the downlink data is transmitted by the second time-frequency resource.
  • a time domain position of the uplink time-frequency resource and / or an idle time-frequency resource is located behind a time-frequency resource that sends a synchronization signal and a PBCH;
  • the time domain position of the uplink time-frequency resource and / or the idle time-frequency resource is located before the time-frequency resource for sending the synchronization signal and the PBCH.
  • a period of the preset frame structure is 1280 milliseconds, and a duration of the first time-frequency resource segment is 40 milliseconds.
  • uplink time-frequency resources and The total duration of idle time-frequency resources is equal to 20 milliseconds, and the second time-frequency resource segment includes 31 data frames, and each data frame has a duration of 40 milliseconds; or
  • the period of the preset frame structure is 1280 milliseconds, and the duration of the first time-frequency resource segment is 80 milliseconds.
  • the first time-frequency resource the total duration of uplink time-frequency resources and / or idle time-frequency resources Equal to 60 milliseconds
  • the second time-frequency resource segment includes 15 data frames, and the duration of each data frame is 80 milliseconds; or
  • the period of the preset frame structure is 1280 milliseconds, and the duration of the first time-frequency resource segment is 20 milliseconds.
  • the first time-frequency resource the total duration of uplink time-frequency resources and / or idle time-frequency resources Equal to 0 milliseconds
  • the second time-frequency resource segment includes 63 data frames, and the duration of each data frame is 20 milliseconds.
  • an embodiment of the present application provides a base station, which may include:
  • a receiving unit configured to receive a random access request message sent by a terminal based on a preset frame structure
  • a sending unit configured to send a random access response message to the terminal based on the preset frame structure
  • the receiving unit is further configured to receive a radio resource control RRC connection request message sent by the terminal based on the preset frame structure;
  • the sending unit is further configured to send a competition resolution message to the terminal based on the preset frame structure to complete random access of the terminal;
  • the preset frame structure includes a first time-frequency resource segment and a second time-frequency resource segment.
  • the first time-frequency resource segment includes time-frequency resources for sending a synchronization signal and a physical broadcast channel PBCH, and also includes idle time.
  • the second time-frequency resource segment includes an integer number of data frames with the same duration, and the duration of the first time-frequency resource segment is equal to the second time
  • the duration of any data frame in the frequency resource segment, the data frame includes downlink time-frequency resources for sending downlink information and uplink time-frequency resources for sending uplink information; the random access request message and the RRC connection
  • the request message is carried by the uplink time-frequency resource of the first time-frequency resource segment and / or the uplink time-frequency resource of the second time-frequency resource segment, and the random access response message and the competition resolution message pass by the Downlink time-frequency resource bearer in the second time-frequency resource segment.
  • the sending unit is further configured to:
  • the downlink time-frequency resources in the second time-frequency resource segment send system information to the terminal through a physical downlink shared channel PDSCH.
  • the base station further includes:
  • a measurement unit is configured to complete signal quality measurement or interference level measurement when the idle time-frequency resource is switched to another frequency point.
  • the sending unit is further configured to use physical downlink in the downlink time-frequency resource of the second time-frequency resource segment.
  • the control channel PDCCH sends a retransmission indication to the terminal;
  • the receiving unit is further configured to receive the terminal retransmission through a physical uplink shared channel PUSCH on the uplink time-frequency resource of the first time-frequency resource segment and / or the uplink time-frequency resource of the second time-frequency resource segment.
  • RRC connection request message is further configured to receive the terminal retransmission through a physical uplink shared channel PUSCH on the uplink time-frequency resource of the first time-frequency resource segment and / or the uplink time-frequency resource of the second time-frequency resource segment.
  • the receiving unit and the sending unit are further configured to:
  • the uplink data is carried by the uplink time-frequency resource of the first time-frequency resource segment and / or the uplink time-frequency resource of the second time-frequency resource segment, and the downlink data is transmitted by the second time-frequency resource.
  • Downlink time-frequency resource of the segment is carried by the uplink time-frequency resource of the first time-frequency resource segment and / or the uplink time-frequency resource of the second time-frequency resource segment, and the downlink data is transmitted by the second time-frequency resource.
  • a time domain position of the uplink time-frequency resource and / or an idle time-frequency resource is located behind a time-frequency resource that sends a synchronization signal and a PBCH;
  • the time domain position of the uplink time-frequency resource and / or the idle time-frequency resource is located before the time-frequency resource for sending the synchronization signal and the PBCH.
  • a period of the preset frame structure is 1280 milliseconds, and a duration of the first time-frequency resource segment is 40 milliseconds.
  • uplink time-frequency resources and The total duration of idle time-frequency resources is equal to 20 milliseconds, and the second time-frequency resource segment includes 31 data frames, and each data frame has a duration of 40 milliseconds; or
  • the period of the preset frame structure is 1280 milliseconds, and the duration of the first time-frequency resource segment is 80 milliseconds.
  • the first time-frequency resource the total duration of uplink time-frequency resources and / or idle time-frequency resources Equal to 60 milliseconds
  • the second time-frequency resource segment includes 15 data frames, and the duration of each data frame is 80 milliseconds; or
  • the period of the preset frame structure is 1280 milliseconds, and the duration of the first time-frequency resource segment is 20 milliseconds.
  • the first time-frequency resource the total duration of uplink time-frequency resources and / or idle time-frequency resources Equal to 0 milliseconds
  • the second time-frequency resource segment includes 63 data frames, and the duration of each data frame is 20 milliseconds.
  • an embodiment of the present application provides a base station, which may include:
  • a processor, a memory, and a bus where the processor and the memory are connected through a bus, wherein the memory is used to store a set of program code, and the processor is used to call the program code stored in the memory to execute the embodiments of the present application Steps in the first aspect or any implementation of the first aspect.
  • an embodiment of the present application provides a terminal, which may include:
  • a sending unit configured to send a random access request message to the base station based on a preset frame structure
  • a receiving unit configured to receive a random access response message sent by the base station based on the preset frame structure
  • the sending unit is further configured to send a radio resource control RRC connection request message to the base station based on the preset frame structure;
  • the receiving unit is further configured to receive a contention resolution message sent by the base station based on the preset frame structure to complete random access of the terminal;
  • the preset frame structure includes a first time-frequency resource segment and a second time-frequency resource segment.
  • the first time-frequency resource segment includes time-frequency resources for sending a synchronization signal and a physical broadcast channel PBCH, and also includes idle time.
  • the second time-frequency resource segment includes an integer number of data frames with the same duration, and the duration of the first time-frequency resource segment is equal to the second time
  • the duration of any data frame in the frequency resource segment, the data frame includes downlink time-frequency resources for sending downlink information and uplink time-frequency resources for sending uplink information; the random access request message and the RRC connection
  • the request message is carried by the uplink time-frequency resource of the first time-frequency resource segment and / or the uplink time-frequency resource of the second time-frequency resource segment, and the random access response message and the competition resolution message pass by the Downlink time-frequency resource bearer in the second time-frequency resource segment.
  • the receiving unit is further configured to:
  • the terminal further includes:
  • a measurement unit is configured to complete signal quality measurement of an adjacent cell when the idle time-frequency resource is switched to another frequency point.
  • the receiving unit is further configured to receive a downlink of the base station in the second time-frequency resource segment.
  • Time-frequency resource a retransmission indication sent through the physical downlink control channel PDCCH;
  • the sending unit is further configured to retransmit the uplink time-frequency resource in the first time-frequency resource segment and / or the uplink time-frequency resource in the second time-frequency resource segment to the base station through a physical uplink shared channel PUSCH.
  • RRC connection request message is further configured to retransmit the uplink time-frequency resource in the first time-frequency resource segment and / or the uplink time-frequency resource in the second time-frequency resource segment to the base station through a physical uplink shared channel PUSCH.
  • the sending unit and the receiving unit are further configured to:
  • the uplink data is carried by the uplink time-frequency resource of the first time-frequency resource segment and / or the uplink time-frequency resource of the second time-frequency resource segment, and the downlink data is transmitted by the second time-frequency resource.
  • Downlink time-frequency resource of the segment is carried by the uplink time-frequency resource of the first time-frequency resource segment and / or the uplink time-frequency resource of the second time-frequency resource segment, and the downlink data is transmitted by the second time-frequency resource.
  • a time domain position of the uplink time-frequency resource and / or an idle time-frequency resource is located behind a time-frequency resource that sends a synchronization signal and a PBCH;
  • the time domain position of the uplink time-frequency resource and / or the idle time-frequency resource is located before the time-frequency resource for sending the synchronization signal and the PBCH.
  • a period of the preset frame structure is 1280 milliseconds, and a duration of the first time-frequency resource segment is 40 milliseconds.
  • uplink time-frequency resources and The total duration of idle time-frequency resources is equal to 20 milliseconds, and the second time-frequency resource segment includes 31 data frames, and each data frame has a duration of 40 milliseconds; or
  • the period of the preset frame structure is 1280 milliseconds, and the duration of the first time-frequency resource segment is 80 milliseconds.
  • the first time-frequency resource the total duration of uplink time-frequency resources and / or idle time-frequency resources Equal to 60 milliseconds
  • the second time-frequency resource segment includes 15 data frames, and the duration of each data frame is 80 milliseconds; or
  • the period of the preset frame structure is 1280 milliseconds, and the duration of the first time-frequency resource segment is 20 milliseconds.
  • the first time-frequency resource the total duration of uplink time-frequency resources and / or idle time-frequency resources Equal to 0 milliseconds
  • the second time-frequency resource segment includes 63 data frames, and the duration of each data frame is 20 milliseconds.
  • an embodiment of the present application provides a terminal, which may include:
  • a processor, a memory, and a bus where the processor and the memory are connected through a bus, wherein the memory is used to store a set of program code, and the processor is used to call the program code stored in the memory to execute the embodiments of the present application Steps in the second aspect or any implementation of the second aspect.
  • an embodiment of the present application provides a communication system, which may include:
  • a base station as described in the third aspect or any implementation of the third aspect of this application.
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores instructions, and when the computer-readable storage medium runs on a computer, the first aspect or any one of the first aspects is implemented The method described in the implementation.
  • an embodiment of the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores instructions.
  • the second aspect or any one of the second aspects is implemented. The method described in the implementation.
  • Figure 1 is a schematic diagram of the frame structure of the NB-IoT-U designed on the ETSI single carrier;
  • Figure 2 is a schematic diagram of the frame structure of the NB-IoT-U designed on the ETSI two carriers;
  • FIG. 3 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of another communication method according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a comparison between an existing frame structure and a frame structure provided by an embodiment of the present application
  • FIG. 6 is a schematic diagram of a comparison between an existing frame structure and another frame structure provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another frame structure according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of still another base station according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of still another terminal provided by an embodiment of the present application.
  • the communication equipment mainly involved in the embodiment of the present application includes a base station and a terminal.
  • the terminal may be a terminal that directly communicates with the base station or a relay terminal that relays to a remote terminal.
  • the embodiment of the present application does not make any limitation.
  • the base station may include, but is not limited to: an evolved Node B (eNB), a radio network controller (RNC), a node B (Node B, NB), and a base station controller (BSC) , Base transceiver station (Base Transceiver Station, BTS), home base station (for example, Home NodeB, or Home NodeB, HNB) and so on.
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • BTS Base transceiver station
  • home base station for example, Home NodeB, or Home NodeB, HNB
  • a terminal also known as a user equipment (UE) is a device that provides voice and / or data connectivity to a user, such as a mobile phone, tablet computer, wearable device, etc. with a wireless connection function.
  • UE user equipment
  • FIG. 3 is a schematic flowchart of a communication method according to an embodiment of the present application; it may include the following steps:
  • the base station receives a random access request message (msg1) sent by the terminal based on a preset frame structure.
  • msg1 random access request message
  • the base station sends a random access response message (msg2) to the terminal based on the preset frame structure.
  • msg2 random access response message
  • the base station receives a radio resource control RRC connection request message (msg3) sent by the terminal based on the preset frame structure.
  • msg3 radio resource control RRC connection request message
  • the base station sends a competition resolution message (msg4) to the terminal based on the preset frame structure to complete random access of the terminal.
  • msg4 competition resolution message
  • the above process is a random access process of the terminal.
  • the base station and the terminal will use a preset frame structure for information exchange.
  • the preset frame structure includes a first time-frequency resource segment and a second time-frequency resource segment.
  • the first time-frequency resource segment includes time-frequency resources for sending a synchronization signal and a physical broadcast channel PBCH, and also includes idle time.
  • the second time-frequency resource segment includes an integer number of data frames with the same duration, and the duration of the first time-frequency resource segment is equal to the second time
  • the duration of any data frame in the frequency resource segment, the data frame includes downlink time-frequency resources for sending downlink information and uplink time-frequency resources for sending uplink information; the random access request message and the RRC connection
  • the request message is carried by the uplink time-frequency resource of the first time-frequency resource segment and / or the uplink time-frequency resource of the second time-frequency resource segment, and the random access response message and the competition resolution message pass by the Downlink time-frequency resource bearer in the second time-frequency resource segment.
  • FIG. 5 is a schematic diagram of a comparison between an existing frame structure and a preset frame structure provided by an embodiment of the present application. As shown in FIG. 5, FIG. 5 is a schematic diagram of the existing frame structure.
  • the anchor segment indicates a time-frequency resource segment including but not limited to a synchronization signal and a physical broadcast channel.
  • the synchronization signal includes, but is not limited to, PSS, SSS, and Narrowband Primary Synchronization Signal (NPSS).
  • NPSS Narrowband Secondary Synchronization Signal
  • the physical broadcast channel includes, but is not limited to, PBCH, Narrowband Physical Broadcast Channel (NPBCH).
  • the time-frequency resources include time-domain resources and frequency-domain resources, and the time-frequency resource segment indicates a continuous resource segment in the time domain and / or the frequency domain.
  • the anchor segment is a time-frequency resource segment including, but not limited to, a synchronization signal and a physical broadcast channel at a frequency-domain position corresponding to the time-domain resource.
  • the data segment indicates a time-frequency resource segment used to send a data channel and a reference signal corresponding to the data channel, or a time-frequency resource segment used to send a control channel and a reference signal corresponding to the control channel, or used to send a data channel and a data channel corresponding And the time-frequency resource segment of the control channel and the reference signal corresponding to the control channel.
  • the data channel includes, but is not limited to, a physical downlink shared channel (PDSCH), a narrowband physical downlink shared channel (NPDSCH), a physical uplink shared channel (Physical Uplink shared Channel, PUSCH), and a narrowband physical uplink shared channel (NPUSCH).
  • the control channel includes but is not limited to a physical downlink control channel (Physical Downlink Control Channel, PDCCH), a narrowband physical downlink control channel (NPDCCH), a narrowband physical random access channel (NPRACH), etc.
  • the reference signal includes but not It is limited to Cell Reference Signal (CRS), Narrowband Downlink Reference Signal (NRS), and Demodulation Reference Signal (DMRS).
  • CRS Cell Reference Signal
  • NRS Narrowband Downlink Reference Signal
  • DMRS Demodulation Reference Signal
  • the time-frequency resources include time-domain resources and frequency-domain resources
  • the data segment refers to sending a data channel and a reference signal corresponding to the data channel at a frequency-domain position corresponding to the time period within a time corresponding to the time-domain resource, or Send a reference signal corresponding to the control channel and the control channel, or send a reference signal corresponding to the data channel and the data channel and a reference signal corresponding to the data channel and the data channel.
  • the reference signal of the control channel is usually sent at the same time as the control channel, and the reference signal of the data channel is usually sent at the same time as the data channel.
  • the control channel PDCCH and NRS / CRS are sent simultaneously, the PDSCH and NRS / CRS are sent at the same time, and the PUSCH and DMRS are sent at the same time.
  • each data frame located in the data segment, each data frame corresponds to independent time-frequency resources, that is, each data frame occupies different time-domain resources, and the same or different frequency-domain resources.
  • Each data frame is independently used to send a data channel and a reference signal corresponding to the data channel, and / or to send a control channel corresponding to the data channel and a reference signal corresponding to the control channel.
  • An anchor segment period that is, the period of the frame structure in the present application, represents the time interval from when the anchor segment is transmitted once to when the anchor segment is transmitted next time.
  • the time interval from the start of transmitting the downlink synchronization signal PSS / SSS to the next transmission of the downlink synchronization signal PSS / SSS is set to 1280ms according to the existing protocol standard.
  • the duration of the anchor segment is T1 in milliseconds (ms)
  • the duration of the data segment is 1280ms-T1
  • the data segment contains several data frames (data frame)
  • the duration of a complete data frame is T2 in milliseconds
  • downlink time-frequency resources can also be referred to as downlink part / downlink frame (shown as D in the figure)
  • uplink time-frequency resources can also be referred to as uplink part / Uplink frame (shown by U in the figure).
  • the duration of the downlink time-frequency resource can be referred to as the downlink frame length
  • the duration of the uplink time-frequency resource can be referred to as the uplink frame length.
  • the data frame duration is 40ms or 80ms
  • an incomplete data frame will be generated.
  • the length of the data frame is T5, and the unit is millisecond.
  • the incomplete data frame includes the same downlink frame length as the full data frame and the uplink frame length is less than the full data frame.
  • the embodiments of the present application improve the existing frame structure.
  • the frame structure in an anchor segment period, that is, a frame structure period, the frame structure includes a first time-frequency resource segment and a second time-frequency resource segment, and the second time-domain resource segment is similar to
  • the data segment in the existing frame structure includes an integer number of data frames with the same duration.
  • the first time domain resource segment includes the anchor segment in the existing frame structure and the time-frequency resource length corresponding to the incomplete data frame.
  • the duration of a time domain resource segment is equal to the duration of any one data frame in the second time domain resource segment.
  • the first time-frequency resource segment includes a signal for transmitting a synchronization signal (PSS / SSS), a physical Downlink broadcast channel (PBCH), and uplink time-frequency resources (shown by U in the figure) and / or idle time-frequency resources (gap), the total duration of the uplink time-frequency resources and / or idle time-frequency resources is equal to 20 milliseconds or 60 milliseconds.
  • the uplink time-frequency resource and / or the idle time-frequency resource are located in the time domain behind the time-frequency resource for sending the synchronization signal and the physical downlink broadcast channel. As shown in FIG.
  • the uplink time-frequency resource and / or idle time-frequency resource are adjacent to the PBCH.
  • the uplink time-frequency resource and / or the idle time-frequency resource indicate three possible existence situations of the uplink time-frequency resource, the idle time-frequency resource, the uplink time-frequency resource, and the idle time-frequency resource.
  • all the durations corresponding to the incomplete data frame in the existing frame structure can be configured as uplink time-frequency resources as a padding.
  • the padding inserts the uplink time-frequency resource after the existing anchor segment (which may be referred to as a first anchor segment), and together with the first anchor segment, forms a first time-frequency resource segment (also may be referred to as a second Anchor segment) to ensure that the frame length of the first time-frequency resource segment is the same as the data frame frame length, while the second time-frequency resource segment reduces an incomplete data frame compared to the data segment of the existing frame structure, so it will include An integer number of complete data frames with the same duration, while there are no more incomplete data frames.
  • first time-frequency resource segment and the second time-frequency resource segment in this application are for distinguishing from each other, and at the same time from the anchor segment and the data segment in the existing frame structure.
  • the time-frequency resource segment can also be regarded as a new anchor segment, which includes the anchor segment in the existing frame structure and a padding segment composed of the duration corresponding to the incomplete data frame.
  • the second time-frequency resource segment can also be It is regarded as a new type of data segment.
  • anchor segment, data segment, anchor segment period, frame structure period, first time-frequency resource segment and second time-frequency resource segment are applied to this application. The substance of the examples does not constitute any limitation.
  • the length of the anchor segment of the existing frame structure is 20ms.
  • the frame length of the data frame is 40ms or 80ms, there is an incomplete data frame with a frame length of 20ms and 60ms respectively, and the frame length of the first anchor segment and the complete data frame The frame length is different.
  • the solution in the embodiment of this application is equivalent to dividing an anchor segment period (also referred to as a frame structure period) into n nframes.
  • an anchor segment period also referred to as a frame structure period
  • n is equal to 32;
  • T2 80ms and the anchor segment period is 1280ms, n is equal to 16. That is, the reconstructed frame structure can include the following three cases:
  • the period of the preset frame structure is 1280 milliseconds, and the duration of the first time-frequency resource segment is 40 milliseconds.
  • the first time-frequency resource the total duration of uplink time-frequency resources and / or idle time-frequency resources Equal to 20 milliseconds
  • the second time-frequency resource segment includes 31 data frames, and the duration of each data frame is 40 milliseconds; or
  • the period of the preset frame structure is 1280 milliseconds, and the duration of the first time-frequency resource segment is 80 milliseconds.
  • the first time-frequency resource the total duration of uplink time-frequency resources and / or idle time-frequency resources Equal to 60 milliseconds
  • the second time-frequency resource segment includes 15 data frames, and the duration of each data frame is 80 milliseconds; or
  • the period of the preset frame structure is 1280 milliseconds, and the duration of the first time-frequency resource segment is 20 milliseconds.
  • the first time-frequency resource the total duration of uplink time-frequency resources and / or idle time-frequency resources Equal to 0 milliseconds
  • the second time-frequency resource segment includes 63 data frames, and the duration of each data frame is 20 milliseconds.
  • the base station can determine whether the frequency point is available by measuring the interference energy of other frequency points, so the first time
  • the time-frequency resource corresponding to the incomplete data frame in the frequency resource segment is configured as an idle time-frequency resource (gap), that is, within the idle time-frequency resource, the base station and the terminal need neither downlink transmission nor uplink within the idle time-frequency resource.
  • the base station and terminal can perform signal quality measurement or interference level measurement in the idle part.
  • part of the time-frequency resources corresponding to the incomplete data frame may also be configured as uplink time-frequency resources and part of the time-frequency resources are idle, which is not limited in the embodiment of the present application.
  • the two-carrier design is similar.
  • the reconstructed frame structure also meets the frame structure including the first time-frequency resource segment and the second time-frequency resource segment.
  • the second time-frequency resource segment includes an integer number of data frames with the same duration.
  • the duration of the frequency resource segment is equal to the duration of any data frame in the second time-frequency resource segment, and details are not described herein again.
  • the time-domain position of the uplink time-frequency resource and / or the idle time-frequency resource may be configured to be located in the time-frequency resource (i.e., the existing frame) for sending the synchronization signal and the PBCH. Behind the anchor segment of the structure), adjacent to the time-frequency resource that sent the PBCH; or
  • the time domain position of the uplink time-frequency resource and / or the idle time-frequency resource may also be configured in front of the time-frequency resource for sending the synchronization signal and the PBCH.
  • FIG. 6 is a schematic diagram of a comparison between an existing frame structure and another frame structure provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of an existing frame structure and an existing frame above FIG. 5. The structure is the same ( Figure 5 does not show the incomplete data frame before the current anchor point segment, and Figure 6 has shown).
  • Figure 5 does not show the incomplete data frame before the current anchor point segment, and Figure 6 has shown.
  • the data frame is 40ms or 80ms, there will also be incomplete data frames in an anchor segment period.
  • the uplink time-frequency resource and / or idle time-frequency resource are located in the time domain to send the downlink synchronization signal frame and A time-frequency resource of the physical downlink broadcast channel frame precedes. That is, the position of the incomplete data frame in the existing frame structure is not changed, and it is still adjacent to the time-frequency resource for sending the synchronization signal.
  • the time-frequency resource corresponding to the incomplete data frame can be configured as an uplink time-frequency resource for sending uplink information or configured as a gap
  • the time-frequency resource corresponding to the original incomplete data frame and the original anchor point segment are the first
  • An anchor point segment combination constitutes a first time-frequency resource segment, that is, a second anchor point segment, so that the length of the first time-frequency resource segment is the same as the length of the complete data frame, so that incomplete data frames no longer exist.
  • the data frame has a frame length of 40ms or 80ms
  • the time-frequency resources that originally sent incomplete data frames are configured as uplink time-frequency resources and / or idle time-frequency resources, and the time-frequency corresponding to the incomplete data frames preceding the first anchor point segment is
  • the resources are combined with the first anchor point segment to form the first time-frequency resource segment, so that the frame length of the second time-frequency resource segment is the same as the complete data frame length, and the starting point of the anchor segment period (frame structure) is also determined by the transmission synchronization signal.
  • the position is changed to the start position of the last incomplete data frame adjacent to it, and the end point of the anchor segment period is also changed from the position at which the synchronization signal is transmitted next time to the start of the incomplete data frame before the first anchor segment. position.
  • the position corresponding to the second time-frequency resource segment also changes accordingly.
  • the reconstructed frame structure can also include the following three cases:
  • the period of the preset frame structure is 1280 milliseconds, and the duration of the first time-frequency resource segment is 40 milliseconds.
  • the first time-frequency resource the total duration of uplink time-frequency resources and / or idle time-frequency resources Equal to 20 milliseconds
  • the second time-frequency resource segment includes 31 data frames, and the duration of each data frame is 40 milliseconds; or
  • the period of the preset frame structure is 1280 milliseconds, and the duration of the first time-frequency resource segment is 80 milliseconds.
  • the first time-frequency resource the total duration of uplink time-frequency resources and / or idle time-frequency resources Equal to 60 milliseconds
  • the second time-frequency resource segment includes 15 data frames, and the duration of each data frame is 80 milliseconds; or
  • the period of the preset frame structure is 1280 milliseconds, and the duration of the first time-frequency resource segment is 20 milliseconds.
  • the first time-frequency resource the total duration of uplink time-frequency resources and / or idle time-frequency resources Equal to 0 milliseconds
  • the second time-frequency resource segment includes 63 data frames, and the duration of each data frame is 20 milliseconds.
  • the two-carrier design method is similar and will not be repeated here.
  • the duration of the first time-frequency resource segment is the same as the duration of the data frame, which is convenient for uniformly using the time unit nframe representation, where the nframe duration is equal to the data frame duration within the duration of the first time-frequency resource segment.
  • This can simplify the processing of the base station and terminal timers, which is conducive to improving communication efficiency and reducing equipment power consumption.
  • it can ensure that the duty cycle of the data frame is not greater than 10%, which fully meets the requirements of the existing protocol standards.
  • a frame structure in which the anchor point segment and the data frame are both 20 ms may be configured.
  • FIG. 7 is another schematic diagram of a frame structure provided by an embodiment of the present application.
  • the data frame frame length T2 is equal to the anchor segment frame length T1
  • both are 20ms, at this time, it can be set by
  • the first data frame after the anchor segment is the uplink time-frequency resource and / or idle time-frequency resource, so that when the frame length of the data frame shown in the lower part of FIG. 5 is not equal to the frame length of the anchor segment, the incomplete data frame will be
  • the configuration of uplink time-frequency resources and / or idle time-frequency resources and inserting them after the anchor segment remains the same.
  • a frame structure shown in the lower part of FIG. 6 may also be used to configure a data frame in front of the anchor segment as uplink time-frequency resources and / or idle time-frequency resources and merge them with the anchor segment, which is not repeated here. This enables unified configuration and management.
  • the frame structure in the embodiment of the present application can be used as a static pre-configured standard structure for base stations and terminals in NB-IoT-U to directly use; it can also be compatible with the existing frame structure and detected by the base station or terminal.
  • the existing frame structure is reconstructed and used in real time, which is not limited in the embodiment of the present application.
  • FIG. 4 is a schematic flowchart of another communication method according to an embodiment of the present application.
  • the method may include:
  • the base station sends a synchronization signal and a PBCH in a first time-frequency resource segment of a preset frame structure.
  • the terminal synchronizes with the base station to obtain scheduling information of the cell identity and system information.
  • the base station sends system information in the downlink time-frequency resource of the second time-frequency resource segment.
  • the base station can send system information on the downlink time-frequency resource of the second time-frequency resource segment through the data channel PDSCH.
  • the terminal can obtain information such as random access and paging messages and configuration parameters of neighboring cells.
  • the terminal sends a random access request message (msg1) on the uplink time-frequency resource of the first time-frequency resource segment and / or the uplink time-frequency resource of the second time-frequency resource segment.
  • msg1 random access request message
  • the terminal may send a random access preamble through the control channel NPRACH on the uplink time-frequency resource of the first time-frequency resource segment and / or the uplink time-frequency resource of the second time-frequency resource segment, and the base station sends the received preamble on the NPRACH channel.
  • the random access preamble can determine whether there is a user access and indicate the resource block used by the user to send the random access preamble.
  • the base station If the base station needs to page the terminal, the base station sends the control channel PDCCH and the data channel PDSCH in the downlink portion of the data frame of the data segment, and sends the paged terminal identification in the PDSCH channel to notify the terminal to resend msg1 or to receive system information again. .
  • the terminal can also detect whether the base station has sent a paging message for the terminal according to the paging message configured by the system information according to the paging cycle, that is, the terminal can receive downlink time-frequency resources in the second time-frequency resource segment.
  • Control information corresponding to the paging message sent by the control channel PDCCH and receive the paging message sent by the data channel PDSCH according to the control information, determine whether there is a paging message for the terminal, and determine whether msg1 needs to be sent.
  • the base station sends a random access response message (msg2) in the downlink time-frequency resource of the second time-frequency resource segment.
  • the base station After detecting that the user has accessed the base station, the base station sends control information corresponding to the random access response message (msg2) through the control channel PDCCH in the downlink time-frequency resource of the second time-frequency resource segment.
  • the downlink time-frequency resource of the resource segment sends a random access response message (msg2) through the data channel PDSCH.
  • the terminal After detecting the corresponding control information of the random access response, the terminal receives the random access response information according to the control information.
  • the terminal sends an RRC connection request message (msg3) on the uplink time-frequency resource of the first time-frequency resource segment and / or the uplink time-frequency resource of the second time-frequency resource segment.
  • msg3 an RRC connection request message
  • the terminal After the terminal receives the random access response information correctly, it can send an RRC connection request message (msg3) through the data channel PUSCH on the uplink time-frequency resource of the first time-frequency resource segment and / or the uplink time-frequency resource of the second time-frequency resource segment. ), The base station receives msg3 in the corresponding uplink time-frequency resource.
  • the base station sends a competition resolution message (msg4) on the downlink time-frequency resource of the second time-frequency resource segment to complete the random access of the terminal.
  • msg4 competition resolution message
  • the base station may send control information corresponding to the competition resolution message (msg4) through the control channel PDCCH on the downlink time-frequency resource of the second time-frequency resource segment, and then the base station downlinks the second time-frequency resource segment.
  • a contention resolution message (msg4) is sent through the data channel PDSCH.
  • the terminal After receiving the msg4 control information through the control channel for the downlink time-frequency resource of the second time-frequency resource segment, after receiving the msg4 through the data channel of the downlink time-frequency resource of the second time-frequency resource segment, the terminal may be in the first time-frequency
  • the uplink time-frequency resource of the resource segment and / or the uplink time-frequency resource of the second time-frequency resource segment sends PUSCH format 2 and feedbacks whether msg4 is received correctly.
  • the base station sends a downlink time-frequency resource in the second time-frequency resource segment to the terminal through a physical downlink control channel PDCCH for retransmission.
  • the base station may receive the RRC connection retransmitted by the terminal through a physical uplink shared channel PUSCH on the uplink time-frequency resource of the first time-frequency resource segment and / or the uplink time-frequency resource of the second time-frequency resource segment. Request message.
  • uplink data transmission is performed based on the uplink time-frequency resources of the first time-frequency resource segment and / or uplink time-frequency resources of the second time-frequency resource segment, and downlink time-frequency resources based on the second time-frequency resource. Perform downlink data transmission.
  • the above mainly describes the terminal random access process and data transmission process. Any other terminal and base station information interaction processes such as initial access, information retransmission, cell switching, and data transmission can use the embodiments of this application.
  • the preset frame structure is completed, and uplink information is transmitted through the uplink time-frequency resource of the first time-frequency resource segment and / or the uplink time-frequency resource of the second time-frequency resource segment in the preset frame structure, and the second information is transmitted through the second time-frequency resource segment.
  • Downlink time-frequency resources in the time-frequency resource segment are used to transmit downlink information.
  • the base station may configure or instruct or the terminal applies for use, which is not limited in the embodiment of the present application.
  • the uplink time-frequency resources and / or idle time-frequency resources in the first time-frequency resource segment may also be configured as downlink time-frequency resources, downlink time-frequency resources and idle time-frequency resources, or downlink time-frequency resources and uplink time-frequency resources.
  • the first time-frequency resource segment includes downlink time-frequency resources, it may be configured to transmit downlink information.
  • FIG. 7 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • the base station may include:
  • the receiving unit 100 is configured to receive a random access request message sent by a terminal based on a preset frame structure
  • the sending unit 200 is configured to send a random access response message to the terminal based on the preset frame structure
  • the receiving unit 100 is further configured to receive a radio resource control RRC connection request message sent by the terminal based on the preset frame structure;
  • the sending unit 200 is further configured to send a competition resolution message to the terminal based on the preset frame structure to complete random access of the terminal;
  • the preset frame structure includes a first time-frequency resource segment and a second time-frequency resource segment.
  • the first time-frequency resource segment includes time-frequency resources for sending a synchronization signal and a physical broadcast channel PBCH, and also includes idle time.
  • the second time-frequency resource segment includes an integer number of data frames with the same duration, and the duration of the first time-frequency resource segment is equal to the second time
  • the duration of any data frame in the frequency resource segment, the data frame includes downlink time-frequency resources for sending downlink information and uplink time-frequency resources for sending uplink information; the random access request message and the RRC connection
  • the request message is carried by the uplink time-frequency resource of the first time-frequency resource segment and / or the uplink time-frequency resource of the second time-frequency resource segment, and the random access response message and the competition resolution message pass by the Downlink time-frequency resource bearer in the second time-frequency resource segment.
  • the sending unit 200 is further configured to:
  • the downlink time-frequency resources in the second time-frequency resource segment send system information to the terminal through a physical downlink shared channel PDSCH.
  • the base station further includes:
  • the measurement unit 300 (not shown in the figure) is configured to complete signal quality measurement or interference level measurement when the idle time-frequency resource is switched to another frequency point.
  • the sending unit 200 is further configured to use a physical downlink control channel PDCCH in the downlink time-frequency resource of the second time-frequency resource segment. Sending a retransmission instruction to the terminal;
  • the receiving unit 100 is further configured to receive, by using a physical uplink shared channel PUSCH, the terminal repeats the uplink time-frequency resources in the first time-frequency resource segment and / or the uplink time-frequency resources in the second time-frequency resource segment.
  • RRC connection request message is further configured to receive, by using a physical uplink shared channel PUSCH, the terminal repeats the uplink time-frequency resources in the first time-frequency resource segment and / or the uplink time-frequency resources in the second time-frequency resource segment.
  • the receiving unit 100 and the sending unit 200 are further configured to:
  • the uplink data is carried by the uplink time-frequency resource of the first time-frequency resource segment and / or the uplink time-frequency resource of the second time-frequency resource segment, and the downlink data is transmitted by the second time-frequency resource.
  • Downlink time-frequency resource of the segment is carried by the uplink time-frequency resource of the first time-frequency resource segment and / or the uplink time-frequency resource of the second time-frequency resource segment, and the downlink data is transmitted by the second time-frequency resource.
  • the time domain position of the uplink time-frequency resource and / or the idle time-frequency resource is located behind the time-frequency resource that sends the synchronization signal and the PBCH;
  • the time domain position of the uplink time-frequency resource and / or the idle time-frequency resource is located before the time-frequency resource for sending the synchronization signal and the PBCH.
  • the period of the preset frame structure is 1280 milliseconds, and the duration of the first time-frequency resource segment is 40 milliseconds.
  • the first time-frequency resource uplink time-frequency resources and / or idle time-frequency resources
  • the total duration of the resource is equal to 20 milliseconds, and the second time-frequency resource segment includes 31 data frames, and the duration of each data frame is 40 milliseconds; or
  • the period of the preset frame structure is 1280 milliseconds, and the duration of the first time-frequency resource segment is 80 milliseconds.
  • the first time-frequency resource the total duration of uplink time-frequency resources and / or idle time-frequency resources Equal to 60 milliseconds
  • the second time-frequency resource segment includes 15 data frames, and the duration of each data frame is 80 milliseconds; or
  • the period of the preset frame structure is 1280 milliseconds, and the duration of the first time-frequency resource segment is 20 milliseconds.
  • the first time-frequency resource the total duration of uplink time-frequency resources and / or idle time-frequency resources Equal to 0 milliseconds
  • the second time-frequency resource segment includes 63 data frames, and the duration of each data frame is 20 milliseconds.
  • FIG. 9 is a schematic structural diagram of another base station according to an embodiment of the present application.
  • the base station may include a processor 110, a memory 120, and a bus 130.
  • the processor 110 and the memory 120 are connected through a bus 130.
  • the memory 120 is configured to store instructions.
  • the processor 110 is configured to execute the instructions stored in the memory 120 to implement the steps in the method corresponding to FIG. 3 to FIG. 4 above.
  • the base station may further include an input port 140 and an output port 150.
  • the processor 110, the memory 120, the input port 140, and the output port 150 may be connected through a bus 130.
  • the processor 110 is configured to execute instructions stored in the memory 120 to control the input port 140 to receive signals and control the output port 150 to send signals to complete the steps performed by the base station in the foregoing method.
  • the input port 140 and the output port 150 may be the same or different physical entities. When they are the same physical entity, they can be collectively called input / output ports.
  • the memory 120 may be integrated in the processor 110 or may be provided separately from the processor 110.
  • the functions of the input port 140 and the output port 150 may be considered to be implemented through a transceiver circuit or a dedicated chip for transceiver.
  • the processor 110 may be implemented by a dedicated processing chip, a processing circuit, a processor, or a general-purpose chip.
  • a manner of using a general-purpose computer may be considered to implement the base station provided in the embodiment of the present application.
  • the program code to realize the functions of the processor 110, the input port 140, and the output port 150 is stored in the memory, and the general-purpose processor implements the functions of the processor 110, the input port 140, and the output port 150 by executing the code in the memory.
  • FIG. 10 is a schematic diagram of a composition of a terminal according to an embodiment of the present application.
  • the terminal includes:
  • a sending unit 400 configured to send a random access request message to a base station based on a preset frame structure
  • the receiving unit 500 is configured to receive a random access response message sent by the base station based on the preset frame structure
  • the sending unit 400 is further configured to send a radio resource control RRC connection request message to the base station based on the preset frame structure;
  • the receiving unit 500 is further configured to receive a competition resolution message sent by the base station based on the preset frame structure to complete random access of the terminal;
  • the preset frame structure includes a first time-frequency resource segment and a second time-frequency resource segment.
  • the first time-frequency resource segment includes time-frequency resources for sending a synchronization signal and a physical broadcast channel PBCH, and also includes idle time.
  • the second time-frequency resource segment includes an integer number of data frames with the same duration, and the duration of the first time-frequency resource segment is equal to the second time
  • the duration of any data frame in the frequency resource segment, the data frame includes downlink time-frequency resources for sending downlink information and uplink time-frequency resources for sending uplink information; the random access request message and the RRC connection
  • the request message is carried by the uplink time-frequency resource of the first time-frequency resource segment and / or the uplink time-frequency resource of the second time-frequency resource segment, and the random access response message and the competition resolution message pass by the Downlink time-frequency resource bearer in the second time-frequency resource segment.
  • the receiving unit 500 is further configured to:
  • FIG. 10 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • the terminal further includes:
  • a measuring unit 600 (not shown in the figure) is configured to complete signal quality measurement of a neighboring cell when the idle time-frequency resource is switched to another frequency point.
  • the receiving unit 500 is further configured to receive downlink time-frequency resources of the base station in the second time-frequency resource segment, A retransmission indication sent through the physical downlink control channel PDCCH;
  • the sending unit 600 is further configured to redirect the uplink time-frequency resource in the first time-frequency resource segment and / or the uplink time-frequency resource in the second time-frequency resource segment to the base station through a physical uplink shared channel PUSCH. Pass the RRC connection request message.
  • the sending unit 600 and the receiving unit 500 are further configured to:
  • the uplink data is carried by the uplink time-frequency resource of the first time-frequency resource segment and / or the uplink time-frequency resource of the second time-frequency resource segment, and the downlink data is transmitted by the second time-frequency resource.
  • Downlink time-frequency resource of the segment is carried by the uplink time-frequency resource of the first time-frequency resource segment and / or the uplink time-frequency resource of the second time-frequency resource segment, and the downlink data is transmitted by the second time-frequency resource.
  • the time domain position of the uplink time-frequency resource and / or the idle time-frequency resource is located behind the time-frequency resource that sends the synchronization signal and the PBCH;
  • the time domain position of the uplink time-frequency resource and / or the idle time-frequency resource is located before the time-frequency resource for sending the synchronization signal and the PBCH.
  • the period of the preset frame structure is 1280 milliseconds, and the duration of the first time-frequency resource segment is 40 milliseconds.
  • the first time-frequency resource uplink time-frequency resources and / or idle time-frequency resources
  • the total duration of the resource is equal to 20 milliseconds, and the second time-frequency resource segment includes 31 data frames, and the duration of each data frame is 40 milliseconds; or
  • the period of the preset frame structure is 1280 milliseconds, and the duration of the first time-frequency resource segment is 80 milliseconds.
  • the first time-frequency resource the total duration of uplink time-frequency resources and / or idle time-frequency resources Equal to 60 milliseconds
  • the second time-frequency resource segment includes 15 data frames, and the duration of each data frame is 80 milliseconds; or
  • the period of the preset frame structure is 1280 milliseconds, and the duration of the first time-frequency resource segment is 20 milliseconds.
  • the first time-frequency resource the total duration of uplink time-frequency resources and / or idle time-frequency resources Equal to 0 milliseconds
  • the second time-frequency resource segment includes 63 data frames, and the duration of each data frame is 20 milliseconds.
  • FIG. 11 is a schematic structural diagram of another terminal according to an embodiment of the present application.
  • the terminal may include a processor 210, a memory 220, and a bus 230.
  • the processor 210 and the memory 220 are connected through a bus 230.
  • the memory 220 is used to store instructions, and the processor 210 is used to execute the instructions stored in the memory 220 to implement the steps in the method corresponding to FIG. 3 to FIG. 4 above.
  • the terminal may further include an input port 240 and an output port 250.
  • the processor 210, the memory 220, the input port 240, and the output port 250 may be connected through a bus 230.
  • the processor 210 is configured to execute instructions stored in the memory 220 to control the input port 240 to receive signals and control the output port 250 to send signals to complete steps performed by the terminal in the foregoing method.
  • the input port 240 and the output port 250 may be the same or different physical entities. When they are the same physical entity, they can be collectively called input / output ports.
  • the memory 220 may be integrated in the processor 210 or may be separately provided from the processor 210.
  • the functions of the input port 240 and the output port 250 may be considered to be implemented through a transceiver circuit or a dedicated chip for transceiver.
  • the processor 210 may be implemented by a dedicated processing chip, a processing circuit, a processor, or a general-purpose chip.
  • a manner of using a general-purpose computer may be considered to implement the terminal provided in the embodiment of the present application.
  • the program code that will implement the functions of the processor 210, the input port 240, and the output port 250 is stored in the memory, and the general-purpose processor implements the functions of the processor 210, the input port 240, and the output port 250 by executing the code in the memory.
  • FIG. 9 and FIG. 11 show only one memory and a processor. In an actual controller, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, which is not limited in the embodiment of the present application.
  • the processor may be a Central Processing Unit (“CPU”), and the processor may also be another general-purpose processor, a digital signal processor (DSP), or an application-specific integrated circuit (ASIC). ), Ready-made programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory may include read-only memory and random access memory, and provide instructions and data to the processor. A portion of the memory may also include non-volatile random access memory.
  • the bus can also include a power bus, a control bus, and a status signal bus. However, for the sake of clarity, various buses are marked as buses in the figure.
  • the embodiment of the present application further provides a communication system including a base station and a terminal, both of which can be performed using the method and frame structure shown in FIG. 3 to FIG. 4
  • the specific frame structure can refer to the related description and description of FIG. 5 to FIG. 7, which will not be repeated here.
  • the specific communication process can refer to the existing standard process in the NB-IoT-U, which will not be described again here.
  • the size of the sequence numbers of the above processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not deal with the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, a computer, a server, or a data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes one or more available medium integration.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (Solid State Disk (SSD)), and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种通信的方法、基站及终端。方法包括:基站接收终端基于预设帧结构发送的随机接入请求消息;基于预设帧结构向终端发送随机接入响应消息;接收终端基于预设帧结构发送的RRC连接请求消息;基于预设帧结构向终端发送竞争决议消息,完成终端的随机接入;其中,预设帧结构包括第一时频资源段和第二时频资源段,第一时频资源段包括用于发送同步信号和PBCH的时频资源,还包括空闲时频资源和/或用于发送上行信息的上行时频资源,第二时频资源段包括整数个时长相同的数据帧,第一时频资源段的时长等于任一个数据帧的时长。采用本申请实施例,可降低通信设备收发信息时处理的复杂度,并进一步降低通信时的占空比,更容易满足ETSI法规要求。

Description

一种通信的方法、基站及终端 技术领域
本申请涉及通信技术领域,尤其涉及一种通信的方法、基站及终端。
背景技术
基于非授权频谱的窄带物联网(Unlicensed Spectrum Narrow Band-Internet of Things,NB-IoT-U)技术为MulteFire联盟(MulteFire Alliance,MFA)中应用于窄带物联网的技术,具有窄带物联网(Narrow Band-Internet of Things,NB-IoT)的技术特征,但由于工作于非授权频谱,因此为了适配非授权频谱法规,NB-IoT-U在NB-IoT设计的基础上,做了一些适配频谱法规的设计。
以欧洲电信标准协会(European telecommunications standards institute,ETSI)的频谱法规为例,ETSI法规对使用1GHz以下的非授权频段的设备进行了以下约束(参考COMMISSION IMPLEMENTING DECISION(EU)2017/1483of 8August 2017):
对于869.4-869.65MHz(band54)频段,等效辐射功率(或者有效辐射功率)(Effective Radiated Power,ERP)最大为27dBm,1小时时间内,占空比(duty cycle)最大为10%。对于865-868MHz(band47b)频段,只有865.6-865.8MHz,866.2-866.4MHz,866.8-867.0MHz和867.4-867.6MHz四个频带可以使用,需要具备适应功率控制技术,等效辐射功率最大为27dBm,1小时时间内,网络接入点占空比最大为10%,非网络接入点占空比为2.5%。
根据目前的MFA会议进展,NB-IoT-U在ETSI的一种可能帧结构设计:ETSI至少支持在band54单载波设计,后续可能支持band54和band47b两载波设计,甚至更多载波设计,但为了保证兼容性,即使是多载波设计,band54为锚点(anchor)载波,即主同步信号(Primary Synchronization Signal,PSS),辅同步信号(Secondary Synchronization Signal,SSS)和系统信息都在band54上发送,其中,系统信息包括主信息块(master information block,MIB)和系统信息块(system information block,SIB)。其中MIB通过PBCH(Physical broadcast channel,物理广播信道)发送。图1为NB-IoT-U在ETSI单载波设计的示意图,图2为NB-IoT-U在ETSI两载波设计的示意图。如图1和图2所示,根据目前的MFA会议进展,一个锚点段(anchor segment)周期为1280ms,anchor segment时长固定为20ms,其中下行同步信号PSS/SSS占10ms,物理下行广播信道(Physical Broadcast Channel,PBCH)占10ms,因此数据段(data segment)总时长为1260ms。MFA还规定NB-IoT-U在ETSI中,data segment中,每个数据帧(data frame)时长可以为20ms、40ms或80ms,每个data frame内包含下行帧(图中D所示)和上行帧(图中U所示),如果data frame帧长为20ms,则包含2ms下行和18ms上行,如果data frame帧长为40ms,则包含4ms下行和36ms上行,如果data frame帧长为80ms,则包含8ms下行和72ms上行。由此可见,由于data segment总时长为1260ms,当data frame帧长为20ms,一个anchor segment周期内包含1个anchor segment和63个data frame;但是当data frame帧长为40ms,一个anchor segment周期内包含1个anchor segment和31个data frame和1个20ms的不完整data frame,同理,当data frame帧长为80ms,一个anchor segment 周期内包含1个anchor segment和15个data frame和1个60ms的不完整data frame。此处对不完整data frame的理解为:长度与定义的其它data frame长度不同的帧,比如定义data frame长度为40ms,但在数据段中,有一个帧长度不是40ms,则该帧为不完整帧,其它帧可以称为完整帧。
目前关于不完整的data frame怎么处理,MFA并没有讨论。一种可能的方案是针对不完整data frame,下行占用的时长与其它完整data frame的下行时长相同,剩下的时长为上行。即当data frame帧长为40ms时,不完整data frame时长为20ms,其中4ms为下行,16ms为上行;当data frame帧长为80ms时,不完整data frame时长为60ms,其中8ms为下行,52ms为上行。
如果采用上述所述方案,当存在不完整data frame时,将存在如下问题:
(1)anchor segment时长和data frame时长不同,导致通信设备如基站或终端在进行anchor segment和data frame之间的帧切换时,需要设置不同长度的计时器,增加基站和终端收发信息时处理的复杂度。
比如,当终端接收segment anchor时,在segment anchor起始边界t1处初始化定时器1,同时设置定时器时长为T1,当定时器定时等于T1时长时(即20ms),需要复位定时器1,同时设置定时器时长为T2,当定时器定时等于T2时长时(即20ms或者40ms或者80ms),需要复位定时器1,同时设置定时器时长为T2,当定时器定时等于T2时长时(即20ms或者40ms或者80ms),复位定时器1……,同时,在segment anchor起始边界t1处还需要初始化定时器2,当定时器2到达不完整数据帧起始边界t3时,需要复位定时器1,同时设置定时器时长为T5,当定时器定时等于T5时长时(即20ms或者60ms),复位定时器1,进入下一个segment anchor处理周期。此外,由于完整数据帧和不完整数据帧中上行时长不同,因此,实际应用中,很有可能需要使用定时器区分这两种场景,进一步增加定时器的处理操作,增加基站和终端处理复杂度。
(2)根据ETSI法规,针对基站侧发送,占空比要求为10%,对于完整data frame,目前MFA的帧结构中,下行占比为10%,但由于不完整数据帧的帧长小于完整数据帧长,但下行时长相同,导致不完整帧的下行传输占空比大于10%。
发明内容
本申请实施例所要解决的技术问题在于,提供一种通信的方法、基站及终端,以降低基站和终端通信时信息处理的复杂度,使得通信时的占空比满足ETSI法规要求。
第一方面,基站接收终端基于预设帧结构发送的随机接入请求消息;
所述基站基于所述预设帧结构向所述终端发送随机接入响应消息;
所述基站接收所述终端基于所述预设帧结构发送的无线资源控制RRC连接请求消息;
所述基站基于所述预设帧结构向所述终端发送竞争决议消息,完成所述终端的随机接入;
其中,所述预设帧结构包括第一时频资源段和第二时频资源段,所述第一时频资源段包括用于发送同步信号和物理广播信道PBCH的时频资源,还包括空闲时频资源和/或用于发送上行信息的上行时频资源,所述第二时频资源段包括整数个时长相同的数据帧,所述 第一时频资源段的时长等于所述第二时频资源段中任一个数据帧的时长,所述数据帧包括用于发送下行信息的下行时频资源以及用于发送上行信息的上行时频资源;所述随机接入请求消息和所述RRC连接请求消息通过所述第一时频资源段的上行时频资源和/或所述第二时频资源段的上行时频资源承载,所述随机接入响应消息和所述竞争决议消息通过所述第二时频资源段中的下行时频资源承载。
在一种可能的实现方式中,在所述基站接收终端基于预设帧结构发送的随机接入请求消息之前,所述方法还包括:
所述基站在所述预设帧结构中的第一时频资源段向所述终端发送同步信号和PBCH;
所述基站在所述第二时频资源段中的下行时频资源,通过物理下行共享信道PDSCH向所述终端发送系统信息。
在一种可能的实现方式中,所述方法还包括:
所述基站在所述空闲时频资源切换到其他频点完成信号质量测量或干扰水平测量。
在一种可能的实现方式中,若所述基站未接收到所述RRC连接请求消息,则所述基站在所述第二时频资源段的下行时频资源,通过物理下行控制信道PDCCH向所述终端发送重传指示;
所述基站在所述第一时频资源段的上行时频资源和/或所述第二时频资源段的上行时频资源,通过物理上行共享信道PUSCH接收所述终端重传的RRC连接请求消息。
在一种可能的实现方式中,在完成所述终端的随机接入之后,所述方法还包括:
所述基站与所述终端进行上行数据或下行数据的传输;
其中,所述上行数据通过所述第一时频资源段的上行时频资源和/或所述第二时频资源段的上行时频资源承载,所述下行数据通过所述第二时频资源段的下行时频资源承载。
在一种可能的实现方式中,在所述第一时频资源中,所述上行时频资源和/或空闲时频资源的时域位置,位于发送同步信号和PBCH的时频资源后面;或者
所述上行时频资源和/或空闲时频资源的时域位置,位于发送同步信号和PBCH的时频资源前面。
在一种可能的实现方式中,所述预设帧结构的周期为1280毫秒,所述第一时频资源段的时长为40毫秒,在所述第一时频资源中,上行时频资源和/或空闲时频资源的总时长等于20毫秒,所述第二时频资源段包括31个数据帧,每个数据帧的时长为40毫秒;或者
所述预设帧结构的周期为1280毫秒,所述第一时频资源段的时长为80毫秒,在所述第一时频资源中,上行时频资源和/或空闲时频资源的总时长等于60毫秒,所述第二时频资源段包括15个数据帧,每个数据帧的时长为80毫秒;或者
所述预设帧结构的周期为1280毫秒,所述第一时频资源段的时长为20毫秒,在所述第一时频资源中,上行时频资源和/或空闲时频资源的总时长等于0毫秒,所述第二时频资源段包括63个数据帧,每个数据帧的时长为20毫秒。
第二方面,本申请的实施例提供了一种通信方法,可包括:
终端基于预设帧结构向基站发送的随机接入请求消息;
所述终端接收所述基站基于所述预设帧结构发送的随机接入响应消息;
所述终端基于所述预设帧结构向所述基站发送无线资源控制RRC连接请求消息;
所述终端接收所述基站基于所述预设帧结构发送的竞争决议消息,完成所述终端的随机接入;
其中,所述预设帧结构包括第一时频资源段和第二时频资源段,所述第一时频资源段包括用于发送同步信号和物理广播信道PBCH的时频资源,还包括空闲时频资源和/或用于发送上行信息的上行时频资源,所述第二时频资源段包括整数个时长相同的数据帧,所述第一时频资源段的时长等于所述第二时频资源段中任一个数据帧的时长,所述数据帧包括用于发送下行信息的下行时频资源以及用于发送上行信息的上行时频资源;所述随机接入请求消息和所述RRC连接请求消息通过所述第一时频资源段的上行时频资源和/或所述第二时频资源段的上行时频资源承载,所述随机接入响应消息和所述竞争决议消息通过所述第二时频资源段中的下行时频资源承载。
在一种可能的实现方式中,在所述终端基于预设帧结构向基站发送的随机接入请求消息之前,所述方法还包括:
所述终端接收所述基站在所述预设帧结构中的第一时频资源段发送的同步信号和PBCH;
所述终端接收所述基站在所述第二时频资源段中的下行时频资源,通过物理下行共享信道PDSCH发送的系统信息。
在一种可能的实现方式中,所述方法还包括:
所述终端在所述空闲时频资源切换到其他频点完成相邻小区信号质量测量。
在一种可能的实现方式中,若所述终端未发送RRC连接请求消息或发送RRC连接请求消息失败,则所述终端接收所述基站在所述第二时频资源段的下行时频资源,通过物理下行控制信道PDCCH发送的重传指示;
所述终端在所述第一时频资源段的上行时频资源和/或所述第二时频资源段的上行时频资源,通过物理上行共享信道PUSCH向所述基站重传RRC连接请求消息。
在一种可能的实现方式中,在完成所述终端的随机接入之后,所述方法还包括:
所述终端与所述基站进行上行数据或下行数据的传输;
其中,所述上行数据通过所述第一时频资源段的上行时频资源和/或所述第二时频资源段的上行时频资源承载,所述下行数据通过所述第二时频资源段的下行时频资源承载。
在一种可能的实现方式中,在所述第一时频资源中,所述上行时频资源和/或空闲时频资源的时域位置,位于发送同步信号和PBCH的时频资源后面;或者
所述上行时频资源和/或空闲时频资源的时域位置,位于发送同步信号和PBCH的时频资源前面。
在一种可能的实现方式中,所述预设帧结构的周期为1280毫秒,所述第一时频资源段的时长为40毫秒,在所述第一时频资源中,上行时频资源和/或空闲时频资源的总时长等于20毫秒,所述第二时频资源段包括31个数据帧,每个数据帧的时长为40毫秒;或者
所述预设帧结构的周期为1280毫秒,所述第一时频资源段的时长为80毫秒,在所述第一时频资源中,上行时频资源和/或空闲时频资源的总时长等于60毫秒,所述第二时频资源段包括15个数据帧,每个数据帧的时长为80毫秒;或者
所述预设帧结构的周期为1280毫秒,所述第一时频资源段的时长为20毫秒,在所述第一时频资源中,上行时频资源和/或空闲时频资源的总时长等于0毫秒,所述第二时频资 源段包括63个数据帧,每个数据帧的时长为20毫秒。
第三方面,本申请的实施例提供了一种基站,可包括:
接收单元,用于接收终端基于预设帧结构发送的随机接入请求消息;
发送单元,用于基于所述预设帧结构向所述终端发送随机接入响应消息;
所述接收单元还用于接收所述终端基于所述预设帧结构发送的无线资源控制RRC连接请求消息;
所述发送单元还用于基于所述预设帧结构向所述终端发送竞争决议消息,完成所述终端的随机接入;
其中,所述预设帧结构包括第一时频资源段和第二时频资源段,所述第一时频资源段包括用于发送同步信号和物理广播信道PBCH的时频资源,还包括空闲时频资源和/或用于发送上行信息的上行时频资源,所述第二时频资源段包括整数个时长相同的数据帧,所述第一时频资源段的时长等于所述第二时频资源段中任一个数据帧的时长,所述数据帧包括用于发送下行信息的下行时频资源以及用于发送上行信息的上行时频资源;所述随机接入请求消息和所述RRC连接请求消息通过所述第一时频资源段的上行时频资源和/或所述第二时频资源段的上行时频资源承载,所述随机接入响应消息和所述竞争决议消息通过所述第二时频资源段中的下行时频资源承载。
在一种可能的实现方式中,所述发送单元还用于:
在所述预设帧结构中的第一时频资源段向所述终端发送同步信号和PBCH;
在所述第二时频资源段中的下行时频资源,通过物理下行共享信道PDSCH向所述终端发送系统信息。
在一种可能的实现方式中,所述基站还包括:
测量单元,用于在所述空闲时频资源切换到其他频点完成信号质量测量或干扰水平测量。
在一种可能的实现方式中,若所述接收单元未接收到所述RRC连接请求消息,则所述发送单元还用于在所述第二时频资源段的下行时频资源,通过物理下行控制信道PDCCH向所述终端发送重传指示;
所述接收单元还用于在所述第一时频资源段的上行时频资源和/或所述第二时频资源段的上行时频资源,通过物理上行共享信道PUSCH接收所述终端重传的RRC连接请求消息。
在一种可能的实现方式中,所述接收单元和所述发送单元还用于:
与所述终端进行上行数据或下行数据的传输;
其中,所述上行数据通过所述第一时频资源段的上行时频资源和/或所述第二时频资源段的上行时频资源承载,所述下行数据通过所述第二时频资源段的下行时频资源承载。
在一种可能的实现方式中,在所述第一时频资源中,所述上行时频资源和/或空闲时频资源的时域位置,位于发送同步信号和PBCH的时频资源后面;或者
所述上行时频资源和/或空闲时频资源的时域位置,位于发送同步信号和PBCH的时频资源前面。
在一种可能的实现方式中,所述预设帧结构的周期为1280毫秒,所述第一时频资源段的时长为40毫秒,在所述第一时频资源中,上行时频资源和/或空闲时频资源的总时长等 于20毫秒,所述第二时频资源段包括31个数据帧,每个数据帧的时长为40毫秒;或者
所述预设帧结构的周期为1280毫秒,所述第一时频资源段的时长为80毫秒,在所述第一时频资源中,上行时频资源和/或空闲时频资源的总时长等于60毫秒,所述第二时频资源段包括15个数据帧,每个数据帧的时长为80毫秒;或者
所述预设帧结构的周期为1280毫秒,所述第一时频资源段的时长为20毫秒,在所述第一时频资源中,上行时频资源和/或空闲时频资源的总时长等于0毫秒,所述第二时频资源段包括63个数据帧,每个数据帧的时长为20毫秒。
第四方面,本申请的实施例提供了一种基站,可包括:
处理器、存储器和总线,所述处理器和存储器通过总线连接,其中,所述存储器用于存储一组程序代码,所述处理器用于调用所述存储器中存储的程序代码,执行本申请实施例第一方面或第一方面任一实现方式中的步骤。
第五方面,本申请的实施例提供了一种终端,可包括:
发送单元,用于基于预设帧结构向基站发送的随机接入请求消息;
接收单元,用于接收所述基站基于所述预设帧结构发送的随机接入响应消息;
所述发送单元还用于基于所述预设帧结构向所述基站发送无线资源控制RRC连接请求消息;
所述接收单元还用于接收所述基站基于所述预设帧结构发送的竞争决议消息,完成所述终端的随机接入;
其中,所述预设帧结构包括第一时频资源段和第二时频资源段,所述第一时频资源段包括用于发送同步信号和物理广播信道PBCH的时频资源,还包括空闲时频资源和/或用于发送上行信息的上行时频资源,所述第二时频资源段包括整数个时长相同的数据帧,所述第一时频资源段的时长等于所述第二时频资源段中任一个数据帧的时长,所述数据帧包括用于发送下行信息的下行时频资源以及用于发送上行信息的上行时频资源;所述随机接入请求消息和所述RRC连接请求消息通过所述第一时频资源段的上行时频资源和/或所述第二时频资源段的上行时频资源承载,所述随机接入响应消息和所述竞争决议消息通过所述第二时频资源段中的下行时频资源承载。
在一种可能的实现方式中,所述接收单元还用于:
接收所述基站在所述预设帧结构中的第一时频资源段发送的同步信号和PBCH;
接收所述基站在所述第二时频资源段中的下行时频资源,通过物理下行共享信道PDSCH发送的系统信息。
在一种可能的实现方式中,所述终端还包括:
测量单元,用于在所述空闲时频资源切换到其他频点完成相邻小区信号质量测量。
在一种可能的实现方式中,若所述终端未发送RRC连接请求消息或发送RRC连接请求消息失败,则所述接收单元还用于接收所述基站在所述第二时频资源段的下行时频资源,通过物理下行控制信道PDCCH发送的重传指示;
所述发送单元还用于在所述第一时频资源段的上行时频资源和/或所述第二时频资源段的上行时频资源,通过物理上行共享信道PUSCH向所述基站重传RRC连接请求消息。
在一种可能的实现方式中,所述发送单元和所述接收单元还用于:
与所述基站进行上行数据或下行数据的传输;
其中,所述上行数据通过所述第一时频资源段的上行时频资源和/或所述第二时频资源段的上行时频资源承载,所述下行数据通过所述第二时频资源段的下行时频资源承载。
在一种可能的实现方式中,在所述第一时频资源中,所述上行时频资源和/或空闲时频资源的时域位置,位于发送同步信号和PBCH的时频资源后面;或者
所述上行时频资源和/或空闲时频资源的时域位置,位于发送同步信号和PBCH的时频资源前面。
在一种可能的实现方式中,所述预设帧结构的周期为1280毫秒,所述第一时频资源段的时长为40毫秒,在所述第一时频资源中,上行时频资源和/或空闲时频资源的总时长等于20毫秒,所述第二时频资源段包括31个数据帧,每个数据帧的时长为40毫秒;或者
所述预设帧结构的周期为1280毫秒,所述第一时频资源段的时长为80毫秒,在所述第一时频资源中,上行时频资源和/或空闲时频资源的总时长等于60毫秒,所述第二时频资源段包括15个数据帧,每个数据帧的时长为80毫秒;或者
所述预设帧结构的周期为1280毫秒,所述第一时频资源段的时长为20毫秒,在所述第一时频资源中,上行时频资源和/或空闲时频资源的总时长等于0毫秒,所述第二时频资源段包括63个数据帧,每个数据帧的时长为20毫秒。
第六方面,本申请的实施例提供了一种终端,可包括:
处理器、存储器和总线,所述处理器和存储器通过总线连接,其中,所述存储器用于存储一组程序代码,所述处理器用于调用所述存储器中存储的程序代码,执行本申请实施例第二方面或第二方面任一实现方式中的步骤。
第七方面,本申请的实施例提供了一种通信系统,可包括:
如本申请第三方面或第三方面任一实现方式中所述的基站;以及
如本申请第五方面或第五方面任一实现方式中所述的终端。
第八方面,本申请的实施例提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,实现上述第一方面或第一方面任一实现方式所述的方法。
第九方面,本申请的实施例提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,实现上述第二方面或第二方面任一实现方式所述的方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1为NB-IoT-U在ETSI单载波设计的帧结构示意图;
图2为NB-IoT-U在ETSI两载波设计的帧结构示意图;
图3为本申请实施例提供的一种通信的方法的流程示意图;
图4为本申请实施例提供的另一种通信的方法的流程示意图;
图5为现有帧结构与本申请实施例提供的一种帧结构的对比示意图;
图6为现有帧结构与本申请实施例提供的另一种帧结构的对比示意图;
图7为本申请实施例提供的又一种帧结构示意图;
图8为本申请实施例提供的一种基站的组成示意图;
图9为本申请实施例提供的又一种基站的组成示意图;
图10为本申请实施例提供的一种终端的组成示意图;
图11为本申请实施例提供的又一种终端的组成示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请的实施例进行描述。
本申请的说明书和权利要求书及上述附图中的术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请实施例主要涉及的通信设备包括基站和终端,终端可以是直接与基站通信的终端,也可以是为远程终端进行中继的中继终端,本申请实施例不作任何限定。
基站可以包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)等。
终端,又称之为用户设备(User Equipment,UE),是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手机、平板电脑、可穿戴设备等。
下面结合图3-图7对本申请的通信方法及通信方法中使用的帧结构进行详细描述。
请一并参见图3、图5、图6和图7,图3为本申请实施例提供的一种通信的方法的流程示意图;可包括如下步骤:
S301.基站接收终端基于预设帧结构发送的随机接入请求消息(msg1)。
S302.所述基站基于所述预设帧结构向所述终端发送随机接入响应消息(msg2)。
S303.所述基站接收所述终端基于所述预设帧结构发送的无线资源控制RRC连接请求消息(msg3)。
S304.所述基站基于所述预设帧结构向所述终端发送竞争决议消息(msg4),完成所述终端的随机接入。
上述流程为终端的随机接入流程,在随机接入流程中,基站和终端将使用预设帧结构来进行信息交互。
其中,所述预设帧结构包括第一时频资源段和第二时频资源段,所述第一时频资源段包括用于发送同步信号和物理广播信道PBCH的时频资源,还包括空闲时频资源和/或用于发送上行信息的上行时频资源,所述第二时频资源段包括整数个时长相同的数据帧,所述第一时频资源段的时长等于所述第二时频资源段中任一个数据帧的时长,所述数据帧包括用于发送下行信息的下行时频资源以及用于发送上行信息的上行时频资源;所述随机接入请求消息和所述RRC连接请求消息通过所述第一时频资源段的上行时频资源和/或所述第 二时频资源段的上行时频资源承载,所述随机接入响应消息和所述竞争决议消息通过所述第二时频资源段中的下行时频资源承载。
具体请参见图5,图5为现有帧结构与本申请实施例提供的一种预设帧结构的对比示意图;如图5所示,其中图5上方为现有帧结构的示意图。
其中,锚点段表示用于发送包括但不限于同步信号以及物理广播信道的时频资源段,所述同步信号包括但不限于PSS,SSS,窄带主同步信号(Narrow Band Primary Synchronization Signal,NPSS),窄带辅同步信号(Narrow Band Secondary Synchronization Signal,NSSS),所述物理广播信道包括但不限于PBCH,窄带物理广播信道(NPBCH)。所述时频资源,包括时域资源和频域资源,时频资源段表示在时域和/或频域上一段连续的资源段。锚点段即是在一段时域资源对应的时间内,在该段时间对应的频域位置上发送包括但不限于同步信号和物理广播信道等在内的时频资源段。
数据段表示用于发送数据信道和数据信道对应的参考信号的时频资源段,或者用于发送控制信道和控制信道对应的参考信号的时频资源段,或者用于发送数据信道和数据信道对应的参考信号以及控制信道和控制信道对应的参考信号的时频资源段。所述数据信道包括但不限于物理下行共享信道(Physical Downlink Shared Channel,PDSCH),窄带物理下行共享信道(NPDSCH),物理上行共享信道(Physical Uplink Shared Channel,PUSCH),窄带物理上行共享信道(NPUSCH),所述控制信道包括但不限于物理下行控制信道(Physical Downlink Control Channel,PDCCH),窄带物理下行控制信道(NPDCCH),窄带物理随机接入信道(NPRACH)等,所述参考信号包括但不限于小区参考信号(Cell Reference Signal,CRS),窄带下行参考信号(NRS),解调参考信号(Demodulation Reference Signal,DMRS)。所述时频资源,包括时域资源和频域资源,数据段即在一段时域资源对应的时间内,在该段时间对应的频域位置上发送数据信道和数据信道对应的参考信号,或发送控制信道和控制信道对应的参考信号,或发送数据信道和数据信道对应的参考信号以及数据信道和数据信道对应的参考信号。
控制信道的参考信号通常和控制信道同时发送,数据信道的参考信号通常和数据信道同时发送,比如控制信道PDCCH和NRS/CRS同时发送,PDSCH和NRS/CRS同时发送,PUSCH和DMRS同时发送。
数据帧:位于数据段中,每个数据帧对应独立的时频资源,即每个数据帧占据不同的时域资源,以及相同或不同的频域资源。每个数据帧独立用于发送数据信道和数据信道对应的参考信号,和/或,发送数据信道对应的控制信道和控制信道对应的参考信号等。
一个锚点段(anchor segment)周期即本申请中帧结构的周期表示开始传输一次锚点段到下一次开始传输锚点段的时间间隔。在图5中为从开始传输下行同步信号PSS/SSS到下一次开始传输下行同步信号PSS/SSS的时间间隔,根据现有协议标准设定为1280ms。锚点段的时长为T1,单位为毫秒(millisecond,ms),数据段的时长为1280ms-T1,数据段中包含若干数据帧(data frame),一个完整的数据帧时长为T2,单位为毫秒,其中每个完整数据帧中包含下行时频资源和上行时频资源,下行时频资源也可称为下行部分/下行帧(图中D所示),上行时频资源也可称为上行部分/上行帧(图中U所示)。一个数据帧中,下行时频资源的时长可称为下行帧长,上行时频资源的时长可称为上行帧长,当数据帧时 长为40ms或80ms时,将产生不完整数据帧,不完整数据帧的时长为T5,单位为毫秒,不完整数据帧中包括与完整数据帧中相同的下行帧长以及比完整数据帧更少的上行帧长。
为了解决不完整数据帧带来的通信设备如基站或终端的信息处理复杂的问题,本申请实施例对现有帧结构进行改进。使得重构的帧结构中,在一个锚点段周期即一个帧结构周期内,所述帧结构包括第一时频资源段和第二时频资源段,所述第二时域资源段类似于现有帧结构中的数据段,其包括整数个时长相同的数据帧,所述第一时域资源段包括现有帧结构中的锚点段以及不完整数据帧对应的时频资源长度,第一时域资源段的时长等于所述第二时域资源段中任一个数据帧的时长。
如图5下方的帧结构所示,为本申请实施例提供的一种重构的预设帧结构,其中,所述第一时频资源段包括用于传输同步信号(PSS/SSS)、物理下行广播信道(PBCH),以及上行时频资源(图中U所示)和/或空闲时频资源(gap),所述上行时频资源和/或空闲时频资源的总时长等于20毫秒或60毫秒。所述上行时频资源和/或空闲时频资源在时域上,位于发送所述同步信号和所述物理下行广播信道的时频资源后面。如图5所示,所述上行时频资源和/或空闲时频资源与所述PBCH相邻。其中,上行时频资源和/或空闲时频资源表示上行时频资源,空闲时频资源,上行时频资源和空闲时频资源三种可能的存在情况。
相对于现有帧结构,在本申请实施例对现有数据帧进行重构的过程中,可以将现有帧结构中的不完整数据帧对应的时长全部配置为上行时频资源,作为一个填充段(padding)在现有锚点段(可称作第一锚点段)后面插入所述上行时频资源,与第一锚点段一起构成第一时频资源段(也可称作第二锚点段),从而确保第一时频资源段帧长与数据帧帧长相同,而第二时频资源段相对于现有帧结构的数据段,减少了一个不完整数据帧,因此将包括整数个时长相同的完整数据帧,同时不再存在不完整数据帧。
需要说明的是,本申请中的第一时频资源段和第二时频资源段的称呼是为了彼此进行区分,并同时与现有帧结构中的锚点段和数据段进行区分,第一时频资源段也可以看作是一种新的锚点段,其包括现有帧结构中的锚点段以及由不完整数据帧对应的时长构成的填充段,第二时频资源段也可以看作是一种新的数据段,本申请实施例中关于锚点段、数据段、锚点段周期、帧结构周期、第一时频资源段和第二时频资源段的称呼对本申请实施例的实质内容不构成任何限定。
为了便于对本申请帧结构的理解,下面结合现有帧结构对本申请帧结构的设计进行详细说明。
以单载波设计为例:
现有帧结构的锚点段时长为20ms,当数据帧帧长为40ms或80ms时,分别存在一个帧长20ms和60ms的不完整数据帧,且第一锚点段的帧长与完整数据帧的帧长不同。
通过本申请实施例的方案,将不完整数据帧对应的时频资源全部配置为上行时频资源,并且在第一锚点段后面填充这部分上行时频资源,构成第二锚点段即第一时频资源段,使得第一时频资源段帧长与完整数据帧长相同,如图5下方帧结构所示,当T1=20ms,T2=40ms时,T5=20ms;当T1=20ms,T2=80ms时,T5=60ms,通过本申请的帧结构构造方式,使得T2=T1+T5,如果把T2时长的第一时频资源段时长和T2时长的数据帧时长称作一个nframe,则通过本申请实施例的方案,相当于把一个锚点段周期(也可称为帧结构周期)平均分为 n个nframe,当T2=40ms,锚点段周期为1280ms时,n等于32;当T2=80ms,锚点段周期为1280ms时,n等于16。即经过重构后的帧结构,可包括以下三种情况:
所述预设帧结构的周期为1280毫秒,所述第一时频资源段的时长为40毫秒,在所述第一时频资源中,上行时频资源和/或空闲时频资源的总时长等于20毫秒,所述第二时频资源段包括31个数据帧,每个数据帧的时长为40毫秒;或者
所述预设帧结构的周期为1280毫秒,所述第一时频资源段的时长为80毫秒,在所述第一时频资源中,上行时频资源和/或空闲时频资源的总时长等于60毫秒,所述第二时频资源段包括15个数据帧,每个数据帧的时长为80毫秒;或者
所述预设帧结构的周期为1280毫秒,所述第一时频资源段的时长为20毫秒,在所述第一时频资源中,上行时频资源和/或空闲时频资源的总时长等于0毫秒,所述第二时频资源段包括63个数据帧,每个数据帧的时长为20毫秒。
可选地,由于NB-IoT-U工作于非授权频点,因此存在同系统或异系统的干扰,基站可以通过测量其它频点的干扰能量判断该频点是否可用,因此可以把第一时频资源段中不完整数据帧对应的时频资源配置为空闲时频资源(gap),即该空闲时频资源内,基站和终端在空闲时频资源内既不需要下行传输,也不需要上行传输,基站和终端在空闲部分可以完成信号质量测量或干扰水平测量。当然,也可以配置不完整数据帧对应的时频资源一部分为上行时频资源,一部分为空闲时频资源,本申请实施例不作任何限定。
两载波设计的方式类似,重构后的帧结构同样满足帧结构包括第一时频资源段和第二时频资源段,第二时频资源段包括整数个时长相同的数据帧,第一时频资源段的时长等于所述第二时频资源段中任一个数据帧的时长,此处不再赘述。
可选地,在所述第一时频资源中,可以将所述上行时频资源和/或空闲时频资源的时域位置,配置位于发送同步信号和PBCH的时频资源(即现有帧结构的锚点段)后面,与发送PBCH的时频资源相邻;或者
还可以将所述上行时频资源和/或空闲时频资源的时域位置,配置位于发送同步信号和PBCH的时频资源前面。
具体请参见图6,图6为现有帧结构与本申请实施例提供的另一种帧结构的对比示意图;在图6上方,为现有帧结构的示意图,与图5上方的现有帧结构相同(图5未示出当前锚点段前面的不完整数据帧,图6已示出)。当数据帧为40ms或80ms时,在一个锚点段周期内同样会存在不完整数据帧。
相对于现有帧结构,在本申请实施例对现有帧结构进行重构的过程中,所述上行时频资源和/或空闲时频资源在时域上位于发送所述下行同步信号帧和所述物理下行广播信道帧的时频资源前面。即不改变现有帧结构中不完整数据帧的位置,仍然使其与发送所述同步信号的时频资源相邻。然后可以将不完整数据帧对应的时频资源配置为用于发送上行信息的上行时频资源或者配置为gap,并且将原有的不完整数据帧对应的时频资源与原锚点段即第一锚点段组合构成第一时频资源段即第二锚点段,从而实现第一时频资源段时长与完整数据帧时长相同,从而不再存在不完整数据帧。
以单载波设计为例:
当数据帧帧长为40ms或80ms时,分别存在一个帧长20ms和60ms的不完整数据帧, 且第一锚点段的帧长与完整数据帧的帧长不同。
通过本申请实施例的方案,将本来发送不完整数据帧的时频资源配置为上行时频资源和/或空闲时频资源,并且将第一锚点段前面的不完整数据帧对应的时频资源与第一锚点段合并,构成第一时频资源段,使得第二时频资源段帧长与完整数据帧长相同,锚点段周期(帧结构)的起始点也由传输同步信号的位置变更为与其相邻的上一个不完整数据帧的起始位置,锚点段周期的结束点也由下一次开始传输同步信号的位置变更为第一锚点段前面不完整数据帧的起始位置。第二时频资源段对应的位置也随之变化。如6下方帧结构所示,当T1=20ms,T2=40ms时,T5=20ms;当T1=20ms,T2=80ms时,T5=60ms,通过本申请的帧结构构造方式,使得T2=T1+T5,如果把T2时长的第一时频资源段时长和T2时长的数据帧时长称作一个nframe,则通过本申请实施例的方案,相当于把一个锚点段周期平均分为n个nframe,当T2=40ms,锚点段周期为1280ms时,n等于32;当T2=80ms,锚点段周期为1280ms时,n等于16。即经过重构后的帧结构,同样可包括以下三种情况:
所述预设帧结构的周期为1280毫秒,所述第一时频资源段的时长为40毫秒,在所述第一时频资源中,上行时频资源和/或空闲时频资源的总时长等于20毫秒,所述第二时频资源段包括31个数据帧,每个数据帧的时长为40毫秒;或者
所述预设帧结构的周期为1280毫秒,所述第一时频资源段的时长为80毫秒,在所述第一时频资源中,上行时频资源和/或空闲时频资源的总时长等于60毫秒,所述第二时频资源段包括15个数据帧,每个数据帧的时长为80毫秒;或者
所述预设帧结构的周期为1280毫秒,所述第一时频资源段的时长为20毫秒,在所述第一时频资源中,上行时频资源和/或空闲时频资源的总时长等于0毫秒,所述第二时频资源段包括63个数据帧,每个数据帧的时长为20毫秒。
两载波设计的方式类似,此处不再赘述。
通过构造本申请实施例中的帧结构,可以使得第一时频资源段时长与数据帧时长相同,便于统一使用时间单元nframe表示,其中nframe时长等于第一时频资源段时长内数据帧时长。从而可以简化基站和终端定时器的处理,利于提升通信效率,降低设备功耗;同时能保证数据帧的占空比不大于10%,充分满足现有协议标准的要求。
此外,为了与本申请实施例重构后的帧结构相统一,还可以对锚点段和数据帧均为20ms的帧结构进行配置。
请参见图7,图7为本申请实施例提供的又一种帧结构示意图,如图7所示,当数据帧帧长T2等于锚点段帧长T1,均为20ms,此时可以通过设置锚点段后的第一个数据帧为上行时频资源和/或空闲时频资源,从而实现与图5下方所示的数据帧帧长不等于锚点段帧长时,将不完整数据帧配置为上行时频资源和/或空闲时频资源并插入锚点段后面的情况保持一致。
当然,也可以采用图6下方所示的帧结构将锚点段前面的一个数据帧配置为上行时频资源和/或空闲时频资源并与锚点段合并的方式,此处不再赘述。从而可以实现统一的配置和管理。
需要说明的是,本申请实施例中的帧结构可以作为静态预配置标准结构供NB-IoT-U中的基站和终端直接使用;也可以兼容现有的帧结构,由基站或终端在检测到数据帧为40ms 或80ms导致存在不完整数据帧时,实时的对现有帧结构进行重构并使用,本申请实施例不作任何限定。
请参照图4,为本申请实施例提供的另一种通信的方法的流程示意图;可包括:
S401.基站在预设帧结构的第一时频资源段发送同步信号和PBCH。
S402.终端与基站同步,得到小区标识以及系统信息的调度信息。
S403.基站在第二时频资源段的下行时频资源发送系统信息。
即基站可以在第二时频资源段的下行时频资源,通过数据信道PDSCH发送系统信息,终端通过接收系统信息,可以获取随机接入和寻呼消息以及邻小区的配置参数等信息。
S404.终端在第一时频资源段的上行时频资源和/或第二时频资源段的上行时频资源发送随机接入请求消息(msg1)。
具体地,终端可以在第一时频资源段的上行时频资源和/或第二时频资源段的上行时频资源,通过控制信道NPRACH发送随机接入前导码,基站通过接收NPRACH信道上发送的随机接入前导码,可以判断是否有用户接入,并标示用户发随机接入前导所使用的资源块。
如果基站需要寻呼终端,则基站在数据段的数据帧下行部分,发送控制信道PDCCH和数据信道PDSCH,并在PDSCH信道中发送所寻呼的终端标识,通知终端重新发送msg1或者重新接收系统信息。
可选地,终端还可以根据系统信息配置的寻呼消息,按照寻呼周期,检测基站是否发送了针对该终端的寻呼消息,即终端可以第二时频资源段的下行时频资源,接收控制信道PDCCH发送的寻呼消息对应的控制信息,并根据控制信息接收数据信道PDSCH发送的寻呼消息,判断是否有针对该终端的寻呼消息,并判断是否需要发送msg1。
S405.基站在第二时频资源段的下行时频资源发送随机接入响应消息(msg2)。
具体地,基站检测有用户接入后,在第二时频资源段的下行时频资源,通过控制信道PDCCH发送随机接入响应消息(msg2)对应的控制信息,之后基站在在第二时频资源段的下行时频资源,通过数据信道PDSCH发送随机接入响应消息(msg2)。终端检测随机接入响应的对应的控制信息后,根据控制信息接收随机接入响应信息。
S406.终端在第一时频资源段的上行时频资源和/或第二时频资源段的上行时频资源发送RRC连接请求消息(msg3)。
当终端正确接收随机接入响应信息后,可以在第一时频资源段的上行时频资源和/或第二时频资源段的上行时频资源,通过数据信道PUSCH发送RRC连接请求消息(msg3),基站在对应的上行时频资源接收msg3。
S407.基站在第二时频资源段的下行时频资源发送竞争决议消息(msg4),完成终端的随机接入。
如果基站正确接收到msg3,则基站可以在第二时频资源段的下行时频资源,通过控制信道PDCCH发送竞争决议消息(msg4)对应的控制信息,之后基站在第二时频资源段的下行时频资源,通过数据信道PDSCH发送竞争决议消息(msg4)。终端在第二时频资源段的下行时频资源,通过控制信道接收msg4的控制信息后,在第二时频资源段的下行时频资源,通过数据信道接收msg4后,可以在第一时频资源段的上行时频资源和/或第二时频资源段的上行时频资源发送PUSCH格式2,反馈msg4是否正确接收。
可选地,若所述基站未接收到所述RRC连接请求消息,则所述基站在所述第二时频资源段的下行时频资源,通过物理下行控制信道PDCCH向所述终端发送重传指示;
所述基站可以在所述第一时频资源段的上行时频资源和/或所述第二时频资源段的上行时频资源,通过物理上行共享信道PUSCH接收所述终端重传的RRC连接请求消息。
S408.在数据传输阶段,基于第一时频资源段的上行时频资源和/或第二时频资源段的上行时频资源进行上行数据的传输,基于第二时频资源的下行时频资源进行下行数据的传输。
其中所述预设帧结构的具体描述可以参见图5-图7所述实施例的描述和说明,此处不再赘述。
需要说明的是,以上主要描述了终端随机接入过程和数据传输过程,其他任意终端与基站的信息交互过程如初始接入、信息重传、小区切换、数据传输等都可以使用本申请实施例所述的预设帧结构来完成,并通过预设帧结构中第一时频资源段的上行时频资源和/或第二时频资源段的上行时频资源来传输上行信息,通过第二时频资源段的下行时频资源来传输下行信息。具体在选择哪些时频资源来传输信息时,可以由基站进行配置或指示或终端申请使用,本申请实施例不作任何限定。且本申请中的构造预设帧结构的方法不仅可以用于NB-IoT-U中,也可以用于LTE中或其他通信系统中。此外,第一时频资源段中的上行时频资源和/或空闲时频资源也可以配置为下行时频资源,下行时频资源和空闲时频资源,或者下行时频资源和上行时频资源来使用。当第一时频资源段包括下行时频资源时,可配置用于传输下行信息。
请参照图7,为本申请实施例提供的一种基站的组成示意图;可包括:
接收单元100,用于接收终端基于预设帧结构发送的随机接入请求消息;
发送单元200,用于基于所述预设帧结构向所述终端发送随机接入响应消息;
所述接收单元100还用于接收所述终端基于所述预设帧结构发送的无线资源控制RRC连接请求消息;
所述发送单元200还用于基于所述预设帧结构向所述终端发送竞争决议消息,完成所述终端的随机接入;
其中,所述预设帧结构包括第一时频资源段和第二时频资源段,所述第一时频资源段包括用于发送同步信号和物理广播信道PBCH的时频资源,还包括空闲时频资源和/或用于发送上行信息的上行时频资源,所述第二时频资源段包括整数个时长相同的数据帧,所述第一时频资源段的时长等于所述第二时频资源段中任一个数据帧的时长,所述数据帧包括用于发送下行信息的下行时频资源以及用于发送上行信息的上行时频资源;所述随机接入请求消息和所述RRC连接请求消息通过所述第一时频资源段的上行时频资源和/或所述第二时频资源段的上行时频资源承载,所述随机接入响应消息和所述竞争决议消息通过所述第二时频资源段中的下行时频资源承载。
所述发送单元200还用于:
在所述预设帧结构中的第一时频资源段向所述终端发送同步信号和PBCH;
在所述第二时频资源段中的下行时频资源,通过物理下行共享信道PDSCH向所述终端发送系统信息。
可选地,所述基站还包括:
测量单元300(图未示出),用于在所述空闲时频资源切换到其他频点完成信号质量测量或干扰水平测量。
可选地,若所述接收单元100未接收到所述RRC连接请求消息,则所述发送单元200还用于在所述第二时频资源段的下行时频资源,通过物理下行控制信道PDCCH向所述终端发送重传指示;
所述接收单元100还用于在所述第一时频资源段的上行时频资源和/或所述第二时频资源段的上行时频资源,通过物理上行共享信道PUSCH接收所述终端重传的RRC连接请求消息。
可选地,所述接收单元100和所述发送单元200还用于:
与所述终端进行上行数据或下行数据的传输;
其中,所述上行数据通过所述第一时频资源段的上行时频资源和/或所述第二时频资源段的上行时频资源承载,所述下行数据通过所述第二时频资源段的下行时频资源承载。
可选地,在所述第一时频资源中,所述上行时频资源和/或空闲时频资源的时域位置,位于发送同步信号和PBCH的时频资源后面;或者
所述上行时频资源和/或空闲时频资源的时域位置,位于发送同步信号和PBCH的时频资源前面。
可选地,所述预设帧结构的周期为1280毫秒,所述第一时频资源段的时长为40毫秒,在所述第一时频资源中,上行时频资源和/或空闲时频资源的总时长等于20毫秒,所述第二时频资源段包括31个数据帧,每个数据帧的时长为40毫秒;或者
所述预设帧结构的周期为1280毫秒,所述第一时频资源段的时长为80毫秒,在所述第一时频资源中,上行时频资源和/或空闲时频资源的总时长等于60毫秒,所述第二时频资源段包括15个数据帧,每个数据帧的时长为80毫秒;或者
所述预设帧结构的周期为1280毫秒,所述第一时频资源段的时长为20毫秒,在所述第一时频资源中,上行时频资源和/或空闲时频资源的总时长等于0毫秒,所述第二时频资源段包括63个数据帧,每个数据帧的时长为20毫秒。
请参照图9,为本申请实施例提供的另一种基站的组成示意图;如图8所示,该基站可以包括处理器110、存储器120和总线130。处理器110和存储器120通过总线130连接,该存储器120用于存储指令,该处理器110用于执行该存储器120存储的指令,以实现如上图3-图4对应的方法中的步骤。
进一步的,该基站还可以包括输入口140和输出口150。其中,处理器110、存储器120、输入口140和输出口150可以通过总线130相连。
处理器110用于执行该存储器120存储的指令,以控制输入口140接收信号,并控制输出口150发送信号,完成上述方法中基站执行的步骤。其中,输入口140和输出口150可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为输入输出口。所述存储器120可以集成在所述处理器110中,也可以与所述处理器110分开设置。
作为一种实现方式,输入口140和输出口150的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器110可以考虑通过专用处理芯片、处理电路、处理器或者通用芯 片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的基站。即将实现处理器110,输入口140和输出口150功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器110,输入口140和输出口150的功能。
该基站所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
请参见图10,图10为本申请实施例提供的一种终端的组成示意图,该终端包括:
发送单元400,用于基于预设帧结构向基站发送的随机接入请求消息;
接收单元500,用于接收所述基站基于所述预设帧结构发送的随机接入响应消息;
所述发送单元400还用于基于所述预设帧结构向所述基站发送无线资源控制RRC连接请求消息;
所述接收单元500还用于接收所述基站基于所述预设帧结构发送的竞争决议消息,完成所述终端的随机接入;
其中,所述预设帧结构包括第一时频资源段和第二时频资源段,所述第一时频资源段包括用于发送同步信号和物理广播信道PBCH的时频资源,还包括空闲时频资源和/或用于发送上行信息的上行时频资源,所述第二时频资源段包括整数个时长相同的数据帧,所述第一时频资源段的时长等于所述第二时频资源段中任一个数据帧的时长,所述数据帧包括用于发送下行信息的下行时频资源以及用于发送上行信息的上行时频资源;所述随机接入请求消息和所述RRC连接请求消息通过所述第一时频资源段的上行时频资源和/或所述第二时频资源段的上行时频资源承载,所述随机接入响应消息和所述竞争决议消息通过所述第二时频资源段中的下行时频资源承载。
可选地,所述接收单元500还用于:
接收所述基站在所述预设帧结构中的第一时频资源段发送的同步信号和PBCH;
接收所述基站在所述第二时频资源段中的下行时频资源,通过物理下行共享信道PDSCH发送的系统信息。
图10为本申请实施例提供的一种终端的组成示意图,所述终端还包括:
测量单元600(图未示出),用于在所述空闲时频资源切换到其他频点完成相邻小区信号质量测量。
可选地,若所述终端未发送RRC连接请求消息或发送RRC连接请求消息失败,则所述接收单元500还用于接收所述基站在所述第二时频资源段的下行时频资源,通过物理下行控制信道PDCCH发送的重传指示;
所述发送单元600还用于在所述第一时频资源段的上行时频资源和/或所述第二时频资源段的上行时频资源,通过物理上行共享信道PUSCH向所述基站重传RRC连接请求消息。
可选地,所述发送单元600和所述接收单元500还用于:
与所述基站进行上行数据或下行数据的传输;
其中,所述上行数据通过所述第一时频资源段的上行时频资源和/或所述第二时频资源段的上行时频资源承载,所述下行数据通过所述第二时频资源段的下行时频资源承载。
可选地,在所述第一时频资源中,所述上行时频资源和/或空闲时频资源的时域位置, 位于发送同步信号和PBCH的时频资源后面;或者
所述上行时频资源和/或空闲时频资源的时域位置,位于发送同步信号和PBCH的时频资源前面。
可选地,所述预设帧结构的周期为1280毫秒,所述第一时频资源段的时长为40毫秒,在所述第一时频资源中,上行时频资源和/或空闲时频资源的总时长等于20毫秒,所述第二时频资源段包括31个数据帧,每个数据帧的时长为40毫秒;或者
所述预设帧结构的周期为1280毫秒,所述第一时频资源段的时长为80毫秒,在所述第一时频资源中,上行时频资源和/或空闲时频资源的总时长等于60毫秒,所述第二时频资源段包括15个数据帧,每个数据帧的时长为80毫秒;或者
所述预设帧结构的周期为1280毫秒,所述第一时频资源段的时长为20毫秒,在所述第一时频资源中,上行时频资源和/或空闲时频资源的总时长等于0毫秒,所述第二时频资源段包括63个数据帧,每个数据帧的时长为20毫秒。
请参照图11,为本申请实施例提供的另一种终端的组成示意图;如图11所示,该终端可以包括处理器210、存储器220和总线230。处理器210和存储器220通过总线230连接,该存储器220用于存储指令,该处理器210用于执行该存储器220存储的指令,以实现如上图3-图4对应的方法中的步骤。
进一步的,该终端还可以包括输入口240和输出口250。其中,处理器210、存储器220、输入口240和输出口250可以通过总线230相连。
处理器210用于执行该存储器220存储的指令,以控制输入口240接收信号,并控制输出口250发送信号,完成上述方法中终端执行的步骤。其中,输入口240和输出口250可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为输入输出口。所述存储器220可以集成在所述处理器210中,也可以与所述处理器210分开设置。
作为一种实现方式,输入口240和输出口250的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器210可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的终端。即将实现处理器210,输入口240和输出口250功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器210,输入口240和输出口250的功能。
该终端所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
本领域技术人员可以理解,为了便于说明,图9和图11仅示出了一个存储器和处理器。在实际的控制器中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。在本申请实施例中,处理器可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。该存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。该总 线除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线。
根据本申请实施例提供的方法、基站、终端和帧结构,本申请实施例还提供一种通信系统,其包括基站和终端,二者可以使用图3-图4所示的方法和帧结构进行通信,具体帧结构可以参见图5-图7的相关描述和说明,此处不再赘述。具体的通信流程可以参照现有的NB-IoT-U中的标准流程,此处同样不再赘述。
还应理解,本文中涉及的第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (30)

  1. 一种通信的方法,其特征在于,包括:
    基站接收终端基于预设帧结构发送的随机接入请求消息;
    所述基站基于所述预设帧结构向所述终端发送随机接入响应消息;
    所述基站接收所述终端基于所述预设帧结构发送的无线资源控制RRC连接请求消息;
    所述基站基于所述预设帧结构向所述终端发送竞争决议消息,完成所述终端的随机接入;
    其中,所述预设帧结构包括第一时频资源段和第二时频资源段,所述第一时频资源段包括用于发送同步信号和物理广播信道PBCH的时频资源,还包括空闲时频资源和/或用于发送上行信息的上行时频资源,所述第二时频资源段包括整数个时长相同的数据帧,所述第一时频资源段的时长等于所述第二时频资源段中任一个数据帧的时长,所述数据帧包括用于发送下行信息的下行时频资源以及用于发送上行信息的上行时频资源;所述随机接入请求消息和所述RRC连接请求消息通过所述第一时频资源段的上行时频资源和/或所述第二时频资源段的上行时频资源承载,所述随机接入响应消息和所述竞争决议消息通过所述第二时频资源段中的下行时频资源承载。
  2. 根据权利要求1所述的方法,其特征在于,在所述基站接收终端基于预设帧结构发送的随机接入请求消息之前,所述方法还包括:
    所述基站在所述预设帧结构中的第一时频资源段向所述终端发送同步信号和PBCH;
    所述基站在所述第二时频资源段中的下行时频资源,通过物理下行共享信道PDSCH向所述终端发送系统信息。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述基站在所述空闲时频资源切换到其他频点完成信号质量测量或干扰水平测量。
  4. 根据权利要求1所述的方法,其特征在于,若所述基站未接收到所述RRC连接请求消息,则所述基站在所述第二时频资源段的下行时频资源,通过物理下行控制信道PDCCH向所述终端发送重传指示;
    所述基站在所述第一时频资源段的上行时频资源和/或所述第二时频资源段的上行时频资源,通过物理上行共享信道PUSCH接收所述终端重传的RRC连接请求消息。
  5. 根据权利要求1所述的方法,其特征在于,在完成所述终端的随机接入之后,所述方法还包括:
    所述基站与所述终端进行上行数据或下行数据的传输;
    其中,所述上行数据通过所述第一时频资源段的上行时频资源和/或所述第二时频资源段的上行时频资源承载,所述下行数据通过所述第二时频资源段的下行时频资源承载。
  6. 根据权利要求1所述的方法,其特征在于,在所述第一时频资源中,所述上行时频资源和/或空闲时频资源的时域位置,位于发送同步信号和PBCH的时频资源后面;或者
    所述上行时频资源和/或空闲时频资源的时域位置,位于发送同步信号和PBCH的时频资源前面。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述预设帧结构的周期为1280毫秒,所述第一时频资源段的时长为40毫秒,在所述第一时频资源中,上行时频资源和/或空闲时频资源的总时长等于20毫秒,所述第二时频资源段包括31个数据帧,每个数据帧的时长为40毫秒;或者
    所述预设帧结构的周期为1280毫秒,所述第一时频资源段的时长为80毫秒,在所述第一时频资源中,上行时频资源和/或空闲时频资源的总时长等于60毫秒,所述第二时频资源段包括15个数据帧,每个数据帧的时长为80毫秒;或者
    所述预设帧结构的周期为1280毫秒,所述第一时频资源段的时长为20毫秒,在所述第一时频资源中,上行时频资源和/或空闲时频资源的总时长等于0毫秒,所述第二时频资源段包括63个数据帧,每个数据帧的时长为20毫秒。
  8. 一种通信的方法,其特征在于,包括:
    终端基于预设帧结构向基站发送的随机接入请求消息;
    所述终端接收所述基站基于所述预设帧结构发送的随机接入响应消息;
    所述终端基于所述预设帧结构向所述基站发送无线资源控制RRC连接请求消息;
    所述终端接收所述基站基于所述预设帧结构发送的竞争决议消息,完成所述终端的随机接入;
    其中,所述预设帧结构包括第一时频资源段和第二时频资源段,所述第一时频资源段包括用于发送同步信号和物理广播信道PBCH的时频资源,还包括空闲时频资源和/或用于发送上行信息的上行时频资源,所述第二时频资源段包括整数个时长相同的数据帧,所述第一时频资源段的时长等于所述第二时频资源段中任一个数据帧的时长,所述数据帧包括用于发送下行信息的下行时频资源以及用于发送上行信息的上行时频资源;所述随机接入请求消息和所述RRC连接请求消息通过所述第一时频资源段的上行时频资源和/或所述第二时频资源段的上行时频资源承载,所述随机接入响应消息和所述竞争决议消息通过所述第二时频资源段中的下行时频资源承载。
  9. 根据权利要求8所述的方法,其特征在于,在所述终端基于预设帧结构向基站发送的随机接入请求消息之前,所述方法还包括:
    所述终端接收所述基站在所述预设帧结构中的第一时频资源段发送的同步信号和PBCH;
    所述终端接收所述基站在所述第二时频资源段中的下行时频资源,通过物理下行共享信道PDSCH发送的系统信息。
  10. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    所述终端在所述空闲时频资源切换到其他频点完成相邻小区信号质量测量。
  11. 根据权利要求8所述的方法,其特征在于,若所述终端未发送RRC连接请求消息或发送RRC连接请求消息失败,则所述终端接收所述基站在所述第二时频资源段的下行时频资源,通过物理下行控制信道PDCCH发送的重传指示;
    所述终端在所述第一时频资源段的上行时频资源和/或所述第二时频资源段的上行时频资源,通过物理上行共享信道PUSCH向所述基站重传RRC连接请求消息。
  12. 根据权利要求8所述的方法,其特征在于,在完成所述终端的随机接入之后,所述方法还包括:
    所述终端与所述基站进行上行数据或下行数据的传输;
    其中,所述上行数据通过所述第一时频资源段的上行时频资源和/或所述第二时频资源段的上行时频资源承载,所述下行数据通过所述第二时频资源段的下行时频资源承载。
  13. 根据权利要求8所述的方法,其特征在于,在所述第一时频资源中,所述上行时频资源和/或空闲时频资源的时域位置,位于发送同步信号和PBCH的时频资源后面;或者所述上行时频资源和/或空闲时频资源的时域位置,位于发送同步信号和PBCH的时频资源前面。
  14. 根据权利要求8-13任一项所述的方法,其特征在于,所述预设帧结构的周期为1280毫秒,所述第一时频资源段的时长为40毫秒,在所述第一时频资源中,上行时频资源和/或空闲时频资源的总时长等于20毫秒,所述第二时频资源段包括31个数据帧,每个数据帧的时长为40毫秒;或者
    所述预设帧结构的周期为1280毫秒,所述第一时频资源段的时长为80毫秒,在所述第一时频资源中,上行时频资源和/或空闲时频资源的总时长等于60毫秒,所述第二时频资源段包括15个数据帧,每个数据帧的时长为80毫秒;或者
    所述预设帧结构的周期为1280毫秒,所述第一时频资源段的时长为20毫秒,在所述第一时频资源中,上行时频资源和/或空闲时频资源的总时长等于0毫秒,所述第二时频资源段包括63个数据帧,每个数据帧的时长为20毫秒。
  15. 一种基站,其特征在于,包括:
    接收单元,用于接收终端基于预设帧结构发送的随机接入请求消息;
    发送单元,用于基于所述预设帧结构向所述终端发送随机接入响应消息;
    所述接收单元还用于接收所述终端基于所述预设帧结构发送的无线资源控制RRC连接请求消息;
    所述发送单元还用于基于所述预设帧结构向所述终端发送竞争决议消息,完成所述终端的随机接入;
    其中,所述预设帧结构包括第一时频资源段和第二时频资源段,所述第一时频资源段 包括用于发送同步信号和物理广播信道PBCH的时频资源,还包括空闲时频资源和/或用于发送上行信息的上行时频资源,所述第二时频资源段包括整数个时长相同的数据帧,所述第一时频资源段的时长等于所述第二时频资源段中任一个数据帧的时长,所述数据帧包括用于发送下行信息的下行时频资源以及用于发送上行信息的上行时频资源;所述随机接入请求消息和所述RRC连接请求消息通过所述第一时频资源段的上行时频资源和/或所述第二时频资源段的上行时频资源承载,所述随机接入响应消息和所述竞争决议消息通过所述第二时频资源段中的下行时频资源承载。
  16. 根据权利要求15所述的基站,其特征在于,所述发送单元还用于:
    在所述预设帧结构中的第一时频资源段向所述终端发送同步信号和PBCH;
    在所述第二时频资源段中的下行时频资源,通过物理下行共享信道PDSCH向所述终端发送系统信息。
  17. 根据权利要求15所述的基站,其特征在于,所述基站还包括:
    测量单元,用于在所述空闲时频资源切换到其他频点完成信号质量测量或干扰水平测量。
  18. 根据权利要求15所述的基站,其特征在于,若所述接收单元未接收到所述RRC连接请求消息,则所述发送单元还用于在所述第二时频资源段的下行时频资源,通过物理下行控制信道PDCCH向所述终端发送重传指示;
    所述接收单元还用于在所述第一时频资源段的上行时频资源和/或所述第二时频资源段的上行时频资源,通过物理上行共享信道PUSCH接收所述终端重传的RRC连接请求消息。
  19. 根据权利要求15所述的基站,其特征在于,所述接收单元和所述发送单元还用于:
    与所述终端进行上行数据或下行数据的传输;
    其中,所述上行数据通过所述第一时频资源段的上行时频资源和/或所述第二时频资源段的上行时频资源承载,所述下行数据通过所述第二时频资源段的下行时频资源承载。
  20. 根据权利要求15所述的基站,其特征在于,在所述第一时频资源中,所述上行时频资源和/或空闲时频资源的时域位置,位于发送同步信号和PBCH的时频资源后面;或者所述上行时频资源和/或空闲时频资源的时域位置,位于发送同步信号和PBCH的时频资源前面。
  21. 根据权利要求15-20任一项所述的基站,其特征在于,所述预设帧结构的周期为1280毫秒,所述第一时频资源段的时长为40毫秒,在所述第一时频资源中,上行时频资源和/或空闲时频资源的总时长等于20毫秒,所述第二时频资源段包括31个数据帧,每个数据帧的时长为40毫秒;或者
    所述预设帧结构的周期为1280毫秒,所述第一时频资源段的时长为80毫秒,在所述 第一时频资源中,上行时频资源和/或空闲时频资源的总时长等于60毫秒,所述第二时频资源段包括15个数据帧,每个数据帧的时长为80毫秒;或者
    所述预设帧结构的周期为1280毫秒,所述第一时频资源段的时长为20毫秒,在所述第一时频资源中,上行时频资源和/或空闲时频资源的总时长等于0毫秒,所述第二时频资源段包括63个数据帧,每个数据帧的时长为20毫秒。
  22. 一种基站,其特征在于,包括:
    处理器、存储器和总线,所述处理器和存储器通过总线连接,其中,所述存储器用于存储一组程序代码,所述处理器用于调用所述存储器中存储的程序代码,执行如权利要求1-7任一项所述的步骤。
  23. 一种终端,其特征在于,包括:
    发送单元,用于基于预设帧结构向基站发送的随机接入请求消息;
    接收单元,用于接收所述基站基于所述预设帧结构发送的随机接入响应消息;
    所述发送单元还用于基于所述预设帧结构向所述基站发送无线资源控制RRC连接请求消息;
    所述接收单元还用于接收所述基站基于所述预设帧结构发送的竞争决议消息,完成所述终端的随机接入;
    其中,所述预设帧结构包括第一时频资源段和第二时频资源段,所述第一时频资源段包括用于发送同步信号和物理广播信道PBCH的时频资源,还包括空闲时频资源和/或用于发送上行信息的上行时频资源,所述第二时频资源段包括整数个时长相同的数据帧,所述第一时频资源段的时长等于所述第二时频资源段中任一个数据帧的时长,所述数据帧包括用于发送下行信息的下行时频资源以及用于发送上行信息的上行时频资源;所述随机接入请求消息和所述RRC连接请求消息通过所述第一时频资源段的上行时频资源和/或所述第二时频资源段的上行时频资源承载,所述随机接入响应消息和所述竞争决议消息通过所述第二时频资源段中的下行时频资源承载。
  24. 根据权利要求23所述的终端,其特征在于,所述接收单元还用于:
    接收所述基站在所述预设帧结构中的第一时频资源段发送的同步信号和PBCH;
    接收所述基站在所述第二时频资源段中的下行时频资源,通过物理下行共享信道PDSCH发送的系统信息。
  25. 根据权利要求23所述的终端,其特征在于,所述终端还包括:
    测量单元,用于在所述空闲时频资源切换到其他频点完成相邻小区信号质量测量。
  26. 根据权利要求23所述的终端,其特征在于,若所述终端未发送RRC连接请求消息或发送RRC连接请求消息失败,则所述接收单元还用于接收所述基站在所述第二时频资源段的下行时频资源,通过物理下行控制信道PDCCH发送的重传指示;
    所述发送单元还用于在所述第一时频资源段的上行时频资源和/或所述第二时频资源段的上行时频资源,通过物理上行共享信道PUSCH向所述基站重传RRC连接请求消息。
  27. 根据权利要求23所述的终端,其特征在于,所述发送单元和所述接收单元还用于:
    与所述基站进行上行数据或下行数据的传输;
    其中,所述上行数据通过所述第一时频资源段的上行时频资源和/或所述第二时频资源段的上行时频资源承载,所述下行数据通过所述第二时频资源段的下行时频资源承载。
  28. 根据权利要求23所述的终端,其特征在于,在所述第一时频资源中,所述上行时频资源和/或空闲时频资源的时域位置,位于发送同步信号和PBCH的时频资源后面;或者所述上行时频资源和/或空闲时频资源的时域位置,位于发送同步信号和PBCH的时频资源前面。
  29. 根据权利要求23-28任一项所述的终端,其特征在于,所述预设帧结构的周期为1280毫秒,所述第一时频资源段的时长为40毫秒,在所述第一时频资源中,上行时频资源和/或空闲时频资源的总时长等于20毫秒,所述第二时频资源段包括31个数据帧,每个数据帧的时长为40毫秒;或者
    所述预设帧结构的周期为1280毫秒,所述第一时频资源段的时长为80毫秒,在所述第一时频资源中,上行时频资源和/或空闲时频资源的总时长等于60毫秒,所述第二时频资源段包括15个数据帧,每个数据帧的时长为80毫秒;或者
    所述预设帧结构的周期为1280毫秒,所述第一时频资源段的时长为20毫秒,在所述第一时频资源中,上行时频资源和/或空闲时频资源的总时长等于0毫秒,所述第二时频资源段包括63个数据帧,每个数据帧的时长为20毫秒。
  30. 一种终端,其特征在于,包括:
    处理器、存储器和总线,所述处理器和存储器通过总线连接,其中,所述存储器用于存储一组程序代码,所述处理器用于调用所述存储器中存储的程序代码,执行如权利要求8-14任一项所述的步骤。
PCT/CN2018/092195 2018-06-21 2018-06-21 一种通信的方法、基站及终端 WO2019241961A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880094752.5A CN112292904B (zh) 2018-06-21 2018-06-21 一种通信的方法、基站及终端
PCT/CN2018/092195 WO2019241961A1 (zh) 2018-06-21 2018-06-21 一种通信的方法、基站及终端
EP18922998.2A EP3790348A4 (en) 2018-06-21 2018-06-21 COMMUNICATION PROCESS, BASE STATION AND TERMINAL
US17/129,354 US20210153258A1 (en) 2018-06-21 2020-12-21 Communication method, base station, and terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/092195 WO2019241961A1 (zh) 2018-06-21 2018-06-21 一种通信的方法、基站及终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/129,354 Continuation US20210153258A1 (en) 2018-06-21 2020-12-21 Communication method, base station, and terminal

Publications (1)

Publication Number Publication Date
WO2019241961A1 true WO2019241961A1 (zh) 2019-12-26

Family

ID=68983135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092195 WO2019241961A1 (zh) 2018-06-21 2018-06-21 一种通信的方法、基站及终端

Country Status (4)

Country Link
US (1) US20210153258A1 (zh)
EP (1) EP3790348A4 (zh)
CN (1) CN112292904B (zh)
WO (1) WO2019241961A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106538016A (zh) * 2014-08-08 2017-03-22 华为技术有限公司 用于具有快速自适应发送和接收的通信的设备、网络和方法
WO2018085150A1 (en) * 2016-11-02 2018-05-11 Qualcomm Incorporated Wireless communication between wideband enb and narrowband ue
CN108093489A (zh) * 2016-11-21 2018-05-29 北京信威通信技术股份有限公司 随机接入方法和装置
CN108112055A (zh) * 2017-12-19 2018-06-01 努比亚技术有限公司 Apn获取方法、移动终端、网络端及存储介质

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101742683A (zh) * 2008-11-04 2010-06-16 大唐移动通信设备有限公司 一种选择tdd物理随机接入信道的方法和装置
CN103037520A (zh) * 2011-03-25 2013-04-10 北京新岸线无线技术有限公司 一种资源调度方法和设备
US9351315B2 (en) * 2011-03-25 2016-05-24 Beijing Nufront Mobile Multimedia Technology Co. Ltd. Resource scheduling method and device
US9451639B2 (en) * 2013-07-10 2016-09-20 Samsung Electronics Co., Ltd. Method and apparatus for coverage enhancement for a random access process
TWI628930B (zh) * 2013-09-20 2018-07-01 新力股份有限公司 通訊裝置及方法
EP3255928B1 (en) * 2015-02-27 2020-11-04 Huawei Technologies Co., Ltd. Random access method and user equipment
US20170238284A1 (en) * 2016-02-05 2017-08-17 Mediatek Inc. Multi-Carrier Operation for Narrowband Internet of Things
WO2017142268A1 (ko) * 2016-02-19 2017-08-24 엘지전자(주) 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 지원하는 장치
US10638357B2 (en) * 2016-03-17 2020-04-28 Lg Electronics Inc. Method for transmitting and receiving data in wireless communication system, and apparatus for supporting same
CN107241780A (zh) * 2016-03-28 2017-10-10 北京信威通信技术股份有限公司 小区的上行同步方法及系统
WO2017166255A1 (zh) * 2016-03-31 2017-10-05 华为技术有限公司 发送物理随机接入信道prach的方法、设备及系统
US10187864B2 (en) * 2016-04-01 2019-01-22 Qualcomm Incorporated Timing advance design for enhanced component carrier
US10291451B2 (en) * 2016-11-07 2019-05-14 Qualcomm Incorporated PRACH design for larger cell radius
EP3621403A4 (en) * 2017-05-04 2021-01-06 LG Electronics Inc. PROCESS FOR CARRYING OUT A RANDOM ACCESS PROCESS AND ASSOCIATED DEVICE
JP2019004320A (ja) * 2017-06-15 2019-01-10 シャープ株式会社 基地局装置、端末装置およびその通信方法
US20180368179A1 (en) * 2017-06-16 2018-12-20 Qualcomm Incorporated Differentiated random access in new radio
CN107528680B (zh) * 2017-07-05 2020-09-22 北京东土科技股份有限公司 基于工业互联网现场层总线架构实时传输方法及装置
WO2019031864A1 (ko) * 2017-08-09 2019-02-14 엘지전자 주식회사 랜덤 접속 과정을 수행하는 방법 및 이를 위한 장치
US11166322B2 (en) * 2017-08-09 2021-11-02 Lg Electronics Inc. Method for performing random access process and apparatus therefor
US10708956B2 (en) * 2017-11-17 2020-07-07 Qualcomm Incorporated Physical layer enhancements for early data transmission
US11570818B2 (en) * 2018-01-19 2023-01-31 Nokia Technologies Oy Beam failure recovery
US11895695B2 (en) * 2018-02-15 2024-02-06 Qualcomm Incorporated System and method for beam failure recovery request by user equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106538016A (zh) * 2014-08-08 2017-03-22 华为技术有限公司 用于具有快速自适应发送和接收的通信的设备、网络和方法
WO2018085150A1 (en) * 2016-11-02 2018-05-11 Qualcomm Incorporated Wireless communication between wideband enb and narrowband ue
CN108093489A (zh) * 2016-11-21 2018-05-29 北京信威通信技术股份有限公司 随机接入方法和装置
CN108112055A (zh) * 2017-12-19 2018-06-01 努比亚技术有限公司 Apn获取方法、移动终端、网络端及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3790348A4 *

Also Published As

Publication number Publication date
EP3790348A1 (en) 2021-03-10
US20210153258A1 (en) 2021-05-20
EP3790348A4 (en) 2021-05-12
CN112292904A (zh) 2021-01-29
CN112292904B (zh) 2022-12-13

Similar Documents

Publication Publication Date Title
JP6682000B2 (ja) アップリンク制御チャネル上で送信をするためのパラメータを決定するための方法
JP2023545194A (ja) データ伝送方法、装置及び端末
CN105165084B (zh) 通信方法、通信设备以及计算机可读存储介质
JP7238095B2 (ja) 不連続伝送の方法とデバイス
US11134523B2 (en) Uplink transmission control method and apparatus and communication system
US20200163097A1 (en) Communication method, network device, and relay device
US11844109B2 (en) Controlling AUL transmissions when coexisting with scheduled UEs
EP3675585B1 (en) Communication method and apparatus
EP3934155B1 (en) User equipment involved in monitoring a downlink control channel
CN106452704B (zh) 一种发现参考信号的发送方法、基站及终端
JP6878304B2 (ja) 端末、無線通信方法及び無線通信システム
WO2019085707A1 (zh) 一种上行信号传输方法、终端、网络设备及系统
WO2020082304A1 (zh) 切换资源池的方法、终端设备和通信设备
JP2018525903A (ja) ライセンス補助アクセスにおけるバックオフカウンタ処理のためのシステム及び方法
US20220353921A1 (en) Communication method and apparatus
WO2024036671A1 (zh) 侧行通信的方法及装置
CN109155990A (zh) 一种计数方法及装置
JP2024503648A (ja) リソース選択方法、装置及びシステム
WO2019241961A1 (zh) 一种通信的方法、基站及终端
WO2017166324A1 (zh) 一种发送通信消息的方法和装置
WO2021109041A1 (zh) 随机接入的方法和终端设备
US20240155698A1 (en) Communication method and apparatus
WO2023065874A1 (zh) 一种调度方法及装置
EP4369797A1 (en) Drx configuration method and apparatus, terminal device, and network device
KR20170020699A (ko) 비면허 대역을 통해 데이터를 송수신하는 수신 장치 및 송신 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922998

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018922998

Country of ref document: EP

Effective date: 20201201

NENP Non-entry into the national phase

Ref country code: DE