WO2019240157A1 - 眼球運動測定装置、眼球運動測定方法及び眼球運動測定プログラム - Google Patents
眼球運動測定装置、眼球運動測定方法及び眼球運動測定プログラム Download PDFInfo
- Publication number
- WO2019240157A1 WO2019240157A1 PCT/JP2019/023226 JP2019023226W WO2019240157A1 WO 2019240157 A1 WO2019240157 A1 WO 2019240157A1 JP 2019023226 W JP2019023226 W JP 2019023226W WO 2019240157 A1 WO2019240157 A1 WO 2019240157A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- region
- eyeball
- template
- unit
- feature point
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/113—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining or recording eye movement
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/0008—Apparatus for testing the eyes; Instruments for examining the eyes provided with illuminating means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/14—Arrangements specially adapted for eye photography
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
- G06T7/0014—Biomedical image inspection using an image reference approach
- G06T7/0016—Biomedical image inspection using an image reference approach involving temporal comparison
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
- G06T7/246—Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/74—Image or video pattern matching; Proximity measures in feature spaces
- G06V10/75—Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
- G06V10/751—Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/18—Eye characteristics, e.g. of the iris
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/18—Eye characteristics, e.g. of the iris
- G06V40/19—Sensors therefor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/18—Eye characteristics, e.g. of the iris
- G06V40/193—Preprocessing; Feature extraction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30041—Eye; Retina; Ophthalmic
Definitions
- the present invention relates to an eye movement measurement device, an eye movement measurement method, and an eye movement measurement program.
- This application claims priority on June 12, 2018 based on Japanese Patent Application No. 2018-111535 for which it applied to Japan, and uses the content for it here.
- an acquisition unit that acquires an eyeball image obtained by capturing an eyeball of a subject, a feature point extraction unit that extracts a feature point in a white-eye region included in the eyeball image acquired by the acquisition unit,
- the candidate region generation unit that generates, for each feature point, a template candidate region that is a region including pixels of the feature points extracted by the feature point extraction unit in the eyeball image, and the candidate region generation unit generates Using the selection unit that selects, as a template region, the template candidate region that includes more feature points among the plurality of template candidate regions that are to be acquired, and the template region that is selected by the selection unit.
- An eye comprising: a measuring unit that measures a three-dimensional movement of the eyeball including at least a rotation angle of the eyeball of the subject by tracking a movement of the eyeball image acquired by the unit It is a movement measuring apparatus.
- the candidate region generation unit includes feature points corresponding to blood vessel positions in the white eye region among the feature points extracted by the feature point extraction unit.
- the template candidate region is generated for each selected feature point.
- the feature point extraction unit performs statistical processing including at least histogram flattening on the pixel value of each pixel in the white eye region, whereby the white eye region Extract feature points.
- the selection unit is less frequently matched with a plurality of different regions in the eye image among the plurality of template candidate regions.
- a candidate area is selected as the template area.
- One embodiment of the present invention further includes an imaging unit that generates the eyeball image by imaging the eyeball of the subject in the eye movement measurement apparatus described above.
- the first irradiation unit that irradiates the eyeball of the subject with an electromagnetic wave having a wavelength longer than 570 nanometers, and the electromagnetic wave having a wavelength shorter than 570 nanometers.
- An irradiation control unit that irradiates electromagnetic waves from any one of the second irradiation unit that irradiates the eyeball of the subject, the first irradiation unit, and the second irradiation unit.
- an acquisition step of acquiring an eyeball image obtained by capturing an eyeball of a subject, and a feature point extraction step of extracting a feature point in a white eye region included in the eyeball image acquired in the acquisition step A candidate area generating step for generating, for each feature point, a template candidate area that is an area including pixels of the feature points extracted in the feature point extracting step in the eyeball image; and the candidate area generating step
- a selection step of selecting, as a template region, the template candidate region that includes a larger number of the feature points from among the plurality of template candidate regions generated in the step, and using the template region selected in the selection step Tracking the movement of the eyeball image acquired in the acquisition step More, a measurement step of measuring at least including eye three-dimensional motion rotation angle of the eyeball of the subject, it is the eye movement measuring method comprising the.
- an acquisition step of acquiring an eyeball image in which a subject's eyeball is imaged and a feature point in a white-eye region included in the eyeball image acquired in the acquisition step are extracted by a computer.
- a selection step of selecting, as a template region, the template candidate region that contains more feature points among the plurality of template candidate regions generated in the region generation step, and the template selected in the selection step Using the region, the movement of the eyeball image acquired in the acquisition step By tracking a eye movement measurement program for executing, a measurement step of measuring at least including eye three-dimensional motion rotation angle of the eyeball of the subject.
- an eye movement measuring device an eye movement measuring method, and an eye movement measuring program capable of improving the eye movement measurement accuracy.
- FIG. 1 is a diagram illustrating an example of a functional configuration of an eye movement measurement system 1 according to the present embodiment.
- the eye movement measurement system 1 includes an eye movement measurement device 10 and an imaging device 20.
- the case where the eye movement measurement device 10 and the imaging device 20 are configured as separate devices will be described, but the present invention is not limited thereto.
- the eye movement measurement device 10 and the imaging device 20 may be configured as one integrated device. First, the configuration of the imaging device 20 will be described, and then the configuration of the eye movement measurement device 10 will be described.
- the imaging device 20 includes an imaging unit 210.
- the imaging unit 210 includes a camera that can capture a moving image, for example.
- the imaging unit 210 generates an eyeball image IMG by imaging the eyeball EY of the subject SB.
- the imaging device 20 is configured as a glasses-type goggles worn on the head of the subject SB.
- the imaging device 20 includes a color board camera for angiography as the imaging unit 210, and images a blood vessel image of the eyeball EY and a pupil.
- This color board camera is installed at the same height as the eyeball EY and at a distance of 20 mm (millimeters) from the eyeball in a direction of 50 degrees from the front to the outer corner of the eyeball.
- the EW is imaged while keeping the angle of view.
- the screen resolution of the imaging unit 210 is 720 ⁇ 480 [pixel], and the imaging speed is 29.97 [fps].
- the relative positional relationship between the eyeball EY and the imaging unit 210 will be described.
- [Relative positional relationship between eyeball and imaging unit] 2 to 10 are diagrams illustrating an example of the relative positional relationship between the eyeball EY and the imaging unit 210.
- an angle formed by the direction in front of the head of the subject SB (front direction FA) and the direction of the visual axis AX of the eyeball EY is “angle ⁇ ”, the front direction FA and the imaging axis AI of the imaging unit 210.
- the angle formed by the direction of is described as “angle ⁇ ”.
- the angle ⁇ is also referred to as “line-of-sight angle ⁇ ”
- the angle ⁇ is also referred to as “imaging angle ⁇ ”.
- the distance between the lens of the imaging unit 210 and the center of the eyeball EY is referred to as “distance d”.
- FIG. 2 is a diagram illustrating an example of the relative positional relationship when the imaging angle ⁇ 11 (40 degrees) and the distance d11 (15 mm) are provided.
- the subject SB looks at the left direction with the face facing frontward.
- the angle of view of the imaging unit 210 includes both the white eye portion of the eyeball EY and the black eye portion of the eyeball EY.
- the imaging unit 210 can capture the white eye portion of the eyeball EY and the black eye portion of the eyeball EY.
- the direction of the visual axis AX of the eyeball EY coincides with the direction of the front direction FA, and the visual line angle ⁇ is 0 degree. That is, in FIG. 2B, the subject SB looks at the front front.
- the angle of view of the imaging unit 210 includes both the white eye portion of the eyeball EY and the black eye portion of the eyeball EY. That is, in the state of FIG. 2B, the imaging unit 210 can capture the white eye portion of the eyeball EY and the black eye portion of the eyeball EY.
- FIG. 2B the direction of the visual axis AX of the eyeball EY coincides with the direction of the front direction FA, and the visual line angle ⁇ is 0 degree. That is, in FIG. 2B, the subject SB looks at the front front.
- the angle of view of the imaging unit 210 includes both the white eye portion of the eyeball EY and the
- the subject SB looks at the right direction with the face facing forward.
- the angle of view of the imaging unit 210 includes the white-eye portion of the eyeball EY, but does not include the black-eye portion of the eyeball EY. That is, in the state of FIG. 2C, the imaging unit 210 can image the white eye portion of the eyeball EY, but cannot capture the black eye portion of the eyeball EY.
- portions where the positional relationship between the imaging unit 210 and the eyeball EY is the same as that shown in FIG. 2 are omitted.
- FIG. 3 is a diagram illustrating an example of the relative positional relationship when the imaging angle ⁇ 12 (50 degrees) and the distance d12 (15 mm) are provided.
- the imaging unit 210 can capture both white eyes and black eyes.
- the imaging unit 210 can capture both white eyes and black eyes.
- the imaging unit 210 can image the white eye, but cannot image the black eye.
- FIG. 4 is a diagram illustrating an example of the relative positional relationship in the case of the imaging angle ⁇ 13 (60 degrees) and the distance d13 (15 mm). Also in the case shown in FIG. 4, whether or not white eyes and black eyes can be imaged is the same as that described with reference to FIGS. That is, when the distance d is 15 mm, depending on the direction of the visual axis AX, it may not be possible to capture white eyes and black eyes simultaneously.
- FIG. 5 is a diagram illustrating an example of the relative positional relationship in the case of the imaging angle ⁇ 21 (40 degrees) and the distance d21 (20 mm).
- FIG. 6 is a diagram illustrating an example of the relative positional relationship in the case of the imaging angle ⁇ 22 (50 degrees) and the distance d22 (20 mm).
- FIG. 7 is a diagram illustrating an example of the relative positional relationship in the case of the imaging angle ⁇ 23 (60 degrees) and the distance d23 (20 mm).
- the imaging angle ⁇ is the imaging angle ⁇ 23 (60 degrees)
- white eyes and black eyes may not be simultaneously imaged.
- the imaging angle ⁇ is the imaging angle ⁇ 21 (40 degrees) and the imaging angle ⁇ 22 (50 degrees
- white eyes and black eyes can be simultaneously imaged regardless of the direction of the visual axis AX.
- FIG. 8 is a diagram illustrating an example of the relative positional relationship when the imaging angle ⁇ 31 (40 degrees) and the distance d31 (25 mm).
- FIG. 9 is a diagram illustrating an example of the relative positional relationship when the imaging angle ⁇ 32 (50 degrees) and the distance d32 (25 mm) are provided.
- FIG. 10 is a diagram illustrating an example of the relative positional relationship when the imaging angle ⁇ 33 (60 degrees) and the distance d32 (25 mm) are provided.
- the relative positional relationship between the imaging unit 210 and the eyeball EY changes, there are cases where white eyes and black eyes can be imaged simultaneously and where imaging is impossible.
- the distance d should be large and the imaging angle ⁇ should be small.
- the distance d should be small and the imaging angle ⁇ should be large. That is, in order to increase the area of white eyes that can capture white eyes and black eyes at the same time and fall within the angle of view of the imaging unit 210, the relative positional relationship between the imaging unit 210 and the eyeball EY is set to a predetermined value.
- the distance d is 20 to 25 mm and the imaging angle ⁇ is 40 to 50 degrees.
- the imaging angle ⁇ may be 60 degrees.
- the eye movement measurement device 10 includes an acquisition unit 110, a feature point extraction unit 120, a candidate area generation unit 130, a selection unit 140, and a measurement unit 150.
- the acquisition unit 110 acquires an eyeball image IMG obtained by imaging the eyeball EY of the subject SB.
- the feature point extraction unit 120 extracts feature points FP in the white eye region EW included in the eyeball image IMG acquired by the acquisition unit 110.
- the candidate area generation unit 130 generates, for each feature point FP, a template candidate area TC that is an area including the pixels of the feature points FP extracted by the feature point extraction unit 120 in the eyeball image IMG.
- the selection unit 140 selects, as the template region TP, a template candidate region TC that includes more feature points FP among the plurality of template candidate regions TC generated by the candidate region generation unit 130.
- the measurement unit 150 uses the template region TP selected by the selection unit 140 to track the movement of the eyeball image IMG acquired by the acquisition unit 110, thereby including at least the rotation angle AT of the eyeball EY of the subject SB. Measure exercise. A specific example of the operation of these units will be described with reference to FIG.
- FIG. 11 is a diagram illustrating an example of the operation of the eye movement measurement system 1 of the present embodiment.
- Step S10 The eye movement measurement device 10 determines the template region TP.
- the details of the procedure for determining the template region TP by the eye movement measurement device 10 will be described with reference to FIG.
- FIG. 12 is a diagram illustrating an example of an operation for determining the template region TP of the eye movement measurement system 1 of the present embodiment.
- the acquisition unit 110 acquires an eyeball image IMG captured by the imaging unit 210. An example of this eyeball image IMG is shown in FIG.
- FIG. 13 is a diagram illustrating an example of the eyeball image IMG of the present embodiment.
- the imaging unit 210 images the eyeball EY of the left eye of the subject SB and generates an eyeball image IMG.
- This eyeball image IMG includes a white eye region EW.
- Step S120 The feature point extraction unit 120 extracts an image of the white eye region EW (also referred to as a white eye image) from the eyeball image IMG acquired by the acquisition unit 110.
- EW white eye region
- Step S130 The feature point extraction unit 120 performs histogram flattening on the white-eye image extracted in step S120. By this histogram averaging, the feature point extraction unit 120 enhances the contrast of the white eye region EW and the blood vessel image, thereby enhancing the blood vessel image included in the white eye region EW.
- the feature point extraction unit 120 performs the conversion shown in Expression (1) for the pixel value (for example, luminance value) of each pixel of the eyeball image IMG.
- the feature point extraction unit 120 performs statistical processing including at least histogram flattening on the pixel value of each pixel in the white eye region EW.
- An example of the image of the white eye region EW after the feature point extraction unit 120 performs the histogram flattening is shown in FIG.
- FIG. 14 is a diagram illustrating an example of an image of the white eye region EW after the histogram flattening process according to the present embodiment.
- Step S140 the feature point extraction unit 120 extracts feature points FP from the white-eye image subjected to the histogram flattening by a conventional method (for example, ORB; Oriented ; FAST and Rotated BRIEF).
- a conventional method for example, ORB; Oriented ; FAST and Rotated BRIEF.
- FIG. 15 is a diagram illustrating an example of the extraction result of the feature points FP of the present embodiment.
- the feature point extraction unit 120 extracts the feature points FP in the white eye region EW by performing statistical processing on the pixel values of each pixel in the white eye region EW. In this example, the feature point extraction unit 120 performs histogram flattening as statistical processing for each pixel.
- the feature point extraction unit 120 binarizes the white eye image extracted in step S120, and further thins the binarized image (blood vessel binarized thinned image BTN). Is generated. Specifically, the feature point extraction unit 120 uses an adaptive two-value threshold value that is obtained by subtracting an offset value (for example, 4) from the sum of the weighting by Gaussian in the luminance value of the size 17 ⁇ 17 [pixel] of the neighboring region. After performing the value processing, thinning processing is performed. As a result, the position PV of the blood vessel included in the image of the white eye region EW is extracted.
- FIG. 16 is a diagram illustrating an example of a blood vessel binarized thinned image BTN according to the present embodiment.
- Step S160 the feature point extraction unit 120 superimposes the feature point FP extracted in step S140 on the blood vessel position PV extracted in step S150, thereby extracting the feature point extracted in step S140.
- a feature point around the blood vessel (blood vessel corresponding feature point VFP) is extracted from the FP.
- An example of the blood vessel correspondence feature point VFP extracted by the feature point extraction unit 120 is shown in FIG.
- FIG. 17 is a diagram showing an example of the blood vessel corresponding feature point VFP of the present embodiment. That is, the feature point extraction unit 120 selects the blood vessel corresponding feature point VFP as the feature point FP corresponding to the position PV of the blood vessel in the white eye region EW from the feature points FP.
- the candidate area generation unit 130 has an area (for example, 50 [pixel] ⁇ 50 [pixel]) centered on a certain feature point FP among the feature points FP extracted in step S140.
- the number of feature points included in the region (2) is counted for each feature point extracted in step S140.
- the region centered on the feature point FP is also referred to as a template candidate region TC.
- the candidate region generation unit 130 selects the feature point selected from the feature points FP extracted by the feature point extraction unit 120 as the feature point FP corresponding to the blood vessel position PV in the white-eye region EW (the blood vessel corresponding feature point VFP). )
- a template candidate area TC is generated every time.
- FIG. 18 is a diagram illustrating an example of the template candidate region TC according to the present embodiment.
- a plurality of feature points FP are extracted in the white eye region EW shown in FIG.
- the candidate region generation unit 130 generates a template candidate region TC for each feature point FP.
- FIG. 5A shows a case where the candidate area generation unit 130 generates a template candidate area TC1 for the feature point FP1 and a template candidate area TC2 for the feature point FP2 among the plurality of feature points FP. Yes.
- illustration of template candidate regions TC for other feature points FP is omitted.
- the feature point FP referred to by the candidate region generation unit 130 described above for generating the template candidate region TC is the feature point FP corresponding to the position of the blood vessel position PV among all the feature points FP. (That is, the blood vessel corresponding feature point VFP).
- the candidate area generation unit 130 counts the number CNT of the blood vessel corresponding feature points VFP included in the generated template candidate area TC.
- the candidate region generation unit 130 counts the number CNT of the blood vessel corresponding feature points VFP included in the template candidate region TC1 as “7”.
- the candidate region generation unit 130 counts the blood vessel corresponding feature point VFP CNT “11” for the template candidate region TC2
- the number CNT “17” of corresponding feature points VFP and the number CNT “19” of blood vessel corresponding feature points VFP for the template candidate region TC5 are counted for each template candidate region TC.
- the candidate area generation unit 130 corresponds to an area of 50 ⁇ 50 [pixel] around the pixel of the blood vessel corresponding feature point VFP shown in FIG. 17 in the image of the white eye area EW shown in FIG. A region at the position to be cut is cut out, and an image of the cut out region is generated as a template candidate region TC.
- the candidate area generation unit 130 repeats the generation of the template candidate area TC for each blood vessel corresponding feature point VFP.
- Step S180 the candidate area generation unit 130 ranks the template candidate areas TC based on the number of feature points FP counted in step S170.
- FIG. 18C shows an example of ranking of the template candidate areas TC performed by the candidate area generating unit 130.
- the selection unit 140 includes more feature points FP (or blood vessel corresponding feature points VFP) among the plurality of template candidate regions TC generated by the candidate region generation unit 130.
- the template candidate area TC is selected as the template area TP. That is, the selection unit 140 selects a higher template candidate region TC as the template region TP from among the template candidate regions TC ranked by the candidate region generation unit 130.
- the selection unit 140 removes the template candidate area TC including the reflected light image so as not to be selected as the template area TP.
- the selection unit 140 creates a luminance value histogram of the white-eye region EW, and examines the luminance value within a predetermined range (for example, up to 10%) from the top with respect to the cumulative frequency of the created histogram.
- a predetermined range for example, up to 10%
- the selection unit 140 has reflection from the ambient light in the template candidate region TC. Is determined.
- Step S ⁇ b> 200 The selection unit 140 removes the template candidate region TC that easily causes erroneous matching. Specifically, the selection unit 140 selects, as a template region TP, a template candidate region TC that is less frequently matched with a plurality of different regions in the eyeball image IMG among the plurality of template candidate regions TC. .
- the white-eye region EW when a blood vessel image having a shape close to a straight line exists, a region including the blood vessel image and not including the image of the end point of the blood vessel is generated as the template candidate region TC.
- the image similarity may increase in other regions within the white-eye region EW.
- the template candidate region TC may be matched even in a region other than the originally matching region, that is, erroneously matched. Therefore, the selection unit 140 calculates the number of times that the degree of similarity exceeds 70% as a result of performing template matching using the template candidate region TC in the white-eye region EW.
- the degree of similarity exceeds 70% at least once, and even when it is shifted by 1 [pixel] vertically and horizontally, in many cases.
- Has a similarity of over 70% That is, in the calculation of the number of times by the selection unit 140, the number of times that the degree of similarity exceeds 70% can normally occur up to five times. However, if the degree of similarity exceeds 70% more than that, it is presumed that erroneous matching is caused.
- the selection unit 140 determines that the template candidate region TC is a template candidate region TC that easily causes erroneous matching. It judges and excludes it from selection of template field TP.
- Step S210 The selection unit 140 selects a template region TP from the template candidate regions TC excluding the template candidate regions TC excluded in Steps S190 and S200. That is, the selection unit 140 determines the template region TP.
- Step S20 The acquisition unit 110 acquires an eyeball image IMG.
- the measurement unit 150 calculates the pupil center coordinates by a known procedure based on the eyeball image IMG acquired by the acquisition unit 110. Specifically, the measurement unit 150 performs binarization and labeling processing on the eyeball image IMG, thereby extracting a pupil image region included in the eyeball image IMG. The measurement unit 150 extracts the outline of the pupil from the extracted pupil image, and acquires the convex hull of the outline. The measurement unit 150 calculates the center coordinates of the pupil by performing ellipse fitting on the point group obtained by the convex hull using, for example, the least square method. Note that the elliptical fitting is an example for calculating the center coordinates of the pupil, and the measurement unit 150 may calculate the center coordinates of the pupil by various procedures.
- the measurement unit 150 tracks the blood vessel image in the white-eye region EW using the template region TP described above. Specifically, the measurement unit 150 performs adaptive binarization on a region corresponding to the template region TP of the eyeball image IMG acquired by the acquisition unit 110, and extracts a blood vessel image indicating the position PV of the blood vessel. The measurement unit 150 selects a region having the largest area in the eyeball image IMG by performing a labeling process on the eyeball image IMG after the adaptive binarization process. A normalized cross-correlation coefficient is used for calculation of similarity in template matching performed by the measurement unit 150. The normalized cross-correlation coefficient R (x, y) is expressed by equations (2) to (4).
- x, y xy coordinates of the pixel to be referred to
- w vertical size of the template image
- h horizontal size of the template image
- I luminance value in the search image
- T luminance value of the template image
- R (x, y) takes the largest value (x, y) is a coordinate corresponding to the upper left corner of the template region TP described above.
- the position PV of the blood vessel (coordinates of the blood vessel image) is defined as the center of the template image.
- the coordinates obtained by template matching are (x + w / 2, y + h / 2).
- the measuring unit 150 calculates the rotation angle based on the result of template matching using the template region TP.
- the measurement unit 150 calculates an eyeball rotation angle from the difference between the angle ⁇ i obtained from the i-th frame image used to determine the template region TP and the angle ⁇ (i + t) after t frames from the i-th frame. .
- the measurement unit 150 does not consider that the eyeball is a sphere for simplification of processing, and simply uses an inverse trigonometric function from two (x, y) coordinates in the same manner as the angle calculation on a plane.
- the angle may be obtained.
- the angle ⁇ i calculated from the coordinates of the center of the template region TP with respect to the coordinates of the center of the pupil is expressed by the following equation.
- the angle ⁇ i obtained from the image of the i-th frame used for determining the template region TP is defined as an eyeball rotation angle 0 [deg].
- the measuring unit 150 calculates the rotation angle from the difference from ⁇ (i + t) obtained from the coordinates (x + w / 2, y + h / 2) of the blood vessel image obtained by template matching after the T frame.
- the measurement unit 150 may perform template matching in the template matching described above using the template region TP that has been rotated in advance with the pupil center as the rotation center.
- FIG. 19 is a diagram illustrating a modification of the functional configuration of the eye movement measurement system 1.
- the eye movement measurement system 1a of the present modification includes the eye movement measurement apparatus 10a described above in that the eye movement measurement apparatus 10a includes the irradiation control unit 160, and the imaging apparatus 20a includes the first irradiation unit 220 and the second irradiation unit 230. Different from system 1.
- the irradiation control unit 160 irradiates the electromagnetic wave from either the first irradiation unit 220 or the second irradiation unit 230.
- the first irradiation unit 220 irradiates the eyeball EY of the subject SB with electromagnetic waves.
- the electromagnetic wave irradiated from the first irradiation unit 220 is, for example, visible light in a wavelength region such as green light, yellow light, and red light, or infrared light having a longer wavelength.
- the first irradiation unit 220 irradiates the eyeball EY of the subject SB with an electromagnetic wave having a wavelength longer than 495 nanometers.
- the first irradiation unit 220 includes a red LED (light emitting diode) and emits red light.
- the second irradiation unit 230 irradiates the eyeball EY of the subject SB with an electromagnetic wave having a wavelength shorter than 570 nm and shorter than the wavelength of the electromagnetic wave irradiated by the first irradiation unit 220.
- the electromagnetic wave irradiated from the second irradiation unit 230 is, for example, visible light in a wavelength region such as green light, blue light, and violet light, or ultraviolet light having a shorter wavelength.
- the second irradiation unit 230 when the first irradiation unit 220 emits electromagnetic waves having a wavelength of 495 nanometers (for example, green light), the second irradiation unit 230 has electromagnetic waves having a wavelength shorter than 495 nanometers, for example, 450 Irradiate electromagnetic waves with a wavelength of nanometer (for example, blue light).
- the first irradiation unit 220 emits an electromagnetic wave having a wavelength of 570 nanometers (for example, yellow light) the second irradiation unit 230 has an electromagnetic wave having a wavelength shorter than 570 nanometers.
- an electromagnetic wave having a wavelength of 495 nanometers (for example, green light) is irradiated.
- the 2nd irradiation part 230 is provided with blue LED, and irradiates blue light.
- the irradiation control unit 160 irradiates electromagnetic waves from either the first irradiation unit 220 or the second irradiation unit 230.
- the 1st irradiation part 220 irradiates red light (or electromagnetic waves with a longer wavelength).
- the second irradiation unit 230 emits blue light (or an electromagnetic wave having a shorter wavelength).
- the pupil of the eyeball EY is easily depicted.
- blood vessels in the white-eye region EW of the eyeball EY are easily depicted.
- the irradiation control unit 160 emits red light when the measurement unit 150 calculates the coordinates of the pupil of the eyeball EY, and emits blue light when the measurement unit 150 calculates the coordinates of the blood vessels of the eyeball EY. To do.
- the irradiation control unit 160 sets the irradiation wavelength switching cycle to a half of the imaging frame cycle of the imaging unit 210.
- the measurement unit 150 detects the center of the pupil when the average value of the entire luminance value of the eyeball image IMG is equal to or greater than a predetermined value (for example, 200 in the case of 256 gradations). If the value is less than the value, the position PV of the blood vessel is tracked.
- the irradiation control unit 160 outputs a signal indicating which wavelength of the electromagnetic wave is being irradiated to the imaging unit 210, the acquisition unit 110, or the measurement unit 150, and the eyeball imaged with the irradiation wavelength.
- the image IMG may be synchronized.
- the eye movement measurement system 1 measures the three-dimensional movement of the eyeball by tracking the movement of the eyeball image IMG using the template region TP.
- This eye movement measurement system 1 selects a template candidate region TC that includes more feature points FP from among a plurality of template candidate regions TC as a template region TP.
- the template candidate region TC containing more feature points FP has higher template matching performance than the template candidate region TC having fewer feature points FP.
- the eye movement measurement system 1 can improve the tracking performance of the eyeball image IMG. That is, according to the eye movement measurement system 1 of the present embodiment, the measurement accuracy of eye movement can be improved.
- the eye movement measurement system 1 has the feature point selected as the feature point FP corresponding to the position PV of the blood vessel in the white eye region EW among the extracted feature points FP (that is, the blood vessel correspondence feature point).
- a template candidate region TC is generated for each (VFP).
- the feature point FP extracted from the white-eye region EW is derived from an image of a blood vessel of the eyeball EY and one derived from an image of elements other than blood vessels (for example, eyelids, eyelashes, dust, etc.). There is. Since the position of the blood vessel of the eyeball EY does not change with respect to the eyeball EY, the blood vessel well represents the movement of the eyeball EY.
- the position of the elements other than the blood vessel may fluctuate with respect to the eyeball EY, the movement of the eyeball EY is not necessarily represented. Therefore, in order to improve the tracking performance of the movement of the eyeball EY, it is preferable to set the region including the image of the blood vessel as the template region TP rather than the region including the image of the elements other than the blood vessel as the template region TP. That is, a region including an image of an element other than a blood vessel has relatively low tracking performance of the eyeball EY when used as the template region TP.
- the eye movement measurement system 1 can improve the tracking performance of the movement of the eyeball EY by setting a region corresponding to the blood vessel position PV as a generation target of the template candidate region TC.
- the eye movement measurement system 1 excludes a region that does not correspond to the position PV of the blood vessel (that is, a region where the tracking performance of the movement of the eyeball EY is relatively low) from the generation target of the template candidate region TC.
- the number of TC candidates can be reduced. That is, according to the eye movement measurement system 1, the amount of calculation for selecting the template region TP can be reduced. That is, according to the eye movement measurement system 1 configured as described above, it is possible to achieve both improvement of the tracking performance of the movement of the eyeball EY and reduction of the calculation amount.
- the eye movement measurement system 1 extracts feature points FP in the white eye region EW by performing statistical processing including at least histogram flattening on the pixel values of each pixel in the white eye region EW.
- the white-eye image of the eyeball EY the area of the ground color (white) is relatively large, and the area of the blood vessel color (red to dark red to black) from which the feature point FP is extracted is relatively small.
- the color of the blood vessel may have low saturation and low (weak) contrast as a whole image. Therefore, if the image of the white eye region EW is simply binarized, it may be difficult to extract a blood vessel image.
- the eye movement measurement system 1 of the present embodiment since the histogram is flattened for the pixel values of each pixel in the white eye region EW, it is easy to distinguish the ground color from the blood vessel color for the white eye region EW. be able to. That is, according to the eye movement measurement system 1, the extraction performance of the blood vessel position PV can be improved, so that the tracking performance of the movement of the eyeball EY can be improved.
- the eye movement measurement system 1 selects a template candidate region TC that is less frequently matched with a plurality of different regions in the eyeball image IMG from among the plurality of template candidate regions TC as a template region TP.
- the template candidate region TC includes a relatively high and low tracking performance of the eyeball EY.
- the template candidate region TC may match a plurality of regions in the white-eye region EW. In the case of such a template candidate area TC, when following the movement of the eyeball EY, it is not determined which of the plurality of areas is matched, so that the movement tracking performance of the eyeball EY is low.
- the tracking performance of the movement of the eyeball EY is high. That is, the smaller the number of regions that match the template candidate region TC, the higher the tracking performance of the eyeball EY.
- the template candidate region TC matches a certain region in the white eye region EW, it may also match the region around the region. Therefore, if the selection conditions for the template region TP are limited to the template candidate region TC that matches only a single region, there are fewer options for the template candidate region TC, and the tracking performance may be reduced.
- the eye movement measurement system 1 of the present embodiment selects the template region TP based on the frequency of matching for a plurality of regions. For example, the eye movement measurement system 1 selects a template candidate region TC having a matching frequency of 2 or more and a predetermined value or less (for example, 5 or less) as the template region TP. By configuring in this way, the eye movement measurement system 1 can suppress the decrease in the number of options for the template candidate region TC and improve the movement tracking performance of the eyeball EY.
- the eye movement measurement system 1 of the present embodiment includes an imaging unit 210.
- the eye movement measurement system 1 integrates the image pickup apparatus 20 including the image pickup unit 210 and the eye movement measurement apparatus 10, thereby connecting a wired or wireless communication function for connecting the image pickup apparatus 20 and the eye movement measurement apparatus 10. Can be simplified.
- the eye movement measurement system 1 includes a first irradiation unit 220, a second irradiation unit 230, and an irradiation control unit 160.
- the first irradiation unit 220 irradiates the eyeball EY with long-wave electromagnetic waves (for example, green light, yellow light, red light, and infrared rays).
- long-wave electromagnetic waves for example, green light, yellow light, red light, and infrared rays.
- the pupil rendering performance of the eyeball EY is improved in the image generated by the imaging unit 210.
- the second irradiation unit 230 irradiates the eyeball EY with a short-wave electromagnetic wave (for example, blue light or ultraviolet light).
- the blood vessel rendering performance of the white-eye region EW of the eyeball EY is improved in the image generated by the imaging unit 210.
- the imaging performance of either (or both) of the pupil of the eyeball EY and the blood vessel of the white eye region EW of the eyeball EY May not be improved.
- the irradiation control unit 160 since the irradiation control unit 160 exclusively irradiates long-wave electromagnetic waves and short-wave electromagnetic waves, the pupil rendering performance of the eyeball EY and the white-eye area EW of the eyeball EY. Both blood vessel rendering performance can be improved.
- each of the above devices has a computer inside.
- the process of each device described above is stored in a computer-readable recording medium in the form of a program, and the above-described processing is performed by the computer reading and executing the program.
- the computer-readable recording medium means a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
- the computer program may be distributed to the computer via a communication line, and the computer that has received the distribution may execute the program.
- the program may be for realizing a part of the functions described above. Furthermore, what can implement
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Ophthalmology & Optometry (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Human Computer Interaction (AREA)
- Veterinary Medicine (AREA)
- Surgery (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Computing Systems (AREA)
- Evolutionary Computation (AREA)
- Software Systems (AREA)
- Databases & Information Systems (AREA)
- Artificial Intelligence (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Quality & Reliability (AREA)
- Eye Examination Apparatus (AREA)
- Position Input By Displaying (AREA)
- Image Analysis (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
眼球運動測定装置は、被験者の眼球が撮像された眼球画像を取得する取得部と、取得部が取得する眼球画像に含まれる白目領域内の特徴点を抽出する特徴点抽出部と、眼球画像のうち、特徴点抽出部が抽出する特徴点の画素を含む領域であるテンプレート候補領域を、特徴点毎に生成する候補領域生成部と、候補領域生成部が生成する複数のテンプレート候補領域のうち、特徴点がより多く含まれているテンプレート候補領域を、テンプレート領域として選択する選択部と、選択部が選択するテンプレート領域を用いて、取得部が取得する眼球画像の動きを追跡することにより、被験者の眼球の回旋角度を少なくとも含む眼球三次元運動を測定する測定部とを備える。
Description
本発明は、眼球運動測定装置、眼球運動測定方法及び眼球運動測定プログラムに関する。
本願は、2018年6月12日に、日本に出願された特願2018-111535号に基づき優先権を主張し、その内容をここに援用する。
本願は、2018年6月12日に、日本に出願された特願2018-111535号に基づき優先権を主張し、その内容をここに援用する。
従来、例えばHMDを用いたVR画像による映像酔いや、3D酔いを定量化するために、眼球を撮像することによって眼球運動を計測する技術が開示されている(例えば、特許文献1を参照)。
しかしながら、特許文献1に示すような技術によると、撮像された眼球の画像の状況によっては眼球運動(特に、眼球回旋運動)の計測精度が低下してしまうことがあり、この場合には、安定した計測ができないという課題があった。
本発明の一実施形態は、被験者の眼球が撮像された眼球画像を取得する取得部と、前記取得部が取得する前記眼球画像に含まれる白目領域内の特徴点を抽出する特徴点抽出部と、前記眼球画像のうち、前記特徴点抽出部が抽出する前記特徴点の画素を含む領域であるテンプレート候補領域を、前記特徴点毎に生成する候補領域生成部と、前記候補領域生成部が生成する複数の前記テンプレート候補領域のうち、前記特徴点がより多く含まれている前記テンプレート候補領域を、テンプレート領域として選択する選択部と、前記選択部が選択する前記テンプレート領域を用いて、前記取得部が取得する前記眼球画像の動きを追跡することにより、前記被験者の眼球の回旋角度を少なくとも含む眼球三次元運動を測定する測定部と、を備える眼球運動測定装置である。
本発明の一実施形態は、上述の眼球運動測定装置において前記候補領域生成部は、前記特徴点抽出部が抽出する前記特徴点のうち、前記白目領域内の血管の位置に対応する特徴点として選択された前記特徴点毎に、前記テンプレート候補領域を生成する。
本発明の一実施形態は、上述の眼球運動測定装置において前記特徴点抽出部は、前記白目領域内の各画素の画素値について少なくともヒストグラム平坦化を含む統計処理を行うことにより、前記白目領域内の特徴点を抽出する。
本発明の一実施形態は、上述の眼球運動測定装置において前記選択部は、複数の前記テンプレート候補領域のうち、前記眼球画像内の互いに異なる複数の領域に対してマッチングする頻度がより少ない前記テンプレート候補領域を、前記テンプレート領域として選択する。
本発明の一実施形態は、上述の眼球運動測定装置において、前記被験者の眼球を撮像することにより前記眼球画像を生成する撮像部をさらに備える。
本発明の一実施形態は、上述の眼球運動測定装置において、波長が570ナノメートルより長い電磁波を前記被験者の眼球に対して照射する第1照射部と、波長が570ナノメートルより短い電磁波を前記被験者の眼球に対して照射する第2照射部と、前記第1照射部と、前記第2照射部とのうちいずれか一方から電磁波を照射させる照射制御部と、を更に備える。
本発明の一実施形態は、被験者の眼球が撮像された眼球画像を取得する取得ステップと、前記取得ステップにおいて取得される前記眼球画像に含まれる白目領域内の特徴点を抽出する特徴点抽出ステップと、前記眼球画像のうち、前記特徴点抽出ステップにおいて抽出される前記特徴点の画素を含む領域であるテンプレート候補領域を、前記特徴点毎に生成する候補領域生成ステップと、前記候補領域生成ステップにおいて生成される複数の前記テンプレート候補領域のうち、前記特徴点がより多く含まれている前記テンプレート候補領域を、テンプレート領域として選択する選択ステップと、前記選択ステップにおいて選択される前記テンプレート領域を用いて、前記取得ステップにおいて取得される前記眼球画像の動きを追跡することにより、前記被験者の眼球の回旋角度を少なくとも含む眼球三次元運動を測定する測定ステップと、を有する眼球運動測定方法である。
本発明の一実施形態は、コンピュータに、被験者の眼球が撮像された眼球画像を取得する取得ステップと、前記取得ステップにおいて取得される前記眼球画像に含まれる白目領域内の特徴点を抽出する特徴点抽出ステップと、前記眼球画像のうち、前記特徴点抽出ステップにおいて抽出される前記特徴点の画素を含む領域であるテンプレート候補領域を、前記特徴点毎に生成する候補領域生成ステップと、前記候補領域生成ステップにおいて生成される複数の前記テンプレート候補領域のうち、前記特徴点がより多く含まれている前記テンプレート候補領域を、テンプレート領域として選択する選択ステップと、前記選択ステップにおいて選択される前記テンプレート領域を用いて、前記取得ステップにおいて取得される前記眼球画像の動きを追跡することにより、前記被験者の眼球の回旋角度を少なくとも含む眼球三次元運動を測定する測定ステップと、を実行させるための眼球運動測定プログラムである。
本発明によれば、眼球運動の計測精度を向上させることができる眼球運動測定装置、眼球運動測定方法及び眼球運動測定プログラムを提供することができる。
[実施形態]
以下、図面を参照して本実施形態の眼球運動測定システム1について説明する。
図1は、本実施形態の眼球運動測定システム1の機能構成の一例を示す図である。眼球運動測定システム1は、眼球運動測定装置10と、撮像装置20とを備える。
なお、この一例においては、眼球運動測定装置10と撮像装置20とが別装置として構成される場合について説明するが、これに限られない。眼球運動測定装置10と撮像装置20とは一体化された1つの装置として構成されてもよい。
まず、撮像装置20の構成について説明し、次に眼球運動測定装置10の構成について説明する。
以下、図面を参照して本実施形態の眼球運動測定システム1について説明する。
図1は、本実施形態の眼球運動測定システム1の機能構成の一例を示す図である。眼球運動測定システム1は、眼球運動測定装置10と、撮像装置20とを備える。
なお、この一例においては、眼球運動測定装置10と撮像装置20とが別装置として構成される場合について説明するが、これに限られない。眼球運動測定装置10と撮像装置20とは一体化された1つの装置として構成されてもよい。
まず、撮像装置20の構成について説明し、次に眼球運動測定装置10の構成について説明する。
[撮像装置20の機能構成]
撮像装置20は、撮像部210を備える。撮像部210は、例えば動画像を撮像可能なカメラを備えている。撮像部210は、被験者SBの眼球EYを撮像することにより眼球画像IMGを生成する。
撮像装置20は、撮像部210を備える。撮像部210は、例えば動画像を撮像可能なカメラを備えている。撮像部210は、被験者SBの眼球EYを撮像することにより眼球画像IMGを生成する。
この一例では、撮像装置20は、被験者SBの頭部に装着されるメガネ型のゴーグルとして構成される。撮像装置20は、撮像部210としての血管撮影用のカラーボードカメラを備え、眼球EYの血管像と瞳孔とを撮像する。このカラーボードカメラは、眼球EYと同じ高さで、眼球から20mm(ミリメートル)離れた位置に、正面から目尻側へ50度の方向に設置し、主に眼球EYの黒目と目尻側の白目領域EWとを画角に収めつつ撮像する。撮像部210の画面解像度は720×480[pixel]、撮像速度29.97[fps]である。
ここで、眼球EYと撮像部210との間の相対的な位置関係について説明する。
ここで、眼球EYと撮像部210との間の相対的な位置関係について説明する。
[眼球と撮像部との間の相対的な位置関係]
図2から図10までは、いずれも、眼球EYと撮像部210との相対位置関係の一例を示す図である。以下の説明において、被験者SBの頭部正面の方向(正面方向FA)と、眼球EYの視線軸AXの方向とが成す角を「角α」と、正面方向FAと撮像部210の撮像軸AIの方向とが成す角を「角θ」と記載する。なお、以下の説明において、角αのことを「視線角度α」とも称し、角θのことを「撮像角度θ」とも称する。また、撮像部210のレンズと眼球EYの中心との間の距離を「距離d」と記載する。
図2から図10までは、いずれも、眼球EYと撮像部210との相対位置関係の一例を示す図である。以下の説明において、被験者SBの頭部正面の方向(正面方向FA)と、眼球EYの視線軸AXの方向とが成す角を「角α」と、正面方向FAと撮像部210の撮像軸AIの方向とが成す角を「角θ」と記載する。なお、以下の説明において、角αのことを「視線角度α」とも称し、角θのことを「撮像角度θ」とも称する。また、撮像部210のレンズと眼球EYの中心との間の距離を「距離d」と記載する。
まず、距離dが15mmである場合について説明する。
図2は、撮像角度θ11(40度)、距離d11(15mm)である場合の相対位置関係の一例を示す図である。
図2(a)において、眼球EYの視線軸AXの方向は、正面方向FAの方向に対して左方向に45度回転している。すなわち、視線角度αについて、角α1=45度である。この図2(a)において、被験者SBは顔面を正面前方に向けながら、左方向を見ている。
この場合、撮像部210の画角には、眼球EYの白目の部分と、眼球EYの黒目の部分とのいずれもが含まれる。つまり、この図2(a)の状態において、撮像部210は、眼球EYの白目の部分と、眼球EYの黒目の部分を撮像可能である。
図2(b)において、眼球EYの視線軸AXの方向と、正面方向FAの方向とは一致しており視線角度αは0度である。つまり、この図2(b)において、被験者SBは正面前方を見ている。この一例の場合、撮像部210の画角には、眼球EYの白目の部分と、眼球EYの黒目の部分とのいずれもが含まれる。つまり、この図2(b)の状態において、撮像部210は、眼球EYの白目の部分と、眼球EYの黒目の部分を撮像可能である。
図2(c)において、眼球EYの視線軸AXの方向は、正面方向FAの方向に対して右方向に45度回転している。すなわち、角α3=45度である。この図2(c)において、被験者SBは顔面を正面前方に向けながら、右方向を見ている。この場合、撮像部210の画角には、眼球EYの白目の部分が含まれるが、眼球EYの黒目の部分は含まれない。つまり、この図2(c)の状態において、撮像部210は、眼球EYの白目の部分を撮像可能であるが、眼球EYの黒目の部分を撮像することはできない。
なお、以下の説明において、撮像部210と眼球EYとの位置関係が図2に示した場合と同様である部分については省略する。
図2は、撮像角度θ11(40度)、距離d11(15mm)である場合の相対位置関係の一例を示す図である。
図2(a)において、眼球EYの視線軸AXの方向は、正面方向FAの方向に対して左方向に45度回転している。すなわち、視線角度αについて、角α1=45度である。この図2(a)において、被験者SBは顔面を正面前方に向けながら、左方向を見ている。
この場合、撮像部210の画角には、眼球EYの白目の部分と、眼球EYの黒目の部分とのいずれもが含まれる。つまり、この図2(a)の状態において、撮像部210は、眼球EYの白目の部分と、眼球EYの黒目の部分を撮像可能である。
図2(b)において、眼球EYの視線軸AXの方向と、正面方向FAの方向とは一致しており視線角度αは0度である。つまり、この図2(b)において、被験者SBは正面前方を見ている。この一例の場合、撮像部210の画角には、眼球EYの白目の部分と、眼球EYの黒目の部分とのいずれもが含まれる。つまり、この図2(b)の状態において、撮像部210は、眼球EYの白目の部分と、眼球EYの黒目の部分を撮像可能である。
図2(c)において、眼球EYの視線軸AXの方向は、正面方向FAの方向に対して右方向に45度回転している。すなわち、角α3=45度である。この図2(c)において、被験者SBは顔面を正面前方に向けながら、右方向を見ている。この場合、撮像部210の画角には、眼球EYの白目の部分が含まれるが、眼球EYの黒目の部分は含まれない。つまり、この図2(c)の状態において、撮像部210は、眼球EYの白目の部分を撮像可能であるが、眼球EYの黒目の部分を撮像することはできない。
なお、以下の説明において、撮像部210と眼球EYとの位置関係が図2に示した場合と同様である部分については省略する。
図3は、撮像角度θ12(50度)、距離d12(15mm)である場合の相対位置関係の一例を示す図である。図3(a)の状態において、撮像部210は、白目と、黒目とをいずれも撮像可能である。図3(b)の状態において、撮像部210は、白目と、黒目とをいずれも撮像可能である。図3(c)の状態において、撮像部210は、白目を撮像可能であるが、黒目を撮像することはできない。
図4は、撮像角度θ13(60度)、距離d13(15mm)である場合の相対位置関係の一例を示す図である。この図4に示す場合も、白目及び黒目の撮像可否は、図2、図3を参照して説明した場合と同様である。
つまり、距離dが15mmである場合には、視線軸AXの方向によっては、白目と黒目とを同時に撮像することができない場合がある。
つまり、距離dが15mmである場合には、視線軸AXの方向によっては、白目と黒目とを同時に撮像することができない場合がある。
次に、距離dが20mmである場合について説明する。
図5は、撮像角度θ21(40度)、距離d21(20mm)である場合の相対位置関係の一例を示す図である。
図6は、撮像角度θ22(50度)、距離d22(20mm)である場合の相対位置関係の一例を示す図である。
図7は、撮像角度θ23(60度)、距離d23(20mm)である場合の相対位置関係の一例を示す図である。
これら図5~図7を参照すると、撮像角度θが、撮像角度θ23(60度)である場合には、白目と黒目とを同時に撮像することができない場合がある。一方、撮像角度θが、撮像角度θ21(40度)及び撮像角度θ22(50度)である場合には、視線軸AXの方向によらず白目と黒目とを同時に撮像可能である。
図5は、撮像角度θ21(40度)、距離d21(20mm)である場合の相対位置関係の一例を示す図である。
図6は、撮像角度θ22(50度)、距離d22(20mm)である場合の相対位置関係の一例を示す図である。
図7は、撮像角度θ23(60度)、距離d23(20mm)である場合の相対位置関係の一例を示す図である。
これら図5~図7を参照すると、撮像角度θが、撮像角度θ23(60度)である場合には、白目と黒目とを同時に撮像することができない場合がある。一方、撮像角度θが、撮像角度θ21(40度)及び撮像角度θ22(50度)である場合には、視線軸AXの方向によらず白目と黒目とを同時に撮像可能である。
次に、距離dが25mmである場合について説明する。
図8は、撮像角度θ31(40度)、距離d31(25mm)である場合の相対位置関係の一例を示す図である。
図9は、撮像角度θ32(50度)、距離d32(25mm)である場合の相対位置関係の一例を示す図である。
図10は、撮像角度θ33(60度)、距離d32(25mm)である場合の相対位置関係の一例を示す図である。
これら図8~図10を参照すると、撮像角度θが撮像角度θ31、撮像角度θ32及び撮像角度θ33のいずれであっても、視線軸AXの方向によらず白目と黒目とを同時に撮像可能である。
図8は、撮像角度θ31(40度)、距離d31(25mm)である場合の相対位置関係の一例を示す図である。
図9は、撮像角度θ32(50度)、距離d32(25mm)である場合の相対位置関係の一例を示す図である。
図10は、撮像角度θ33(60度)、距離d32(25mm)である場合の相対位置関係の一例を示す図である。
これら図8~図10を参照すると、撮像角度θが撮像角度θ31、撮像角度θ32及び撮像角度θ33のいずれであっても、視線軸AXの方向によらず白目と黒目とを同時に撮像可能である。
すなわち、撮像部210と眼球EYとの相対的な位置関係が変化すると、白目と黒目とが同時に撮像できる場合と撮像できない場合とが生じる。この一例では、白目と黒目とを同時に撮像するためには、距離dは大きいほうがよく、撮像角度θは小さいほうがよい。
また、撮像部210の画角内に収まる白目の面積を大きくするためには、距離dは小さいほうがよく、撮像角度θは大きいほうがよい。つまり、白目と黒目とを同時に撮像可能であり、かつ撮像部210の画角内に収まる白目の面積を大きくするためには、撮像部210と眼球EYとの相対的な位置関係が、所定の範囲内にあることが求められる。この所定の範囲の一例として、上述したように、距離dが20~25mm、撮像角度θが40度~50度であることが望ましい。また、この所定の範囲の一例として、上述したように、距離dが25mmである場合には、撮像角度θが60度であってもよい。
また、撮像部210の画角内に収まる白目の面積を大きくするためには、距離dは小さいほうがよく、撮像角度θは大きいほうがよい。つまり、白目と黒目とを同時に撮像可能であり、かつ撮像部210の画角内に収まる白目の面積を大きくするためには、撮像部210と眼球EYとの相対的な位置関係が、所定の範囲内にあることが求められる。この所定の範囲の一例として、上述したように、距離dが20~25mm、撮像角度θが40度~50度であることが望ましい。また、この所定の範囲の一例として、上述したように、距離dが25mmである場合には、撮像角度θが60度であってもよい。
[眼球運動測定装置10の機能構成]
図1に戻り、眼球運動測定装置10の機能構成について説明する。眼球運動測定装置10は、取得部110と、特徴点抽出部120と、候補領域生成部130と、選択部140と、測定部150とを備える。
図1に戻り、眼球運動測定装置10の機能構成について説明する。眼球運動測定装置10は、取得部110と、特徴点抽出部120と、候補領域生成部130と、選択部140と、測定部150とを備える。
取得部110は、被験者SBの眼球EYが撮像された眼球画像IMGを取得する。
特徴点抽出部120は、取得部110が取得する眼球画像IMGに含まれる白目領域EW内の特徴点FPを抽出する。
候補領域生成部130は、眼球画像IMGのうち、特徴点抽出部120が抽出する特徴点FPの画素を含む領域であるテンプレート候補領域TCを、特徴点FP毎に生成する。
選択部140は、候補領域生成部130が生成する複数のテンプレート候補領域TCのうち、特徴点FPがより多く含まれているテンプレート候補領域TCを、テンプレート領域TPとして選択する。
測定部150は、選択部140が選択するテンプレート領域TPを用いて、取得部110が取得する眼球画像IMGの動きを追跡することにより、被験者SBの眼球EYの回旋角度ATを少なくとも含む眼球三次元運動を測定する。
これら各部の動作の具体例について、図11を参照して説明する。
特徴点抽出部120は、取得部110が取得する眼球画像IMGに含まれる白目領域EW内の特徴点FPを抽出する。
候補領域生成部130は、眼球画像IMGのうち、特徴点抽出部120が抽出する特徴点FPの画素を含む領域であるテンプレート候補領域TCを、特徴点FP毎に生成する。
選択部140は、候補領域生成部130が生成する複数のテンプレート候補領域TCのうち、特徴点FPがより多く含まれているテンプレート候補領域TCを、テンプレート領域TPとして選択する。
測定部150は、選択部140が選択するテンプレート領域TPを用いて、取得部110が取得する眼球画像IMGの動きを追跡することにより、被験者SBの眼球EYの回旋角度ATを少なくとも含む眼球三次元運動を測定する。
これら各部の動作の具体例について、図11を参照して説明する。
[眼球運動測定システムの動作]
図11は、本実施形態の眼球運動測定システム1の動作の一例を示す図である。
(ステップS10)眼球運動測定装置10は、テンプレート領域TPを決定する。ここで、眼球運動測定装置10がテンプレート領域TPを決定する手順の詳細について、図12を参照して説明する。
図11は、本実施形態の眼球運動測定システム1の動作の一例を示す図である。
(ステップS10)眼球運動測定装置10は、テンプレート領域TPを決定する。ここで、眼球運動測定装置10がテンプレート領域TPを決定する手順の詳細について、図12を参照して説明する。
[テンプレート画像の決定]
図12は、本実施形態の眼球運動測定システム1のテンプレート領域TPを決定する動作の一例を示す図である。
(ステップS110)取得部110は、撮像部210が撮像した眼球画像IMGを取得する。この眼球画像IMGの一例について、図13に示す。
図12は、本実施形態の眼球運動測定システム1のテンプレート領域TPを決定する動作の一例を示す図である。
(ステップS110)取得部110は、撮像部210が撮像した眼球画像IMGを取得する。この眼球画像IMGの一例について、図13に示す。
図13は、本実施形態の眼球画像IMGの一例を示す図である。この一例においては、撮像部210は、被験者SBの左目の眼球EYを撮像して眼球画像IMGを生成する。この眼球画像IMGには、白目領域EWが含まれている。
(ステップS120)特徴点抽出部120は、取得部110が取得した眼球画像IMGから白目領域EWの画像(白目画像ともいう。)を抽出する。
(ステップS130)特徴点抽出部120は、ステップS120において抽出した白目画像に対して、ヒストグラム平坦化を行う。このヒストグラム平均化によって、特徴点抽出部120は、白目領域EWと血管像との濃淡コントラストを大きくすることにより、白目領域EWに含まれる血管の画像を強調する。
具体的には、特徴点抽出部120は、眼球画像IMGの各画素の画素値(例えば、輝度値)について、式(1)に示す変換を行う。
ここで、z:変換前の輝度値、z’:変換後の輝度値、h(z):輝度値zにおける画素数、Height:入力画像の縦の大きさ、Width:入力画像の横の大きさ、である。
すなわち、特徴点抽出部120は、白目領域EW内の各画素の画素値について少なくともヒストグラム平坦化を含む統計処理を行う。特徴点抽出部120がヒストグラム平坦化を行った後の白目領域EWの画像の一例を図14に示す。
図14は、本実施形態のヒストグラム平坦化処理後の白目領域EWの画像の一例を示す図である。
すなわち、特徴点抽出部120は、白目領域EW内の各画素の画素値について少なくともヒストグラム平坦化を含む統計処理を行う。特徴点抽出部120がヒストグラム平坦化を行った後の白目領域EWの画像の一例を図14に示す。
図14は、本実施形態のヒストグラム平坦化処理後の白目領域EWの画像の一例を示す図である。
(ステップS140)図12に戻り、特徴点抽出部120は、ヒストグラム平坦化を行った白目画像に対して、従来手法(例えば、ORB;Oriented FAST and Rotated BRIEF)によって特徴点FPの抽出を行う。特徴点抽出部120が特徴点FPの抽出を行った結果の一例を図15に示す。
図15は、本実施形態の特徴点FPの抽出結果の一例を示す図である。特徴点抽出部120は、特徴点抽出部120は、白目領域EW内の各画素の画素値について統計処理を行うことにより、白目領域EW内の特徴点FPを抽出する。この一例では、特徴点抽出部120は、各画素に対する統計処理として、ヒストグラム平坦化を行う。
(ステップS150)図12に戻り、特徴点抽出部120は、ステップS120において抽出した白目画像を二値化し、さらに、二値化した画像を細線化した画像(血管二値化細線化画像BTN)を生成する。具体的には、特徴点抽出部120は、近傍領域のサイズ17×17[pixel]の輝度値においてガウシアンによる重み付けの総和からオフセット値(例えば、4)を差し引いた数値を閾値とする適応的二値化処理を行った後、細線化処理を行う。この結果、白目領域EWの画像に含まれる血管の位置PVが抽出される。
特徴点抽出部120が生成する血管二値化細線化画像BTNの一例を図16に示す。
図16は、本実施形態の血管二値化細線化画像BTNの一例を示す図である。
特徴点抽出部120が生成する血管二値化細線化画像BTNの一例を図16に示す。
図16は、本実施形態の血管二値化細線化画像BTNの一例を示す図である。
(ステップS160)図12に戻り、特徴点抽出部120は、ステップS140において抽出した特徴点FPと、ステップS150において抽出した血管の位置PVとを重ね合わせることにより、ステップS140において抽出された特徴点FPのうち血管の周囲の特徴点(血管対応特徴点VFP)を抽出する。この特徴点抽出部120が抽出した血管対応特徴点VFPの一例を図17に示す。
図17は、本実施形態の血管対応特徴点VFPの一例を示す図である。すなわち、特徴点抽出部120は、特徴点FPのうち、白目領域EW内の血管の位置PVに対応する特徴点FPとしての血管対応特徴点VFPを選択する。
(ステップS170)図12に戻り、候補領域生成部130は、ステップS140において抽出された特徴点FPのうちの、ある特徴点FPを中心とする領域(例えば、50[pixel]×50[pixel]の領域)内に、特徴点がいくつ含まれるかを、ステップS140において抽出された特徴点毎に計数する。以下の説明において、この特徴点FPを中心とする領域のことを、テンプレート候補領域TCともいう。
すなわち、候補領域生成部130は、特徴点抽出部120が抽出する特徴点FPのうち、白目領域EW内の血管の位置PVに対応する特徴点FPとして選択された特徴点(血管対応特徴点VFP)毎に、テンプレート候補領域TCを生成する。図18を参照して、より具体的に説明する。
図18は、本実施形態のテンプレート候補領域TCの一例を示す図である。同図(a)に示す白目領域EWには、複数の特徴点FPが抽出されている。ステップS170において、候補領域生成部130は、テンプレート候補領域TCを、特徴点FP毎に生成する。
同図(a)においては、候補領域生成部130が、複数の特徴点FPのうち、特徴点FP1についてテンプレート候補領域TC1を、特徴点FP2についてテンプレート候補領域TC2を、それぞれ生成した場合を示している。なお、同図(a)においては、他の特徴点FPについてのテンプレート候補領域TCの図示を省略している。
なお、この一例では、上述した候補領域生成部130がテンプレート候補領域TCの生成のために参照する特徴点FPとは、すべての特徴点FPのうち血管の位置PVの位置に対応する特徴点FP(すなわち、血管対応特徴点VFP)のことである。
同図(a)においては、候補領域生成部130が、複数の特徴点FPのうち、特徴点FP1についてテンプレート候補領域TC1を、特徴点FP2についてテンプレート候補領域TC2を、それぞれ生成した場合を示している。なお、同図(a)においては、他の特徴点FPについてのテンプレート候補領域TCの図示を省略している。
なお、この一例では、上述した候補領域生成部130がテンプレート候補領域TCの生成のために参照する特徴点FPとは、すべての特徴点FPのうち血管の位置PVの位置に対応する特徴点FP(すなわち、血管対応特徴点VFP)のことである。
次に候補領域生成部130は、生成したテンプレート候補領域TCに含まれる血管対応特徴点VFPの数CNTを計数する。同図(b)に示す一例では、候補領域生成部130は、テンプレート候補領域TC1に含まれる血管対応特徴点VFPの数CNTを「7」と計数する。同様に、候補領域生成部130は、テンプレート候補領域TC2について血管対応特徴点VFPの数CNT「11」、テンプレート候補領域TC3について血管対応特徴点VFPの数CNT「23」、テンプレート候補領域TC4について血管対応特徴点VFPの数CNT「17」、テンプレート候補領域TC5について血管対応特徴点VFPの数CNT「19」…と、テンプレート候補領域TCごとに計数する。
より具体的には、候補領域生成部130は、図14に示した白目領域EWの画像のうち、図17に示した血管対応特徴点VFPの画素の周囲50×50[pixel]の領域に対応する位置の領域を切り取り、切り取った領域の画像をテンプレート候補領域TCとして生成する。候補領域生成部130は、このテンプレート候補領域TCの生成を、血管対応特徴点VFP毎に繰り返す。
(ステップS180)図12に戻り、候補領域生成部130は、ステップS170において計数した特徴点FPの数に基づいて、テンプレート候補領域TCの順位付けを行う。
図18(c)に、候補領域生成部130が行うテンプレート候補領域TCの順位付けの一例を示す。
図18(c)に、候補領域生成部130が行うテンプレート候補領域TCの順位付けの一例を示す。
(ステップS190)図12に戻り、選択部140は、候補領域生成部130が生成する複数のテンプレート候補領域TCのうち、特徴点FP(または、血管対応特徴点VFP)がより多く含まれているテンプレート候補領域TCを、テンプレート領域TPとして選択する。つまり、選択部140は、候補領域生成部130が順位付けしたテンプレート候補領域TCのうち、上位のテンプレート候補領域TCをテンプレート領域TPとして選択する。
ここで、白目領域EWに環境光が反射している(照り返しがある)場合、反射光によって生じた輝度勾配によっても特徴点FPとして抽出されることがある。つまり、白目領域EWに環境光が反射している場合には、白目領域EWの形態に由来する特徴ではなく、外乱に由来する特徴によって特徴点FPが抽出されてしまうことがある。選択部140は、テンプレート候補領域TCに反射光の画像が含まれている場合には、この反射光の画像が含まれているテンプレート候補領域TCをテンプレート領域TPとして選択しないように除去する。
より具体的には、選択部140は、白目領域EWの輝度値ヒストグラムを作成し、作成したヒストグラムの累積度数について、上位から所定範囲(例えば、10%まで)の輝度値を調べる。選択部140は、テンプレート候補領域TC内に、上述した所定範囲内の輝度値の領域が25[pixel]以上含まれている場合には、テンプレート候補領域TCに環境光による照り返しが存在していると判定する。
(ステップS200)選択部140は、誤マッチングを起こしやすいテンプレート候補領域TCを除去する。具体的には、選択部140は、複数のテンプレート候補領域TCのうち、眼球画像IMG内の互いに異なる複数の領域に対してマッチングする頻度がより少ないテンプレート候補領域TCを、テンプレート領域TPとして選択する。
例えば、白目領域EW内において、直線に近い形状の血管の画像が存在する場合には、その血管の画像を含み、かつその血管の端点の画像を含まない領域が、テンプレート候補領域TCとして生成される場合がある。このようなテンプレート候補領域TCの場合、白目領域EW内の他の領域においても画像の類似度が大きくなることがある。この場合、テンプレート候補領域TCが、本来マッチングする領域以外の領域においてもマッチングしてしまう、すなわち誤マッチングしてしまうことがある。
そこで、選択部140は、白目領域EWにおいてテンプレート候補領域TCによるテンプレートマッチングを行なった結果、類似度が70%を超えた回数を算出する。なお、この類似度の計算には後述する正規化相互相関係数を用いてもよい。
そこで、選択部140は、白目領域EWにおいてテンプレート候補領域TCによるテンプレートマッチングを行なった結果、類似度が70%を超えた回数を算出する。なお、この類似度の計算には後述する正規化相互相関係数を用いてもよい。
選択部140による探索領域内(例えば、白目領域EW内)には、テンプレート候補領域TCである領域も存在する。このため、選択部140による類似度が70%を超えた回数の算出において、少なくとも1回は類似度が70%を超え、また上下左右に1[pixel]ずらした場合においても、多くの場合には類似度が70%を超える。すなわち、選択部140による回数の算出において、類似度が70%を超える回数が5回までは通常発生しうる。しかし、それ以上の回数で類似度が70%を超える場合は、誤マッチングを引き起こしているものと推定される。このため、選択部140は、類似度が70%を超える回数が所定回数(例えば、5回)を超える場合には、当該テンプレート候補領域TCを、誤マッチングを起こしやすいテンプレート候補領域TCであると判定して、テンプレート領域TPの選択から除外する。
(ステップS210)選択部140は、ステップS190及びステップS200において除外されたテンプレート候補領域TCを除いたテンプレート候補領域TCから、テンプレート領域TPを選択する。すなわち、選択部140は、テンプレート領域TPを決定する。
図11に戻り、眼球運動測定システム1の動作についての説明を続ける。
(ステップS20)取得部110は、眼球画像IMGを取得する。
(ステップS20)取得部110は、眼球画像IMGを取得する。
[瞳孔中心座標の算出(楕円フィッティング)]
(ステップS30)測定部150は、取得部110が取得した眼球画像IMGに基づいて、既知の手順によって瞳孔中心座標を算出する。具体的には、測定部150は、眼球画像IMGに対して二値化及びラベリング処理を施すことによって、眼球画像IMGに含まれる瞳孔画像の領域を抽出する。測定部150は、抽出した瞳孔画像から、瞳孔の輪郭を抽出し、輪郭の凸包を取得する。測定部150は、凸包によって得られた点群に対して、例えば最小二乗法を用いて楕円フィッティングを行うことにより、瞳孔の中心座標を算出する。
なお、瞳孔の中心座標の算出について、楕円フィッティングを用いることは一例であり、測定部150は、種々の手順によって瞳孔の中心座標を算出してよい。
(ステップS30)測定部150は、取得部110が取得した眼球画像IMGに基づいて、既知の手順によって瞳孔中心座標を算出する。具体的には、測定部150は、眼球画像IMGに対して二値化及びラベリング処理を施すことによって、眼球画像IMGに含まれる瞳孔画像の領域を抽出する。測定部150は、抽出した瞳孔画像から、瞳孔の輪郭を抽出し、輪郭の凸包を取得する。測定部150は、凸包によって得られた点群に対して、例えば最小二乗法を用いて楕円フィッティングを行うことにより、瞳孔の中心座標を算出する。
なお、瞳孔の中心座標の算出について、楕円フィッティングを用いることは一例であり、測定部150は、種々の手順によって瞳孔の中心座標を算出してよい。
[回旋角度の算出]
測定部150は、上述したテンプレート領域TPによって、白目領域EW内の血管画像を追跡する。具体的には、測定部150は、取得部110が取得する眼球画像IMGのテンプレート領域TPに相当する領域に対して適応的二値化を行い、血管の位置PVを示す血管画像を抽出する。測定部150は、適応的二値化処理後の眼球画像IMGに対してラべリング処理を行うことにより、眼球画像IMGの中で最も面積の大きい領域を選択する。この測定部150が行うテンプレートマッチングにおける類似度の計算には、正規化相互相関係数を用いる。正規化相互相関係数のR(x,y)は、式(2)~式(4)によって示される。
測定部150は、上述したテンプレート領域TPによって、白目領域EW内の血管画像を追跡する。具体的には、測定部150は、取得部110が取得する眼球画像IMGのテンプレート領域TPに相当する領域に対して適応的二値化を行い、血管の位置PVを示す血管画像を抽出する。測定部150は、適応的二値化処理後の眼球画像IMGに対してラべリング処理を行うことにより、眼球画像IMGの中で最も面積の大きい領域を選択する。この測定部150が行うテンプレートマッチングにおける類似度の計算には、正規化相互相関係数を用いる。正規化相互相関係数のR(x,y)は、式(2)~式(4)によって示される。
ただし、x,y:参照する画素のxy座標、w:テンプレート画像の縦の大きさ、h:テンプレート画像の横の大きさ、I:探索画像での輝度値、T:テンプレート画像の輝度値、R:類似度計算結果、(x^’=0,1…w-1,y^’=0,1,…h-1)である。
上述したテンプレートマッチングにおいて、R(x,y)が最も大きな値をとる(x,y)は,上述したテンプレート領域TPの左上隅に対応する座標である。血管の位置PV(血管像の座標)はテンプレート画像の中心と定めている。この場合、テンプレートマッチングによって得られる座標は(x+w/2,y+h/2)である。
[回旋角度の算出]
測定部150は、テンプレート領域TPによるテンプレートマッチングの結果に基づいて、回旋角度を算出する。測定部150は、テンプレート領域TPの決定に用いられたiフレーム目の画像から求められる角度θiと、当該iフレーム目からtフレーム後の角度θ(i+t)との差から眼球回旋角度を算出する。
一例として、測定部150は、処理の簡易化のために眼球が球体ということを考慮せず、単純に平面での角度計算と同様に2点の(x,y)座標から逆三角関数を用いて角度を求めてもよい。なお、瞳孔の中心の座標に対する、テンプレート領域TPの中心の座標から計算される角度θiは,次式で表される。
測定部150は、テンプレート領域TPによるテンプレートマッチングの結果に基づいて、回旋角度を算出する。測定部150は、テンプレート領域TPの決定に用いられたiフレーム目の画像から求められる角度θiと、当該iフレーム目からtフレーム後の角度θ(i+t)との差から眼球回旋角度を算出する。
一例として、測定部150は、処理の簡易化のために眼球が球体ということを考慮せず、単純に平面での角度計算と同様に2点の(x,y)座標から逆三角関数を用いて角度を求めてもよい。なお、瞳孔の中心の座標に対する、テンプレート領域TPの中心の座標から計算される角度θiは,次式で表される。
ここで、(x_vessel,y_vessel):血管像の座標、(x_pupil,y_pupil):瞳孔中心の座標である。
テンプレート領域TPの決定に用いられたiフレーム目の画像から求められる角度θiを眼球回旋角度0[deg]と定める。測定部150は、Tフレーム後のテンプレートマッチングによって得られた血管像の座標(x+w/2,y+h/2)から求められるθ(i+t)との差から回旋角度を計算する。
テンプレート領域TPの決定に用いられたiフレーム目の画像から求められる角度θiを眼球回旋角度0[deg]と定める。測定部150は、Tフレーム後のテンプレートマッチングによって得られた血管像の座標(x+w/2,y+h/2)から求められるθ(i+t)との差から回旋角度を計算する。
なお、測定部150は、上述したテンプレートマッチングにおいて、瞳孔中心を回転中心として予め回転させたテンプレート領域TPを用いて、テンプレートマッチングを行ってもよい。
[変形例]
図19は、眼球運動測定システム1の機能構成の変形例を示す図である。
本変形例の眼球運動測定システム1aは、眼球運動測定装置10aが、照射制御部160を、撮像装置20aが第1照射部220と第2照射部230とを備える点において、上述した眼球運動測定システム1と異なる。
図19は、眼球運動測定システム1の機能構成の変形例を示す図である。
本変形例の眼球運動測定システム1aは、眼球運動測定装置10aが、照射制御部160を、撮像装置20aが第1照射部220と第2照射部230とを備える点において、上述した眼球運動測定システム1と異なる。
照射制御部160は、第1照射部220と、第2照射部230とのうちいずれか一方から電磁波を照射させる。
第1照射部220は、電磁波を被験者SBの眼球EYに対して照射する。この第1照射部220から照射される電磁波は、例えば、緑色光、黄色光、赤色光などの波長領域の可視光線、又は更に波長が長い赤外線などである。一例としては、第1照射部220は、495ナノメートルより長い波長の電磁波を被験者SBの眼球EYに対して照射する。一例として、第1照射部220は、赤色LED(light emitting diode)を備えており、赤色光を照射する。
第2照射部230は、570ナノメートルより短い波長であって、かつ第1照射部220が照射する電磁波の波長よりも短い波長の電磁波を被験者SBの眼球EYに対して照射する。この第2照射部230から照射される電磁波は、例えば、緑色光、青色光、紫色光などの波長領域の可視光線、又は更に波長が短い紫外線などである。一例として、第1照射部220が、495ナノメートルの波長の電磁波(例えば、緑色光)を照射する場合には、第2照射部230は、495ナノメートルよりも短い波長の電磁波、例えば、450ナノメートルの波長の電磁波(例えば、青色光)を照射する。また、他の一例として、第1照射部220が、570ナノメートルの波長の電磁波(例えば、黄色光)を照射する場合には、第2照射部230は、570ナノメートルよりも短い波長の電磁波、例えば、495ナノメートルの波長の電磁波(例えば、緑色光)を照射する。一例として、第2照射部230は、青色LEDを備えており、青色光を照射する。
第1照射部220は、電磁波を被験者SBの眼球EYに対して照射する。この第1照射部220から照射される電磁波は、例えば、緑色光、黄色光、赤色光などの波長領域の可視光線、又は更に波長が長い赤外線などである。一例としては、第1照射部220は、495ナノメートルより長い波長の電磁波を被験者SBの眼球EYに対して照射する。一例として、第1照射部220は、赤色LED(light emitting diode)を備えており、赤色光を照射する。
第2照射部230は、570ナノメートルより短い波長であって、かつ第1照射部220が照射する電磁波の波長よりも短い波長の電磁波を被験者SBの眼球EYに対して照射する。この第2照射部230から照射される電磁波は、例えば、緑色光、青色光、紫色光などの波長領域の可視光線、又は更に波長が短い紫外線などである。一例として、第1照射部220が、495ナノメートルの波長の電磁波(例えば、緑色光)を照射する場合には、第2照射部230は、495ナノメートルよりも短い波長の電磁波、例えば、450ナノメートルの波長の電磁波(例えば、青色光)を照射する。また、他の一例として、第1照射部220が、570ナノメートルの波長の電磁波(例えば、黄色光)を照射する場合には、第2照射部230は、570ナノメートルよりも短い波長の電磁波、例えば、495ナノメートルの波長の電磁波(例えば、緑色光)を照射する。一例として、第2照射部230は、青色LEDを備えており、青色光を照射する。
[交互照明]
ここで、照射制御部160は、第1照射部220と、第2照射部230とのうちいずれか一方から電磁波を照射させる。第1照射部220は、赤色光(又はより波長の長い電磁波)を照射する。第2照射部230は、青色光(又はより波長の短い電磁波)を照射する。長波長の電磁波が照射された眼球EYの画像は、眼球EYの瞳孔が描出されやすい。短波長の電磁波が照射された眼球EYの画像は、眼球EYの白目領域EWの血管が描出されやすい。
照射制御部160は、測定部150が眼球EYの瞳孔の座標を算出する場合には、赤色光を照射し、測定部150が眼球EYの血管の座標を算出する場合には、青色光を照射する。例えば、照射制御部160は、照射する波長の切り替え周期を、撮像部210の撮像フレーム周期の半分の周期にする。
また、上述の場合、測定部150は、眼球画像IMGの全体の輝度値の平均値が所定値(例えば、256階調の場合において200)以上の場合には、瞳孔中心の検出を行い、所定値未満の場合には、血管の位置PVの追跡を行う。また、照射制御部160は、いずれの波長の電磁波を照射しているのかを示す信号を、撮像部210、取得部110、又は測定部150に対して出力して、照射波長と撮像された眼球画像IMGとを同期させてもよい。
ここで、照射制御部160は、第1照射部220と、第2照射部230とのうちいずれか一方から電磁波を照射させる。第1照射部220は、赤色光(又はより波長の長い電磁波)を照射する。第2照射部230は、青色光(又はより波長の短い電磁波)を照射する。長波長の電磁波が照射された眼球EYの画像は、眼球EYの瞳孔が描出されやすい。短波長の電磁波が照射された眼球EYの画像は、眼球EYの白目領域EWの血管が描出されやすい。
照射制御部160は、測定部150が眼球EYの瞳孔の座標を算出する場合には、赤色光を照射し、測定部150が眼球EYの血管の座標を算出する場合には、青色光を照射する。例えば、照射制御部160は、照射する波長の切り替え周期を、撮像部210の撮像フレーム周期の半分の周期にする。
また、上述の場合、測定部150は、眼球画像IMGの全体の輝度値の平均値が所定値(例えば、256階調の場合において200)以上の場合には、瞳孔中心の検出を行い、所定値未満の場合には、血管の位置PVの追跡を行う。また、照射制御部160は、いずれの波長の電磁波を照射しているのかを示す信号を、撮像部210、取得部110、又は測定部150に対して出力して、照射波長と撮像された眼球画像IMGとを同期させてもよい。
[実施形態のまとめ]
以上説明したように、本実施形態の眼球運動測定システム1は、テンプレート領域TPを用いて、眼球画像IMGの動きを追跡することにより眼球三次元運動を測定する。この眼球運動測定システム1は、複数のテンプレート候補領域TCのうち、特徴点FPがより多く含まれているテンプレート候補領域TCを、テンプレート領域TPとして選択する。
ここで、特徴点FPがより多く含まれているテンプレート候補領域TCは、特徴点FPがより少ないテンプレート候補領域TCに比べてテンプレートマッチング性能が高い。
このように構成することにより、眼球運動測定システム1は、眼球画像IMGの動きの追跡性能を向上させることができる。すなわち、本実施形態の眼球運動測定システム1によれば、眼球運動の計測精度を向上させることができる。
以上説明したように、本実施形態の眼球運動測定システム1は、テンプレート領域TPを用いて、眼球画像IMGの動きを追跡することにより眼球三次元運動を測定する。この眼球運動測定システム1は、複数のテンプレート候補領域TCのうち、特徴点FPがより多く含まれているテンプレート候補領域TCを、テンプレート領域TPとして選択する。
ここで、特徴点FPがより多く含まれているテンプレート候補領域TCは、特徴点FPがより少ないテンプレート候補領域TCに比べてテンプレートマッチング性能が高い。
このように構成することにより、眼球運動測定システム1は、眼球画像IMGの動きの追跡性能を向上させることができる。すなわち、本実施形態の眼球運動測定システム1によれば、眼球運動の計測精度を向上させることができる。
また、本実施形態の眼球運動測定システム1は、抽出される特徴点FPのうち、白目領域EW内の血管の位置PVに対応する特徴点FPとして選択された特徴点(すなわち、血管対応特徴点VFP)毎に、テンプレート候補領域TCを生成する。ここで、白目領域EWから抽出される特徴点FPには、眼球EYの血管の画像に由来するものと、血管以外の要素(例えば、瞼、まつ毛、埃など)の画像に由来しているものとがある。眼球EYの血管は、眼球EYに対してその位置が変化しないため、眼球EYの動きをよく表す。一方、血管以外の要素は、眼球EYに対してその位置が変動することがあるため、眼球EYの動きを必ずしも表さない。したがって、眼球EYの動きの追跡性能を向上させるためには、血管以外の要素の画像を含む領域をテンプレート領域TPとすることよりも、血管の画像を含む領域をテンプレート領域TPとするほうが好ましい。つまり、血管以外の要素の画像を含む領域は、テンプレート領域TPとして用いた場合、眼球EYの動きの追跡性能が相対的に低い。
眼球運動測定システム1は、血管の位置PVに対応する領域をテンプレート候補領域TCの生成対象とすることにより、眼球EYの動きの追跡性能を向上させることができる。
また、眼球運動測定システム1は、血管の位置PVに対応しない領域(すなわち眼球EYの動きの追跡性能が相対的に低い領域)をテンプレート候補領域TCの生成対象から除外することにより、テンプレート候補領域TCの候補数を低減することができる。つまり、眼球運動測定システム1によれば、テンプレート領域TPの選択のための演算量を低減することができる。
すなわち、上述のように構成された眼球運動測定システム1によれば、眼球EYの動きの追跡性能の向上と、演算量の低減とを両立させることができる。
眼球運動測定システム1は、血管の位置PVに対応する領域をテンプレート候補領域TCの生成対象とすることにより、眼球EYの動きの追跡性能を向上させることができる。
また、眼球運動測定システム1は、血管の位置PVに対応しない領域(すなわち眼球EYの動きの追跡性能が相対的に低い領域)をテンプレート候補領域TCの生成対象から除外することにより、テンプレート候補領域TCの候補数を低減することができる。つまり、眼球運動測定システム1によれば、テンプレート領域TPの選択のための演算量を低減することができる。
すなわち、上述のように構成された眼球運動測定システム1によれば、眼球EYの動きの追跡性能の向上と、演算量の低減とを両立させることができる。
また、本実施形態の眼球運動測定システム1は、白目領域EW内の各画素の画素値について少なくともヒストグラム平坦化を含む統計処理を行うことにより、白目領域EW内の特徴点FPを抽出する。ここで、眼球EYの白目の画像において、地色(白色)の面積が相対的に大きく、特徴点FPの抽出対象である血管の色(赤色~暗赤色~黒色)の面積が相対的に小さい。また、眼球EYの白目の画像において、血管の色は彩度が低く画像全体としてのコントラストが低い(弱い)場合がある。
したがって、仮に白目領域EWの画像を単純に二値化した場合には、血管の画像が抽出されにくい場合がある。このため、従来は、眼球EYに青色光などを照射することによって画像のコントラストを高める手法が用いられる場合があった。
一方、本実施形態の眼球運動測定システム1によれば、白目領域EW内の各画素の画素値についてヒストグラム平坦化を行うため、白目領域EWについて、地色と血管の色とを峻別しやすくすることができる。つまり、眼球運動測定システム1によれば、血管の位置PVの抽出性能を向上させることができるため、眼球EYの動きの追跡性能を向上させることができる。
したがって、仮に白目領域EWの画像を単純に二値化した場合には、血管の画像が抽出されにくい場合がある。このため、従来は、眼球EYに青色光などを照射することによって画像のコントラストを高める手法が用いられる場合があった。
一方、本実施形態の眼球運動測定システム1によれば、白目領域EW内の各画素の画素値についてヒストグラム平坦化を行うため、白目領域EWについて、地色と血管の色とを峻別しやすくすることができる。つまり、眼球運動測定システム1によれば、血管の位置PVの抽出性能を向上させることができるため、眼球EYの動きの追跡性能を向上させることができる。
また、本実施形態の眼球運動測定システム1は、複数のテンプレート候補領域TCのうち、眼球画像IMG内の互いに異なる複数の領域に対してマッチングする頻度がより少ないテンプレート候補領域TCを、テンプレート領域TPとして選択する。
ここで、テンプレート候補領域TCには、眼球EYの動きの追跡性能が相対的に高いものと低いものとがある。例えば、あるテンプレート候補領域TCについて、テンプレート候補領域TCが白目領域EW内の複数の領域に対してマッチングする場合がある。このようなテンプレート候補領域TCの場合、眼球EYの動きを追従する際に複数の領域のうちいずれの領域にマッチングするのかが確定しないため、眼球EYの動きの追従性能が低い。また、テンプレート候補領域TCが、白目領域EW内の単一の領域に対してマッチングし、白目領域EW内の他の領域に対してマッチングしない場合には、眼球EYの動きの追従性能が高い。つまり、テンプレート候補領域TCがマッチングする領域の数が少ないほうが、眼球EYの動きの追従性能が高い。
一方で、テンプレート候補領域TCが、白目領域EW内のある領域に対してマッチングする場合には、当該領域の周囲の領域にもマッチングする場合がある。したがって、仮にテンプレート領域TPの選択条件を、単一の領域のみに対してマッチングするテンプレート候補領域TCに限ってしまうと、テンプレート候補領域TCの選択肢が少なくなり追跡性能が低下するおそれがある。
本実施形態の眼球運動測定システム1は、複数の領域に対してマッチングする頻度に基づいてテンプレート領域TPを選択する。例えば、眼球運動測定システム1は、マッチングする頻度が2以上であり所定値以下(例えば、5以下)であるテンプレート候補領域TCを、テンプレート領域TPとして選択する。このように構成することにより、眼球運動測定システム1は、テンプレート候補領域TCの選択肢の数が少なくなることを抑止して、眼球EYの動きの追従性能を向上させることができる。
ここで、テンプレート候補領域TCには、眼球EYの動きの追跡性能が相対的に高いものと低いものとがある。例えば、あるテンプレート候補領域TCについて、テンプレート候補領域TCが白目領域EW内の複数の領域に対してマッチングする場合がある。このようなテンプレート候補領域TCの場合、眼球EYの動きを追従する際に複数の領域のうちいずれの領域にマッチングするのかが確定しないため、眼球EYの動きの追従性能が低い。また、テンプレート候補領域TCが、白目領域EW内の単一の領域に対してマッチングし、白目領域EW内の他の領域に対してマッチングしない場合には、眼球EYの動きの追従性能が高い。つまり、テンプレート候補領域TCがマッチングする領域の数が少ないほうが、眼球EYの動きの追従性能が高い。
一方で、テンプレート候補領域TCが、白目領域EW内のある領域に対してマッチングする場合には、当該領域の周囲の領域にもマッチングする場合がある。したがって、仮にテンプレート領域TPの選択条件を、単一の領域のみに対してマッチングするテンプレート候補領域TCに限ってしまうと、テンプレート候補領域TCの選択肢が少なくなり追跡性能が低下するおそれがある。
本実施形態の眼球運動測定システム1は、複数の領域に対してマッチングする頻度に基づいてテンプレート領域TPを選択する。例えば、眼球運動測定システム1は、マッチングする頻度が2以上であり所定値以下(例えば、5以下)であるテンプレート候補領域TCを、テンプレート領域TPとして選択する。このように構成することにより、眼球運動測定システム1は、テンプレート候補領域TCの選択肢の数が少なくなることを抑止して、眼球EYの動きの追従性能を向上させることができる。
また、本実施形態の眼球運動測定システム1は、撮像部210を備える。眼球運動測定システム1は、撮像部210を備える撮像装置20と眼球運動測定装置10とを一体化することにより、撮像装置20と眼球運動測定装置10とを接続するための有線又は無線による通信機能を簡素化することができる。
また、眼球運動測定システム1は、第1照射部220と、第2照射部230と、照射制御部160とを備える。第1照射部220は、長波長の電磁波(例えば、緑色光、黄色光、赤色光や赤外線)を眼球EYに照射する。ここで、長波長の電磁波が照射された眼球EYが撮像部210に撮像された場合、撮像部210が生成する画像において、眼球EYの瞳孔の描出性能が向上する。また、第2照射部230は、短波長の電磁波(例えば、青色光や紫外線)を眼球EYに照射する。ここで、短波長の電磁波が照射された眼球EYが撮像部210に撮像された場合、撮像部210が生成する画像において、眼球EYの白目領域EWの血管の描出性能が向上する。一方で、長波長の電磁波と短波長の電磁波とが同時に眼球EYに照射されると、眼球EYの瞳孔と、眼球EYの白目領域EWの血管とのうち、いずれか(又は両方)の描出性能が向上できない場合がある。
本実施形態の眼球運動測定システム1は、照射制御部160が、長波長の電磁波と短波長の電磁波とを排他的に照射させるため、眼球EYの瞳孔の描出性能と、眼球EYの白目領域EWの血管の描出性能との両方を向上させることができる。
本実施形態の眼球運動測定システム1は、照射制御部160が、長波長の電磁波と短波長の電磁波とを排他的に照射させるため、眼球EYの瞳孔の描出性能と、眼球EYの白目領域EWの血管の描出性能との両方を向上させることができる。
以上、本発明の実施形態を、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更を加えることができる。
なお、上述の各装置は内部にコンピュータを有している。そして、上述した各装置の各処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしてもよい。
また、上記プログラムは、前述した機能の一部を実現するためのものであってもよい。
さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
1…眼球運動測定システム10…眼球運動測定装置、110…取得部、120…特徴点
抽出部、130…候補領域生成部、140…選択部、150…測定部、160…照射制御
部、20…撮像装置、210…撮像部、220…第1照射部、230…第2照射部
抽出部、130…候補領域生成部、140…選択部、150…測定部、160…照射制御
部、20…撮像装置、210…撮像部、220…第1照射部、230…第2照射部
Claims (8)
- 被験者の眼球が撮像された眼球画像を取得する取得部と、
前記取得部が取得する前記眼球画像に含まれる白目領域内の特徴点を抽出する特徴点抽出部と、
前記眼球画像のうち、前記特徴点抽出部が抽出する前記特徴点の画素を含む領域であるテンプレート候補領域を、前記特徴点毎に生成する候補領域生成部と、
前記候補領域生成部が生成する複数の前記テンプレート候補領域のうち、前記特徴点がより多く含まれている前記テンプレート候補領域を、テンプレート領域として選択する選択部と、
前記選択部が選択する前記テンプレート領域を用いて、前記取得部が取得する前記眼球画像の動きを追跡することにより、前記被験者の眼球の回旋角度を少なくとも含む眼球三次元運動を測定する測定部と、
を備える眼球運動測定装置。 - 前記候補領域生成部は、
前記特徴点抽出部が抽出する前記特徴点のうち、前記白目領域内の血管の位置に対応する特徴点として選択された前記特徴点毎に、前記テンプレート候補領域を生成する
請求項1に記載の眼球運動測定装置。 - 前記特徴点抽出部は、
前記白目領域内の各画素の画素値について少なくともヒストグラム平坦化を含む統計処理を行うことにより、前記白目領域内の特徴点を抽出する
請求項1又は請求項2に記載の眼球運動測定装置。 - 前記選択部は、
複数の前記テンプレート候補領域のうち、前記眼球画像内の互いに異なる複数の領域に対してマッチングする頻度がより少ない前記テンプレート候補領域を、前記テンプレート領域として選択する
請求項1から請求項3のいずれか一項に記載の眼球運動測定装置。 - 前記被験者の眼球を撮像することにより前記眼球画像を生成する撮像部
を更に備える請求項1から請求項4のいずれか一項に記載の眼球運動測定装置。 - 電磁波を前記被験者の眼球に対して照射する第1照射部と、
570ナノメートルより短い波長であって、かつ前記第1照射部が照射する電磁波の波長よりも短い波長の電磁波を前記被験者の眼球に対して照射する第2照射部と、
前記第1照射部と、前記第2照射部とのうちいずれか一方から電磁波を照射させる照射制御部と、
を更に備える請求項1から請求項5のいずれか一項に記載の眼球運動測定装置。 - 被験者の眼球が撮像された眼球画像を取得する取得ステップと、
前記取得ステップにおいて取得される前記眼球画像に含まれる白目領域内の特徴点を抽出する特徴点抽出ステップと、
前記眼球画像のうち、前記特徴点抽出ステップにおいて抽出される前記特徴点の画素を含む領域であるテンプレート候補領域を、前記特徴点毎に生成する候補領域生成ステップと、
前記候補領域生成ステップにおいて生成される複数の前記テンプレート候補領域のうち、前記特徴点がより多く含まれている前記テンプレート候補領域を、テンプレート領域として選択する選択ステップと、
前記選択ステップにおいて選択される前記テンプレート領域を用いて、前記取得ステップにおいて取得される前記眼球画像の動きを追跡することにより、前記被験者の眼球の回旋角度を少なくとも含む眼球三次元運動を測定する測定ステップと、
を有する眼球運動測定方法。 - コンピュータに、
被験者の眼球が撮像された眼球画像を取得する取得ステップと、
前記取得ステップにおいて取得される前記眼球画像に含まれる白目領域内の特徴点を抽出する特徴点抽出ステップと、
前記眼球画像のうち、前記特徴点抽出ステップにおいて抽出される前記特徴点の画素を含む領域であるテンプレート候補領域を、前記特徴点毎に生成する候補領域生成ステップと、
前記候補領域生成ステップにおいて生成される複数の前記テンプレート候補領域のうち、前記特徴点がより多く含まれている前記テンプレート候補領域を、テンプレート領域として選択する選択ステップと、
前記選択ステップにおいて選択される前記テンプレート領域を用いて、前記取得ステップにおいて取得される前記眼球画像の動きを追跡することにより、前記被験者の眼球の回旋角度を少なくとも含む眼球三次元運動を測定する測定ステップと、
を実行させるための眼球運動測定プログラム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/973,754 US20210264618A1 (en) | 2018-06-12 | 2019-06-12 | Eye movement measurement device, eye movement measurement method, and eye movement measurement program |
JP2020525607A JP7320283B2 (ja) | 2018-06-12 | 2019-06-12 | 眼球運動測定装置、眼球運動測定方法及び眼球運動測定プログラム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-111535 | 2018-06-12 | ||
JP2018111535 | 2018-06-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019240157A1 true WO2019240157A1 (ja) | 2019-12-19 |
Family
ID=68842945
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/023226 WO2019240157A1 (ja) | 2018-06-12 | 2019-06-12 | 眼球運動測定装置、眼球運動測定方法及び眼球運動測定プログラム |
Country Status (3)
Country | Link |
---|---|
US (1) | US20210264618A1 (ja) |
JP (1) | JP7320283B2 (ja) |
WO (1) | WO2019240157A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102635589B1 (ko) * | 2023-03-22 | 2024-02-07 | 가톨릭대학교 산학협력단 | 인도시아닌 그린 혈관조영술에서의 맥락막 혈관 과투과 검출 장치, 방법 및 프로그램 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011056069A (ja) * | 2009-09-10 | 2011-03-24 | Canon Inc | テンプレート画像の評価方法及び生体運動検出装置 |
JP2012125490A (ja) * | 2010-12-17 | 2012-07-05 | Canon Inc | 眼底撮像装置及びその制御方法 |
WO2013125707A1 (ja) * | 2012-02-24 | 2013-08-29 | 国立大学法人筑波大学 | 眼球回旋測定装置、眼球回旋測定方法、及び、眼球回旋測定プログラム |
JP2015016290A (ja) * | 2013-07-12 | 2015-01-29 | 株式会社トプコン | ダイナミックフォーカススイープおよび窓平均化を用いた光コヒーレンストモグラフィ |
WO2016195066A1 (ja) * | 2015-06-05 | 2016-12-08 | 聖 星野 | 眼球の運動を検出する方法、そのプログラム、そのプログラムの記憶媒体、及び、眼球の運動を検出する装置 |
US20170131768A1 (en) * | 2015-11-10 | 2017-05-11 | The Johns Hopkins University | Systems and methods for human-machine subconscious data exploration |
US20170164829A1 (en) * | 2014-03-13 | 2017-06-15 | Nanophthalmos, Llc | Registration Using a Microscope Insert |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3504313B2 (ja) * | 1994-02-03 | 2004-03-08 | 株式会社三城 | 個人識別装置 |
AU2002361210A1 (en) | 2001-12-21 | 2003-07-09 | Sensomotoric Instruments Gmbh | Method and apparatus for eye registration |
WO2015130849A1 (en) | 2014-02-25 | 2015-09-03 | Eyeverify | Eye gaze tracking |
JP7213511B1 (ja) | 2022-09-07 | 2023-01-27 | 東京瓦斯株式会社 | 超音波検査方法、超音波検査装置及びプログラム |
-
2019
- 2019-06-12 US US16/973,754 patent/US20210264618A1/en not_active Abandoned
- 2019-06-12 WO PCT/JP2019/023226 patent/WO2019240157A1/ja active Application Filing
- 2019-06-12 JP JP2020525607A patent/JP7320283B2/ja active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011056069A (ja) * | 2009-09-10 | 2011-03-24 | Canon Inc | テンプレート画像の評価方法及び生体運動検出装置 |
JP2012125490A (ja) * | 2010-12-17 | 2012-07-05 | Canon Inc | 眼底撮像装置及びその制御方法 |
WO2013125707A1 (ja) * | 2012-02-24 | 2013-08-29 | 国立大学法人筑波大学 | 眼球回旋測定装置、眼球回旋測定方法、及び、眼球回旋測定プログラム |
JP2015016290A (ja) * | 2013-07-12 | 2015-01-29 | 株式会社トプコン | ダイナミックフォーカススイープおよび窓平均化を用いた光コヒーレンストモグラフィ |
US20170164829A1 (en) * | 2014-03-13 | 2017-06-15 | Nanophthalmos, Llc | Registration Using a Microscope Insert |
WO2016195066A1 (ja) * | 2015-06-05 | 2016-12-08 | 聖 星野 | 眼球の運動を検出する方法、そのプログラム、そのプログラムの記憶媒体、及び、眼球の運動を検出する装置 |
US20170131768A1 (en) * | 2015-11-10 | 2017-05-11 | The Johns Hopkins University | Systems and methods for human-machine subconscious data exploration |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102635589B1 (ko) * | 2023-03-22 | 2024-02-07 | 가톨릭대학교 산학협력단 | 인도시아닌 그린 혈관조영술에서의 맥락막 혈관 과투과 검출 장치, 방법 및 프로그램 |
Also Published As
Publication number | Publication date |
---|---|
US20210264618A1 (en) | 2021-08-26 |
JPWO2019240157A1 (ja) | 2021-07-08 |
JP7320283B2 (ja) | 2023-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11699293B2 (en) | Neural network image processing apparatus | |
US10234957B2 (en) | Information processing device and method, program and recording medium for identifying a gesture of a person from captured image data | |
US10311583B2 (en) | Eye motion detection method, program, program storage medium, and eye motion detection device | |
JP5873442B2 (ja) | 物体検出装置および物体検出方法 | |
US10002463B2 (en) | Information processing apparatus, information processing method, and storage medium, for enabling accurate detection of a color | |
US9411417B2 (en) | Eye gaze tracking system and method | |
US9892316B2 (en) | Method and apparatus for pattern tracking | |
US9305206B2 (en) | Method for enhancing depth maps | |
Crihalmeanu et al. | Enhancement and registration schemes for matching conjunctival vasculature | |
JP2017182739A (ja) | 視線検出装置、視線検出方法及び視線検出用コンピュータプログラム | |
US20120062749A1 (en) | Human body identification method using range image camera and human body identification apparatus | |
JP2012120647A (ja) | 姿勢検出装置 | |
US12056274B2 (en) | Eye tracking device and a method thereof | |
JP5776323B2 (ja) | 角膜反射判定プログラム、角膜反射判定装置および角膜反射判定方法 | |
US10521659B2 (en) | Image processing device, image processing method, and image processing program | |
KR101748563B1 (ko) | 양안기반 시선추적 방법 | |
JP6855872B2 (ja) | 顔認識装置 | |
JP2007271554A (ja) | 顔姿勢検出方法 | |
WO2010010926A1 (ja) | 特徴点追跡方法及び特徴点追跡装置 | |
WO2019240157A1 (ja) | 眼球運動測定装置、眼球運動測定方法及び眼球運動測定プログラム | |
JP7044504B2 (ja) | 画像処理装置、画像処理方法および画像処理プログラム | |
Shreve | Automatic macro-and micro-facial expression spotting and applications | |
US11763601B2 (en) | Techniques for detecting a three-dimensional face in facial recognition | |
Tomari et al. | Multi-view head detection and tracking with long range capability for social navigation planning | |
JP7444358B2 (ja) | 眼球運動測定装置、キャリブレーションシステム、眼球運動測定方法及び眼球運動測定プログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19819732 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020525607 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19819732 Country of ref document: EP Kind code of ref document: A1 |