WO2019240130A1 - Workpiece processing device and workpiece processing method - Google Patents

Workpiece processing device and workpiece processing method Download PDF

Info

Publication number
WO2019240130A1
WO2019240130A1 PCT/JP2019/023098 JP2019023098W WO2019240130A1 WO 2019240130 A1 WO2019240130 A1 WO 2019240130A1 JP 2019023098 W JP2019023098 W JP 2019023098W WO 2019240130 A1 WO2019240130 A1 WO 2019240130A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
rollers
rotation
roller
axial direction
Prior art date
Application number
PCT/JP2019/023098
Other languages
French (fr)
Japanese (ja)
Inventor
良平 重松
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Publication of WO2019240130A1 publication Critical patent/WO2019240130A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B13/00Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B13/00Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
    • B21B13/18Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories for step-by-step or planetary rolling; pendulum mills
    • B21B13/20Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories for step-by-step or planetary rolling; pendulum mills for planetary rolling

Definitions

  • the present invention relates to a workpiece processing apparatus suitable for manufacturing a workpiece having a portion whose diameter changes in the longitudinal direction, and a workpiece processing method.
  • the material of the coil spring is a steel rod member (wire).
  • a rod member whose diameter changes in the longitudinal direction (axial direction).
  • machining such as cutting and polishing
  • Reduction processing plastic processing
  • plastic processing using a swaging machine or plastic processing using a specially shaped rolling roll
  • a dieless machining apparatus disclosed in Patent Document 1 or Patent Document 2 is also known. The dieless processing apparatus stretches and softens the softened portion by pulling the heated work between the first roller and the second roller.
  • the plastic working using a swaging machine has a problem that the work is struck by a die, so that the noise is large and the working time is long.
  • the method of plastic working a workpiece using a special rolling roll lacks versatility because the shape after processing depends on the rolling roll.
  • the shape and diameter of the workpiece after machining may not be as designed values (target values). For this reason, the dieless machining apparatus has a problem that it is difficult to manage the temperature of the workpiece and the peripheral speeds of the first roller and the second roller.
  • an object of the present invention is to provide a workpiece machining apparatus and a workpiece machining method capable of efficiently producing a rod-like workpiece with high accuracy.
  • the workpiece machining apparatus includes a plurality of rollers, a rotation mechanism, a pressure mechanism, a swing mechanism, and a control unit that controls the swing mechanism.
  • the workpiece is arranged at a position corresponding to the solar wheel of the planetary mechanism.
  • the roller is disposed at a position corresponding to the planetary car of the planetary mechanism with respect to the workpiece, and rotates about a rotation axis without sliding with respect to the workpiece.
  • the rotation mechanism rotates the work by forcibly rotating at least one of the plurality of rollers around the rotation axis.
  • the pressurizing mechanism presses the plurality of rollers against the outer peripheral surface of the workpiece.
  • the swing mechanism inclines the rotation axis of the roller with respect to an axis of the workpiece (which is also a rotation axis of the workpiece).
  • the control means controls the swing mechanism so that the inclination angles of the plurality of rollers are equal to each other.
  • the swing mechanism controls an inclination angle of the roller so that a contact point between the outer peripheral surface of the workpiece and the roller draws a spiral locus.
  • the workpiece machining apparatus includes a roller unit, a rotation mechanism, a pressure mechanism, a swing mechanism, and a control unit.
  • the roller unit includes a plurality of rotatable rollers arranged at positions sandwiching the workpiece.
  • the rotation mechanism rotates at least one of the plurality of rollers.
  • the pressure mechanism presses the rollers against the outer peripheral surface of the workpiece.
  • Each roller (a set of rollers) of the roller unit has a rotation first half on the side approaching the workpiece and a rotation latter half on the side away from the workpiece in the rotation direction of the roller.
  • the swinging mechanism is configured such that each of the rollers is viewed from a neutral position where the angle formed by the rollers is 0 ° with respect to a plane perpendicular to the axis of the workpiece when viewed from the side where the rollers are disposed.
  • the first half rotation side of the roller is tilted in the first axial direction and the second axial direction.
  • the control unit looks at each roller from the side where each roller is disposed, and controls the swing mechanism so that the direction and angle of inclination of the first half of the rotation of each roller are the same for each roller. Control.
  • control unit when the workpiece is moved in the first axial direction, the first half of the rotation side of each roller is inclined in the second axial direction. Further, the swing mechanism is controlled so that the inclination angles of the rollers are the same. When the workpiece is moved in the second axial direction, the first half of the rotation side of each roller is inclined in the first axial direction. Further, the swing mechanism is controlled so that the inclination angles of the rollers are the same.
  • a guide part may be further provided to support the work so as to be rotatable around the axis.
  • You may provide the sensor which detects the position of the said workpiece
  • the roller unit may include three rollers arranged at three locations in the circumferential direction of the workpiece.
  • a rod-shaped workpiece is arranged between a plurality of rollers.
  • the rollers are pressed against the outer peripheral surface of the workpiece.
  • the first half of the rotation of each roller is inclined from the neutral position of 0 ° to the second axis direction with respect to a plane perpendicular to the axis of the workpiece.
  • the work is rotated in the second rotation direction by rotating the rollers in the first rotation direction. By doing so, the workpiece moves in the first axial direction.
  • the first diameter reduction process and the second diameter reduction process may be performed.
  • the diameter of the workpiece is reduced during the movement in the first axial direction.
  • the diameter of the workpiece is further reduced during the movement in the second axial direction.
  • the diameter of the workpiece may be detected, and the first diameter reduction processing and the second diameter reduction processing may be performed so that the workpiece diameter becomes a predetermined value. Further, the first diameter reduction process and the second diameter reduction process may be repeated until the diameter of the workpiece reaches a predetermined value.
  • workpiece conveyance movement in the first axial direction and movement in the second axial direction
  • workpiece processing can be performed simultaneously by a set of rollers.
  • a set of rollers For example, when the work is pressed by the roller within the elastic limit, only the work is conveyed.
  • the work can be transported and the diameter can be reduced at the same time.
  • the workpiece moving direction can be switched, and the diameter reduction processing can be repeated several times in at least a part of the workpiece in the longitudinal direction.
  • a rod-like workpiece having a portion whose diameter changes in the longitudinal direction can be manufactured with high accuracy and efficiency using a set of rollers.
  • the top view which shows typically the workpiece processing apparatus which concerns on one embodiment.
  • the front view of the workpiece processing apparatus shown by FIG. The front view of the roller unit of the workpiece
  • the top view which shows the state in which the roller of the roller unit inclined.
  • the side view of the roller unit shown by FIG. The top view which shows the state in which the roller of the roller unit inclined in the other direction.
  • the side view of the roller unit shown by FIG. The front view of the roller unit which concerns on other embodiment.
  • FIG. 1 is a plan view schematically showing the workpiece machining apparatus 10
  • FIG. 2 is a front view of the workpiece machining apparatus 10.
  • the workpiece machining apparatus 10 can form a portion (for example, a tapered portion W1 or a small diameter portion W2) whose diameter changes in at least a part of the longitudinal direction (direction along the axis X) of the rod-shaped workpiece W.
  • the cross section in the radial direction of the workpiece W is, for example, a circle.
  • the workpiece processing apparatus 10 includes a base member 11 and a roller unit 12 disposed on the base member 11.
  • the base member 11 has such rigidity that it does not deform when the workpiece W is processed.
  • the roller unit 12 includes at least two rollers 13 and 14 and roller holders 15 and 16 that hold the rollers 13 and 14.
  • the rollers 13 and 14 can rotate around the rotation shafts 17 and 18.
  • the workpiece machining apparatus 10 includes rotating mechanisms 20 and 21 for rotating the rollers 13 and 14, pressure mechanisms 30 and 31, swinging mechanisms 40 and 41 for tilting the rollers 13 and 14, and a controller (controller). ) 50.
  • the pressurization mechanisms 30 and 31 press the rollers 13 and 14 toward the outer peripheral surface W3 of the workpiece W.
  • the rotation mechanisms 20 and 21 forcibly rotate the rollers 13 and 14 in contact with the workpiece W around the rotation shafts 17 and 18.
  • FIG. 3 is an enlarged front view of the roller unit 12 shown in FIG.
  • the roller unit 12 has a pair of rollers 13 and 14.
  • the rollers 13 and 14 are arranged to face each other at a position where the workpiece W is sandwiched in the radial direction.
  • the rollers 13 and 14 rotate at the same peripheral speed in a fixed rotation direction (first rotation direction R1) around the rotation shafts 17 and 18 provided in the roller holders 15 and 16, respectively.
  • first rotation direction R1 a fixed rotation direction
  • the roller holders 15 and 16 are provided with support shafts (swing shafts) 15a and 16a, respectively.
  • the workpiece W When compared to a planetary mechanism, the workpiece W is disposed at a position corresponding to the solar wheel, and the rollers 13 and 14 are disposed at positions corresponding to the planetary car.
  • the rollers 13 and 14 rotate around the rotation shafts 17 and 18 without sliding with respect to the workpiece W.
  • the workpiece W rotates about the axis X. That is, the axis X of the workpiece W is also the rotation axis of the workpiece W.
  • the rollers 13 and 14 are rotated at the same peripheral speed in the first rotation direction R1 by the rotation mechanisms 20 and 21 (shown in FIG. 1).
  • the outer periphery of each of the rollers 13 and 14 has a rotation first half 13a and 14a on the side approaching the workpiece W and a rotation latter half 13b and 14b on the side away from the workpiece W with respect to the rotation direction (R1) of the roller. .
  • a point where one roller 13 and the work W are in contact with each other is indicated by P ⁇ b> 1.
  • a portion where the other roller 14 and the workpiece W are in contact with each other is indicated by P2.
  • the first rotation half 13a of one roller 13 is a portion of the entire circumference of the roller 13 that is upstream of P1 with respect to the rotation direction of the roller 13.
  • the rotation latter half part 13b of the roller 13 is a half circumference part downstream from P1 with respect to the rotation direction of the roller.
  • the rotation first half 14a of the other roller 14 is a portion of the entire circumference of the roller 14 on the upstream side of P2 with respect to the rotation direction of the roller 14.
  • the rotation latter half part 14b of the roller 14 is a half-circumferential part downstream from P2 in the rotation direction of the roller 14.
  • the rotation mechanisms 20 and 21 have motors 61 and 62, respectively.
  • the motors 61 and 62 are controlled by the control unit 50.
  • the output shafts 61 a and 62 a of the motors 61 and 62 are connected to the rotation shafts 17 and 18 of the rollers 13 and 14 via universal joints 63 and 64.
  • An angle formed by the rotation shaft 17 of the first roller 13 and the output shaft 61 a of the motor 61 is allowed by the universal joint 63.
  • An angle formed by the rotation shaft 18 of the second roller 14 and the output shaft 62 a of the motor 62 is allowed by the universal joint 64.
  • the rollers 13 and 14 rotate in one direction (first rotation direction R1) around the rotation shafts 17 and 18 by the torque generated by the motors 61 and 62.
  • the number of rollers is not limited to two and may be three or more.
  • at least one of the plurality of rollers may be rotated by a rotation mechanism, and the remaining rollers may be driven to rotate.
  • the pressurizing mechanisms 30 and 31 include movable frames 70 and 71, drive units 72 and 73, and linear guides 74 and 75.
  • the movable frames 70 and 71 support the roller holders 15 and 16.
  • the drive units 72 and 73 move the movable frames 70 and 71 in the radial direction of the workpiece W.
  • the linear guides 74 and 75 guide the movement of the movable frames 70 and 71 in the linear direction.
  • the roller holders 15 and 16 are rotatable about support shafts (oscillation shafts) 15a and 16a. These roller holders 15 and 16 are supported by movable frames 70 and 71.
  • the rollers 13 and 14 are pressed toward the outer peripheral surface W3 of the workpiece W by the pressure mechanisms 30 and 31.
  • the drive units 72 and 73 of the pressurization mechanisms 30 and 31 include actuators 80 and 81 and force transmission units 82 and 83 (shown in FIG. 2).
  • the force transmission units 82 and 83 transmit the driving force generated by the actuators 80 and 81 to the movable frames 70 and 71.
  • An example of the force transmission units 82 and 83 is a feed screw (lead screw), but other force transmission members may be used.
  • An example of the actuators 80 and 81 is a rotating electrical machine such as a pulse motor. This rotating electrical machine can control the rotation direction and the rotation position by the control unit 50.
  • a fluid pressure unit such as a hydraulic motor or a hydraulic cylinder may be used for the actuators 80 and 81.
  • the rocking mechanisms 40 and 41 have actuators 90 and 91, respectively.
  • the actuators 90 and 91 can tilt the rollers 13 and 14 in the first axial direction X1 and the second axial direction X2.
  • the rollers 13 and 14 are held by roller holders 15 and 16.
  • the swinging mechanisms 40 and 41 have the first axial direction X1 and the second axial direction X2 with respect to the first rotation portions 13a and 14a of the rollers 13 and 14 at the neutral position N (shown in FIGS. 5 and 7). Tilt to and.
  • the roller holders 15 and 16 rotate around the support shafts 15a and 16a, respectively. That is, the swinging mechanisms 40 and 41 have a function of tilting the rotation shafts 17 and 18 of the rollers 13 and 14 with respect to the rotation axis (axis X) of the workpiece W.
  • FIG. 4 shows a state where the first rotation part 13a of the first roller 13 and the first rotation part 14a of the second roller 14 are inclined in the second axial direction X2, respectively.
  • FIG. 5 is a side view of the roller unit 12 as viewed from the side where the first roller 13 is disposed.
  • Y1 in FIG. 5 represents a plane perpendicular to the axis X of the workpiece W.
  • the rotation surfaces Y2 and Y2 'of the rollers 13 and 14 are perpendicular to the rotation shafts 17 and 18 (shown in FIGS. 3 and 4) of the rollers 13 and 14, respectively.
  • roller inclination angles pitch angles
  • ⁇ 1 and ⁇ 1 ′ the angles formed by the rotational surfaces Y2 and Y2 ′ with respect to the surface Y1 perpendicular to the axis X are referred to as roller inclination angles (pitch angles) ⁇ 1 and ⁇ 1 ′.
  • the rollers 13 and 14 are in the neutral position N.
  • FIG. 5 is a side view as seen from the side where the first roller 13 is disposed.
  • the neutral position N is perpendicular to the axis X of the workpiece W.
  • the first rotation portion 13a of the first roller 13 is inclined with respect to the neutral position N in the second axial direction X2 at an inclination angle ⁇ 1.
  • the first rotation half 14a of the second roller 14 is also inclined with respect to the neutral position N in the second axial direction X2 at an inclination angle ⁇ 1 ′.
  • the inclination angles ⁇ 1, ⁇ 1 ′ are the same angle.
  • the tilt angles ⁇ 1 and ⁇ 1 ′ are exaggerated and drawn in FIG. 5, but the actual tilt angles ⁇ 1 and ⁇ 1 ′ are small angles of several degrees or less (for example, about 1 °).
  • FIG. 6 shows a state where the first rotation part 13a of the first roller 13 and the first rotation part 14a of the second roller 14 are inclined in the first axial direction X1, respectively.
  • FIG. 7 is a side view of the roller unit 12 as viewed from the side where the first roller 13 is disposed.
  • FIG. 7 is a side view seen from the side where the first roller 13 is disposed.
  • the first rotation half 13a of the first roller 13 is inclined in the first axial direction X1 with respect to the plane Y1 perpendicular to the axis X of the workpiece W.
  • the rotation surface Y2 of the roller 13 forms an inclination angle ⁇ 2 with respect to the neutral position N.
  • the first half portion 14a of the second roller 14 is also inclined in the first axial direction X1 with respect to the plane Y1 perpendicular to the axis X of the workpiece W.
  • the rotation surface Y2 ′ of the roller 14 forms an inclination angle ⁇ 2 ′ with respect to the neutral position N.
  • the inclination angles ⁇ 2 and ⁇ 2 ′ are the same angle.
  • the inclination angles ⁇ 2 and ⁇ 2 ′ are exaggerated and drawn large, but the actual inclination angles ⁇ 2 and ⁇ 2 ′ are small angles of several degrees or less (for example, about 1 °).
  • the first roller 13 and the second roller 14 each have a first axial direction X1 and a second axial direction X2 at the neutral position N (inclination angle 0 °). Lean on. That is, the rotation first half portions 13a and 14a of the rollers 13 and 14 are inclined in the second axial direction X2.
  • the swinging mechanisms 40 and 41 are controlled by the control unit 50 so that the inclination angles ⁇ 1 and ⁇ 1 ′ at this time are the same.
  • the control unit 50 causes the inclination angles ⁇ 2 and ⁇ 2 ′ to be equal to each other.
  • the swing mechanisms 40 and 41 are controlled.
  • the tilt angles ⁇ 1, ⁇ 1 ′, ⁇ 2, and ⁇ 2 ′ of the rollers 13 and 14 can be changed by the swing mechanisms 40 and 41.
  • the inclination angle of the rollers 13 and 14 is set to an appropriate value in accordance with the material of the workpiece W and the degree of processing (cross section reduction rate).
  • the control unit 50 also functions as means for controlling the swing mechanisms 40 and 41 so that the inclination angles of the plurality of rollers 13 and 14 are equal to each other.
  • the control unit 50 changes the inclination angle of the rollers 13 and 14 by controlling the swinging mechanisms 40 and 41.
  • the swing control for changing the tilt angle is realized by NC control (Numerical Control) using a computer program.
  • the control unit 50 has an electrical configuration for controlling the rotation mechanisms 20 and 21, the pressurization mechanisms 30 and 31, and the swing mechanisms 40 and 41.
  • the electrical configuration includes, for example, a CPU (Central Processing Unit) and a memory that stores data. Various data necessary for machining the workpiece W are stored in the memory.
  • the work processing apparatus 10 of this embodiment has guide parts 100 and 101 (shown in FIG. 1).
  • the guide portions 100 and 101 support the workpiece W so as to be rotatable about the axis X.
  • An example of the guide portions 100 and 101 is a linear bush type.
  • the linear bush type guide portions 100 and 101 prevent the workpiece W being processed from moving in the radial direction and allow the workpiece W to move in the direction along the axis X.
  • Sensors S1 and S2 for detecting the diameter of the workpiece W are arranged on the upstream side and the downstream side of the roller unit 12 with respect to the moving direction of the workpiece W (direction along the axis X).
  • An example of the sensors S1 and S2 measures the outer diameter of the workpiece W before and after machining using a laser beam emitting part and a light receiving part, respectively.
  • the workpiece machining apparatus 10 includes sensors S3 and S4 that detect the position of the workpiece W in the moving direction (direction along the axis X).
  • An example of the workpiece W is a rod member made of spring steel and having a circular cross section. This work W is cut into a predetermined length in advance. The workpiece W is heated to, for example, an austenitizing temperature in order to facilitate plastic working.
  • An example of the heating means 110 (schematically shown in FIG. 1) heats a region including a workpiece portion of the workpiece W before the workpiece W is supplied to the rollers 13 and 14.
  • An example of the heating means 110 is a high frequency induction heating device.
  • an energization heating device that generates Joule heat in the workpiece W by an electric current or a heating furnace that heats the workpiece by radiant heat may be used.
  • the workpiece W heated to a temperature suitable for plastic working is supported by the guide portions 100 and 101. Then, the starting point of the part to be processed of the workpiece W is disposed between the rollers 13 and 14.
  • the rollers 13 and 14 rotate in the first rotation direction R1 (shown in FIG. 3). Then, the workpiece W in contact with the rollers 13 and 14 rotates in the second rotation direction R2.
  • the inclination angle of the rollers 13 and 14 is 0 ° (neutral position), even if the workpiece W is rotated by the rotation of the rollers 13 and 14, the workpiece W does not move in the axial direction.
  • FIG. 4 and 5 show a state in which the first half portions 13a and 14a of the rotating rollers 13 and 14 are inclined in the second axial direction X2.
  • the inclination angles are ⁇ 1, ⁇ 1 ′ (plus pitch angle).
  • the workpiece W is in contact with the rollers 13 and 14.
  • the workpiece W is screwed (moved forward) in the first axial direction X1 like a “right-handed screw” according to the inclination angles ⁇ 1 and ⁇ 1 ′ due to friction between the rollers 13 and 14.
  • the rollers 13 and 14 are rotated by motors 61 and 62.
  • the rotation speed of the motors 61 and 62 can be controlled by the control unit 50. For this reason, according to the peripheral speed of the rollers 13 and 14, the rotation speed per unit time of the workpiece
  • the first half portions 13a and 14a of the rollers 13 and 14 are inclined in the second axial direction X2. Then, the workpiece W moves in the first axial direction X1 at a speed corresponding to the peripheral speed of the rollers 13 and 14 and the inclination angles ⁇ 1 and ⁇ 1 ′. At this time, the moving speed of the workpiece W increases as the circumferential speed of the rollers 13 and 14 and the inclination angles ⁇ 1 and ⁇ 1 ′ increase. If the workpiece W is pressed within the elastic limit by the rollers 13 and 14 while the workpiece W moves (advances) in the first axial direction X1, the workpiece W is not processed but only conveyed.
  • the conveyance of the workpiece W and the first diameter reduction processing are performed simultaneously.
  • the diameter of the portion of the workpiece W that has passed through the rollers 13 and 14 is slightly reduced.
  • the diameter of the workpiece W after the diameter reduction processing is detected by the sensor S1.
  • the position of the workpiece W in the axial direction is detected by sensors S3 and S4.
  • the first half portions 13a and 14a of the rollers 13 and 14 are tilted in the first axial direction X1.
  • the workpiece W moves in the second axial direction X2 at a speed corresponding to the peripheral speed of the rollers 13 and 14 and the inclination angles ⁇ 2 and ⁇ 2 ′.
  • the moving speed of the workpiece W increases as the peripheral speed of the rollers 13 and 14 and the inclination angles ⁇ 2 and ⁇ 2 ′ increase.
  • the rollers 13 and 14 rotate in the first direction R1.
  • the workpiece W in contact with the rollers 13 and 14 is screwed in the second axial direction X2 as if it is a “reverse screw” according to the inclination angles (negative pitch angles) ⁇ 2 and ⁇ 2 ′ of the rollers 13 and 14. Advance (retreat).
  • the workpiece machining apparatus 10 controls the inclination angles of the rollers 13 and 14 by the swing mechanisms 40 and 41.
  • the workpiece W moves in the direction along the axis X while rotating around the axis X. Therefore, the contact points P1 and P2 (shown in FIG. 3) between the outer peripheral surface W3 of the workpiece W and the rollers 13 and 14 draw a spiral locus.
  • the direction in which the rollers 13 and 14 are inclined is switched by the swinging mechanisms 40 and 41 while rotating the workpiece W in this way.
  • the first diameter reduction process and the second diameter reduction process may be repeated until the diameter of the workpiece of the workpiece W reaches a predetermined value.
  • the moving direction of the workpiece W is reversed between the first diameter reduction process and the second diameter reduction process, but the rotation direction (R1) of the rollers 13 and 14 is constant.
  • the rotation direction (R2) of the workpiece W is also constant.
  • a tapered portion W1 or a small diameter portion W2 (shown in FIG. 1) having a predetermined length is formed at least in a part of the workpiece W in the longitudinal direction.
  • the rollers 13 and 14 are pressed in the radial direction of the workpiece W by the pressure mechanisms 30 and 31.
  • the pressurizing mechanisms 30 and 31 are controlled by the control unit 50.
  • the degree of processing of the workpiece W (the reduction rate of the cross section) can be adjusted.
  • the processed workpiece W is taken out from the workpiece processing apparatus 10 and then naturally cooled to a temperature suitable for conveyance and handling. In some cases, the workpiece W immediately after processing may be cooled by a cooling medium such as water or gas.
  • the workpiece W whose diameter changes in the longitudinal direction can be manufactured.
  • the workpiece processing apparatus 10 has no waste of material and avoids problems such as cutting the metal flow of the metal structure.
  • the workpiece W can be processed over almost the entire length.
  • the workpiece machining apparatus 10 of the present embodiment can simultaneously perform workpiece rotation, workpiece movement, and workpiece machining (diameter reduction machining) using a pair of rotating rollers 13 and 14.
  • the workpiece moves in the first axial direction X1 and the second axial direction X2.
  • the structure of the workpiece processing apparatus 10 can be simplified, and consumption of energy required for processing can be reduced.
  • the workpiece processing apparatus 10 of this embodiment directly processes a workpiece portion of the workpiece W by the rollers 13 and 14, the processing accuracy is high and the processing time is relatively short.
  • the rollers 13 and 14 are NC controlled (Numerical Control) by the control unit 50.
  • the workpiece processing apparatus 10 can finish the taper portion and the small diameter portion with high accuracy as compared with the dieless processing that pulls the material in a softened state. Since the processing by the workpiece processing apparatus 10 does not require strictness of the workpiece temperature as compared with the dieless processing, temperature management is easy. In addition, the work processing apparatus 10 occupies a small installation area in the factory, and does not generate a large noise unlike a swaging machine.
  • the machining method using the workpiece machining apparatus 10 according to the embodiment described above includes the following steps.
  • FIG. 8 shows a roller unit 12A according to the second embodiment.
  • the roller unit 12A includes three rollers 13, 14, 120 arranged at three locations in the circumferential direction of the workpiece W.
  • the first roller 13 and the second roller 14 are the same as those described in the first embodiment.
  • the third roller 120 is held by a roller holder 121 having a support shaft (swing shaft) 121 a.
  • the third roller 120 rotates around the rotation shaft 122.
  • These three rollers 13, 14, 120 also have a function of positioning the workpiece W.
  • a guide part capable of rotatably supporting workpieces of various diameters may be used. In that case, since the diameter of the workpiece W is not restricted, a workpiece (rod member) having various diameters can be processed. Since the work processing apparatus including the roller unit 12A according to the second embodiment is the same as the work processing apparatus 10 including the roller unit 12 according to the first embodiment, the description of the other configurations and operations is omitted. To do.
  • the workpiece machining apparatus and machining method of the present invention can be applied to solid or hollow rod-shaped workpieces.
  • the workpiece may be a rod member used for a material such as a coil spring, a stabilizer, or a torsion bar.
  • the material of the workpiece may be a metal other than steel or a workpiece made of a nonmetal such as a synthetic resin.
  • the workpiece may be processed in a cold temperature range (room temperature) or a warm temperature range higher than room temperature without heating.
  • W ... Workpiece W1 ... Tapered portion, W2 ... Small diameter portion, W3 ... Outer peripheral surface, 10 ... Work processing device, 11 ... Base member, 12 ... Roller unit, 13,14 ... Roller, 15,16 ... Roller holder, 15a, 16a ... support shaft (oscillation shaft) 17,18 ... rotation shaft, 20,21 ... rotation mechanism, 30,31 ... pressure mechanism, 40,41 ... oscillation mechanism, 50 ... control unit, 100,101 ... guide 110, heating means, S1, S2, S3, S4, sensor, X, axis (rotary axis), X1, first axial direction, X2, second axial direction, R1, first rotational direction, R2. ... second rotation direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Metal Rolling (AREA)

Abstract

A workpiece processing device (10) has rollers (13), (14), rotation mechanisms (20), (21) for rotating the rollers (13), (14), pressing mechanisms (30), (31), swinging mechanisms (40), (41), and a control unit (50). The rollers (13), (14) have rotation front half parts (13a), (14a) on the sides thereof approaching a workpiece (W) in the rotation direction of the rollers (13), (14), and rotation rear half parts (13b), (14b) on the sides thereof away from the workpiece (W). The control unit (50) controls the swinging mechanisms (40), (41) so that the rotation front half parts (13a), (14a) of the rollers (13, (14) are inclined in the same direction and at the same inclination angle. When the rotation front half parts (13a), (14a) of the rollers (13), (14) are inclined in a second axis direction (X2), the workpiece (W) moves in a first axis direction (X1), and diameter-reduction processing of the workpiece (W) is performed. When the rotation front half parts (13a), (14a) of the rollers (13), (14) are inclined in the first axis direction (X1), the workpiece (W) moves in the second axis direction (X2), and diameter-reduction processing of the workpiece (W) is performed.

Description

ワーク加工装置と、ワークの加工方法Workpiece machining apparatus and workpiece machining method
 この発明は、長手方向に径が変化する部分を有するワークを製造するのに適したワーク加工装置と、ワークの加工方法に関する。 The present invention relates to a workpiece processing apparatus suitable for manufacturing a workpiece having a portion whose diameter changes in the longitudinal direction, and a workpiece processing method.
 コイルばねを軽量化するための一つの手段として、コイルばねに生じる応力を均一に近付けることが有効である。コイルばねの材料は鋼製のロッド部材(ワイヤ)である。コイルばねの応力分布をなるべく均一にするために、長手方向(軸線方向)に径が変化するロッド部材を用いることも提案されている。 As one means for reducing the weight of the coil spring, it is effective to make the stress generated in the coil spring uniform. The material of the coil spring is a steel rod member (wire). In order to make the stress distribution of the coil spring as uniform as possible, it has also been proposed to use a rod member whose diameter changes in the longitudinal direction (axial direction).
 長手方向に径が変化するロッド部材を製造する手段として、例えば切削や研磨等の機械加工が知られている。スェージングマシンによる縮径加工(塑性加工)、あるいは特殊な形状の圧延ロールを用いた塑性加工も知られている。また特許文献1あるいは特許文献2に開示されたダイレス加工装置も公知である。そのダイレス加工装置は、加熱されたワークを第1ローラと第2ローラとの間で引っ張ることにより、軟化した個所を引き延ばして細くする。 As a means for manufacturing a rod member whose diameter changes in the longitudinal direction, for example, machining such as cutting and polishing is known. Reduction processing (plastic processing) using a swaging machine or plastic processing using a specially shaped rolling roll is also known. A dieless machining apparatus disclosed in Patent Document 1 or Patent Document 2 is also known. The dieless processing apparatus stretches and softens the softened portion by pulling the heated work between the first roller and the second roller.
特開昭60-056416号公報JP 60-056416 A 特開昭61-206518号公報JP-A-61-206518
 研削や研磨等の機械加工によってワークの径を小さくするには加工時間が長くかかり、しかも材料の無駄が多いなどの問題がある。これに対しスェージングマシンを使用する塑性加工は、型によってワークを強打するため騒音が大きく、しかも作業時間が長くかかるなどの問題がある。特殊な圧延ロールを用いてワークを塑性加工する方法では、加工後の形状が圧延ロールに依存するため汎用性に欠ける。一方、ダイレス加工装置は、加工後のワークの形状や径が設計値(目標値)どおりにならないことがある。このためダイレス加工装置は、ワークの温度管理や第1ローラおよび第2ローラの周速度の管理が難しいという問題がある。 There is a problem that it takes a long time to reduce the diameter of the workpiece by machining such as grinding or polishing, and the material is wasted. On the other hand, the plastic working using a swaging machine has a problem that the work is struck by a die, so that the noise is large and the working time is long. The method of plastic working a workpiece using a special rolling roll lacks versatility because the shape after processing depends on the rolling roll. On the other hand, in the dieless machining apparatus, the shape and diameter of the workpiece after machining may not be as designed values (target values). For this reason, the dieless machining apparatus has a problem that it is difficult to manage the temperature of the workpiece and the peripheral speeds of the first roller and the second roller.
 従って本発明の目的は、棒状のワークを高精度にかつ能率良く製造することができるワーク加工装置と、ワークの加工方法を提供することにある。 Therefore, an object of the present invention is to provide a workpiece machining apparatus and a workpiece machining method capable of efficiently producing a rod-like workpiece with high accuracy.
 本発明に係るワーク加工装置は、複数のローラと、回転機構と、加圧機構と、揺動機構と、前記揺動機構を制御する制御手段とを具備している。ワークは、遊星機構の太陽車に相当する位置に配置される。前記ローラは、前記ワークに対して前記遊星機構の惑星車に相当する位置に配置され、前記ワークに対して滑ることなく自転軸を中心に回転する。前記回転機構は、前記複数のローラのうち少なくとも1つのローラを前記自転軸を中心に強制的に回転させることにより、前記ワークを回転させる。前記加圧機構は、前記複数のローラを前記ワークの外周面に押圧する。前記揺動機構は、前記ローラの前記自転軸を前記ワークの軸線(ワークの回転軸でもある)に対して傾ける。前記制御手段は、前記複数のローラの傾斜角度が互いに等しくなるよう前記揺動機構を制御する。前記揺動機構は、前記ワークの外周面と前記ローラとの接点が螺旋形の軌跡を描くように前記ローラの傾斜角度を制御する。 The workpiece machining apparatus according to the present invention includes a plurality of rollers, a rotation mechanism, a pressure mechanism, a swing mechanism, and a control unit that controls the swing mechanism. The workpiece is arranged at a position corresponding to the solar wheel of the planetary mechanism. The roller is disposed at a position corresponding to the planetary car of the planetary mechanism with respect to the workpiece, and rotates about a rotation axis without sliding with respect to the workpiece. The rotation mechanism rotates the work by forcibly rotating at least one of the plurality of rollers around the rotation axis. The pressurizing mechanism presses the plurality of rollers against the outer peripheral surface of the workpiece. The swing mechanism inclines the rotation axis of the roller with respect to an axis of the workpiece (which is also a rotation axis of the workpiece). The control means controls the swing mechanism so that the inclination angles of the plurality of rollers are equal to each other. The swing mechanism controls an inclination angle of the roller so that a contact point between the outer peripheral surface of the workpiece and the roller draws a spiral locus.
 ワーク加工装置の1つの実施形態は、ローラユニットと、回転機構と、加圧機構と、揺動機構と、制御部とを具備している。前記ローラユニットは、ワークを挟む位置に配置された複数の回転可能なローラを含んでいる。前記回転機構は、前記複数のローラのうち少なくとも1つのローラを回転させる。前記加圧機構は、前記各ローラを前記ワークの外周面に押圧する。前記ローラユニットの各ローラ(一組のローラ)は、それぞれ、ローラの回転方向に関して前記ワークに近付く側の回転前半部と、前記ワークから離れる側の回転後半部とを有している。前記揺動機構は、前記各ローラが配置されている側から各ローラを見て、前記ワークの軸線と直角な面に対し、前記ローラのなす角度が0°の中立位置を境に、前記各ローラの回転前半部側を第1の軸線方向と第2の軸線方向とに傾ける。前記制御部は、前記各ローラが配置されている側から各ローラを見て、前記各ローラの回転前半部が傾く方向と傾斜角度とが、各ローラごとに同じとなるよう前記揺動機構を制御する。 One embodiment of the workpiece machining apparatus includes a roller unit, a rotation mechanism, a pressure mechanism, a swing mechanism, and a control unit. The roller unit includes a plurality of rotatable rollers arranged at positions sandwiching the workpiece. The rotation mechanism rotates at least one of the plurality of rollers. The pressure mechanism presses the rollers against the outer peripheral surface of the workpiece. Each roller (a set of rollers) of the roller unit has a rotation first half on the side approaching the workpiece and a rotation latter half on the side away from the workpiece in the rotation direction of the roller. The swinging mechanism is configured such that each of the rollers is viewed from a neutral position where the angle formed by the rollers is 0 ° with respect to a plane perpendicular to the axis of the workpiece when viewed from the side where the rollers are disposed. The first half rotation side of the roller is tilted in the first axial direction and the second axial direction. The control unit looks at each roller from the side where each roller is disposed, and controls the swing mechanism so that the direction and angle of inclination of the first half of the rotation of each roller are the same for each roller. Control.
 前記制御部の一例では、前記ワークを第1の軸線方向に移動させるとき、前記各ローラの回転前半部側をそれぞれ前記第2の軸線方向に傾ける。さらに前記各ローラの前記傾斜角度が互いに同じとなるように前記揺動機構を制御する。前記ワークを第2の軸線方向に移動させるときには、前記各ローラの回転前半部側をそれぞれ前記第1の軸線方向に傾ける。さらに前記各ローラの前記傾斜角度が互いに同じとなるように前記揺動機構を制御する。 In one example of the control unit, when the workpiece is moved in the first axial direction, the first half of the rotation side of each roller is inclined in the second axial direction. Further, the swing mechanism is controlled so that the inclination angles of the rollers are the same. When the workpiece is moved in the second axial direction, the first half of the rotation side of each roller is inclined in the first axial direction. Further, the swing mechanism is controlled so that the inclination angles of the rollers are the same.
 前記ワークを軸線まわりに回転自在に支持するガイド部をさらに備えてもよい。前記ワークの位置を検出するセンサと、前記ワークの径を検出するセンサとを備えてもよい。さらに前記ローラユニットが、前記ワークの周方向の3か所に配置された3個の前記ローラを備えてもよい。 A guide part may be further provided to support the work so as to be rotatable around the axis. You may provide the sensor which detects the position of the said workpiece | work, and the sensor which detects the diameter of the said workpiece | work. Furthermore, the roller unit may include three rollers arranged at three locations in the circumferential direction of the workpiece.
 1つの実施形態に係るワーク加工方法では、複数のローラの間に棒状のワークを配置する。前記各ローラを前記ワークの外周面に押圧する。前記ワークを第1の軸線方向に移動させるとき、前記各ローラの回転前半部側を、ワークの軸線と直角な面に対し、0°の中立位置から第2の軸線方向に傾ける。前記各ローラを前記ワークに押圧した状態において、前記各ローラを第1の回転方向に回転させることにより、前記ワークを第2の回転方向に回転させる。こうすることにより、前記ワークが第1の軸線方向に移動する。ワークを第2の軸線方向に移動させるときには、前記各ローラの回転前半部側を、前記中立位置から前記第1の軸線方向に傾ける。前記各ローラを前記ワークに押圧した状態において、前記各ローラを前記第1の回転方向に回転させることにより、前記ワークを前記第2の回転方向に回転させる。こうすることにより、前記ワークが第2の軸線方向に移動する。 In the workpiece machining method according to one embodiment, a rod-shaped workpiece is arranged between a plurality of rollers. The rollers are pressed against the outer peripheral surface of the workpiece. When the workpiece is moved in the first axis direction, the first half of the rotation of each roller is inclined from the neutral position of 0 ° to the second axis direction with respect to a plane perpendicular to the axis of the workpiece. In a state where the rollers are pressed against the work, the work is rotated in the second rotation direction by rotating the rollers in the first rotation direction. By doing so, the workpiece moves in the first axial direction. When the workpiece is moved in the second axial direction, the rotation first half side of each roller is tilted from the neutral position in the first axial direction. In a state where the rollers are pressed against the work, the work is rotated in the second rotation direction by rotating the rollers in the first rotation direction. By doing so, the workpiece moves in the second axial direction.
 前記加工方法において、第1の縮径加工と第2の縮径加工とを行ってもよい。第1の縮径加工では、前記第1の軸線方向の移動の際に前記ワークの径を小さくする。第2の縮径加工では、前記第2の軸線方向の移動の際に前記ワークの径をさらに小さくする。また前記ワークの径を検出し、ワークの径が所定値となるよう前記第1の縮径加工と前記第2の縮径加工とを行ってもよい。さらに前記ワークの径が所定値となるまで前記第1の縮径加工と前記第2の縮径加工とを繰り返してもよい。 In the processing method, the first diameter reduction process and the second diameter reduction process may be performed. In the first diameter reduction processing, the diameter of the workpiece is reduced during the movement in the first axial direction. In the second diameter reduction processing, the diameter of the workpiece is further reduced during the movement in the second axial direction. In addition, the diameter of the workpiece may be detected, and the first diameter reduction processing and the second diameter reduction processing may be performed so that the workpiece diameter becomes a predetermined value. Further, the first diameter reduction process and the second diameter reduction process may be repeated until the diameter of the workpiece reaches a predetermined value.
 本発明によれば、ワークの搬送(第1の軸線方向の移動および第2の軸線方向の移動)と、ワークの加工とを一組のローラによって同時に行うことができる。例えばローラによってワークが弾性限度内で押圧される場合にはワークの搬送のみとなる。ローラによってワークが弾性限度を超える荷重で押圧されると、ワークの搬送と縮径加工とを同時に行うことができる。また必要に応じてワークの移動方向を切換えて、ワークの長手方向の少なくとも一部に縮径加工を何度か繰り返すこともできる。本発明のワーク加工装置とワークの加工方法によれば、長手方向に径が変化する部分を有する棒状のワークを、一組のローラを用いて高精度にかつ能率良く製造することができる。 According to the present invention, workpiece conveyance (movement in the first axial direction and movement in the second axial direction) and workpiece processing can be performed simultaneously by a set of rollers. For example, when the work is pressed by the roller within the elastic limit, only the work is conveyed. When the work is pressed by the roller with a load exceeding the elastic limit, the work can be transported and the diameter can be reduced at the same time. Further, if necessary, the workpiece moving direction can be switched, and the diameter reduction processing can be repeated several times in at least a part of the workpiece in the longitudinal direction. According to the workpiece machining apparatus and workpiece machining method of the present invention, a rod-like workpiece having a portion whose diameter changes in the longitudinal direction can be manufactured with high accuracy and efficiency using a set of rollers.
1つの実施形態に係るワーク加工装置を模式的に示す平面図。The top view which shows typically the workpiece processing apparatus which concerns on one embodiment. 図1に示されたワーク加工装置の正面図。The front view of the workpiece processing apparatus shown by FIG. 図1に示されたワーク加工装置のローラユニットの正面図。The front view of the roller unit of the workpiece | work processing apparatus shown by FIG. 同ローラユニットのローラが傾いた状態を示す平面図。The top view which shows the state in which the roller of the roller unit inclined. 図4に示されたローラユニットの側面図。The side view of the roller unit shown by FIG. 同ローラユニットのローラが他の方向に傾いた状態を示す平面図。The top view which shows the state in which the roller of the roller unit inclined in the other direction. 図6に示されたローラユニットの側面図。The side view of the roller unit shown by FIG. 他の実施形態に係るローラユニットの正面図。The front view of the roller unit which concerns on other embodiment.
 以下に1つの実施形態に係るワーク加工装置と加工方法とについて、図1から図7を参照して説明する。 
 図1はワーク加工装置10を模式的に示す平面図、図2はワーク加工装置10の正面図である。ワーク加工装置10は、棒状のワークWの長手方向(軸線Xに沿う方向)の少なくとも一部に、径が変化する部分(例えばテーパ部W1や小径部W2)を形成することができる。ワークWの径方向の断面は、例えば円形である。
A workpiece machining apparatus and a machining method according to one embodiment will be described below with reference to FIGS.
FIG. 1 is a plan view schematically showing the workpiece machining apparatus 10, and FIG. 2 is a front view of the workpiece machining apparatus 10. The workpiece machining apparatus 10 can form a portion (for example, a tapered portion W1 or a small diameter portion W2) whose diameter changes in at least a part of the longitudinal direction (direction along the axis X) of the rod-shaped workpiece W. The cross section in the radial direction of the workpiece W is, for example, a circle.
 ワーク加工装置10は、ベース部材11と、ベース部材11上に配置されたローラユニット12とを含んでいる。ベース部材11は、ワークWを加工する際に変形しないような剛性を有している。ローラユニット12は、少なくとも2個のローラ13,14と、ローラ13,14を保持するローラホルダ15,16とを備えている。ローラ13,14は、自転軸17,18を中心に回転することができる。 The workpiece processing apparatus 10 includes a base member 11 and a roller unit 12 disposed on the base member 11. The base member 11 has such rigidity that it does not deform when the workpiece W is processed. The roller unit 12 includes at least two rollers 13 and 14 and roller holders 15 and 16 that hold the rollers 13 and 14. The rollers 13 and 14 can rotate around the rotation shafts 17 and 18.
 またこのワーク加工装置10は、ローラ13,14を回転させる回転機構20,21と、加圧機構30,31と、ローラ13,14を傾けるための揺動機構40,41と、制御部(コントローラ)50とを含んでいる。加圧機構30,31は、ローラ13,14をワークWの外周面W3に向けて押圧する。回転機構20,21は、ワークWに接したローラ13,14を、自転軸17,18を中心に強制的に回転させる。 The workpiece machining apparatus 10 includes rotating mechanisms 20 and 21 for rotating the rollers 13 and 14, pressure mechanisms 30 and 31, swinging mechanisms 40 and 41 for tilting the rollers 13 and 14, and a controller (controller). ) 50. The pressurization mechanisms 30 and 31 press the rollers 13 and 14 toward the outer peripheral surface W3 of the workpiece W. The rotation mechanisms 20 and 21 forcibly rotate the rollers 13 and 14 in contact with the workpiece W around the rotation shafts 17 and 18.
 図3は、図2に示されたローラユニット12を拡大した正面図である。ローラユニット12は、一組のローラ13,14を有している。ローラ13,14は、ワークWを径方向に挟む位置に互いに対向して配置されている。これらローラ13,14は、ローラホルダ15,16に設けられた自転軸17,18を中心に、一定の回転方向(第1の回転方向R1)に同一の周速度で回転する。ローラ13,14が第1の回転方向R1に回転すると、ローラ13,14に接しているワークWは、ローラ13,14との間の摩擦によって、第2の回転方向R2に回転する。ローラホルダ15,16にはそれぞれ支軸(揺動軸)15a,16aが設けられている。 FIG. 3 is an enlarged front view of the roller unit 12 shown in FIG. The roller unit 12 has a pair of rollers 13 and 14. The rollers 13 and 14 are arranged to face each other at a position where the workpiece W is sandwiched in the radial direction. The rollers 13 and 14 rotate at the same peripheral speed in a fixed rotation direction (first rotation direction R1) around the rotation shafts 17 and 18 provided in the roller holders 15 and 16, respectively. When the rollers 13 and 14 rotate in the first rotation direction R1, the workpiece W that is in contact with the rollers 13 and 14 rotates in the second rotation direction R2 due to friction between the rollers 13 and 14. The roller holders 15 and 16 are provided with support shafts (swing shafts) 15a and 16a, respectively.
 遊星機構にたとえると、ワークWは太陽車に相当する位置に配置され、ローラ13,14は惑星車に相当する位置に配置されている。ローラ13,14はワークWに対して滑ることなく自転軸17,18を中心に回転する。ローラ13,14が回転すると、ワークWが軸線Xを中心に回転する。すなわちワークWの軸線XはワークWの回転軸でもある。 When compared to a planetary mechanism, the workpiece W is disposed at a position corresponding to the solar wheel, and the rollers 13 and 14 are disposed at positions corresponding to the planetary car. The rollers 13 and 14 rotate around the rotation shafts 17 and 18 without sliding with respect to the workpiece W. When the rollers 13 and 14 rotate, the workpiece W rotates about the axis X. That is, the axis X of the workpiece W is also the rotation axis of the workpiece W.
 各ローラ13,14は、回転機構20,21(図1に示す)によって、第1の回転方向R1に、同一の周速度で回転する。各ローラ13,14の外周は、ローラの回転方向(R1)に関して、ワークWに近付く側の回転前半部13a,14aと、ワークWから離れる側の回転後半部13b,14bとを有している。 The rollers 13 and 14 are rotated at the same peripheral speed in the first rotation direction R1 by the rotation mechanisms 20 and 21 (shown in FIG. 1). The outer periphery of each of the rollers 13 and 14 has a rotation first half 13a and 14a on the side approaching the workpiece W and a rotation latter half 13b and 14b on the side away from the workpiece W with respect to the rotation direction (R1) of the roller. .
 図3において、一方のローラ13とワークWとが互いに接する個所をP1で示す。また他方のローラ14とワークWとが互いに接する個所をP2で示す。一方のローラ13の回転前半部13aは、ローラ13の全周のうち、ローラ13の回転方向に関してP1から上流側の半周の部分である。ローラ13の回転後半部13bは、ローラの回転方向に関してP1から下流側の半周の部分である。他方のローラ14の回転前半部14aは、ローラ14の全周のうち、ローラ14の回転方向に関してP2から上流側の半周の部分である。ローラ14の回転後半部14bは、ローラ14の回転方向に関してP2から下流側の半周の部分である。 In FIG. 3, a point where one roller 13 and the work W are in contact with each other is indicated by P <b> 1. A portion where the other roller 14 and the workpiece W are in contact with each other is indicated by P2. The first rotation half 13a of one roller 13 is a portion of the entire circumference of the roller 13 that is upstream of P1 with respect to the rotation direction of the roller 13. The rotation latter half part 13b of the roller 13 is a half circumference part downstream from P1 with respect to the rotation direction of the roller. The rotation first half 14a of the other roller 14 is a portion of the entire circumference of the roller 14 on the upstream side of P2 with respect to the rotation direction of the roller 14. The rotation latter half part 14b of the roller 14 is a half-circumferential part downstream from P2 in the rotation direction of the roller 14.
 回転機構20,21は、それぞれモータ61,62を有している。モータ61,62は制御部50によって制御される。モータ61,62の出力軸61a,62aは、自在継手63,64を介して、ローラ13,14の自転軸17,18に接続されている。第1のローラ13の自転軸17とモータ61の出力軸61aとがなす角度は、自在継手63によって許容される。第2のローラ14の自転軸18とモータ62の出力軸62aとがなす角度は、自在継手64によって許容される。 The rotation mechanisms 20 and 21 have motors 61 and 62, respectively. The motors 61 and 62 are controlled by the control unit 50. The output shafts 61 a and 62 a of the motors 61 and 62 are connected to the rotation shafts 17 and 18 of the rollers 13 and 14 via universal joints 63 and 64. An angle formed by the rotation shaft 17 of the first roller 13 and the output shaft 61 a of the motor 61 is allowed by the universal joint 63. An angle formed by the rotation shaft 18 of the second roller 14 and the output shaft 62 a of the motor 62 is allowed by the universal joint 64.
 ローラ13,14は、モータ61,62が生じるトルクによって、自転軸17,18を中心に一方向(第1の回転方向R1)に回転する。なおローラの数は2個に限らず、3以上であってもよい。また複数のローラのうち、少なくとも1つのローラを回転機構によって回転させ、残りのローラを従動回転させてもよい。 The rollers 13 and 14 rotate in one direction (first rotation direction R1) around the rotation shafts 17 and 18 by the torque generated by the motors 61 and 62. The number of rollers is not limited to two and may be three or more. In addition, at least one of the plurality of rollers may be rotated by a rotation mechanism, and the remaining rollers may be driven to rotate.
 加圧機構30,31は、可動フレーム70,71と、駆動部72,73と、リニヤガイド74,75とを含んでいる。可動フレーム70,71は、ローラホルダ15,16を支持している。駆動部72,73は、可動フレーム70,71をワークWの径方向に移動させる。リニヤガイド74,75は、可動フレーム70,71の直線方向の移動を案内する。ローラホルダ15,16は、支軸(揺動軸)15a,16aを中心に回動可能である。これらローラホルダ15,16は、可動フレーム70,71に支持されている。 The pressurizing mechanisms 30 and 31 include movable frames 70 and 71, drive units 72 and 73, and linear guides 74 and 75. The movable frames 70 and 71 support the roller holders 15 and 16. The drive units 72 and 73 move the movable frames 70 and 71 in the radial direction of the workpiece W. The linear guides 74 and 75 guide the movement of the movable frames 70 and 71 in the linear direction. The roller holders 15 and 16 are rotatable about support shafts (oscillation shafts) 15a and 16a. These roller holders 15 and 16 are supported by movable frames 70 and 71.
 ローラ13,14は、加圧機構30,31によって、ワークWの外周面W3に向けて押圧される。加圧機構30,31の駆動部72,73は、アクチュエータ80,81と、力伝達部82,83(図2に示す)とを備えている。力伝達部82,83は、アクチュエータ80,81が発生する駆動力を可動フレーム70,71に伝える。力伝達部82,83の一例は送りねじ(リードスクリュー)であるが、それ以外の力伝達部材を用いてもよい。アクチュエータ80,81の一例は、パルスモータ等の回転電機である。この回転電機は、制御部50によって回転方向と回転位置とを制御可能である。アクチュエータ80,81に油圧モータや油圧シリンダ等の流体圧ユニットが使用されてもよい。 The rollers 13 and 14 are pressed toward the outer peripheral surface W3 of the workpiece W by the pressure mechanisms 30 and 31. The drive units 72 and 73 of the pressurization mechanisms 30 and 31 include actuators 80 and 81 and force transmission units 82 and 83 (shown in FIG. 2). The force transmission units 82 and 83 transmit the driving force generated by the actuators 80 and 81 to the movable frames 70 and 71. An example of the force transmission units 82 and 83 is a feed screw (lead screw), but other force transmission members may be used. An example of the actuators 80 and 81 is a rotating electrical machine such as a pulse motor. This rotating electrical machine can control the rotation direction and the rotation position by the control unit 50. A fluid pressure unit such as a hydraulic motor or a hydraulic cylinder may be used for the actuators 80 and 81.
 揺動機構40,41は、アクチュエータ90,91を有している。アクチュエータ90,91は、ローラ13,14を第1の軸線方向X1と第2の軸線方向X2とに傾けることができる。ローラ13,14はローラホルダ15,16によって保持されている。揺動機構40,41は、ローラ13,14の回転前半部13a,14aを、中立位置N(図5と図7に示す)を境に、第1の軸線方向X1と第2の軸線方向X2とに傾ける。ローラホルダ15,16は、それぞれ支軸15a,16aを中心として回動する。すなわち揺動機構40,41は、ローラ13,14の自転軸17,18をワークWの回転軸(軸線X)に対して傾ける機能を有している。 The rocking mechanisms 40 and 41 have actuators 90 and 91, respectively. The actuators 90 and 91 can tilt the rollers 13 and 14 in the first axial direction X1 and the second axial direction X2. The rollers 13 and 14 are held by roller holders 15 and 16. The swinging mechanisms 40 and 41 have the first axial direction X1 and the second axial direction X2 with respect to the first rotation portions 13a and 14a of the rollers 13 and 14 at the neutral position N (shown in FIGS. 5 and 7). Tilt to and. The roller holders 15 and 16 rotate around the support shafts 15a and 16a, respectively. That is, the swinging mechanisms 40 and 41 have a function of tilting the rotation shafts 17 and 18 of the rollers 13 and 14 with respect to the rotation axis (axis X) of the workpiece W.
 図4は、第1のローラ13の回転前半部13aと、第2のローラ14の回転前半部14aとが、それぞれ第2の軸線方向X2に傾いた状態を示している。図5は、第1のローラ13が配置されている側から見たローラユニット12の側面図である。図5中のY1は、ワークWの軸線Xに対して直角な面を表わしている。ローラ13,14の回転面Y2,Y2´は、それぞれ、ローラ13,14の自転軸17,18(図3,図4に示す)に対して直角である。この明細書では、軸線Xと直角な面Y1に対して回転面Y2,Y2´がなす角度を、ローラの傾斜角度(ピッチ角)θ1,θ1´と称している。傾斜角度θ1,θ1´が0°のとき、ローラ13,14は中立位置Nである。 FIG. 4 shows a state where the first rotation part 13a of the first roller 13 and the first rotation part 14a of the second roller 14 are inclined in the second axial direction X2, respectively. FIG. 5 is a side view of the roller unit 12 as viewed from the side where the first roller 13 is disposed. Y1 in FIG. 5 represents a plane perpendicular to the axis X of the workpiece W. The rotation surfaces Y2 and Y2 'of the rollers 13 and 14 are perpendicular to the rotation shafts 17 and 18 (shown in FIGS. 3 and 4) of the rollers 13 and 14, respectively. In this specification, the angles formed by the rotational surfaces Y2 and Y2 ′ with respect to the surface Y1 perpendicular to the axis X are referred to as roller inclination angles (pitch angles) θ1 and θ1 ′. When the inclination angles θ1 and θ1 ′ are 0 °, the rollers 13 and 14 are in the neutral position N.
 図5は、第1のローラ13が配置されている側から見た側面図である。中立位置Nは、ワークWの軸線Xと直角である。第1のローラ13の回転前半部13aは、中立位置Nに対し、傾斜角度θ1をなして第2の軸線方向X2に傾いている。第2のローラ14の回転前半部14aも、中立位置Nに対し、傾斜角度θ1´をなして第2の軸線方向X2に傾いている。傾斜角度θ1,θ1´は互いに同じ角度である。説明の都合上、図5では傾斜角度θ1,θ1´を誇張して大きく描いたが、実際の傾斜角度θ1,θ1´は、数度以下の小さな角度(例えば1°程度)である。 FIG. 5 is a side view as seen from the side where the first roller 13 is disposed. The neutral position N is perpendicular to the axis X of the workpiece W. The first rotation portion 13a of the first roller 13 is inclined with respect to the neutral position N in the second axial direction X2 at an inclination angle θ1. The first rotation half 14a of the second roller 14 is also inclined with respect to the neutral position N in the second axial direction X2 at an inclination angle θ1 ′. The inclination angles θ1, θ1 ′ are the same angle. For convenience of explanation, the tilt angles θ1 and θ1 ′ are exaggerated and drawn in FIG. 5, but the actual tilt angles θ1 and θ1 ′ are small angles of several degrees or less (for example, about 1 °).
 図6は、第1のローラ13の回転前半部13aと第2のローラ14の回転前半部14aとが、それぞれ第1の軸線方向X1に傾いた状態を示している。図7は、第1のローラ13が配置されている側から見たローラユニット12の側面図である。 FIG. 6 shows a state where the first rotation part 13a of the first roller 13 and the first rotation part 14a of the second roller 14 are inclined in the first axial direction X1, respectively. FIG. 7 is a side view of the roller unit 12 as viewed from the side where the first roller 13 is disposed.
 図7は、第1のローラ13が配置されている側から見た側面図である。第1のローラ13の回転前半部13aは、ワークWの軸線Xと直角な面Y1に対し、第1の軸線方向X1に傾いている。ローラ13の回転面Y2は、中立位置Nに対して傾斜角度θ2をなしている。第2のローラ14の回転前半部14aも、ワークWの軸線Xと直角な面Y1に対し、第1の軸線方向X1に傾いている。ローラ14の回転面Y2´は、中立位置Nに対して傾斜角度θ2´をなしている。傾斜角度θ2,θ2´は互いに同じ角度である。説明の都合上、図7では傾斜角度θ2,θ2´を誇張して大きく描いたが、実際の傾斜角度θ2,θ2´は数度以下の小さな角度(例えば1°程度)である。 FIG. 7 is a side view seen from the side where the first roller 13 is disposed. The first rotation half 13a of the first roller 13 is inclined in the first axial direction X1 with respect to the plane Y1 perpendicular to the axis X of the workpiece W. The rotation surface Y2 of the roller 13 forms an inclination angle θ2 with respect to the neutral position N. The first half portion 14a of the second roller 14 is also inclined in the first axial direction X1 with respect to the plane Y1 perpendicular to the axis X of the workpiece W. The rotation surface Y2 ′ of the roller 14 forms an inclination angle θ2 ′ with respect to the neutral position N. The inclination angles θ2 and θ2 ′ are the same angle. For convenience of explanation, in FIG. 7, the inclination angles θ2 and θ2 ′ are exaggerated and drawn large, but the actual inclination angles θ2 and θ2 ′ are small angles of several degrees or less (for example, about 1 °).
 図5に示されるように第1のローラ13と第2のローラ14とは、それぞれ、中立位置N(傾斜角度0°)を境に、第1の軸線方向X1と第2の軸線方向X2とに傾く。つまり各ローラ13,14の回転前半部13a,14aが第2の軸線方向X2に傾く。このときの傾斜角度θ1,θ1´が互いに同じ角度となるように、制御部50によって揺動機構40,41が制御される。 As shown in FIG. 5, the first roller 13 and the second roller 14 each have a first axial direction X1 and a second axial direction X2 at the neutral position N (inclination angle 0 °). Lean on. That is, the rotation first half portions 13a and 14a of the rollers 13 and 14 are inclined in the second axial direction X2. The swinging mechanisms 40 and 41 are controlled by the control unit 50 so that the inclination angles θ1 and θ1 ′ at this time are the same.
 図7に示されるように各ローラ13,14の回転前半部13a,14aが第1の軸線方向X1に傾くときも、傾斜角度θ2,θ2´が互いに同じ角度となるように、制御部50によって揺動機構40,41が制御される。しかもローラ13,14の傾斜角度θ1,θ1´,θ2,θ2´は、揺動機構40,41によって変化させることができる。例えばワークWの材質や加工度(断面の減少率)に応じて、ローラ13,14の傾斜角度が適正な値に設定される。制御部50は、複数のローラ13,14の傾斜角度が互いに等しくなるよう揺動機構40,41を制御する手段としても機能する。 As shown in FIG. 7, even when the first half rotation portions 13a and 14a of the rollers 13 and 14 are inclined in the first axial direction X1, the control unit 50 causes the inclination angles θ2 and θ2 ′ to be equal to each other. The swing mechanisms 40 and 41 are controlled. Moreover, the tilt angles θ1, θ1 ′, θ2, and θ2 ′ of the rollers 13 and 14 can be changed by the swing mechanisms 40 and 41. For example, the inclination angle of the rollers 13 and 14 is set to an appropriate value in accordance with the material of the workpiece W and the degree of processing (cross section reduction rate). The control unit 50 also functions as means for controlling the swing mechanisms 40 and 41 so that the inclination angles of the plurality of rollers 13 and 14 are equal to each other.
 制御部50は、揺動機構40,41を制御することにより、ローラ13,14の傾斜角度を変化させる。傾斜角度を変化させるための揺動制御は、コンピュータプログラムを用いたNC制御(Numerical Control)によって実現される。制御部50は、回転機構20,21や加圧機構30,31および揺動機構40,41を制御するための電気的構成を備えている。その電気的構成は、例えばCPU(Central Processing Unit)と、データを格納するメモリとを備えている。メモリにはワークWの加工に必要な各種データが格納されている。 The control unit 50 changes the inclination angle of the rollers 13 and 14 by controlling the swinging mechanisms 40 and 41. The swing control for changing the tilt angle is realized by NC control (Numerical Control) using a computer program. The control unit 50 has an electrical configuration for controlling the rotation mechanisms 20 and 21, the pressurization mechanisms 30 and 31, and the swing mechanisms 40 and 41. The electrical configuration includes, for example, a CPU (Central Processing Unit) and a memory that stores data. Various data necessary for machining the workpiece W are stored in the memory.
 本実施形態のワーク加工装置10は、ガイド部100,101(図1に示す)を有している。ガイド部100,101は、ワークWを軸線Xまわりに回転自在に支持している。ガイド部100,101の一例はリニヤブッシュタイプである。リニヤブッシュタイプのガイド部100,101は、加工中のワークWが径方向に移動することを抑制し、かつ、ワークWが軸線Xに沿う方向に移動することを許容する。 The work processing apparatus 10 of this embodiment has guide parts 100 and 101 (shown in FIG. 1). The guide portions 100 and 101 support the workpiece W so as to be rotatable about the axis X. An example of the guide portions 100 and 101 is a linear bush type. The linear bush type guide portions 100 and 101 prevent the workpiece W being processed from moving in the radial direction and allow the workpiece W to move in the direction along the axis X.
 ワークWの移動方向(軸線Xに沿う方向)に関してローラユニット12の上流側と下流側に、ワークWの径を検出するセンサS1,S2が配置されている。センサS1,S2の一例は、レーザビームの発光部と受光部とを用いて、ワークWの加工前と加工後の外径をそれぞれ測定する。またこのワーク加工装置10は、ワークWの移動方向(軸線Xに沿う方向)の位置を検出するセンサS3,S4を備えている。 Sensors S1 and S2 for detecting the diameter of the workpiece W are arranged on the upstream side and the downstream side of the roller unit 12 with respect to the moving direction of the workpiece W (direction along the axis X). An example of the sensors S1 and S2 measures the outer diameter of the workpiece W before and after machining using a laser beam emitting part and a light receiving part, respectively. In addition, the workpiece machining apparatus 10 includes sensors S3 and S4 that detect the position of the workpiece W in the moving direction (direction along the axis X).
 次に、ワーク加工装置10によってワークWを加工する方法について説明する。 
 ワークWの一例は、ばね鋼からなる断面が円形のロッド部材である。このワークWは、予め所定長さに切断されている。ワークWは、塑性加工を容易にするために、例えばオーステナイト化温度まで加熱される。
Next, a method for machining the workpiece W by the workpiece machining apparatus 10 will be described.
An example of the workpiece W is a rod member made of spring steel and having a circular cross section. This work W is cut into a predetermined length in advance. The workpiece W is heated to, for example, an austenitizing temperature in order to facilitate plastic working.
 加熱手段110(図1に模式的に示す)の一例は、ワークWがローラ13,14に供給される前に、ワークWの被加工部を含む領域を加熱する。加熱手段110の一例は高周波誘導加熱装置である。それ以外にも、電流によってワークWにジュール熱を生じさせる通電加熱装置でもよいし、輻射熱によってワークを加熱する加熱炉であってもよい。 An example of the heating means 110 (schematically shown in FIG. 1) heats a region including a workpiece portion of the workpiece W before the workpiece W is supplied to the rollers 13 and 14. An example of the heating means 110 is a high frequency induction heating device. In addition, an energization heating device that generates Joule heat in the workpiece W by an electric current or a heating furnace that heats the workpiece by radiant heat may be used.
 塑性加工に適した温度に加熱されたワークWが、ガイド部100,101によって支持される。そしてワークWの被加工部の始点がローラ13,14の間に配置される。ローラ13,14が第1の回転方向R1(図3に示す)に回転する。そうすると、ローラ13,14に接しているワークWは第2の回転方向R2に回転する。ローラ13,14の傾斜角度が0°(中立位置)の場合には、ローラ13,14の回転によってワークWが回転しても、ワークWは軸線方向に移動しない。 The workpiece W heated to a temperature suitable for plastic working is supported by the guide portions 100 and 101. Then, the starting point of the part to be processed of the workpiece W is disposed between the rollers 13 and 14. The rollers 13 and 14 rotate in the first rotation direction R1 (shown in FIG. 3). Then, the workpiece W in contact with the rollers 13 and 14 rotates in the second rotation direction R2. When the inclination angle of the rollers 13 and 14 is 0 ° (neutral position), even if the workpiece W is rotated by the rotation of the rollers 13 and 14, the workpiece W does not move in the axial direction.
 図4と図5は、回転するローラ13,14の回転前半部13a,14aが第2の軸線方向X2に傾いた状態を示している。傾斜角度はθ1,θ1´(プラスのピッチ角)である。ワークWはローラ13,14に接している。このためワークWは、ローラ13,14との間の摩擦により、傾斜角度θ1,θ1´に応じて、あたかも「右ねじ」のように第1の軸線方向X1に螺進(前進)する。ローラ13,14はモータ61,62によって回転する。モータ61,62の回転速度は制御部50によって制御可能である。このためローラ13,14の周速度に応じて、ワークWの単位時間あたりの回転数と軸線方向への移動速度を変化させることができる。 4 and 5 show a state in which the first half portions 13a and 14a of the rotating rollers 13 and 14 are inclined in the second axial direction X2. The inclination angles are θ1, θ1 ′ (plus pitch angle). The workpiece W is in contact with the rollers 13 and 14. For this reason, the workpiece W is screwed (moved forward) in the first axial direction X1 like a “right-handed screw” according to the inclination angles θ1 and θ1 ′ due to friction between the rollers 13 and 14. The rollers 13 and 14 are rotated by motors 61 and 62. The rotation speed of the motors 61 and 62 can be controlled by the control unit 50. For this reason, according to the peripheral speed of the rollers 13 and 14, the rotation speed per unit time of the workpiece | work W and the moving speed to an axial direction can be changed.
 図4と図5に示すように、ローラ13,14の回転前半部13a,14aが第2の軸線方向X2に傾く。そうすると、ワークWはローラ13,14の周速度と傾斜角度θ1,θ1´に応じた速度で、第1の軸線方向X1に移動する。このときローラ13,14の周速度と傾斜角度θ1,θ1´が大きいほど、ワークWの移動速度が大きくなる。ワークWが第1の軸線方向X1に移動(前進)しながら、ワークWがローラ13,14によって弾性限度内で押圧されると、ワークWは加工されずに搬送のみとなる。ワークWが弾性限度を超える荷重で押圧されると、ワークWの搬送と第1の縮径加工とが同時に行われる。この縮径加工によって、ワークWは、ローラ13,14を通った部分の径が少し小さくなる。縮径加工後のワークWの径がセンサS1によって検出される。ワークWの軸線方向の位置はセンサS3,S4によって検出される。 As shown in FIGS. 4 and 5, the first half portions 13a and 14a of the rollers 13 and 14 are inclined in the second axial direction X2. Then, the workpiece W moves in the first axial direction X1 at a speed corresponding to the peripheral speed of the rollers 13 and 14 and the inclination angles θ1 and θ1 ′. At this time, the moving speed of the workpiece W increases as the circumferential speed of the rollers 13 and 14 and the inclination angles θ1 and θ1 ′ increase. If the workpiece W is pressed within the elastic limit by the rollers 13 and 14 while the workpiece W moves (advances) in the first axial direction X1, the workpiece W is not processed but only conveyed. When the workpiece W is pressed with a load exceeding the elastic limit, the conveyance of the workpiece W and the first diameter reduction processing are performed simultaneously. By this diameter reduction processing, the diameter of the portion of the workpiece W that has passed through the rollers 13 and 14 is slightly reduced. The diameter of the workpiece W after the diameter reduction processing is detected by the sensor S1. The position of the workpiece W in the axial direction is detected by sensors S3 and S4.
 ワークWが被加工部の終点まで移動すると、図6と図7に示すように、ローラ13,14の回転前半部13a,14aを第1の軸線方向X1に傾ける。回転前半部13a,14aが第1の軸線方向X1に傾くと、ワークWはローラ13,14の周速度と傾斜角度θ2,θ2´に応じた速度で、第2の軸線方向X2に移動する。このときローラ13,14の周速度と傾斜角度θ2,θ2´が大きいほど、ワークWの移動速度が大きくなる。ローラ13,14は第1の方向R1に回転している。ローラ13,14に接しているワークWは、ローラ13,14の傾斜角度(マイナスのピッチ角)θ2,θ2´に応じて、あたかも「逆ねじ」のように、第2の軸線方向X2に螺進(後退)する。 When the workpiece W moves to the end point of the part to be processed, as shown in FIGS. 6 and 7, the first half portions 13a and 14a of the rollers 13 and 14 are tilted in the first axial direction X1. When the first half portions 13a and 14a are inclined in the first axial direction X1, the workpiece W moves in the second axial direction X2 at a speed corresponding to the peripheral speed of the rollers 13 and 14 and the inclination angles θ2 and θ2 ′. At this time, the moving speed of the workpiece W increases as the peripheral speed of the rollers 13 and 14 and the inclination angles θ2 and θ2 ′ increase. The rollers 13 and 14 rotate in the first direction R1. The workpiece W in contact with the rollers 13 and 14 is screwed in the second axial direction X2 as if it is a “reverse screw” according to the inclination angles (negative pitch angles) θ2 and θ2 ′ of the rollers 13 and 14. Advance (retreat).
 このように本実施形態のワーク加工装置10は、揺動機構40,41によってローラ13,14の傾斜角度を制御する。ワークWは軸線Xまわりに回転しながら、軸線Xに沿う方向に移動する。このためワークWの外周面W3とローラ13,14との接点P1,P2(図3に示す)が螺旋形の軌跡を描く。 As described above, the workpiece machining apparatus 10 according to the present embodiment controls the inclination angles of the rollers 13 and 14 by the swing mechanisms 40 and 41. The workpiece W moves in the direction along the axis X while rotating around the axis X. Therefore, the contact points P1 and P2 (shown in FIG. 3) between the outer peripheral surface W3 of the workpiece W and the rollers 13 and 14 draw a spiral locus.
 ワークWが第2の軸線方向X2に移動する際に、ローラ13,14によってワークWが弾性限度内で押圧されると、ワークWは加工されずに搬送のみとなる。ワークWが弾性限度を超える荷重で押圧されると、ワークWの搬送と第2の縮径加工が同時に行われる。このためワークWは、ローラ13,14を通った部分の径がさらに小さくなる。縮径加工後のワークWの径はセンサS2によって検出される。 When the workpiece W is pressed within the elastic limit by the rollers 13 and 14 when the workpiece W moves in the second axial direction X2, the workpiece W is not processed but only conveyed. When the workpiece W is pressed with a load exceeding the elastic limit, the conveyance of the workpiece W and the second diameter reduction processing are performed simultaneously. For this reason, the diameter of the part which the workpiece | work W passed the rollers 13 and 14 becomes still smaller. The diameter of the workpiece W after the diameter reduction processing is detected by the sensor S2.
 このようにワークWを回転させながら、揺動機構40,41によってローラ13,14が傾く方向を切換える。こうすることにより、ワークWが第1の軸線方向X1と第2の軸線方向X2とに往復移動しつつ、ワークWの径が次第に小さくなる。ワークWの被加工部の径が所定値となるまで、第1の縮径加工と第2の縮径加工とが繰り返されてもよい。第1の縮径加工と第2の縮径加工とでワークWの移動方向が逆転するが、ローラ13,14の回転方向(R1)は一定である。ワークWの回転方向(R2)も一定である。こうしてワークWの長手方向の少なくとも一部に、所定長さのテーパ部W1あるいは小径部W2(図1に示す)が形成される。 The direction in which the rollers 13 and 14 are inclined is switched by the swinging mechanisms 40 and 41 while rotating the workpiece W in this way. By doing so, the diameter of the workpiece W gradually decreases while the workpiece W reciprocates in the first axial direction X1 and the second axial direction X2. The first diameter reduction process and the second diameter reduction process may be repeated until the diameter of the workpiece of the workpiece W reaches a predetermined value. The moving direction of the workpiece W is reversed between the first diameter reduction process and the second diameter reduction process, but the rotation direction (R1) of the rollers 13 and 14 is constant. The rotation direction (R2) of the workpiece W is also constant. Thus, a tapered portion W1 or a small diameter portion W2 (shown in FIG. 1) having a predetermined length is formed at least in a part of the workpiece W in the longitudinal direction.
 ローラ13,14は、加圧機構30,31によってワークWの径方向に押圧される。加圧機構30,31は制御部50によって制御される。ワークWの径方向へのローラ13,14の送り量を制御部50によって制御することで、ワークWの加工度(断面の減少率)を調整することができる。加工後のワークWは、ワーク加工装置10から取り出されたのち、搬送や取扱いに適した温度まで自然冷却される。場合によっては、加工直後のワークWを水あるいはガス等の冷却媒体によって冷却してもよい。 The rollers 13 and 14 are pressed in the radial direction of the workpiece W by the pressure mechanisms 30 and 31. The pressurizing mechanisms 30 and 31 are controlled by the control unit 50. By controlling the feed amount of the rollers 13 and 14 in the radial direction of the workpiece W by the control unit 50, the degree of processing of the workpiece W (the reduction rate of the cross section) can be adjusted. The processed workpiece W is taken out from the workpiece processing apparatus 10 and then naturally cooled to a temperature suitable for conveyance and handling. In some cases, the workpiece W immediately after processing may be cooled by a cooling medium such as water or gas.
 このようにして、長手方向に径が変化するワークWを製造することができる。本実施形態のワーク加工装置10は、切削等の機械加工によってワークWを製造する場合と比較して、材料の無駄がなく、金属組織のメタルフローが切断されるなどの問題も回避される。また機械加工の場合に必要なワークの「つかみしろ」が不要となるため、ワークWのほぼ全長にわたり加工を行うことができる。 In this way, the workpiece W whose diameter changes in the longitudinal direction can be manufactured. Compared with the case where the workpiece W is manufactured by machining such as cutting, the workpiece processing apparatus 10 according to the present embodiment has no waste of material and avoids problems such as cutting the metal flow of the metal structure. In addition, since it is not necessary to “grab” the workpiece necessary for machining, the workpiece W can be processed over almost the entire length.
 本実施形態のワーク加工装置10は、回転する一組のローラ13,14を用いて、ワークの回転と、ワークの移動と、ワークの加工(減径加工)とを同時に行うことができる。ワークは、第1の軸線方向X1と第2の軸線方向X2とに移動する。このためワーク加工装置10の構成を簡略化することができ、加工に必要なエネルギーの消費も少なくてすむ。ローラ13,14によってワークWが弾性限度内で押圧される場合には、ワークWは実質的に加工されずに第1の軸線方向あるいは第2の軸線方向に搬送される。ローラ13,14によってワークWが弾性限度を超える荷重で押圧されると、ワークWが第2の軸線方向X2に移動しながら、第2の縮径加工が行われる。 The workpiece machining apparatus 10 of the present embodiment can simultaneously perform workpiece rotation, workpiece movement, and workpiece machining (diameter reduction machining) using a pair of rotating rollers 13 and 14. The workpiece moves in the first axial direction X1 and the second axial direction X2. For this reason, the structure of the workpiece processing apparatus 10 can be simplified, and consumption of energy required for processing can be reduced. When the work W is pressed by the rollers 13 and 14 within the elastic limit, the work W is transported in the first axial direction or the second axial direction without being substantially processed. When the workpiece W is pressed by the rollers 13 and 14 with a load exceeding the elastic limit, the second diameter reduction processing is performed while the workpiece W moves in the second axial direction X2.
 本実施形態のワーク加工装置10は、ローラ13,14によってワークWの被加工部を直接加工するため、加工精度が高くかつ加工時間が比較的短い。ローラ13,14は、制御部50によってNC制御(Numerical Control)される。ワーク加工装置10は、材料を軟化させた状態で材料を引っ張るダイレス加工と比較して、テーパ部や小径部を高精度に仕上げることができる。ワーク加工装置10による加工は、ダイレス加工と比較して、ワークの温度に厳密さが要求されないため、温度管理が容易である。しかもこのワーク加工装置10は、工場内に占める設置面積が小さくてすむし、スェージングマシンのような大きな騒音を発生することもない。 Since the workpiece processing apparatus 10 of this embodiment directly processes a workpiece portion of the workpiece W by the rollers 13 and 14, the processing accuracy is high and the processing time is relatively short. The rollers 13 and 14 are NC controlled (Numerical Control) by the control unit 50. The workpiece processing apparatus 10 can finish the taper portion and the small diameter portion with high accuracy as compared with the dieless processing that pulls the material in a softened state. Since the processing by the workpiece processing apparatus 10 does not require strictness of the workpiece temperature as compared with the dieless processing, temperature management is easy. In addition, the work processing apparatus 10 occupies a small installation area in the factory, and does not generate a large noise unlike a swaging machine.
 以上述べた実施形態のワーク加工装置10を用いる加工方法は、下記の工程を含んでいる。 The machining method using the workpiece machining apparatus 10 according to the embodiment described above includes the following steps.
(1)加工すべき棒状のワークを必要に応じて加熱し、
(2)ワークを挟む位置に配置された一組のローラ13,14の間にワークを配置し、
(3)ローラ13,14をワークの外周面に向けて押圧し、
(4)ローラ13,14の回転前半部13a,14a側をワークの軸線と直角な中立位置Nを境に第2の軸線方向X2に傾け、
(5)ローラ13,14によってワークを押圧した状態において、ローラ13,14を第1の回転方向R1に回転させ、
(6)ワークを第2の回転方向R2に回転させるとともに第1の軸線方向X1に移動させ、必要に応じてワークの径を小さくする第1の縮径加工を行い、そののち、
(7)ローラ13,14の回転前半部13a,14a側を第2の軸線方向X2とは反対の第1の軸線方向X1に傾け、
(8)ローラ13,14によってワークを押圧した状態において、ローラ13,14を第1の回転方向R1に回転させ、
(9)ワークを第2の回転方向R2に回転させるとともに第2の軸線方向X2に移動させ、必要に応じてワークの径をさらに小さくする第2の縮径加工を行う。
(1) Heat the rod-shaped workpiece to be processed as necessary,
(2) Arranging the workpiece between a pair of rollers 13 and 14 arranged at a position sandwiching the workpiece,
(3) Press the rollers 13 and 14 toward the outer peripheral surface of the workpiece,
(4) Inclining the rotation first half portions 13a, 14a of the rollers 13, 14 in the second axial direction X2 with a neutral position N perpendicular to the workpiece axis as a boundary,
(5) In a state where the workpiece is pressed by the rollers 13 and 14, the rollers 13 and 14 are rotated in the first rotation direction R1,
(6) The workpiece is rotated in the second rotational direction R2 and moved in the first axial direction X1, and the first diameter reduction processing for reducing the diameter of the workpiece is performed as necessary.
(7) Tilt the rotation first half portions 13a, 14a of the rollers 13, 14 in the first axial direction X1 opposite to the second axial direction X2,
(8) In a state where the work is pressed by the rollers 13 and 14, the rollers 13 and 14 are rotated in the first rotation direction R1,
(9) The workpiece is rotated in the second rotational direction R2 and moved in the second axial direction X2, and second diameter reduction processing is performed to further reduce the workpiece diameter as necessary.
(10)加工されたワークの径を検出し、ワークの径が所定値となるまで第1の縮径加工と第2の縮径加工とを繰り返す。 (10) The diameter of the processed workpiece is detected, and the first diameter reduction processing and the second diameter reduction processing are repeated until the diameter of the workpiece reaches a predetermined value.
 図8は第2の実施形態に係るローラユニット12Aを示している。このローラユニット12Aは、ワークWの周方向の3か所に配置された3個のローラ13,14,120を備えている。第1のローラ13と第2のローラ14は第1の実施形態で説明したものと同じである。第3のローラ120は、第1および第2のローラ13,14と同様に、支軸(揺動軸)121aを有するローラホルダ121によって保持される。第3のローラ120は自転軸122を中心に回転する。 FIG. 8 shows a roller unit 12A according to the second embodiment. The roller unit 12A includes three rollers 13, 14, 120 arranged at three locations in the circumferential direction of the workpiece W. The first roller 13 and the second roller 14 are the same as those described in the first embodiment. Similar to the first and second rollers 13 and 14, the third roller 120 is held by a roller holder 121 having a support shaft (swing shaft) 121 a. The third roller 120 rotates around the rotation shaft 122.
 これら3個のローラ13,14,120は、ワークWの位置決めをなす機能も兼ねている。リニヤブッシュタイプのガイド部の代わりに、様々な径のワークを回転自在に支持することが可能なガイド部を使用してもよい。その場合、ワークWの径が制約を受けなくなるため、様々な径のワーク(ロッド部材)を加工することができる。それ以外の構成と作用について、第2の実施形態のローラユニット12Aを備えたワーク加工装置は、第1の実施形態のローラユニット12を備えたワーク加工装置10と共通であるため、説明を省略する。 These three rollers 13, 14, 120 also have a function of positioning the workpiece W. Instead of the linear bush type guide part, a guide part capable of rotatably supporting workpieces of various diameters may be used. In that case, since the diameter of the workpiece W is not restricted, a workpiece (rod member) having various diameters can be processed. Since the work processing apparatus including the roller unit 12A according to the second embodiment is the same as the work processing apparatus 10 including the roller unit 12 according to the first embodiment, the description of the other configurations and operations is omitted. To do.
 本発明のワーク加工装置と加工方法は、中実あるいは中空の棒状のワークに適用することができる。ワークは、コイルばねやスタビライザ、トーションバーなどの材料に用いるロッド部材であってもよい。ワークの材料は鋼以外の金属でもよいし、合成樹脂などの非金属からなるワークでもよい。ワークの材料によっては、ワークを加熱することなく冷間温度域(室温)あるいは室温よりも高い温間温度域で加工してもよい。 The workpiece machining apparatus and machining method of the present invention can be applied to solid or hollow rod-shaped workpieces. The workpiece may be a rod member used for a material such as a coil spring, a stabilizer, or a torsion bar. The material of the workpiece may be a metal other than steel or a workpiece made of a nonmetal such as a synthetic resin. Depending on the material of the workpiece, the workpiece may be processed in a cold temperature range (room temperature) or a warm temperature range higher than room temperature without heating.
 W…ワーク、W1…テーパ部、W2…小径部、W3…外周面、10…ワーク加工装置、11…ベース部材、12…ローラユニット、13,14…ローラ、15,16…ローラホルダ、15a,16a…支軸(揺動軸)、17,18…自転軸、20,21…回転機構、30,31…加圧機構、40,41…揺動機構、50…制御部、100,101…ガイド部、110…加熱手段、S1,S2,S3,S4…センサ、X…軸線(回転軸)、X1…第1の軸線方向、X2…第2の軸線方向、R1…第1の回転方向、R2…第2の回転方向。 W ... Workpiece, W1 ... Tapered portion, W2 ... Small diameter portion, W3 ... Outer peripheral surface, 10 ... Work processing device, 11 ... Base member, 12 ... Roller unit, 13,14 ... Roller, 15,16 ... Roller holder, 15a, 16a ... support shaft (oscillation shaft) 17,18 ... rotation shaft, 20,21 ... rotation mechanism, 30,31 ... pressure mechanism, 40,41 ... oscillation mechanism, 50 ... control unit, 100,101 ... guide 110, heating means, S1, S2, S3, S4, sensor, X, axis (rotary axis), X1, first axial direction, X2, second axial direction, R1, first rotational direction, R2. ... second rotation direction.

Claims (11)

  1.  遊星機構の太陽車に相当する位置に配置されたワーク(W)に対して惑星車に相当する位置に配置され、前記ワーク(W)に対して滑ることなく自転軸(17)(18)を中心に回転する複数のローラ(13)(14)と、
     前記複数のローラ(13)(14)のうち少なくとも1つのローラを前記自転軸(17)(18)を中心に強制的に回転させることにより前記ワーク(W)も回転させる回転機構(20)(21)と、
     前記各ローラ(13)(14)を前記ワーク(W)の外周面に押圧する加圧機構(30)(31)と、
     前記各ローラ(13)(14)の前記自転軸(17)(18)を前記ワーク(W)の軸線(X)に対して傾ける揺動機構(40)(41)と、
     前記各ローラ(13)(14)の傾斜角度が互いに等しくなるよう前記揺動機構(40)(41)を制御する手段と、
     を具備したワーク加工装置。
    It is arranged at a position corresponding to the planetary car with respect to the work (W) arranged at the position corresponding to the solar wheel of the planetary mechanism, and the rotation axis (17) (18) is not slipped with respect to the work (W). A plurality of rollers (13) and (14) rotating around the center;
    A rotation mechanism (20) for rotating the workpiece (W) by forcibly rotating at least one of the plurality of rollers (13) (14) about the rotation shaft (17) (18). 21) and
    A pressure mechanism (30) (31) for pressing each roller (13) (14) against the outer peripheral surface of the workpiece (W);
    A swing mechanism (40) (41) for inclining the rotation shaft (17) (18) of each roller (13) (14) with respect to the axis (X) of the workpiece (W);
    Means for controlling the swing mechanism (40) (41) so that the inclination angles of the rollers (13) (14) are equal to each other;
    Workpiece processing equipment equipped with
  2.  請求項1に記載のワーク加工装置において、
     回転する前記ワーク(W)の外周面と前記各ローラ(13)(14)との接点が螺旋形の軌跡を描くように前記揺動機構(40)(41)によって前記各ローラ(13)(14)の傾斜角度を制御するワーク加工装置。
    The workpiece processing apparatus according to claim 1,
    Each roller (13) (40) (41) by the swing mechanism (40) (41) so that the contact point between the outer peripheral surface of the rotating workpiece (W) and each roller (13) (14) draws a spiral trajectory. 14) Workpiece processing device that controls the tilt angle.
  3.  ワーク(W)を挟む位置に配置された複数の回転可能なローラ(13)(14)を含み、前記各ローラ(13)(14)がそれぞれ回転方向に関して前記ワーク(W)に近付く側の回転前半部(13a)(14a)と前記ワーク(W)から離れる側の回転後半部(13b)(14b)とを有するローラユニットと、
     前記複数のローラ(13)(14)のうち少なくとも1つのローラを回転させる回転機構(20)(21)と、
     前記各ローラ(13)(14)を前記ワーク(W)の外周面に押圧する加圧機構(30)(31)と、
     前記各ローラ(13)(14)が配置されている側から前記各ローラ(13)(14)を見て、前記ワーク(W)の軸線(X)と直角な面に対し前記各ローラ(13)(14)のなす角度が0°の中立位置を境に、前記各ローラ(13)(14)の回転前半部(13a)(14a)側を第1の軸線方向(X1)と第2の軸線方向(X2)とに傾ける揺動機構(40)(41)と、
     前記各ローラ(13)(14)が配置されている側から前記各ローラ(13)(14)を見て、前記各ローラ(13)(14)の回転前半部(13a)(14a)側が傾く方向と傾斜角度とが各ローラ(13)(14)ごとに同じとなるよう前記揺動機構(40)(41)を制御する制御部(50)とを具備したワーク加工装置。
    A plurality of rotatable rollers (13) and (14) arranged at positions sandwiching the workpiece (W), and each roller (13) and (14) is rotated on the side approaching the workpiece (W) with respect to the rotation direction. A roller unit having a front half part (13a) (14a) and a rotation latter half part (13b) (14b) on the side away from the workpiece (W);
    A rotating mechanism (20) (21) for rotating at least one of the plurality of rollers (13) (14);
    A pressure mechanism (30) (31) for pressing each roller (13) (14) against the outer peripheral surface of the workpiece (W);
    The rollers (13) and (14) are viewed from the side where the rollers (13) and (14) are arranged, and the rollers (13) with respect to a plane perpendicular to the axis (X) of the workpiece (W). ) And (14) at the neutral position of 0 °, the first half of rotation (13a) and (14a) of the rollers (13) and (14) are connected to the first axial direction (X1) and the second axis. Oscillation mechanism (40) (41) tilting in the axial direction (X2),
    When the rollers (13) and (14) are viewed from the side where the rollers (13) and (14) are arranged, the rotation first half portions (13a) and (14a) of the rollers (13) and (14) are inclined. A workpiece machining apparatus comprising: a control unit (50) that controls the swing mechanism (40) (41) so that the direction and the inclination angle are the same for each roller (13) (14).
  4.  請求項3に記載のワーク加工装置において、
     前記制御部(50)は、前記ワーク(W)を第1の軸線方向(X1)に移動させるとき、前記各ローラ(13)(14)の回転前半部(13a)(14a)側をそれぞれ前記第2の軸線方向(X2)に傾けかつ前記各ローラ(13)(14)の前記傾斜角度が互いに同じとなるよう前記揺動機構(40)(41)を制御し、前記ワーク(W)を第2の軸線方向(X2)に移動させるときには、前記各ローラ(13)(14)の回転前半部(13a)(14a)側をそれぞれ前記第1の軸線方向(X1)に傾けかつ前記各ローラ(13)(14)の前記傾斜角度が互いに同じとなるよう前記揺動機構(40)(41)を制御するワーク加工装置。
    In the workpiece processing apparatus according to claim 3,
    When the control unit (50) moves the workpiece (W) in the first axial direction (X1), the first rotation part (13a) (14a) side of each roller (13) (14) The swing mechanism (40) (41) is controlled to tilt the second axial direction (X2) and the tilt angles of the rollers (13), (14) are the same, and the workpiece (W) When moving in the second axial direction (X2), each roller (13), (14) is inclined in the first axial direction (X1) with respect to the rotation first half (13a) (14a) side, and each of the rollers (13) A workpiece machining apparatus that controls the swing mechanism (40) (41) so that the inclination angles of (14) are the same.
  5.  請求項3に記載のワーク加工装置において、
     前記ワーク(W)を軸線(X)まわりに回転自在にかつ軸線(X)に沿う方向には移動可能に支持するガイド部をさらに備えたワーク加工装置。
    In the workpiece processing apparatus according to claim 3,
    A workpiece machining apparatus further comprising a guide portion that supports the workpiece (W) so as to be rotatable about an axis (X) and movable in a direction along the axis (X).
  6.  請求項3に記載のワーク加工装置において、
     前記ワーク(W)の位置を検出するセンサと、前記ワーク(W)の径を検出するセンサとを備えたワーク加工装置。
    In the workpiece processing apparatus according to claim 3,
    A workpiece machining apparatus comprising: a sensor that detects a position of the workpiece (W); and a sensor that detects a diameter of the workpiece (W).
  7.  請求項3に記載のワーク加工装置において、
     前記ローラユニットが前記ワーク(W)の周方向の3か所に配置された3個のローラ(13)(14)(120)を備えたワーク加工装置。
    In the workpiece processing apparatus according to claim 3,
    A workpiece machining apparatus comprising three rollers (13), (14) and (120) in which the roller unit is disposed at three locations in the circumferential direction of the workpiece (W).
  8.  複数のローラ(13)(14)の間に棒状のワーク(W)を配置し、
     前記各ローラ(13)(14)を前記ワーク(W)の外周面に押圧し、
     前記ワーク(W)を第1の軸線方向(X1)に移動させるとき前記各ローラ(13)(14)の回転前半部(13a)(14a)を前記ワーク(W)の軸線(X)と直角な面に対して0°の中立位置から第2の軸線方向(X2)に傾け、
     前記各ローラ(13)(14)を前記ワーク(W)に押圧した状態において前記各ローラ(13)(14)を第1の回転方向に回転させ、前記ワーク(W)を第2の回転方向に回転させるとともに前記ワーク(W)を第1の軸線方向(X1)に移動させ、その後、
     前記ワーク(W)を第2の軸線方向(X2)に移動させるとき前記各ローラ(13)(14)の回転前半部(13a)(14a)を前記中立位置から前記第1の軸線方向(X1)に傾け、
     前記各ローラ(13)(14)を前記ワーク(W)に押圧した状態において前記各ローラ(13)(14)を前記第1の回転方向に回転させ、前記ワーク(W)を前記第2の回転方向に回転させるとともに前記ワーク(W)を第2の軸線方向(X2)に移動させるワークの加工方法。
    Place a rod-shaped workpiece (W) between the rollers (13) and (14),
    Press each roller (13) (14) against the outer peripheral surface of the workpiece (W),
    When the workpiece (W) is moved in the first axial direction (X1), the first half of rotation (13a) (14a) of each roller (13) (14) is perpendicular to the axis (X) of the workpiece (W). Tilt in the second axis direction (X2) from the neutral position of 0 °
    In a state where the rollers (13) and (14) are pressed against the workpiece (W), the rollers (13) and (14) are rotated in the first rotation direction, and the workpiece (W) is rotated in the second rotation direction. And the workpiece (W) is moved in the first axial direction (X1).
    When the workpiece (W) is moved in the second axial direction (X2), the first half rotation portions (13a) and (14a) of the rollers (13) and (14) are moved from the neutral position to the first axial direction (X1). )
    In a state where the rollers (13) and (14) are pressed against the workpiece (W), the rollers (13) and (14) are rotated in the first rotation direction, and the workpiece (W) is moved to the second rotation. A workpiece machining method in which the workpiece (W) is rotated in the rotation direction and the workpiece (W) is moved in the second axial direction (X2).
  9.  請求項8に記載のワークの加工方法において、
     前記第1の軸線方向(X1)の移動の際に前記ワーク(W)の径を小さくする第1の縮径加工を行い、
     前記第2の軸線方向(X2)の移動の際に前記ワーク(W)の径をさらに小さくする第2の縮径加工を行うワークの加工方法。
    In the processing method of the workpiece according to claim 8,
    Performing a first diameter reduction process for reducing the diameter of the workpiece (W) during the movement in the first axial direction (X1);
    A workpiece processing method for performing second diameter reduction processing for further reducing the diameter of the workpiece (W) during the movement in the second axial direction (X2).
  10.  請求項9に記載のワークの加工方法において、
     前記ワーク(W)の径を検出し、
     前記ワーク(W)の径が所定値となるよう前記第1の縮径加工と前記第2の縮径加工とを行うワークの加工方法。
    In the processing method of the workpiece according to claim 9,
    Detecting the diameter of the workpiece (W),
    A workpiece machining method, wherein the first diameter reduction process and the second diameter reduction process are performed so that a diameter of the workpiece (W) becomes a predetermined value.
  11.  請求項10に記載のワークの加工方法において、
     前記ワーク(W)の径が所定値となるまで前記第1の縮径加工と前記第2の縮径加工とを繰り返すワークの加工方法。
    In the processing method of the workpiece according to claim 10,
    A workpiece machining method in which the first diameter reduction machining and the second diameter reduction machining are repeated until the diameter of the workpiece (W) reaches a predetermined value.
PCT/JP2019/023098 2018-06-13 2019-06-11 Workpiece processing device and workpiece processing method WO2019240130A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-112789 2018-06-13
JP2018112789A JP2019214064A (en) 2018-06-13 2018-06-13 Workpiece processing device and workpiece processing method

Publications (1)

Publication Number Publication Date
WO2019240130A1 true WO2019240130A1 (en) 2019-12-19

Family

ID=68842906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023098 WO2019240130A1 (en) 2018-06-13 2019-06-11 Workpiece processing device and workpiece processing method

Country Status (2)

Country Link
JP (1) JP2019214064A (en)
WO (1) WO2019240130A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3810375A (en) * 1967-11-04 1974-05-14 Brueninghaus Gmbh Stahlwerke Apparatus for the production of elongated conical metallic articles
JPS56114503A (en) * 1980-02-15 1981-09-09 High Frequency Heattreat Co Ltd Method and apparatus for continuous plastic working for tapered rod
JPS56154202A (en) * 1980-04-28 1981-11-28 Nhk Spring Co Ltd Manufacture of tapered bar
JPS5992106A (en) * 1982-11-16 1984-05-28 Akira Ozawa Planetary rolling mill
JPS59225802A (en) * 1983-06-07 1984-12-18 Sumitomo Metal Ind Ltd Manufacture of metallic material having circular cross section
JPH03174908A (en) * 1989-12-04 1991-07-30 Sumitomo Heavy Ind Ltd Inner housing type rolling mill with plural rolls

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3810375A (en) * 1967-11-04 1974-05-14 Brueninghaus Gmbh Stahlwerke Apparatus for the production of elongated conical metallic articles
JPS56114503A (en) * 1980-02-15 1981-09-09 High Frequency Heattreat Co Ltd Method and apparatus for continuous plastic working for tapered rod
JPS56154202A (en) * 1980-04-28 1981-11-28 Nhk Spring Co Ltd Manufacture of tapered bar
JPS5992106A (en) * 1982-11-16 1984-05-28 Akira Ozawa Planetary rolling mill
JPS59225802A (en) * 1983-06-07 1984-12-18 Sumitomo Metal Ind Ltd Manufacture of metallic material having circular cross section
JPH03174908A (en) * 1989-12-04 1991-07-30 Sumitomo Heavy Ind Ltd Inner housing type rolling mill with plural rolls

Also Published As

Publication number Publication date
JP2019214064A (en) 2019-12-19

Similar Documents

Publication Publication Date Title
KR100973178B1 (en) Method and forming machine for manufacturing a product having various diameters
JP7261799B2 (en) Machine Tools
KR102533754B1 (en) Friction welding method and machine tool
CN113649685A (en) Rotary clamp capable of adjusting coaxiality of workpiece axis and main axis and inertia friction welding machine
JP2009214153A (en) Thread rolling apparatus and thread rolling method
WO2019240130A1 (en) Workpiece processing device and workpiece processing method
JP6467507B2 (en) Apparatus and method for squeezing a workpiece
CN101829875B (en) Cylinder positioning device in thin-wall drilling welding machine
JP4608262B2 (en) Thread groove processing method
GB2559865A (en) Machining tool
US11077477B2 (en) Incremental rotary rolling mill and method
KR200277665Y1 (en) cutting apparatus for pipes
JP2003311368A (en) Shaft thickening method and device for metallic shaft material
KR102632289B1 (en) Machine tools and processing methods
JP2007283365A (en) Method of plastic working
US20050067465A1 (en) Method of manufacturing a rotary shaft
JP3424000B2 (en) Color molding equipment
JP2020127963A (en) Method of manufacturing noncircular pipe body and pipe body molding device
JP5469354B2 (en) Pipe processing apparatus and pipe processing method
JP4034788B2 (en) Squeezing roller
JP3760762B2 (en) Burnishing device and burnishing method
JP2004034233A (en) Lap working method and device for nut screw groove
CN216177533U (en) Rotary clamp capable of adjusting coaxiality of workpiece axis and main axis and inertia friction welding machine
JP2011218506A (en) Superfinishing method and superfinishing device
CN114472767A (en) Rolling device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19820459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19820459

Country of ref document: EP

Kind code of ref document: A1