JPS59225802A - Manufacture of metallic material having circular cross section - Google Patents

Manufacture of metallic material having circular cross section

Info

Publication number
JPS59225802A
JPS59225802A JP10227583A JP10227583A JPS59225802A JP S59225802 A JPS59225802 A JP S59225802A JP 10227583 A JP10227583 A JP 10227583A JP 10227583 A JP10227583 A JP 10227583A JP S59225802 A JPS59225802 A JP S59225802A
Authority
JP
Japan
Prior art keywords
roll
rolling
skew
section
rolls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10227583A
Other languages
Japanese (ja)
Other versions
JPH0310401B2 (en
Inventor
Kazuyuki Nakasuji
中筋 和行
Chihiro Hayashi
千博 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP10227583A priority Critical patent/JPS59225802A/en
Publication of JPS59225802A publication Critical patent/JPS59225802A/en
Publication of JPH0310401B2 publication Critical patent/JPH0310401B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • B21B1/20Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section in a non-continuous process,(e.g. skew rolling, i.e. planetary cross rolling)

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)

Abstract

PURPOSE:To make an installation, for rolling a metallic material having circular cross section, small in size and to improve the quality of products by using alternately the surfaces of both sides of the maximum diametral part of a barrel-type roll of skew mill for the purpose of skew-rolling a round bar material reversibly. CONSTITUTION:In a skew rolling mill for obtaining a metallic material having circular corss section by rolling a round bar material A1 heated to a prescribed temperature by a heating furnace, etc. with the aids of 3-4 skew rolls 21- installed around a pass line X-X; said skew roll 21 is formed into a barrel-type consisting of the reeling roll surfaces 21d, 21e whose diameters are gradually decreased to both sides of an edge part 21a with maximum diameter, located at the central part of an axial center line, and working roll surfaces 21b, 21c. Each of said rolls 21- revolved around the axial center line Y-Y, and the material A1 is first rolled at the side of working roll surface 21b and next, the material A1 is passed from the opposite side, to roll it at the side of working roll surface 21c by changing the inclination of roll 21, in order to obtain a metallic material having a circular cross section of prescribed shape by repeating said rollings alternately.

Description

【発明の詳細な説明】 本発明は傾斜圧延機を用いて丸棒鋼等の円形断面金属材
を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a circular cross-section metal material such as a round steel bar using an inclined rolling mill.

丸棒鋼は一般にはカリバーロールによる圧延工程を経て
製造されているが、設備費の低減等を目的として傾斜圧
延機を用いる方法が試みられており、例えば特公昭46
−43980号公報に開示されている傾斜ロール圧延機
は中実+4を1パスで高圧下できる高加工度圧延機とし
て著名なものである。本発明者等においても1パス当た
り80〜90%の減面率が可能で、しかも中心部が脆性
化する、所謂マンネスマン破壊の生じない高加工度圧延
が可能な傾斜圧延方法につき、既に出願を行なっている
(特願昭57−114362号)。ところで例えば棒材
等を製造する場合、減面率80〜90%程度では製造可
能なサイズ範囲に限界があり、更に大きな減面率を要求
されることが少なくないが、減面率を更に大きくしよう
とすると、圧延機本体が格段におおきくなり、設備コス
トが高くなるため、通常は圧延機を複数台設置して圧延
を行うことが多いが、この方法ではランニングコスl−
が高く、また生産能率が低いなどの難点があった。特に
近年開発が進められている高合金、チタン合金等の難加
工材を対象とする場合、減面率に一定の制限があるため
、1バスでの加工が出来ず、数バスの圧延を施す必要が
あるが、傾斜圧延機により数バスの圧延を行うには相当
な時間を必要とするため、この間の温度制御が極めて難
しいなどの問題もあった。
Round steel bars are generally manufactured through a rolling process using caliber rolls, but methods using inclined rolling mills have been attempted for the purpose of reducing equipment costs.
The inclined roll rolling mill disclosed in Japanese Patent No. -43980 is famous as a high-workability rolling mill that can reduce a solid +4 to a high degree in one pass. The inventors of the present invention have already filed an application for an inclined rolling method that enables a reduction in area of 80 to 90% per pass and also enables high-deformation rolling that does not cause so-called Mannesmann fracture, which causes brittleness in the center. (Japanese Patent Application No. 57-114362). By the way, when manufacturing bars, for example, there is a limit to the size range that can be manufactured with an area reduction rate of about 80 to 90%, and an even larger area reduction rate is often required. If you try to do this, the rolling mill itself will become significantly larger and the equipment cost will increase, so usually multiple rolling mills are installed to perform rolling, but this method reduces the running cost.
There were also drawbacks such as high production efficiency and low production efficiency. Especially when dealing with difficult-to-process materials such as high alloys and titanium alloys, which have been developed in recent years, there are certain restrictions on the area reduction rate, so it is not possible to process them in one bath, and rolling is performed in several baths. However, since it takes a considerable amount of time to perform several baths of rolling using an inclined rolling mill, there are problems such as extremely difficult temperature control during this time.

本発明はかかる事情に鑑みなされたものであって、その
目的とするところは中間部に最大直径部分を有し、ここ
から両端側に向かって漸次直径を縮小された、所謂バレ
ル型ロールを備えた傾斜圧延機における前記ロールの最
大直径部分両側のロール面を交互に用いて可逆的に傾斜
圧延を可能とすることにより、設備の小型化、製品品質
の向−Lを図り得る円形断面金属材の製造方法を提供す
るにある。
The present invention has been made in view of the above circumstances, and its object is to include a so-called barrel-shaped roll having a maximum diameter part in the middle part and gradually decreasing in diameter from there toward both ends. A circular cross-section metal material capable of reducing the size of equipment and improving product quality by enabling reversible inclined rolling by alternately using the roll surfaces on both sides of the maximum diameter part of the roll in an inclined rolling mill. To provide a manufacturing method.

本発明に係る円形断面金属材の製造方法は中間部に最大
直径部を有し、ここから両端側に向かうに従って漸次直
径を縮小されたバレル型ロールを有する傾斜圧延機を用
いて被圧延材を可逆圧延するT稈を含むことを特徴とす
る。
The method for producing a circular cross-section metal material according to the present invention uses an inclined rolling mill having a barrel-shaped roll having a maximum diameter part in the middle part and whose diameter is gradually reduced from there toward both ends. It is characterized by including a T culm that undergoes reversible rolling.

以下本発明方法をその実施状態を示す図面に基づき具体
的に説明する。
The method of the present invention will be specifically explained below based on the drawings showing its implementation state.

第1図は本発明方法をその工程順に示す模式図であり、
先ず第1図(イ)に示す如く所要的径の丸棒材Al  
(丸鋼片でもよい)を第1図(ロ)に示す如く加熱炉1
にて所要温度に加熱した後、第1図(ハ)に示す如く傾
斜圧延機2にて延伸FF延し、次いで第1図(ニ)に示
す如く傾斜圧延機2のロールの交差角、傾斜角を切換え
て丸棒材A1を逆向きに圧延し、また必要があれば加熱
炉1にて再加熱した後、圧延を反復し、所要の手法仕様
に仕上げて第1図(ホ)に示す如く矯正機3にて曲がり
を矯正し、第1図(へ)に示す如く切断機4にて定尺切
断して製品たる棒材A2を得るようになっている。傾斜
圧延機2を除く、加熱炉!、矯正機3及び切断機4ばそ
れ自体従来知られているものである。そして傾斜圧延機
2は第2図(イ)、(ロ)、(ハ)に示す如く構成され
ている。
FIG. 1 is a schematic diagram showing the method of the present invention in the order of its steps,
First, as shown in Figure 1 (a), a round bar material Al having the required diameter is
(a round piece of steel may be used) is heated in a heating furnace 1 as shown in Fig. 1 (b).
After heating to the required temperature in the incline rolling mill 2, as shown in FIG. Switch the corner and roll the round bar A1 in the opposite direction, and if necessary, reheat it in the heating furnace 1 and repeat the rolling to achieve the required method specifications as shown in Figure 1 (E). A straightening machine 3 is used to straighten the bend, and a cutting machine 4 is used to cut the bar to a specified length to obtain a product bar A2, as shown in FIG. Heating furnace except for inclined rolling mill 2! , the straightening machine 3 and the cutting machine 4 are conventionally known per se. The inclined rolling mill 2 is constructed as shown in FIGS. 2(a), 2(b), and 2(c).

第2図(イ)は傾斜圧延機2にて丸棒材A1を延伸圧延
中の状態を示す丸棒材A五の入側から見た模式的正面図
、第2図(ロ)は同じく第2図(イ)のローロ線による
断面図、第2図(ハ)は同じく第2図(イ)のハーバ線
による側面図であり、傾斜圧延機2は丸棒材A1のバス
ラインX−X周りに配設された3個(又は4個)の傾斜
ロール(以下単にロールという) 21,21.21を
備えている。各ロール21はいずれも同形であって、夫
々軸心線の中央部に最大直径であるゴージ部21aを備
え、このゴージ部21aを境いに軸長方向の一端側には
軸端に向けて漸次直線的又は曲線的に縮小した略円錐台
状のリーリングロール面21d 、21eを、さらに軸
端側に向けて漸次直径を直線的に縮小した円錐台形状の
ワーキングロール面21b 、21.cを備えている。
FIG. 2(A) is a schematic front view of the round bar A5 seen from the entry side showing the state in which the round bar A1 is being stretched and rolled in the inclined rolling mill 2, and FIG. FIG. 2(A) is a cross-sectional view taken along the Rollo line, and FIG. 2(C) is a side view taken along the Haver line in FIG. 2(A). It is provided with three (or four) inclined rolls (hereinafter simply referred to as rolls) 21, 21.21 arranged around the periphery. Each roll 21 has the same shape, and has a gorge portion 21a having the maximum diameter at the center of the axis, and a gorge portion 21a having the maximum diameter at one end in the axial direction with this gorge portion 21a as a boundary. The reeling roll surfaces 21d, 21e are generally truncated conical reeling roll surfaces 21d, 21e that are gradually reduced linearly or curved, and the working roll surfaces 21b, 21. It is equipped with c.

各ロール21はいずれも最初はそのワーキングロール面
2Ib側を丸棒材A1の移動方向上流側に位置させた状
態で、且つ軸心線Y−Yとゴージ部21aを含む平面と
の交点O(以下ロール設定中心という)を丸棒材A1の
パスラインX−Xと直交する同一平面上に位置させてパ
スラインX−Xの周りに略等間隔で配設され、夫々両端
の軸部21f 、21gを図示しない軸受に支持された
状態で軸心線Y−Y周りに回転駆動されるようになって
いる。丸棒材A1のパスラインX−Xとロールの軸心線
Y=Yとは、第2図(ロ)に示す如く平面視的には前端
部、即ち前方の軸端がパスラインX−Xに向けて接近す
るよう所要角度γ(以下交差角という)で交差せしめら
れ、且つ側面視的には第2図(ハ)に示す如く、前方の
軸端が丸棒材A1の周方向の同じ側に向けて所要角度β
(以下傾斜角という)だけ傾斜せしめられて配設されて
いる。
Each roll 21 is initially positioned with its working roll surface 2Ib side located upstream in the moving direction of the round bar A1, and at the intersection O( (hereinafter referred to as the roll setting center) are positioned on the same plane orthogonal to the pass line XX of the round bar A1, and are arranged at approximately equal intervals around the pass line XX, and the shaft portions 21f at both ends, 21g is supported by a bearing (not shown) and is driven to rotate around the axis Y-Y. The pass line XX of the round bar A1 and the axial center line Y=Y of the roll are as shown in FIG. They intersect at a required angle γ (hereinafter referred to as intersecting angle) so that they approach toward the round bar A1, and when viewed from the side, as shown in FIG. Required angle β toward the side
(hereinafter referred to as the inclination angle).

各ロール21はいずれも図示しない駆動源にて第2図(
イ)に示す如く矢符方向に回転駆動され、これらの間に
噛み込んだ丸棒材/’zをその軸心線面りに回転駆動し
つつ、パスライン方向に移動させる所謂螺進移動せしめ
られつつ直径を減じる高加工度の延伸圧延を施されるよ
うになっている。
Each roll 21 is driven by a drive source (not shown) as shown in FIG.
As shown in b), the round bar /'z caught between these is driven to rotate in the direction of the arrow, and is rotated in the direction of its axis, while being moved in the direction of the pass line, so-called spiral movement. They are now being subjected to high-strength elongation rolling, which reduces the diameter while being processed.

そして丸棒材Alがロール21から抜は出ずと、各ロー
ル21は第3図(イ)、(ロ)、(ハ)に示す如くに設
定され、丸棒材A1が前記第1図(ハ)における場合と
は逆方向から傾斜圧延機2に向けて送られるよ・うにし
である。第3図(イ)は傾斜圧延機2による逆向きの延
伸圧延中の状態を示ず丸棒材A1の入側からみた模式的
正面図、第3図(ロ)は同しく第3図(イ)のローロ線
による断面図、第3図(ハ)は同じく第3図(イ)のハ
ーバ線による側面図であり、ロール21は丸棒材A1の
移動方向上流側にワーキングロール面21cを、下流側
にワーキングロール面21bを位置させた状態で、丸棒
材A+のパスラインX−Xとロールの軸心線Y−Yとが
第3図(ロ)に示す如く平面視的には前端部、即ちワー
キングロール面2Ic側の軸端がパスラインX−Xに向
けて接近するよう交差角γだけ交差せしめられ、且つ側
面視的には第3図(ハ)に示す如くワーキングロール面
2Ic側の軸端が丸棒材/’zの周方向の同じ側に向け
て傾斜角βだけ傾斜せしめられて設定されている。
Then, without pulling out the round bar Al from the rolls 21, each roll 21 is set as shown in FIGS. In this case, the rolling stock is sent toward the inclined rolling mill 2 from the opposite direction to the case in c). FIG. 3(a) is a schematic front view of the round bar material A1 seen from the entrance side without showing the state during reverse elongation rolling by the inclined rolling mill 2, and FIG. A) is a sectional view taken along the Rollo line, and FIG. 3C is a side view taken along the Haver line of FIG. , with the working roll surface 21b positioned on the downstream side, the pass line X-X of the round bar A+ and the axis Y-Y of the roll are as shown in FIG. 3 (b) in plan view. The front end, that is, the shaft end on the side of the working roll surface 2Ic is crossed by a crossing angle γ so that it approaches the pass line XX, and when viewed from the side, the working roll surface 2Ic is crossed as shown in FIG. 3(c). The shaft end on the 2Ic side is set to be inclined by an inclination angle β toward the same side in the circumferential direction of the round bar /'z.

各ロール21は夫々図示しない駆動源にて矢符方向に回
転駆動され、これらl」−ル21間に噛め込んだ丸棒材
Alに、これをその軸心線間りに回転駆動させつつ軸長
方向に移動させる、蝮進移動せしめつつ同様に高加工度
の外径縮小の延伸圧延を施すこととなる。
Each roll 21 is driven to rotate in the direction of the arrow by a drive source (not shown), and is driven to rotate between the axes of the round bar Al inserted between these l''-rolls 21, while While moving the material in the longitudinal direction, it is subjected to elongation rolling to reduce the outer diameter with a high degree of processing while moving the material in a vertical direction.

なお上述した交差角γ、傾斜角βはいずれも下記(1)
〜(3)式の条件を満足するよう設定される。
The above-mentioned intersection angle γ and inclination angle β are both as follows (1)
It is set so as to satisfy the conditions of formula (3).

0°≦γ〈10°   −(11 3°〈β〈20°   −(21 5°〈γ十β〈30° −(31 交差角Tを0°以上としたのは負、即ち丸鋼片の移動方
向に対し、その下流側に位置するロール軸端をパスライ
ンX−Xに対して接近させる場合には横断面中心部に剪
断応力が集中してマンネスマン破壊が生ずるからであり
、また10°未満としたのはlO°以上ではロールの駆
動軸が丸棒材と干渉する構造的な理由に依る。また傾斜
角βの下限値を3°としたのは3°以下では被圧延材の
断面中央部付近における円周方向の剪断変形を小さくし
、連続鋳造された被圧延材におけるポロシティ圧着効果
を十分に得ることが出来ないためであり、またβの上限
値を20°としたのはこれ以上でば被圧延材の移動方向
下流側において、ロールチョックのパスラインに最も近
い部分とロール端面とで干渉を起こす構造的な理由であ
る。更にγ+βの下限値を5°としたのはこれ以下では
実用的圧延能率(速度)を確保できず、また30°未満
としたのはこれ以上では」=述した如きロールチョック
とロールとの干渉が増大することば勿論、ロールを支持
するベアリングをロールチョック内に収めておくことが
困難となり、ロールに対する両持構造を維持できなくな
ることによる。
0 degree This is because if the end of the roll shaft located on the downstream side in the direction of movement approaches the pass line XX, shear stress will be concentrated at the center of the cross section, causing Mannesmann fracture. The reason why the lower limit of the inclination angle β is set to 3° is due to the structural reason that the drive shaft of the roll interferes with the round bar material when the angle is 10° or more. This is because it is not possible to reduce the shear deformation in the circumferential direction near the center and to obtain a sufficient porosity crimping effect in the continuously cast rolled material, and this is also the reason why the upper limit of β was set to 20°. The above is the structural reason for interference between the roll end face and the part closest to the pass line of the roll chock on the downstream side in the moving direction of the rolled material.Furthermore, the lower limit value of γ + β was set to 5°. However, it is not possible to ensure practical rolling efficiency (speed), and if the angle is less than 30°, the interference between the roll chock and the rolls will increase. This is due to the fact that it becomes difficult to keep the roll in place, and the structure that supports the roll on both sides cannot be maintained.

なお、上述の説明は可逆圧延を行う場合に被圧延材の入
側からみたとき、ロール軸端をパスライン回りに同方向
に回転させ、且つロールを逆回転させる構成についてで
あるが、被圧延材の入側からみたときロール軸端をパス
ライン回りに逆方向に回転させ、且つロールを同方向に
回転させる構成としてもよいことは勿論である。
The above explanation is about a configuration in which the roll shaft ends are rotated in the same direction around the pass line and the rolls are rotated in the opposite direction when viewed from the input side of the rolled material when performing reversible rolling. Of course, it is also possible to adopt a configuration in which the roll shaft end is rotated in the opposite direction around the pass line and the rolls are rotated in the same direction when viewed from the input side of the material.

次に本発明方法の実施例につき具体的数値を掲げて説明
する。
Next, examples of the method of the present invention will be described using specific numerical values.

実施例l 545Cを素材時する直径:10Qmm、長さ7300
x層の丸棒材を1200℃に加熱した後、傾斜圧延機の
ロールを第2図(イ)、(ロ)、(ハ)、第3図(イ)
、(ロ)、(ハ)の如く設定して丸棒材を可逆的に2パ
スで丸棒材外径を100 in→55mm、55111
−30鰭に延伸圧延し、圧延後の丸棒材を870℃に1
時間45分維持する熱処理を施した後、JISJ号試験
片を採取し、その機械的性質を調べた。なおロールの交
差角γは4°に、また傾斜角βは3°。
Example 1 Diameter made of 545C: 10Qmm, length 7300mm
After heating the x-layer round bar material to 1200°C, the rolls of the inclined rolling mill are rolled in Figure 2 (A), (B), (C), and Figure 3 (A).
, (B) and (C), reversibly make two passes to reduce the outer diameter of the round bar from 100 inches to 55 mm, 55111
-30 fins are stretched and rolled, and the rolled round bar material is heated to 870℃ for 1 hour.
After heat treatment was performed for 45 minutes, a JISJ test piece was taken and its mechanical properties were examined. The cross angle γ of the rolls was 4°, and the inclination angle β was 3°.

5°、7°、9°、11°、13°、 15°、17°
の8通りに変化させた。ロールの寸法諸元は表1に示す
とおりである。
5°, 7°, 9°, 11°, 13°, 15°, 17°
It was changed in 8 ways. The dimensions of the roll are shown in Table 1.

結果は第4図に示すとおりである。第4図に示すグラフ
は横軸に傾斜角βを、また縦軸には下段に絞り率(%)
、伸び率(%)、上段に引張り強さくkg/mm2) 
、0.2%耐力(kg/mm”  )をとって示しであ
る。グラフ中斜線を付した部分はカバーロールを用いた
一般的な棒鋼圧延機によりfWた0 棒鋼の機械的性質を夫々示している。このグラフから明
らかな如く、いずれも傾斜角が大きくなるに従って機械
的性質も向上し傾斜角が7°を越えるといずれもカリバ
ーロールによる場合と同等又はそれ以−トとなっている
が、逆に傾斜角が3°以下では特に絞り率、伸び率とも
従来方法よりも著しく低下しているのが解る。
The results are shown in Figure 4. The graph shown in Figure 4 shows the inclination angle β on the horizontal axis, and the aperture ratio (%) on the vertical axis.
, elongation rate (%), tensile strength (kg/mm2) in the upper row
, 0.2% proof stress (kg/mm") is shown. The shaded areas in the graph indicate the mechanical properties of fW0 steel bars obtained by a general steel bar rolling mill using cover rolls. As is clear from this graph, the mechanical properties of all cases improve as the angle of inclination increases, and when the angle of inclination exceeds 7°, they are equivalent to or better than those using caliber rolls. On the other hand, it can be seen that when the inclination angle is 3° or less, both the reduction rate and the elongation rate are significantly lower than in the conventional method.

また上記において傾斜角15°として得た丸棒164本
についてその横断面にて8方向の異なる位置で直径を測
定し、下式に従ってその真円度を測定した。
Further, the diameters of the 164 round bars obtained above with an inclination angle of 15° were measured at different positions in 8 directions on the cross section, and the roundness was measured according to the formula below.

軸に直径真円度(%)を、また縦軸には頻度をとって示
しである。このグラフから明らかな如く真円度は0.0
54%、即ち外径差が平均0.0211と極めて精度の
高い圧延が行なわれていることが解る。
The axis shows diameter roundness (%), and the vertical axis shows frequency. As is clear from this graph, the roundness is 0.0
54%, that is, the average outer diameter difference is 0.0211, which shows that extremely highly accurate rolling is performed.

実施例2 1 代表的なチタン合金である6A 7!−4ν合金で直径
:89.Fhm、長さ30(ln、成分組成が表2に示
す如き合金棒を製作し、これを素材として930℃に加
熱し交差角γを4“、傾斜角βを15°に設定した夫々
第2図、第3図に示す如く傾斜圧延機を用いて表3に示
す如(バススケジュールに従い可逆的に延伸圧延した。
Example 2 1 6A which is a typical titanium alloy 7! -4ν alloy diameter: 89. Fhm, length 30 (ln, composition shown in Table 2) An alloy rod was manufactured, and this was heated to 930°C, and the crossing angle γ was set to 4" and the inclination angle β was set to 15°. The samples were reversibly stretched and rolled according to the bus schedule shown in Table 3 using an inclined rolling mill as shown in Figures 3 and 3.

なおロール素材としてはSC旧40ゴージ部直径200
1■のものを用いた。得られた棒材については超音波探
傷を行うと共に、各部から試験片を採取し、その機械的
性質を調べ、またノツチ・ストレス・ラブチャー試験 
(Notch 5tress Rupture試験)を
行った。超音波探傷はll5IPII(クラウド・クレ
ーマ型)の探傷器を用いて出力5 MHzで水浸探傷を
行った。結果は良好で欠陥は全く検出されなかった。一
方機械的性質のうち、0.2%耐力、引張強さ、伸び率
、絞り率測定用の試験片としては棒材の中心部及び中心
から半径/2だけ偏位した位置から採取した素材を第6
図(イ)に示す如き寸法仕様に加工したものを用い、ま
たノツチ・ストレス・ラブチャー試験には同じ部位2 から採取した素材を第6図(イ)に示す如く加工したも
のを用いた。引張試験等用の試験片は平行部の長さ:2
ON、直径:  4.Om、掴み部長さ:12.5m、
肩部半径41、全長520とした。またノツチ・ストレ
ス・ラブチャー試験用の試験片は第6図(ロ)に示す如
く環状■溝付試験片であって、■溝の開き角ば第6図(
ハ)に示す如<60°±30′、■溝底部半径は0.0
1±0.013鶴、その他平行部、掴み部寸法、肩部半
径は図示のとおりである。
The roll material is SC old 40 gorge part diameter 200.
1■ was used. The obtained bar material was subjected to ultrasonic flaw detection, specimens were taken from each part, their mechanical properties were examined, and the notch stress loveture test was performed.
(Notch 5tress Rupture test) was conducted. Ultrasonic flaw detection was carried out using a water immersion flaw detector with an output of 5 MHz using a ll5IPII (Cloud Cramer type) flaw detector. The results were good and no defects were detected. On the other hand, the specimens for measuring mechanical properties such as 0.2% proof stress, tensile strength, elongation rate, and reduction ratio were taken from the center of the bar and from a position deviated by a radius of /2 from the center. 6th
A material processed to the dimensional specifications shown in Figure (a) was used, and a material taken from the same site 2 and processed as shown in Figure 6 (a) was used for the notch stress/loveture test. The length of the parallel part of the test piece for tensile tests, etc.: 2
ON, diameter: 4. Om, grip length: 12.5m,
The shoulder radius was 41 and the total length was 520. The test piece for the notch-stress-loveture test is an annular grooved test piece as shown in Figure 6 (B), and the opening angle of the groove is as shown in Figure 6 (B).
c) As shown in <60°±30', ■Groove bottom radius is 0.0
1±0.013 crane, other parallel parts, grip part dimensions, and shoulder radius are as shown.

なお試験片はいずれも705℃(+10℃〜−〇℃)に
2時間保持した後空冷する熱処理を施しである。
The test pieces were all heat-treated by being held at 705°C (+10°C to -0°C) for 2 hours and then air-cooled.

引張試験においては歪速度を0.2%耐力迄は0.5%
/分(0,08n+/分)、また0、2%耐力以降は1
2.5%/分(2,On/分)とした。またノツチ・ス
トレス・ラブチャー試験においては170 Ksi(1
19kg/*va2)とした。結果は表4に示すとおり
である。
In the tensile test, the strain rate is 0.2% and the yield strength is 0.5%.
/min (0.08n+/min), and 1 after 0.2% proof stress
It was set to 2.5%/min (2, On/min). In addition, in the Notsuchi Stress-Labture test, it was 170 Ksi (1
19 kg/*va2). The results are shown in Table 4.

表4から明らかな如く、十分AMS4928H規格を満
足出来る合金棒を製造することができた。
As is clear from Table 4, it was possible to produce an alloy rod that satisfactorily satisfies the AMS4928H standard.

第7図(イ)、(ロ)、(ハ)は本発明方法に3 8− 表 1 −た 3 7主) 月−追上7晶度(主71!身丁;iバ3釘ての
、悶1j定91で゛めろ。
Figure 7 (a), (b), and (c) show the results of the method of the present invention. , I'm in agony 1j constant 91.

表  4 xAMS4928HJ見協 よって得た棒材の縦断面におけるミクロ組織であって、
夫々表面部、半径/2部位、中心部の500倍の写真を
しめしてしる。
Table 4 Microstructure in longitudinal cross section of bar material obtained by xAMS4928HJ inspection,
Photos of the surface, radius/2 area, and center are shown at 500x magnification, respectively.

この写真から明らかなように等軸α+β組織を有するチ
タン合金棒を製造することができた。
As is clear from this photograph, a titanium alloy rod having an equiaxed α+β structure could be manufactured.

なおまた上記した本発明方法により得たチタン合金棒に
ついてのβトランザス(αとβとの二相がβ−相になる
温度)を測定した結果、990°Cであった。
Furthermore, the β transus (the temperature at which the two phases of α and β become the β-phase) of the titanium alloy rod obtained by the method of the present invention described above was measured and found to be 990°C.

以上の如く本発明方法にあってはバレル型ロールを備え
る傾斜圧延機におけるロールの入口面。
As described above, in the method of the present invention, the inlet face of the roll in an inclined rolling mill equipped with barrel-type rolls.

出口面の両面を用いて素材を可逆的に圧延することとし
ているから、製造能率が極めて高く、また設備全体のコ
ンパクト化が図れ、製造可能な寸法仕様範囲も広く、断
面均一で、表面疵の発生もなく、特にチタン系合金等難
加工材の加工精度が高く、歩留も飛躍的に向上するなど
、本発明は優れた効果を奏するものである。
Since the material is rolled reversibly using both sides of the outlet surface, production efficiency is extremely high, the entire equipment can be made more compact, the dimensional specification range that can be manufactured is wide, the cross section is uniform, and there are no surface defects. The present invention exhibits excellent effects, such as no generation, high machining accuracy especially for difficult-to-process materials such as titanium alloys, and a dramatic improvement in yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法をその工程順に示した模式図、第2
図(イ)は本発明方法の実施に用いる傾斜圧延機を素材
入側からみた正面図、第2図(ロ)は第2図(イ)のロ
ーロ線による模式的断面図、第2図(ハ)は第2図(ロ
)のハーバ線による模式的側面図、第3図(イ)は素材
の逆向き圧延に際しての傾斜圧延機を素材の入側からみ
た正面図、第3図(ロ)は第3図(イ)のローロ線によ
る模式的断面図、第3図(ハ)は第3図(ロ)のハーバ
線による模式的側面図、第4図は本発明の実施例1にお
いて得た丸鋼の機械的性質を示すグラフ、第5図は同じ
〈実施例1において得た外径真円度(%)のヒストグラ
ム、第6図(イ)、(ロ)、(ハ)は本発明の実施例2
において得たチタン合金棒の機械的性質を調べるべく製
作した試験片の寸法説明図、第7図(イ)、(ロ)、(
ハ)4才実施例2で得たチタン合金棒の断面における各
部のミクロ組織写真である。 A I + A 2・・・丸棒材 1・・・加熱炉 2
・・・傾斜圧延機 3・・・矯正機 4・・・切断機 
21a・・・ゴージ部21b・・・ワーキングロール面
 2IC・・・ワーキング C Cl−ル面21d・・・リーリングロール面 21e・
・・リーリングロール面 21f 、21g・・・ロー
ル両端の軸部時 許 出願人  住友金属工業株式会社
代理人 弁理士  河  野  登  夫7 1[] イ頃111μ) 第 4− 図 −12− タトtそ貫 円層 (Z) 第 5 図
Figure 1 is a schematic diagram showing the method of the present invention in the order of its steps;
Figure (a) is a front view of the inclined rolling mill used for carrying out the method of the present invention, viewed from the material input side, Figure 2 (b) is a schematic sectional view taken along the rolling line of Figure 2 (a), and Figure 2 ( C) is a schematic side view taken from the harbor line of FIG. 2(B), FIG. ) is a schematic cross-sectional view taken by the Rollo line in FIG. 3(A), FIG. 3(C) is a schematic side view taken by the Haber line in FIG. The graph showing the mechanical properties of the obtained round steel, FIG. 5, is the same. The histogram of the outer diameter roundness (%) obtained in Example 1, FIG. Example 2 of the present invention
Figure 7 (a), (b), (
c) 4 years old It is a microstructure photograph of each part in the cross section of the titanium alloy rod obtained in Example 2. A I + A 2...Round bar material 1...Heating furnace 2
... Inclined rolling mill 3 ... Straightening machine 4 ... Cutting machine
21a... Gorge portion 21b... Working roll surface 2IC... Working CCl-roll surface 21d... Reeling roll surface 21e.
...Reeling roll surface 21f, 21g... At the shaft portions at both ends of the roll Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent attorney Noboru Kono 7 1 t Sonoki circular layer (Z) Fig. 5

Claims (1)

【特許請求の範囲】 1、中間部に最大直径部を有し、ここから両端側に向か
うに従って漸次直径を縮小されたバレル型ロールを有す
る傾斜圧延機を用いて被圧延材を可逆圧延する工程を含
むことを特徴とする円形断面金属材の製造方法。 2、中間部に最大面i蚤部を有し、ここから両端側に向
かうに従って漸次直径を縮小されたバレル型ロールをパ
スライン回りに臨んで3個又は4個配設され、被圧延材
の移動方向に対し、前記ロールの傾斜角βと交差角Tと
を、0°≦γ〈10′ 3°〈β〈20゜ 5°〈γ+β〈30゛ を満足するよう設定した傾斜圧延機を用いて被圧延材を
可逆圧延する工程を含むことを特徴とする円形断面金属
材の製造方法。
[Claims] 1. A step of reversibly rolling a material to be rolled using an inclined rolling mill having a barrel-type roll having a maximum diameter part in the middle part and having a diameter gradually reduced from there toward both ends. A method for manufacturing a circular cross-section metal material, the method comprising: 2. Three or four barrel-type rolls are arranged facing around the pass line and have a maximum surface I flea in the middle part, and the diameter is gradually reduced from there toward both ends. An inclined rolling mill is used in which the inclination angle β and crossing angle T of the rolls are set to satisfy 0°≦γ〈10′ 3°〈β〈20゜5°〈γ+β〈30゛ with respect to the moving direction. 1. A method for manufacturing a metal material with a circular cross section, the method comprising the step of reversibly rolling a material to be rolled.
JP10227583A 1983-06-07 1983-06-07 Manufacture of metallic material having circular cross section Granted JPS59225802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10227583A JPS59225802A (en) 1983-06-07 1983-06-07 Manufacture of metallic material having circular cross section

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10227583A JPS59225802A (en) 1983-06-07 1983-06-07 Manufacture of metallic material having circular cross section

Publications (2)

Publication Number Publication Date
JPS59225802A true JPS59225802A (en) 1984-12-18
JPH0310401B2 JPH0310401B2 (en) 1991-02-13

Family

ID=14323048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10227583A Granted JPS59225802A (en) 1983-06-07 1983-06-07 Manufacture of metallic material having circular cross section

Country Status (1)

Country Link
JP (1) JPS59225802A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2482932C2 (en) * 2011-08-09 2013-05-27 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Vacuum screw rolling mill stand
CN109772891A (en) * 2019-02-28 2019-05-21 西北工业大学 A kind of inverted cone helical roller Ultra-fine Grained milling method of large-sized aluminium alloy bar
RU2693418C1 (en) * 2018-03-19 2019-07-02 Акционерное общество "Чепецкий механический завод" Method for multi-pass reversible helical rolling of large diameter rods
WO2019240130A1 (en) * 2018-06-13 2019-12-19 日本発條株式会社 Workpiece processing device and workpiece processing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5992106A (en) * 1982-11-16 1984-05-28 Akira Ozawa Planetary rolling mill

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5992106A (en) * 1982-11-16 1984-05-28 Akira Ozawa Planetary rolling mill

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2482932C2 (en) * 2011-08-09 2013-05-27 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Vacuum screw rolling mill stand
RU2693418C1 (en) * 2018-03-19 2019-07-02 Акционерное общество "Чепецкий механический завод" Method for multi-pass reversible helical rolling of large diameter rods
WO2019240130A1 (en) * 2018-06-13 2019-12-19 日本発條株式会社 Workpiece processing device and workpiece processing method
CN109772891A (en) * 2019-02-28 2019-05-21 西北工业大学 A kind of inverted cone helical roller Ultra-fine Grained milling method of large-sized aluminium alloy bar
CN109772891B (en) * 2019-02-28 2020-06-23 西北工业大学 Reverse-cone spiral roller superfine crystal rolling method for large-size aluminum alloy bar

Also Published As

Publication number Publication date
JPH0310401B2 (en) 1991-02-13

Similar Documents

Publication Publication Date Title
CN107983793B (en) The preparation method of 2.5 tungsten alloy plate of tantalum
Stefanik et al. Properties of the AZ31 magnesium alloy round bars obtained in different rolling processes
JP7448777B2 (en) Production method of α+β type titanium alloy bar and α+β type titanium alloy bar
JPH0124563B2 (en)
JPS59225802A (en) Manufacture of metallic material having circular cross section
Ashkeyev et al. Stress state and power parameters during pulling workpieces through a special die with an inclined working surface
US6250125B1 (en) Method for producing iron-base dispersion-strengthened alloy tube
US4512177A (en) Method of manufacturing metallic materials having a circular cross section
JPH0413041B2 (en)
JPH026029A (en) Manufacture of hollow screw
JP3129064B2 (en) Manufacturing method of seamless steel pipe
WO2020217725A1 (en) Rolling-straightening machine and method for manufacturing pipe or bar using rolling-straightening machine
JPH0729127B2 (en) Method for producing seamless austenitic stainless steel pipe
JPH02112804A (en) Production of seamless pipe consisting of alpha+beta type titanium alloy
JPH0649202B2 (en) Titanium seamless pipe manufacturing method
JPH0579401B2 (en)
JPS5980716A (en) Manufacture of two-phase alloy pipe
JPH0857506A (en) Mandrel mill
SU1014600A1 (en) Ingot for deforming
JPH1058013A (en) Manufacture of small diameter seamless metallic tube
SU893280A1 (en) Tube production method
JPH0692629B2 (en) Manufacturing method of α + β type titanium alloy seamless pipe
JP2022097393A (en) Manufacturing method of blooming rolled material, blooming rolled material, and manufacturing method of steel pipe
SU1177382A1 (en) Method of treating rods from precipitation-hardening alloys
JPS6012203A (en) Manufacture of chevron-shaped material of titanium or titanium alloy