JPS5935663A - Manufacture of hot-rolled plate of alpha+beta type titanium alloy - Google Patents

Manufacture of hot-rolled plate of alpha+beta type titanium alloy

Info

Publication number
JPS5935663A
JPS5935663A JP14647482A JP14647482A JPS5935663A JP S5935663 A JPS5935663 A JP S5935663A JP 14647482 A JP14647482 A JP 14647482A JP 14647482 A JP14647482 A JP 14647482A JP S5935663 A JPS5935663 A JP S5935663A
Authority
JP
Japan
Prior art keywords
hot
rolling
alloy
temperature
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14647482A
Other languages
Japanese (ja)
Inventor
Kiichi Saito
喜一 斎藤
Masaki Nokoya
鋸屋 正喜
Masaru Shiichi
私市 優
Shigeji Ishiyama
成志 石山
Yukihisa Takahashi
幸久 高橋
Kazuyoshi Fujisawa
藤沢 一芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Stainless Steel Co Ltd
Original Assignee
Nippon Stainless Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Stainless Steel Co Ltd filed Critical Nippon Stainless Steel Co Ltd
Priority to JP14647482A priority Critical patent/JPS5935663A/en
Publication of JPS5935663A publication Critical patent/JPS5935663A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a hot-rolled plate of an alpha+beta type Ti alloy which is easily workable into a thin plate and has superior cold rollability, by heating the Ti alloy to a temp. in a temp. range whose upper limit is a specified temp. below the beta transformation point and by hot rolling the heated alloy in one direction to a prescribed final plate thickness at a prescribed finishing temp. CONSTITUTION:An alpha+beta type Ti alloy such as a Ti-6Al-4V alloy having 970- 1,000 deg.Cbeta transformation point is heated to a temp. in a temp. range whose upper limit is a temp. 20 deg.C below the beta transformation point. The heated Ti alloy is hot-rolled in one direction to <=5mm. final plate thickness at >=700 deg.C finishing temp. A hot-rolled plate of the alpha+beta type Ti alloy which has extremely superior cold rollability and is easily workable into a thin plate can be efficiently manufactured.

Description

【発明の詳細な説明】 この発明は、薄肉板への加工が容易な、冷延性にすぐれ
たα+β型チタン合金熱延板の製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a hot-rolled α+β titanium alloy sheet that can be easily processed into a thin sheet and has excellent cold rollability.

チタン及びチタン合金は、一般にすぐれた耐食性を有す
るとともに高い比強度を備えていることから、航空・宇
宙機器はもちろん、化学工業における反応槽、熱交換器
、タービン材、塩素イオンが共存する環境下で使用する
構造物や機器類等に幅広く採用されるようになってきて
おり、中でも、チタン材料一般に共通する特性のほかに
、特に溶接性にすぐれ、高温クリープに対してもすぐれ
た性能を発揮するということから、α+β型チタン合金
の需要が近年共々増加する兆しを見せてきている。
Titanium and titanium alloys generally have excellent corrosion resistance and high specific strength, so they are used not only in aerospace equipment but also in reaction vessels, heat exchangers, turbine materials in the chemical industry, and in environments where chlorine ions coexist. Titanium has been widely adopted in structures and equipment used in the industry, and in addition to the characteristics common to titanium materials in general, titanium has particularly excellent weldability and excellent performance against high-temperature creep. Therefore, demand for α+β type titanium alloys has shown signs of increasing in recent years.

ところで、従来、このようなチタンあるいはチタン合金
材は、例えば破壊靭性や疲労性能を向上させるような場
合を除けば、主として、■ 標準規格に十分合致した機
械的性質が得られること、 ■ 健全な微細ミクロ組織を実現できること、の2点に
留意して、できるだけ低温の加熱の下で熱間加工を実施
し、低温の鍛錬効果が十分に得られるように製造される
のが普通であった。
By the way, conventionally, such titanium or titanium alloy materials have been used mainly for the following purposes: ■ Mechanical properties that fully meet standard specifications; and ■ Soundness. With two points in mind: the ability to achieve a fine microstructure, hot working was usually carried out under heating at as low a temperature as possible to obtain the sufficient low-temperature forging effect.

もちろん、α+β型チタン合金板を製造する際にも同様
の熱間加工法が採用されており、特に最終仕」二げ熱延
において加熱温度や終止温度をできるだけ低くする々い
う低温加工が例外な〈実施されていた。さらにこの場合
、所望の製品寸法を容易に得ることができる」二、材料
の異方性を軽減するという目的で、熱延の中間段階にお
いて圧延方向を9.0°転回する、いわゆるクロス圧延
が普通に行なわれていた。
Of course, similar hot working methods are also used to manufacture α+β type titanium alloy sheets, and low-temperature processing, in which the heating temperature and final temperature are kept as low as possible in the final hot rolling, is an exception. <It was being implemented. Furthermore, in this case, the desired product dimensions can be easily obtained.''2.For the purpose of reducing the anisotropy of the material, so-called cross rolling, in which the rolling direction is turned by 9.0 degrees in the intermediate stage of hot rolling, is carried out. It was done normally.

しかしながら、このにうにして製造されたα+β型チタ
ン合金板は、熱延仕」二げ品としては良好な性能を有す
るものが得られるけれども、冷間圧延性が極めて悪く、
20〜30%υ下の圧トーキであっても、第1図に示す
ようなテール割れ、耳割れ、及び表面割れ等の圧延割れ
を発生して冷延不能という事態を引起すものであった。
However, although the α+β type titanium alloy sheet produced in this way has good performance as a hot-rolled product, it has extremely poor cold rollability.
Even if the rolling pressure was 20 to 30% υ or less, rolling cracks such as tail cracks, edge cracks, and surface cracks as shown in Figure 1 would occur, making cold rolling impossible. .

したがって、このような熱延板をもとにして薄板を製造
しようとすると、 低圧下冷延−中間焼鈍一低圧丁冷延 の工程を繰返して薄肉化を図る必要があり、多大な圧延
焼鈍工程を要するので、板厚:3mm程度以下の薄板を
工業的規模で製造することは実際上不可能とされていた
のである。ましてや、冷延性が不良なゆえに低圧下でも
耳割れや表面割れを発生するα+β型チタン合金熱延板
では1強圧下をかケルコールドストリップミルによるコ
イル状連続圧延薄帯の製造などは思いもよらないことで
あった。
Therefore, when trying to manufacture a thin plate based on such a hot-rolled sheet, it is necessary to repeat the process of low-reduction cold rolling, intermediate annealing, and low-reduction cold rolling to reduce the thickness, which requires a large number of rolling and annealing steps. Therefore, it was practically impossible to manufacture thin plates with a thickness of about 3 mm or less on an industrial scale. Furthermore, it is unimaginable to manufacture coiled continuous rolled thin strips using a Kerc cold strip mill, since α+β type hot-rolled sheets of titanium alloy, which have poor cold rollability and cause edge cracks and surface cracks even under low pressure, require a pressure of 1 degree. There was no such thing.

第1図は、α+β型チタン合金熱延板を冷間圧延した際
に発生する圧延割れの形態を模式的に示したものであり
、このように、割れはチタン合金冷延板1の圧延方向端
部に生ずるテール割れ2゜圧延方向と直角方向端部に生
ずる耳割れ3.及び板面に生ずる表面割れ4の3種類に
明白に分類することができる。
FIG. 1 schematically shows the form of rolling cracks that occur when an α+β type titanium alloy hot rolled sheet is cold rolled. Tail cracks occurring at the edges 2.Ear cracks occurring at the edges perpendicular to the rolling direction 3. It can be clearly classified into three types: and surface cracks 4 that occur on the plate surface.

このようなことから、熱延ミルのみでα+β型チタン合
金薄板を製造するととも試みられたが、熱延ミルではそ
の能力上薄肉化に限度があり、所望の薄板を製造するの
は不可能であった。
For this reason, attempts have been made to manufacture α+β type titanium alloy thin sheets using only hot rolling mills, but hot rolling mills have a limited ability to thin the walls and it is impossible to manufacture the desired thin sheets. there were.

本発明者等は、」二連のような観点から、α+β型チタ
ン合金熱延板の冷延性を改善し、広い用途が期待される
α+β型チタン合金の極薄板を、能率良く低コストで製
造すべく、そして七あためには、まずα+β型チタン合
金熱延板の冷延性に影響する要因を究明すべきであると
の観点に立って研究を行なった結果、以下(a)〜(e
)に示す如き知見を得るに至ったのである。すなわち、 (a)−T一般に、チタン材料は水素脆化を防止するた
め、その加熱雰囲気は酸化性に保たれるが、チタン拐料
の熱延時に、該材料が加熱炉中の酸化雰囲気にさらされ
たような場合、酸素が拐れ1表面から侵入して著しく硬
い表面硬化層を形成し、この硬化層がショツトブラスト
、機械研摩、あるいは酸洗などの通常のデスケーリング
手段によっても除去されずに冷延素材表面のある深さ以
−1−にわたって残留した場合、とれが脆弱層となって
冷延時に微細な割れを生じ、切欠効果となって、板の耳
割れや表面割れを促進する原因となること。そして、表
面硬化層の大小に最も大きく影響するのが加熱温度であ
ること。
The present inventors have aimed to improve the cold rollability of α+β type titanium alloy hot-rolled sheets from the viewpoint of “dual series” and to efficiently produce ultrathin α+β type titanium alloy sheets at low cost, which are expected to have a wide range of applications. As a result of conducting research from the viewpoint that we should first investigate the factors that affect the cold rollability of α+β type titanium alloy hot rolled sheets, we found the following (a) to (e)
). That is, (a)-T Generally, the heating atmosphere of titanium materials is kept oxidizing in order to prevent hydrogen embrittlement, but when titanium powder is hot rolled, the material is exposed to the oxidizing atmosphere in the heating furnace. When exposed, oxygen can be scavenged and penetrated through the surface, forming an extremely hard hardened layer that can be removed by conventional descaling means such as shot blasting, mechanical polishing, or pickling. If the cracks remain over a certain depth on the surface of the cold-rolled material, they become a brittle layer that causes minute cracks during cold rolling, creating a notch effect that promotes edge cracking and surface cracking of the plate. to cause something to happen. The heating temperature has the greatest effect on the size of the hardened surface layer.

第2図は、Ag、: 5.96%(り1男は重量係とす
る)、V:4.10%、Fe:0.11%、O:0.1
3%、Ti及びその他の不可避不純物、残り、から成る
組成のTj−6Ag、−4V合金について、熱延加熱温
度(3時間保持)と、硬化深さ及び冷延性(ここでは、
表面割れ発生圧下率で示したが、耳割れ発生圧下率でも
同様の結果が得られる)との関係を調査して線図化した
ものであるが、この図からも、熱延の際の加熱温度が所
定値を越えると硬化深さは急激に大きくなり、これと相
関して冷延性カ著しく劣化する傾向にあることがわかる
Figure 2 shows Ag: 5.96% (the first man is in charge of weight), V: 4.10%, Fe: 0.11%, O: 0.1
For the Tj-6Ag, -4V alloy with a composition consisting of 3%, Ti and other unavoidable impurities, and the remainder, the hot rolling heating temperature (held for 3 hours), hardening depth and cold rollability (here,
Although this is shown in terms of the rolling reduction rate at which surface cracks occur, similar results can be obtained with the rolling reduction rate at which edge cracks occur). It can be seen that when the temperature exceeds a predetermined value, the hardening depth increases rapidly, and in correlation with this, the cold rollability tends to deteriorate significantly.

(bl  通常、金属材料の結晶集合組織は極点図(P
ate  fj、gure)の測定によって判定でき、
これはまた、便宜的には引張り試験によるr値(塑性歪
比)で代替できるものであるが、α+β型チタン合金に
おいては、このr値が熱延温度及び圧延方向に強く依存
し、さらに、r値と冷延性とが極めて良く相関している
こと。つまり、α+β型チタン合金においては熱延温度
を高くするほど冷延性に良好な結晶集合組織が得られて
r値が小さくなり、したがって良好な冷延性を示す熱延
板が得られ、また、熱延の際にクロス圧延を施さないで
一方向の圧延のみを行なうことがr値の低減に有効であ
ること。
(bl Normally, the crystal texture of metallic materials is the pole figure (P
It can be determined by measuring ate fj, gure),
For convenience, this can be replaced by the r value (plastic strain ratio) determined by a tensile test, but in α+β type titanium alloys, this r value strongly depends on the hot rolling temperature and rolling direction, and furthermore, There is an extremely good correlation between r value and cold rollability. In other words, in α+β type titanium alloys, the higher the hot rolling temperature, the better the crystal texture for cold rollability is obtained, and the smaller the r value is. Rolling in only one direction without cross rolling during rolling is effective in reducing the r value.

第3図は、r値と冷延性(耳割れ発生圧下率)との関係
を、前記第1図の結果を得たのと同様のTi−6AQ、
−4V合金について調査した結果を示す線図であり、第
4図は、同様の合金について、熱延加熱温度−終止温度
関係図」−に等r値線(図中の曲線に付した数値はr値
を示す)を描いたものであるが、第3図からは、r値を
できるだけ低減することによって良冷延性を得られるこ
とが明らかである。そして、第4図からは、r値の低減
には熱延加工の終止温度を高くするのが有効であること
が明白である。
FIG. 3 shows the relationship between r value and cold rollability (edge cracking reduction ratio) using Ti-6AQ, which is the same as that used to obtain the results shown in FIG.
- Figure 4 is a diagram showing the results of an investigation on the 4V alloy. It is clear from FIG. 3 that good cold ductility can be obtained by reducing the r value as much as possible. From FIG. 4, it is clear that increasing the end temperature of hot rolling is effective for reducing the r value.

(C1一般に、ロール圧延時の熱延板の断面には、圧縮
応力と引張応力が作用することによって減厚しながら圧
延方向に展伸されるものであり、このとき引張応力は、
ロールと材料間の摩擦力及び材料の表面側と内部の温度
差等によりその発生量が異なるが、α」−β型チタン合
金においては、製造される熱延板の冷延性に、この圧縮
変形と引張変形の発生量の比率が犬きく影響し、圧縮変
形に比べて引張変形が大きいとき、すなわち材料内に剪
断応力が過度に生ずるときに冷延性が著しく損なわれる
こと。そして、この剪断変形量に最も強く影響する熱延
条件が熱延加工温度範囲であること。
(C1 Generally, compressive stress and tensile stress act on the cross section of a hot-rolled sheet during roll rolling, and the thickness is reduced while being stretched in the rolling direction. At this time, the tensile stress is
The amount of deformation generated differs depending on the frictional force between the rolls and the material and the temperature difference between the surface side and the inside of the material, but in the case of α''-β type titanium alloys, this compressive deformation affects the cold rollability of the hot-rolled sheet produced. The ratio between the amount of deformation and the amount of tensile deformation that occurs has a significant effect, and when the tensile deformation is larger than the compressive deformation, that is, when excessive shear stress is generated within the material, cold rollability is significantly impaired. The hot rolling condition that most strongly influences the amount of shear deformation is the hot rolling temperature range.

第5図は、熱延拐の剪断変形量を実験室的に確認した方
法を説明するための概念図であるが、この方法は、まず
第5図ta>に示した如く、予め熱延素材5内部に指標
線6を埋め込み、第5図(b)のように、熱延後変形し
た指標線6′の形状を角度θで測定することにより剪断
変形量を評価し得るということを見出して確立されたも
のである。
FIG. 5 is a conceptual diagram for explaining a method of laboratory confirmation of the amount of shear deformation during hot rolling. It has been discovered that the amount of shear deformation can be evaluated by embedding the index line 6 inside 5 and measuring the shape of the index line 6' deformed after hot rolling at an angle θ, as shown in FIG. 5(b). It is established.

第6図は、Ti−6AQ、−4V合金について、熱延加
工温度範囲(圧延開始温度と終了温度間の温度差)と、
前述のように測定したθ値及び冷延性の関係を示した線
図であり、θ値が180°に近づくほど剪断変形量は小
さく、0°に近づくほど逆となるものであるが、第6図
で明らかなとおり、圧延開始と終止の温度差が小さいほ
どθが大きくなって剪断量が低下し、これに相対して冷
延性が向」ニしている。
Figure 6 shows the hot rolling temperature range (temperature difference between rolling start temperature and end temperature) for Ti-6AQ and -4V alloys,
This is a diagram showing the relationship between the θ value and cold rollability measured as described above, and the closer the θ value is to 180°, the smaller the shear deformation amount is, and the closer the θ value is to 0°, the opposite is true. As is clear from the figure, the smaller the temperature difference between the start and end of rolling, the larger θ becomes and the amount of shear decreases, and in contrast, the cold rollability is improved.

(a)  さらに、熱延仕上げ板厚がある特定値を境に
して、それよりも小さければ冷延性が良好であるが、そ
の値を越えると極端な劣化傾向を示すこと。
(a) Furthermore, if the finished hot-rolled plate thickness reaches a certain specific value, cold rollability is good if it is smaller than that, but if it exceeds that value, it shows an extreme tendency to deteriorate.

(e)シたがって、素材熱延板の表面硬化層の形成を抑
えるために熱延加熱温度を比較的低目に抑え、熱延終止
温度を所定温度場」二にしてr値の低い良好な結晶集合
組織が得られるようにするとともに、断面剪断変形量が
小さくなるような温度範囲内で熱延加工を実施して、所
定厚さ以下の板厚の熱延板を製造すれば、極めて良好な
冷延性能を備えたα+β型チタン合金熱延板が得られ、
シートミルはもちろんのこと、コールドストリップミル
によるコイル状連続圧延によっても、極めて薄肉で、性
状の良好な冷延板を得ることができること。
(e) Therefore, in order to suppress the formation of a hardened surface layer on the hot-rolled sheet material, the hot-rolling heating temperature is kept relatively low, and the hot-rolling end temperature is kept at a predetermined temperature range, resulting in a low r value. If hot-rolling is carried out within a temperature range that allows a crystal texture to be obtained and the amount of cross-sectional shear deformation to be small, and a hot-rolled sheet with a thickness below a predetermined thickness is manufactured, extremely α+β type titanium alloy hot rolled sheet with good cold rolling performance was obtained,
It is possible to obtain extremely thin cold-rolled sheets with good properties not only by sheet mills but also by continuous coil rolling using cold strip mills.

この発明は、−41記知見に基づいてなされたものであ
り、α+β型チタン合金を、そのβ変態点よりも20℃
低い温度を」1限とする温度域に加熱した後、これに、
終止温度ニアoo℃以」二、仕上げ板厚:5mm以下と
なるような同一方向の熱間圧延を施すことによって、中
間焼鈍なしの1回の冷延で、耳割れ発生圧下率:5o%
以」二1表面割れ発生圧下率;7o%以」二のすぐれた
冷延性を有し、容易に薄肉化可能なα+β型チタン合金
熱延板を得ることに特徴を有するものである。
This invention was made based on the finding in Section 41, and it is possible to prepare an α+β type titanium alloy by 20°C below its β transformation point.
After heating to a temperature range with a low temperature of 1,
Finishing temperature near 0°C or lower'' 2. By hot rolling in the same direction so that the finished plate thickness is 5 mm or less, one cold rolling without intermediate annealing results in an edge cracking reduction rate of 5o%.
The present invention is characterized in that it provides an α+β type titanium alloy hot-rolled sheet that has excellent cold rollability and can be easily thinned.

なお、この発明の方法におりで対象となるα+β型チタ
ン合金とは、Ti、−6AM−4V合金(β変態点:9
70〜1000℃)、 Ti−6AQ−6V −2Sn
合金(β変態点:950〜970℃)+T1−3 M 
−2,5V合金(β変態点:910〜930C)。
The α+β type titanium alloy that is the object of the method of this invention is Ti, -6AM-4V alloy (β transformation point: 9
70~1000℃), Ti-6AQ-6V-2Sn
Alloy (β transformation point: 950-970°C) + T1-3 M
-2,5V alloy (β transformation point: 910-930C).

Ti−2AQ −2Mn合金(β変態A1890〜92
0℃)、 Ti−’6Ae−2 Sn−4Zr−2Mo
合金(β変態点“980〜1020℃)等の如き、常温
でα相とβ相とが混在する組織を有するチタン合金のす
べてを意味するものであって、特定の種類のものに限定
されるものでないことはもちろんのことである。
Ti-2AQ-2Mn alloy (β transformation A1890-92
0°C), Ti-'6Ae-2 Sn-4Zr-2Mo
Refers to all titanium alloys that have a structure in which α and β phases coexist at room temperature, such as alloys (β transformation point: 980 to 1020°C), and are limited to specific types. Of course, it is not a thing.

また、」二連のように、中間焼鈍なしの1回の冷延で耳
割れ発生圧下率:5o%以」二1表面割れ発生圧F率、
70%以」二の特性を冷延性の目安としたのは、この程
度の冷延特性を有しておれば、加工率の大きいストリッ
プ方式圧延を施しても割れの発生しない良好な冷延コイ
ルを得ることができるからである。
In addition, "21 surface crack occurrence pressure F ratio: 5o% or less" in one cold rolling without intermediate annealing, as in the case of two series.
The reason why we used the property ``70% or more'' as a guideline for cold rolling property is that if it has this level of cold rolling property, it will be a good cold rolled coil that will not crack even if it is subjected to strip method rolling with a high processing rate. This is because it is possible to obtain

つき゛に、この発明の方法において、被圧延材の加熱温
度、圧延終止温度、及び仕」−げ板厚を前記のように数
値限定した理由を説明する。
The reason why the heating temperature of the material to be rolled, the rolling end temperature, and the finished plate thickness are numerically limited as described above in the method of the present invention will be explained below.

■ 加熱温度 熱延加熱温度と、硬化深さ及び冷延性との関係を示した
前記第2図は、熱延板の冷延性は硬化深さが0.2 m
71Lを越えると急激に劣化するということを明確に示
しており、良好な冷延性を保持せしめるためには硬化深
さを0.2 mm以F、すなわち熱延加熱温度を950
℃以下にする必要があることを物語っている。これは、
β変態点が970℃の特定組成のT’1−6A+!−4
V合金の場合の値であるが、その他のα十β型合金の場
合もこれと同様に、加熱温度の上限を決定する表面硬化
層の限界(0,2in )は合金のβ変態点に依存して
おり、β変態点よりも20℃低い温度、すなわち、(β
変態点−20℃)を越える温度に加熱すると表面硬化層
が急激に深くなって冷延性を劣化することとなるので、
熱延加熱温度の」1限を、その合金のβ変態点よりも2
0℃低い温度と定めた。
■ Heating Temperature Figure 2 above, which shows the relationship between hot rolling heating temperature, hardening depth, and cold rollability, shows that the cold rollability of a hot rolled sheet is determined when the hardening depth is 0.2 m.
It clearly shows that exceeding 71L causes rapid deterioration, and in order to maintain good cold rollability, the hardening depth should be set to 0.2 mm or more, that is, the hot rolling heating temperature should be set to 950
This shows that it is necessary to keep the temperature below ℃. this is,
T'1-6A+ with a specific composition with a β transformation point of 970°C! -4
This is the value for the V alloy, but similarly for other α-10β type alloys, the limit of the surface hardening layer (0.2 in), which determines the upper limit of the heating temperature, depends on the β transformation point of the alloy. The temperature is 20°C lower than the β transformation point, that is, (β
If heated to a temperature exceeding the transformation point (-20°C), the hardened surface layer will suddenly become deeper and the cold rollability will deteriorate.
The hot rolling heating temperature limit is set to 2 below the β transformation point of the alloy.
The temperature was set as 0°C lower.

■ 圧延終止温度 r値と冷延性の関係を示す第3図からは、耳割れ発生圧
下率が50%以上となる良好な冷延性を示すには、r値
が05程度以下でなければならないことが明らかであり
、また、熱延加熱−終止温度関係図上に等r値線を描い
た第4図から、このようなr値を得るには終止温度を7
00℃以上としなければならないことが明白である。そ
して、これは、α+β型チタン合金のいずれにも当ては
まる値であった。
■ Figure 3, which shows the relationship between end-of-rolling temperature r-value and cold rollability, shows that in order to exhibit good cold-rollability with an edge cracking reduction of 50% or more, the r-value must be about 0.05 or less. It is clear that in order to obtain such an r value, the final temperature must be set to 7.
It is clear that the temperature must be 00°C or higher. This value was applicable to all α+β type titanium alloys.

すなわち、圧延終止温度が700℃未満では所望の冷延
性を得ることができないので、終止温度を700℃以上
と定めたのである。
That is, if the rolling end temperature is less than 700°C, desired cold rollability cannot be obtained, so the end rolling temperature is set at 700°C or higher.

■ 仕上げ板厚 熱延仕上げ板厚と冷延性との関係を示した第7図からは
、仕上げ板厚が5朋を越えると急激に冷延性が低下して
表面割れ発生圧下率170%以上を確保できなくなるこ
とがわかる。そして、この値も、α+β型チタン合金の
種類に左右されずに一定値を示すものであった。
■ Finished Plate Thickness Figure 7, which shows the relationship between hot-rolled finished plate thickness and cold rollability, shows that when the finished plate thickness exceeds 5 mm, the cold rollability decreases rapidly, and the reduction rate at which surface cracking occurs exceeds 170%. It turns out that it will not be possible to secure it. This value also showed a constant value regardless of the type of α+β type titanium alloy.

すなわち、仕上げ板厚が5朋を越えると冷延性が急激に
劣化することから、その値を5朋以下と定めた。
That is, if the finished plate thickness exceeds 5 mm, the cold rollability deteriorates rapidly, so the value was determined to be 5 mm or less.

なお、熱延加工温度範囲と、剪断変形量及び冷延性との
関係を示した第6図より、表面割れ発生圧下率が70%
以上の良好な冷延性を得るためには、剪断変形量が第5
図(b)に示すθで55°以上となるような熱延加工温
度範囲、すなわち250℃以下の温度範囲でなければな
らないことがわかるが、この値は本発明の方法において
定めた加熱温度と熱延終止温度の差にちょうどあてはま
るものであって、本発明の方法を実施すれば必然的にこ
の要件をも満足するものである。
Furthermore, from Figure 6, which shows the relationship between the hot rolling processing temperature range, shear deformation amount, and cold rollability, the reduction ratio at which surface cracking occurs is 70%.
In order to obtain the above-mentioned good cold rollability, the amount of shear deformation must be
It can be seen that the hot rolling temperature range must be such that θ shown in Figure (b) is 55° or more, that is, 250°C or less, but this value is different from the heating temperature determined in the method of the present invention. This is exactly applicable to the difference in hot rolling end temperature, and if the method of the present invention is implemented, this requirement will also be inevitably satisfied.

ついで、この発明を、実施例によって比較例と対比しな
がら説明する。
Next, the present invention will be explained using Examples and comparing with Comparative Examples.

実施例 まず、通常の方法で第1表に示されるような成分組成の
α+β型チタン合金素利板を製造した。
Example First, an α+β type titanium alloy blank plate having the composition shown in Table 1 was manufactured by a conventional method.

この素材板の厚さは第2表に示されるようなものであっ
た。
The thickness of this material plate was as shown in Table 2.

つぎに、これらの素材板を、それぞれ第2表に示される
ような条件で熱間圧延することによって所定厚さの熱延
板を製造した。そして、得られた熱延板の冷延性能を測
定したところ、同じく第2表に示されるような値が得ら
れた。
Next, these blank sheets were hot-rolled under the conditions shown in Table 2 to produce hot-rolled sheets having a predetermined thickness. When the cold rolling performance of the obtained hot rolled sheet was measured, the values shown in Table 2 were also obtained.

なお、第2表における※印は、いずれも本発明の方法の
条件から外れた条件であることを示すものである。
Note that the asterisks in Table 2 indicate conditions that deviate from the conditions of the method of the present invention.

第2表に示される結果から、本発明方法によって製造さ
れたα+β型チタン合金熱延板の冷延性は、いずれも耳
割れ発生圧下率が55%以上で、70%以上の圧下率で
も表面割れを生じないほどすぐれていることが1男白で
ある。
From the results shown in Table 2, the cold rollability of the α+β type titanium alloy hot-rolled sheets produced by the method of the present invention shows that the rolling reduction at which edge cracking occurs is 55% or more, and surface cracking occurs even at a rolling reduction of 70% or more. The first son is white, which is so good that it does not cause any problems.

これに対して、熱延条件あるいは仕−1−げ板厚が本発
明方法の条件から外れている比較法によって製造された
熱延板は、いずれも冷延性が極めて悪いことがわかる。
On the other hand, it can be seen that all of the hot-rolled sheets manufactured by the comparative method in which the hot-rolling conditions or the finished sheet thickness deviate from the conditions of the method of the present invention have extremely poor cold-rollability.

」二連のように、この発明によれば、極めてすぐれた冷
延性を備え、容易に薄肉板となし得るα+β型チタン合
金熱延板を能率良く製造することができ、特にこの発明
の方法では、熱延累月から仕」二げ熱延まで圧延方向を
転回することがないので、ストリップミルによるコイル
状連続圧延をも採用してさらに生産能率の向上が図れる
など、工業」1有用な効果がもたらされるのである。
According to the present invention, it is possible to efficiently produce an α+β type titanium alloy hot rolled sheet that has extremely excellent cold rollability and can be easily made into a thin sheet. Since there is no need to turn the rolling direction from hot rolling to finish hot rolling, continuous coil rolling using a strip mill can be used to further improve production efficiency, which has many useful effects in the industry. is brought about.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は圧延割れの形態を表わした模式図、第2図は熱
延加熱温度と表面硬化深さ及びその冷延性との関係を示
す線図、第3図はr値と冷延性との関係を示す線図、第
4図は熱延加熱・終止温度とr値との関係を示す線図、
第5図は断面剪断変形量を測定する方法を示す模式図で
、第、5図(a)は圧延前の状況を示す図、第5図(b
lは厘延後の状況を示す図、第6図は圧延開始と終止の
温度差に対する剪断変形量及び冷延性の関係を示す線図
、第7図は熱延仕上げ板厚と冷延性との関係を示した線
図である。 図面において、 l・・・ブータン合金冷延板、2・・・テール割れ、3
・・・耳割れ、     4・・・表面割れ、5 ・熱
延素材、    6・・指標線、6′・・変形した指標
線。 出願人  日本ステンレス株式会社 代理人  富  1) 旬  夫 ほか1老年 1図 第2図 黙建加鮎温J(’C) 第3囚 鍍4N 300    500    700    900豪
餐」ヒ シ慝−屓  46/−ノ 手1 (Q) (b) 年 6図 万MIJ姑1体丈n温潰差(0Cン ず7図 挾厚(mm)
Figure 1 is a schematic diagram showing the morphology of rolling cracks, Figure 2 is a diagram showing the relationship between hot rolling heating temperature, surface hardening depth, and its cold rollability, and Figure 3 is a diagram showing the relationship between r value and cold rollability. A diagram showing the relationship, FIG. 4 is a diagram showing the relationship between hot rolling heating/end temperature and r value,
Figure 5 is a schematic diagram showing the method of measuring the amount of cross-sectional shear deformation, Figure 5 (a) is a diagram showing the situation before rolling, Figure 5 (b)
1 is a diagram showing the situation after rolling, Figure 6 is a diagram showing the relationship between the shear deformation amount and cold rollability with respect to the temperature difference between the start and end of rolling, and Figure 7 is a diagram showing the relationship between the finished hot rolled plate thickness and cold rollability. It is a line diagram showing a relationship. In the drawings, l...Bhutan alloy cold-rolled plate, 2...tail crack, 3
...Ear crack, 4.Surface crack, 5.Hot rolled material, 6.Indicator line, 6'...Deformed index line. Applicant Nippon Stainless Co., Ltd. Agent Tomi 1) Shun Huo and 1 old man 1 Figure 2 Mokukenka Ayuon J('C) 3rd Prisoner 4N 300 500 700 900 Luxury Dinner' Hishiki-Yu 46/ -Note 1 (Q) (b) Year 6 million MIJ mother-in-law 1 body length n temperature and collapse difference (0C nzu 7 figure thickness (mm)

Claims (1)

【特許請求の範囲】 α+β型チタン合金を、そのβ変態点よりも20℃低い
温度を上限とする温度域に加熱した後。 これに、 終正温度ニア00℃以」ニ、 仕」二げ板厚:5mm以ド、 となるような同一方向の熱間圧延を施すことを特徴とす
る、冷延性にすぐれたα+β型チタン合金熱延板の製造
方法。
[Claims] After heating an α+β type titanium alloy to a temperature range whose upper limit is 20°C lower than its β transformation point. This is α+β type titanium with excellent cold rollability, which is characterized by hot rolling in the same direction such that the final temperature is near 00℃ or less, and the finish plate thickness is 5mm or more. Method for producing hot rolled alloy sheet.
JP14647482A 1982-08-24 1982-08-24 Manufacture of hot-rolled plate of alpha+beta type titanium alloy Pending JPS5935663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14647482A JPS5935663A (en) 1982-08-24 1982-08-24 Manufacture of hot-rolled plate of alpha+beta type titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14647482A JPS5935663A (en) 1982-08-24 1982-08-24 Manufacture of hot-rolled plate of alpha+beta type titanium alloy

Publications (1)

Publication Number Publication Date
JPS5935663A true JPS5935663A (en) 1984-02-27

Family

ID=15408452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14647482A Pending JPS5935663A (en) 1982-08-24 1982-08-24 Manufacture of hot-rolled plate of alpha+beta type titanium alloy

Country Status (1)

Country Link
JP (1) JPS5935663A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6423166A (en) * 1987-07-20 1989-01-25 Terumo Corp Member for blood separation and blood letting tube having said member
JPH0270045A (en) * 1988-09-02 1990-03-08 Nippon Steel Corp Production of alpha+beta type ti alloy having excellent cold workability

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6423166A (en) * 1987-07-20 1989-01-25 Terumo Corp Member for blood separation and blood letting tube having said member
JPH0270045A (en) * 1988-09-02 1990-03-08 Nippon Steel Corp Production of alpha+beta type ti alloy having excellent cold workability

Similar Documents

Publication Publication Date Title
JPH0436445A (en) Production of corrosion resisting seamless titanium alloy tube
EP3138934B1 (en) Martensitic stainless si-deoxidized cold rolled and annealed steel sheet and metal gasket
JP5924459B1 (en) Stainless steel for cold rolled steel
JP2007284783A (en) High strength cold rolled steel sheet and its production method
JP2007291514A (en) Hot-rolled steel sheet with small in-plane anisotropy after cold rolling and recrystallization annealing, cold-rolled steel sheet with small in-plane anisotropy and production method therefor
JPH04143236A (en) High strength alpha type titanium alloy excellent in cold workability
JP2010082688A (en) METHOD FOR MANUFACTURING beta-TYPE TITANIUM ALLOY PLATE, AND beta-TYPE TITANIUM ALLOY PLATE
CN109722508B (en) Ferritic stainless steel sheet and method for producing same
JPS591661A (en) Manufacture of pure titanium plate with little anisotropy in yield strength
JPS5935663A (en) Manufacture of hot-rolled plate of alpha+beta type titanium alloy
JP4083669B2 (en) Ferritic stainless steel sheet excellent in deep drawability and method for producing the same
JP4166657B2 (en) Ferritic stainless steel sheet and manufacturing method thereof
JP6881666B2 (en) Manufacturing method of ferritic stainless steel sheet
JP3297798B2 (en) Manufacturing method of austenitic stainless steel sheet for roll forming
JP5534112B2 (en) Hot-rolled steel sheet for cold rolling material and manufacturing method thereof
EP2431490B1 (en) Cold-rolled steel sheet with excellent formability, shape retentivity, and surface appearance and process for producing same
JP2001073035A (en) Production of steel having superfine structure
JPS5935664A (en) Production of hot-rolled alpha+beta type titanium alloy sheet having excellent suitability to cold rolling
JP2662485B2 (en) Steel sheet having good low-temperature toughness and method for producing the same
TWI796118B (en) Titanium alloy plate and titanium alloy coil and manufacturing method of titanium alloy plate and titanium alloy coil
JP5862254B2 (en) Hot-rolled steel sheet for cold rolling material and manufacturing method thereof
WO2022114145A1 (en) Dual phase stainless steel plate and dual phase stainless hot-rolled plate, and method for manufacturing dual phase stainless steel plate
JPH11335803A (en) Production of near beta type titanium alloy coil
JPS5896851A (en) Ferritic stainless steel for formed steel plate with improved ridging resistance
JPS59215450A (en) Hot worked plate of ti-base material and its manufacture