WO2019240048A1 - Method for manufacturing optically anisotropic layer - Google Patents

Method for manufacturing optically anisotropic layer Download PDF

Info

Publication number
WO2019240048A1
WO2019240048A1 PCT/JP2019/022783 JP2019022783W WO2019240048A1 WO 2019240048 A1 WO2019240048 A1 WO 2019240048A1 JP 2019022783 W JP2019022783 W JP 2019022783W WO 2019240048 A1 WO2019240048 A1 WO 2019240048A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
optically anisotropic
layer
liquid crystal
anisotropic layer
Prior art date
Application number
PCT/JP2019/022783
Other languages
French (fr)
Japanese (ja)
Inventor
暢之 芥川
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020207035144A priority Critical patent/KR102532379B1/en
Priority to JP2020525533A priority patent/JP7182627B2/en
Publication of WO2019240048A1 publication Critical patent/WO2019240048A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/02Liquid crystal materials characterised by optical, electrical or physical properties of the components, in general
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • C09K19/2007Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/08Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of polarising materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a method for producing an optically anisotropic layer.
  • Optical films such as optical compensation sheets and retardation films are used in various image display devices to eliminate image coloration and / or expand the viewing angle.
  • a stretched birefringent film has been used as the optical film, but in recent years, an optically anisotropic layer formed using a liquid crystal compound instead of the stretched birefringent film has been proposed.
  • Patent Document 1 discloses a method for producing an optically anisotropic layer for producing an optically anisotropic layer fixed in a smectic phase.
  • an optically anisotropic layer is produced through a heating process, a cooling heating process, and a polymerization process for an uncured layer made of a polymerizable liquid crystal composition (Claim 1).
  • the optically anisotropic layer is often used by being incorporated in electronic devices. For this reason, the optically anisotropic layer is required to have durability capable of exhibiting stable performance for a long time even under a severe environment such as a high temperature.
  • the optically anisotropic layer has excellent contrast (hereinafter referred to as “film”). Abbreviated as "contrast").
  • panel contrast the contrast of an image display device using a polarizing plate including a polarizer and an optically anisotropic layer
  • panel contrast excellent contrast
  • an object of the present invention is to provide a method for producing an optically anisotropic layer having excellent durability and film contrast and capable of producing an image display device having excellent panel contrast.
  • Step A for forming an uncured layer containing a polymerizable liquid crystal compound, Step B for forming a nematic phase by subjecting the uncured layer to a heat treatment; Step C for forming a smectic phase by subjecting the uncured layer on which the nematic phase has been formed to a cooling treatment; A step D of performing a first exposure treatment on the uncured layer on which the smectic phase has been formed to form a semi-cured layer; A step E of forming an optically anisotropic layer by subjecting the semi-cured layer to a second exposure process under a temperature condition higher than the temperature during the first exposure process.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the temperature of a layer such as an uncured layer to be described later
  • the temperature of the surface of the layer is a temperature measured with a radiation thermometer.
  • the smectic phase refers to a state in which molecules aligned in one direction have a layer structure
  • the nematic phase refers to a three-dimensional positional order, although the constituent molecules have orientational order. The state that does not have.
  • the phase transition temperature is determined by observing the uncured layer formed on the alignment film using a central processor FP90 (Mettler TOLEDO) and an optical microscope while heating or cooling the uncured layer. The temperature at which the change occurred was defined as the phase transition temperature. The uncured layer will be described later.
  • Re ( ⁇ ) and Rth ( ⁇ ) represent in-plane retardation and retardation in the thickness direction at a wavelength ⁇ , respectively.
  • Re (450) represents in-plane retardation at a wavelength of 450 nm.
  • the wavelength ⁇ is 550 nm.
  • Re ( ⁇ ) and Rth ( ⁇ ) are values measured at wavelength ⁇ in AxoScan OPMF-1 (manufactured by Optoscience).
  • the average refractive index values of main optical films are exemplified below: cellulose acylate (1.48), cycloolefin polymer (1.52), polycarbonate (1.59), polymethyl methacrylate (1.49), And polystyrene (1.59).
  • the bonding direction of a divalent group (for example, —CO—O—) represented is not particularly limited.
  • L 1 in the general formula (W) described later is —CO—O.
  • W the bonding direction of a divalent group represented is not particularly limited.
  • L 1 in the general formula (W) described later is —CO—O.
  • L 1 is * 1-CO-O- * 2. It may be * 1-O-CO- * 2.
  • the method for producing an optically anisotropic layer of the present invention includes the following steps A to E.
  • Step A Step of forming an uncured layer containing a polymerizable liquid crystal compound (layer formation step).
  • Step B Step B (nematic phase forming step) in which the uncured layer is heated to form a nematic phase.
  • Step C A step of cooling the uncured layer on which the nematic phase has been formed to form a smectic phase (cooling step).
  • Step D A step of performing a first exposure treatment on the uncured layer on which the smectic phase is formed to form a semi-cured layer (first polymerization step).
  • Step E The semi-cured layer is subjected to a second exposure treatment under a temperature condition higher than the temperature during the first exposure treatment to form an optically anisotropic layer (second polymerization step).
  • the reason why the problem of the present invention can be solved by taking such a configuration is not necessarily clear, but the present inventors consider as follows.
  • the first exposure treatment is performed on the uncured layer that is cooled to a temperature lower than the phase transition temperature between the smectic phase and the nematic phase and is in the smectic phase state, thereby providing excellent orientation of the smectic phase.
  • the molecular packing of the optically anisotropic layer finally obtained can be improved. Therefore, the optically anisotropic layer of the present invention is excellent in film contrast, and an image display device with excellent panel contrast can be obtained when incorporated in an image display device.
  • the second exposure process is performed on the semi-cured layer obtained at a higher temperature than when the first exposure process is performed. It is considered that an optically anisotropic layer having a higher polymerization rate and excellent durability than that obtained by continuing exposure at the temperature in one exposure process was obtained.
  • each process which the manufacturing method of the optically anisotropic layer of this invention has is demonstrated in detail.
  • Step A is a step of forming an uncured layer containing a polymerizable liquid crystal compound.
  • the uncured layer is a layer that contains a polymerizable liquid crystal compound and has not been subjected to a curing process such as a first exposure process and a second exposure process described later. As will be described later, the uncured layer shows a nematic phase and a smectic phase in this order on the lower temperature side than the isotropic phase.
  • the uncured layer When forming the uncured layer, it is preferable to form the uncured layer using a polymerizable liquid crystal composition containing a polymerizable liquid crystal compound. More specifically, the uncured layer is preferably formed by, for example, applying a polymerizable liquid crystal composition on a substrate to form the uncured layer. Examples of the substrate include a support and a polarizer. An alignment film may be further disposed on the support. Each component contained in the polymerizable liquid crystal composition will be described in detail later.
  • the method for applying the polymerizable liquid crystal composition is not particularly limited, and a known method can be adopted. Examples include screen printing, dip coating, spray coating, spin coating, ink jet, gravure offset printing, and flexographic printing.
  • the coating amount is preferably such that the thickness of the uncured layer in a state where the solvent or the like is removed is 0.1 to 10 ⁇ m, and more preferably, the coating amount is 0.5 to 5 ⁇ m.
  • Step B is a step in which a heat treatment is performed on the uncured layer to form a nematic phase.
  • the procedure of the nematic phase forming step is not particularly limited as long as the temperature of the uncured layer is heated to a temperature equal to or higher than the phase transition temperature between the smectic phase and the nematic phase so that the uncured layer can be converted into the nematic phase.
  • the temperature of the uncured layer (first heating temperature) adjusted by the heating is equal to or higher than the phase transition temperature between the smectic phase and the nematic phase.
  • the first heating temperature is preferably 0 to 83 ° C higher than the phase transition temperature between the smectic phase and the nematic phase at the time of temperature rise, more preferably 2 to 53 ° C higher, and further 2 to 37 ° C higher. preferable.
  • the uncured layer is preferably maintained for a certain period of time in a state where a nematic phase is formed. Such a holding time is preferably 1 second to 10 minutes, more preferably 5 seconds to 5 minutes or less, and even more preferably 5 to 30 seconds. During the holding time, the temperature of the uncured layer is preferably maintained within a range of ⁇ 5 ° C. from the first heating temperature.
  • the means for adjusting the temperature of the uncured layer is not particularly limited, and for example, a hot plate or an oven may be used. The same applies to the temperature operation of each layer described in the following steps.
  • Step C is a step of forming a smectic phase by subjecting the uncured layer on which the nematic phase has been formed in step B (nematic phase forming step) to a cooling treatment.
  • the temperature (cooling temperature) of the uncured layer that has been subjected to the cooling treatment in the cooling step is not particularly limited as long as the uncured layer can form a smectic phase, and is higher than the temperature at which crystals start to be generated in the uncured layer. Is preferred.
  • the cooling temperature is preferably 0 to 60 ° C.
  • the temperature decrease rate (temperature decrease rate) of the uncured layer during cooling in the cooling step is 0.5 to 200 ° C. / Min is preferable, 1 to 100 ° C./min is more preferable, 1 to 80 ° C./min is more preferable, and 1 to 60 ° C./min is particularly preferable.
  • the temperature drop rate is obtained by dividing the temperature difference between the first heating temperature and the cooling temperature by the time taken to reach the cooling temperature from the start of the cooling process.
  • the temperature of the uncured layer is gradually decreased. Note that “the temperature gradually decreases” means that the temperature of the uncured layer is decreasing as a whole in the cooling step. In other words, it is intended that no significant temperature increase occurs in the uncured layer from the start of the temperature drop until the cooling temperature is reached.
  • the uncured layer forming the nematic layer can be made into a smectic phase.
  • the uncured layer forming the nematic layer is placed on a hot plate set higher than the phase transition temperature between the crystalline phase and the smectic phase and lower than the phase transition temperature between the smectic phase and the nematic phase.
  • a method of forming a smectic phase in the uncured layer is not limited.
  • Step D is a step of forming a semi-cured layer by performing a first exposure process on the uncured layer in which the smectic phase is formed in Step C. It is preferable that a smectic phase is formed in the entire uncured layer when the first exposure treatment is performed.
  • the light used for the first exposure treatment is preferably ultraviolet light
  • the ultraviolet light is preferably ultraviolet light containing light having a wavelength of 365 nm.
  • the exposure light source include metal halide lamps, mercury lamps (medium pressure mercury lamps, high pressure mercury lamps, ultra high pressure mercury lamps, etc.), xenon lamps, carbon arc lamps, fluorescent lamps (ultraviolet fluorescent lamps, etc.), LEDs (LED: light emitting diode, UV LED, etc.) and LD (LD: laser diode, ultraviolet LD, etc.). You may limit the wavelength range to irradiate with respect to the light obtained from the exposure light source using an interference filter or a color filter.
  • the light from these exposure light sources may be polarized using a polarizing filter or a polarizing prism.
  • the exposure amount in the first exposure treatment is not particularly limited as long as a semi-cured layer can be formed by polymerizing a part of the polymerizable groups contained in the polymerizable liquid crystal compound, as will be described later. Among them, the exposure amount (preferably the wavelength in the first exposure process) is preferred because the durability and film contrast of the optically anisotropic layer and the panel contrast when the optically anisotropic layer is incorporated in an image display device are excellent in a balanced manner.
  • integrated exposure amount of 300 ⁇ 390 nm is preferably 0.5 ⁇ 100mJ / cm 2, more preferably 1 ⁇ 60mJ / cm 2, more preferably 10 ⁇ 30mJ / cm 2.
  • inert gas atmosphere such as nitrogen gas
  • a semi-cured layer is obtained by the first exposure process described above.
  • the semi-cured layer is a layer obtained by polymerizing a part of the polymerizable group contained in the polymerizable liquid crystal compound, and the polymerizable group derived from the polymerizable liquid crystal compound remains in the semi-cured layer.
  • the residual ratio of the polymerizable group derived from the polymerizable liquid crystal compound after the first exposure treatment is preferably 10% or more, and more preferably 20% or more.
  • the upper limit is preferably 90% or less, more preferably 80% or less, after the first exposure treatment.
  • the residual ratio is the amount of the polymerizable group derived from the polymerizable liquid crystal compound in the semi-cured layer after the first exposure treatment and the polymerizable group derived from the polymerizable liquid crystal compound in the uncured layer before the first exposure treatment. Calculated by comparing the quantity. Specifically, by an infrared spectrophotometer, a peak derived from a polymerizable group in an uncured layer and a peak derived from a structure (for example, a carbonyl group) in a polymerizable liquid crystal compound whose intensity does not change before and after exposure. The ratio X is calculated.
  • the ratio Y between the peak derived from the polymerizable group in the semi-cured layer and the peak derived from the structure (for example, carbonyl group) in the polymerizable liquid crystal compound whose intensity does not change before and after exposure is calculated.
  • the residual ratio can be calculated by the formula: ratio Y / ratio X ⁇ 100.
  • Step E is a step of forming an optically anisotropic layer by subjecting the semi-cured layer to a second exposure treatment under a temperature condition higher than the temperature during the first exposure treatment.
  • the temperature condition higher than the temperature during the first exposure process means that the temperature of the semi-cured layer when the second exposure process is performed is higher than the temperature of the uncured layer when the first exposure process is performed.
  • a heat treatment is performed on the semi-cured layer obtained through the first polymerization step.
  • the second exposure process may be started simultaneously with the second heat treatment, or may be performed after the semi-cured layer reaches a predetermined temperature by the second heat treatment.
  • the second exposure treatment may be performed while increasing the temperature of the semi-cured layer, or may be performed while keeping the temperature of the semi-cured layer constant.
  • the temperature of the semi-cured layer rising by the second heat treatment (temperature difference between the semi-cured layers before and after the second heat treatment. In other words, the difference between the temperature during the first exposure treatment and the temperature during the second exposure treatment). Is preferably 10 ° C. or higher, more preferably 20 ° C. or higher, and even more preferably 40 ° C. or higher from the viewpoint that the durability of the obtained optically anisotropic layer is more excellent.
  • the upper limit is preferably 160 ° C. or lower.
  • the temperature of the semi-cured layer at the time of the second exposure treatment (second heating temperature) is the difference between the smectic phase and the nematic phase at the time of raising the temperature of the uncured layer because the durability of the obtained optically anisotropic layer is more excellent.
  • the rate of temperature increase (temperature increase rate) when the semi-cured layer is heated in the second heat treatment is preferably 0.5 to 250 ° C./min, more preferably 50 to 200 ° C./min, and 75 to 150 ° C./min. Minutes are more preferred.
  • the temperature increase rate is obtained by dividing the temperature difference of the semi-cured layer before and after the second heat treatment by the time taken for the second heat treatment.
  • the light used for the second exposure treatment is preferably ultraviolet light, and the ultraviolet light is preferably ultraviolet light containing light having a wavelength of 365 nm.
  • the exposure light source the same exposure light source as exemplified in the description of the first exposure process is exemplified. You may limit the wavelength range to irradiate with respect to the light obtained from the exposure light source using an interference filter or a color filter. Further, the light from these exposure light sources may be polarized using a polarizing filter or a polarizing prism.
  • Exposure amount in the second exposure process is preferably 100 ⁇ 10000 mJ / cm 2, more preferably 200 ⁇ 5000 mJ / cm 2, more preferably 400 ⁇ 1500mJ / cm 2.
  • inert gas atmosphere such as nitrogen gas
  • the optically anisotropic layer obtained by performing the second exposure treatment substantially contains no polymerizable group derived from the polymerizable liquid crystal compound.
  • substantially means that the residual ratio of the polymerizable group derived from the polymerizable liquid crystal compound is 5% or less.
  • the residual rate is determined by the amount of the polymerizable group derived from the polymerizable liquid crystal compound in the optically anisotropic layer and the amount of the polymerizable group derived from the polymerizable liquid crystal compound in the uncured layer before the first exposure treatment. Calculated by comparison. Specifically, the method using the infrared spectrophotometer mentioned above is mentioned.
  • Polymerizable liquid crystal composition In the production method of the present invention, it is preferable to use a polymerizable liquid crystal composition. Hereinafter, the polymerizable liquid crystal composition will be described.
  • the polymerizable liquid crystal composition includes a polymerizable liquid crystal compound.
  • One or more of the polymerizable liquid crystal compounds used here are preferably polymerizable liquid crystal compounds capable of developing a nematic phase and a smectic phase.
  • the polymerizable liquid crystal composition may contain other polymerizable liquid crystal compounds other than the polymerizable liquid crystal compound capable of developing a nematic phase and a smectic phase, but the polymerizable liquid crystal composition as a whole exhibits a nematic phase and a smectic phase.
  • An uncured layer that can be formed must be able to be formed.
  • the polymerizable liquid crystal compound is a liquid crystal compound having at least one polymerizable group.
  • liquid crystal compounds can be classified into a rod-shaped type and a disk-shaped type based on their shapes.
  • Polymer generally refers to a compound having a degree of polymerization of 100 or more (Polymer Physics / Phase Transition Dynamics, Masao Doi, 2 pages, Iwanami Shoten, 1992).
  • any liquid crystal compound can be used as long as it has a polymerizable group and can form an uncured layer capable of expressing a smectic phase. Among these, it is preferable to use a rod-like polymerizable liquid crystal compound.
  • the polymerizable liquid crystal compound preferably has two or more polymerizable groups in one molecule. Moreover, when using 2 or more types of polymeric liquid crystal compounds, it is preferable that at least 1 type of polymeric liquid crystal compound has 2 or more polymeric groups in 1 molecule. In addition, after the liquid crystal compound is fixed by polymerization, it is no longer necessary to exhibit liquid crystallinity, but the layer thus formed may be referred to as a liquid crystal layer for convenience.
  • the kind of the polymerizable group which the polymerizable liquid crystal compound has is not particularly limited, and a functional group capable of addition polymerization reaction is preferable, and a polymerizable ethylenically unsaturated group or a ring polymerizable group is more preferable.
  • a (meth) acryloyl group, a vinyl group, a styryl group, an allyl group, an epoxy group, or an oxetane group is preferable, and a (meth) acryloyl group is more preferable because the polymerization reaction is fast.
  • Polymerizable liquid crystal compound capable of developing smectic phase examples include those described in JP-A-2016-51178, JP-A-2008-214269, JP-A-2008-19240, and JP-A-2006-276721. Compounds.
  • the rod-like polymerizable liquid crystal compound is preferably a polymerizable liquid crystal compound having a maximum absorption wavelength in the wavelength range of 330 to 380 nm.
  • the rod-like polymerizable liquid crystal compound is preferably a reverse wavelength dispersible polymerizable liquid crystal compound.
  • that the polymerizable liquid crystal compound is reverse wavelength dispersive means that a specific wavelength (such as an optically anisotropic layer) of a retardation film produced using such a polymerizable liquid crystal compound ( When the in-plane retardation (Re) value in the visible light range) is measured, the Re value becomes equal or higher as the measurement wavelength increases.
  • a polymerizable liquid crystal compound that can form an optically anisotropic layer satisfying the following formula is preferable. Re (450) / Re (550) ⁇ 1.00
  • a compound represented by the general formula (W) is preferable as the polymerizable liquid crystal compound.
  • n each independently represents an integer of 1 to 3.
  • L 1 , L 2 , L 3 , L 4 , L 5 , and L 6 each independently represent a single bond or a divalent linking group.
  • the divalent linking group include —CO—O—, —C ( ⁇ S) O—, —CR 1 R 2 —, —CR 1 R 2 —CR 3 R 4 —, —O—CR 1 R 2.
  • R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom, a fluorine atom or an alkyl group having 1 to 4 carbon atoms.
  • the plurality of L 3 may be the same or different.
  • the plurality of L 4 may be the same or different.
  • a 1 and A 2 are each independently an aromatic ring group having 6 or more carbon atoms or an alicyclic hydrocarbon group having 5 or more carbon atoms (preferably 5 to 8 carbon atoms). Represents. One or more of —CH 2 — constituting the alicyclic hydrocarbon group may be substituted with —O—, —S— or —NH—.
  • the plurality of A 1 may be the same or different.
  • the plurality of A 2 may be the same or different.
  • the alicyclic hydrocarbon group having 5 or more carbon atoms represented by A 1 and A 2 is preferably a 5-membered or 6-membered ring group.
  • the alicyclic hydrocarbon group may be saturated or unsaturated, but is preferably a saturated alicyclic hydrocarbon group.
  • Examples of the alicyclic hydrocarbon group include a cyclohexane ring group (cyclohexane-1,4-diyl group and the like) and a cyclohexene ring group.
  • the description in paragraph [0078] of JP2012-21068A can be referred to, and the contents thereof are incorporated in the present specification.
  • Examples of the aromatic ring having 6 or more carbon atoms represented by A 1 and A 2 include aromatic hydrocarbon rings such as benzene ring, naphthalene ring, anthracene ring, and phenanthroline ring; furan ring, pyrrole ring, thiophene And aromatic heterocycles such as a ring, a pyridine ring, a thiazole ring, and a benzothiazole ring.
  • aromatic hydrocarbon rings such as benzene ring, naphthalene ring, anthracene ring, and phenanthroline ring
  • furan ring furan ring
  • pyrrole ring thiophene
  • aromatic heterocycles such as a ring, a pyridine ring, a thiazole ring, and a benzothiazole ring.
  • a benzene ring for example, 1,4-phenylene group
  • 1,4-phenylene group is preferable
  • Sp 1 and Sp 2 are each independently a single bond, a linear or branched alkylene group having 1 to 12 carbon atoms, or a linear or branched group having 1 to 12 carbon atoms.
  • Q represents a substituent (such as an alkyl group, an alkoxy group, or a halogen atom).
  • the linear or branched alkylene group having 1 to 12 carbon atoms represented by Sp 1 and Sp 2 is, for example, preferably a methylene group, an ethylene group, a propylene group, or a butylene group.
  • P 1 and P 2 each independently represent a monovalent organic group, and at least one of P 1 and P 2 represents a polymerizable group.
  • MG is an aromatic ring represented by the following general formula (Ar-3)
  • at least one of P 1 and P 2 and P 3 and P 4 in the general formula (Ar-3) is polymerized. Represents a sex group.
  • the polymerizable group represented by P 1 and P 2 is not particularly limited, and is preferably a radical polymerizable group or a cationic polymerizable group.
  • a radical polymerizable group a generally known radical polymerizable group can be used.
  • an acryloyl group and a methacryloyl group are mentioned.
  • the polymerization rate is generally high for acryloyl groups, and acryloyl groups are preferred from the viewpoint of improving productivity.
  • a methacryloyl group can also be used as a polymerizable group of a highly birefringent liquid crystal.
  • the cationic polymerizable group generally known cationic polymerizable groups can be used.
  • Examples thereof include an alicyclic ether group, a cyclic acetal group, a cyclic lactone group, a cyclic thioether group, a spiro orthoester group, and a vinyloxy group.
  • an alicyclic ether group or a vinyloxy group is preferable, and an epoxy group, an oxetanyl group, or a vinyloxy group is more preferable.
  • particularly preferred polymerizable groups include the following. In the following polymerizable group, a black circle represents a bonding position.
  • MG represents any aromatic ring selected from the group consisting of groups represented by the following general formulas (Ar-1) to (Ar-5).
  • * 1 represents a bonding position with L 3
  • * 2 represents a bonding position with L 4 .
  • Q 1 represents N or CH
  • Q 2 represents —S—, —O—, or —N (R 5 ) —
  • R 5 represents Represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • Y 1 is an aromatic hydrocarbon group having 6 to 12 carbon atoms or an aromatic group having 3 to 12 carbon atoms, which may have a substituent. Represents a heterocyclic group.
  • Examples of the alkyl group having 1 to 6 carbon atoms represented by R 5 include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, and an n-pentyl group. Group, n-hexyl group and the like.
  • Examples of the aromatic hydrocarbon group having 6 to 12 carbon atoms represented by Y 1 include aryl groups such as a phenyl group, a 2,6-diethylphenyl group, and a naphthyl group.
  • Examples of the aromatic heterocyclic group having 3 to 12 carbon atoms represented by Y 1 include a heteroaryl group such as a thienyl group, a thiazolyl group, a furyl group, and a pyridyl group.
  • Examples of the substituent that Y 1 may have include an alkyl group, an alkoxy group, and a halogen atom.
  • the alkyl group for example, a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 8 carbon atoms (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group).
  • N-butyl group isobutyl group, sec-butyl group, t-butyl group, cyclohexyl group and the like, more preferably an alkyl group having 1 to 4 carbon atoms, and particularly preferably a methyl group or an ethyl group.
  • an alkoxy group for example, an alkoxy group having 1 to 18 carbon atoms is preferable, and an alkoxy group having 1 to 8 carbon atoms (for example, a methoxy group, an ethoxy group, an n-butoxy group, and a methoxyethoxy group) is more preferable.
  • an alkoxy group having 1 to 4 carbon atoms is more preferable, and a methoxy group or an ethoxy group is particularly preferable.
  • a halogen atom a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc. are mentioned, for example, Among these, a fluorine atom or a chlorine atom is preferable.
  • Z 1 , Z 2 and Z 3 are each independently a hydrogen atom, a monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms, A monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms, a monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms, a halogen atom, a cyano group, a nitro group, —NR 6 R 7 , or —SR And R 6 to R 8 each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and Z 1 and Z 2 may be bonded to each other to form an aromatic ring.
  • the monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms is preferably an alkyl group having 1 to 15 carbon atoms, more preferably an alkyl group having 1 to 8 carbon atoms, a methyl group, an ethyl group, an isopropyl group, a tert group, -A pentyl group (1,1-dimethylpropyl group), a tert-butyl group, or a 1,1-dimethyl-3,3-dimethyl-butyl group is more preferable, and a methyl group, an ethyl group, or a tert-butyl group Is particularly preferred.
  • Examples of the monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclodecyl group, methylcyclohexyl group, and Monocyclic saturated hydrocarbon groups such as ethylcyclohexyl group; cyclobutenyl group, cyclopentenyl group, cyclohexenyl group, cycloheptenyl group, cyclooctenyl group, cyclodecenyl group, cyclopentadienyl group, cyclohexadienyl group, cyclooctadienyl group, And monocyclic unsaturated hydrocarbon group such as cyclodecadiene; bicyclo [2.2.1] heptyl group, bicyclo [2.2.2] octy
  • dodecyl group and polycyclic saturated hydrocarbon group such as adamantyl group; and the like.
  • the monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms include a phenyl group, a 2,6-diethylphenyl group, a naphthyl group, and a biphenyl group, and an aryl group having 6 to 12 carbon atoms. (Especially phenyl group) is preferable.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Among them, a fluorine atom, a chlorine atom, or a bromine atom is preferable.
  • examples of the alkyl group having 1 to 6 carbon atoms represented by R 6 to R 8 include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • a 3 and A 4 are each independently —O—, —N (R 9 ) —, —S—, and —CO—.
  • R 9 represents a hydrogen atom or a substituent. Examples of the substituent represented by R 9 include the same groups as the substituents that Y 1 in the general formula (Ar-1) may have.
  • X represents a hydrogen atom or a non-metal atom of Groups 14 to 16 to which a substituent may be bonded.
  • Examples of the non-metal atoms of Group 14 to 16 represented by X include an oxygen atom, a sulfur atom, a nitrogen atom having a substituent, and a carbon atom having a substituent.
  • substituents examples include Alkyl group, alkoxy group, alkyl-substituted alkoxy group, cyclic alkyl group, aryl group (eg, phenyl group, naphthyl group, etc.), cyano group, amino group, nitro group, alkylcarbonyl group, sulfo group, hydroxyl group, etc. Can be mentioned.
  • L 7 and L 8 are each independently a single bond, —CO—O—, —C ( ⁇ S) O—, —CR 1 R 2 —, —CR. 1 R 2 —CR 3 R 4 —, —O—CR 1 R 2 —, —CR 1 R 2 —O—CR 3 R 4 —, —CO—O—CR 1 R 2 —, —O—CO—CR 1 R 2 —, —CR 1 R 2 —O—CO—CR 3 R 4 —, —CR 1 R 2 —CO—O—CR 3 R 4 —, —NR 1 —CR 2 R 3 —, or — CO—NR 1 — is represented.
  • R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom, a fluorine atom or an alkyl group having 1 to 4 carbon atoms.
  • each of SP 3 and SP 4 is independently a single bond, a linear or branched alkylene group having 1 to 12 carbon atoms, or a group having 1 to 12 carbon atoms. 2 in which one or more of —CH 2 — constituting a linear or branched alkylene group is substituted with —O—, —S—, —NH—, —N (Q) —, or —CO—.
  • Q represents a substituent. Examples of the substituent include the same groups as the substituents that Y 1 in the general formula (Ar-1) may have.
  • P 3 and P 4 each independently represent a monovalent organic group, and a polymerizable group is preferable.
  • Examples of the polymerizable group are as described in connection with P 1 and P 2 described above.
  • at least one of P 1 and P 2 and P 3 and P 4 in the general formula (Ar-3) is Represents a polymerizable group.
  • Ax has at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring, and has 2 to 30 carbon atoms. Represents an organic group.
  • Ay represents a hydrogen atom, an optionally substituted alkyl group having 1 to 6 carbon atoms, an aromatic hydrocarbon ring, and An organic group having 2 to 30 carbon atoms and having at least one aromatic ring selected from the group consisting of aromatic heterocycles.
  • the aromatic ring in Ax and Ay may have a substituent, and Ax and Ay may combine to form a ring.
  • Q 3 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent.
  • Examples of Ax and Ay include groups described in paragraphs [0039] to [0095] of Patent Document 3 (International Publication No. 2014/010325).
  • Examples of the alkyl group having 1 to 6 carbon atoms represented by Q 3 include, for example, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n -Pentyl group, n-hexyl group and the like can be mentioned, and examples of the substituent include the same groups as the substituent which Y 1 in the general formula (Ar-1) may have.
  • liquid crystal compound represented by the general formula (W) Preferred examples of the liquid crystal compound represented by the general formula (W) are shown below, but are not limited to these liquid crystal compounds. Note that all 1,4-cyclohexylene groups in the following formulas are trans-1,4-cyclohexylene groups. In the following formula, n represents an integer of 1 to 12.
  • the group adjacent to the acryloyloxy group represents a propylene group (a group in which a methyl group is substituted with an ethylene group), and is a regioisomer having a different methyl group position. Represents a mixture of bodies.
  • the content of the polymerizable liquid crystal compound is preferably 50 to 100% by mass, more preferably 60 to 98% by mass, with respect to the total mass of the liquid crystal compound in the polymerizable liquid crystal composition, 65 More preferably, it is 95% by mass.
  • the total mass of the liquid crystal compound is a mass including the mass when the polymerizable liquid crystal composition also includes a non-polymerizable liquid crystal compound.
  • the total content is preferably within the above range.
  • the content of the polymerizable liquid crystal compound is preferably 50 to 99.99% by mass and more preferably 65 to 99.9% by mass with respect to the total solid content of the polymerizable liquid crystal composition. 80 to 99.5% by mass is more preferable.
  • the total content is preferably within the above range.
  • the total solid content means a component that forms an optically anisotropic layer, and does not include a solvent. Moreover, if it is a component which forms an optically anisotropic layer, even if the property is a liquid form, it will be considered as solid content.
  • the polymerizable liquid crystal composition preferably contains a photopolymerization initiator.
  • the polymerization initiator used is preferably a photopolymerization initiator capable of initiating a polymerization reaction by ultraviolet irradiation.
  • Examples of the photopolymerization initiator include oxime ester polymerization initiators, ⁇ -carbonyl polymerization initiators (for example, described in the specifications of US Pat. Nos. 2,367,661 and 2,367,670), acyloin ether polymerization initiators ( For example, U.S. Pat. No.
  • Oxadiazole-based polymerization initiator for example, described in US Pat. No. 4,221,970
  • acylphosphine oxide-based polymerization initiator for example, Japanese Patent Publication No. 63-40799, Japanese Patent Publication No. 5
  • JP-A-10-95788, JP-A-10-29997 an oxime ester polymerization initiator is preferable from the viewpoint that the curing proceeds uniformly when exposed and an optically anisotropic layer having more excellent orientation can be obtained.
  • the content of the photopolymerization initiator is preferably 0.01 to 20% by mass, and preferably 0.1 to 8% by mass with respect to the total mass of the polymerizable liquid crystal compound in the polymerizable liquid crystal composition. % Is more preferable.
  • a polymerization initiator may be used individually by 1 type, and may be used 2 or more types. When using 2 or more types of polymerization initiators, the total content is preferably within the above range.
  • the polymerizable liquid crystal composition preferably contains a surfactant from the viewpoint of maintaining a smooth surface on the air interface side when an uncured layer is formed and obtaining an optically anisotropic layer having better orientation.
  • a surfactant a fluorine-based surfactant or a silicon-based surfactant is preferable because of its high leveling effect with respect to the amount added. From the viewpoint of preventing crying (bloom, bleed), the fluorine-based surfactant is used. An agent is more preferable.
  • the surfactant include compounds described in paragraphs [0079] to [0102] of JP-A-2007-069471, and compounds represented by general formula (I) described in JP-A-2013-047204.
  • the polymerizable liquid crystal composition may contain a solvent in order to improve the production suitability such as lowering the viscosity when forming the uncured layer.
  • the solvent is not particularly limited, but is selected from at least one selected from the group consisting of ketones (including cyclic ketones such as cyclopentanone), esters, ethers, alcohols, alkanes, toluene, chloroform, and methylene chloride. More preferably, it is selected from at least one member selected from the group consisting of ketones, esters, ethers, alcohols, and alkanes, and is selected from at least one member selected from the group consisting of ketones, esters, ethers, and alcohols. Is more preferable.
  • the polymerizable liquid crystal compound may contain other components other than those described above.
  • a thermal polymerization initiator may be included.
  • a chiral agent or the like may be used from the viewpoint of adjusting the orientation of the optically anisotropic layer.
  • a non-polymerizable liquid crystal compound is used from the viewpoints of adjusting the viscosity, phase transition temperature, alignment uniformity of the polymerizable liquid crystal composition, film properties of the optically anisotropic layer, and adjusting the optical properties.
  • the non-polymerizable liquid crystal compound may be a low molecular liquid crystal compound.
  • the non-polymerizable liquid crystal compound may be a main chain type liquid crystal polymer or a side chain type liquid crystal polymer.
  • a polymerization inhibitor an antioxidant, an ultraviolet absorber, and the like may be used.
  • adjustment of liquid properties, and adjustment of film properties plasticizers, retardation adjusting agents, dichroic dyes, fluorescent dyes, photochromic dyes, thermochromic dyes, photoisomerization materials, photodimerization Materials, nanoparticles, thixotropic agents and the like may be added.
  • the uncured layer formed using such a polymerizable liquid crystal composition preferably has a phase transition temperature between a smectic phase and a nematic phase of 80 ° C. or lower, for example, better film contrast and panel contrast. From such a viewpoint, it is more preferably 70 ° C. or higher and lower than 80 ° C.
  • the thickness of the optically anisotropic layer produced by the production method of the present invention is not particularly limited, but is preferably 0.1 to 10 ⁇ m, and more preferably 0.5 to 5 ⁇ m.
  • the optically anisotropic layer produced by the production method of the present invention is preferably a layer in which a smectic phase is fixed.
  • a positive A plate As a preferred embodiment of the optically anisotropic layer, a positive A plate can be mentioned.
  • the positive A plate there is a method in which a rod-like polymerizable liquid crystal compound is horizontally aligned.
  • the in-plane retardation Re (550) is 100 to 160 nm (preferably 120 to 150 nm), it can be suitably used as a positive uniaxial ⁇ / 4 plate.
  • Re (550) can be used as a positive uniaxial ⁇ / 2 plate with a range of 250 to 300 nm.
  • Re (550) represents in-plane retardation of the optically anisotropic layer at a wavelength of 550 nm.
  • the value of in-plane retardation can be measured using AxoScan OPMF-1 (manufactured by Opto Science).
  • optically anisotropic layer is a positive C plate.
  • the thickness direction retardation Rth (550) is, for example, 20 to 200 nm, and is preferably 50 to 120 nm from the viewpoint of imparting various optical compensation functions and / or viewing angle enhancement functions.
  • optically anisotropic layer may be a negative A plate or a negative C plate.
  • the A plate is defined as follows. There are two types of A plates, positive A plate (positive A plate) and negative A plate (negative A plate), and the slow axis direction in the film plane (the direction in which the refractive index in the plane is maximum) ) Is nx, the refractive index in the direction orthogonal to the in-plane slow axis is ny, and the refractive index in the thickness direction is nz, the positive A plate satisfies the relationship of the formula (A1)
  • the negative A plate satisfies the relationship of the formula (A2).
  • the positive A plate shows a positive value for Rth
  • the negative A plate shows a negative value for Rth.
  • the positive C plate satisfies the relationship of the formula (C1), and the negative C plate is The relationship of Formula (C2) is satisfied.
  • the positive C plate shows a negative value for Rth, and the negative C plate shows a positive value for Rth.
  • Formula (C1) nz> nx ⁇ ny
  • Formula (C2) nz ⁇ nx ⁇ ny
  • includes not only the case where both are completely the same, but also the case where both are substantially the same. “Substantially the same” means that, for example, (nx ⁇ ny) ⁇ d (where d is the thickness of the film) is included in “nx ⁇ ny” when 0 to 10 nm, preferably 0 to 5 nm. It is.
  • the wavelength dispersion of the optical anisotropy can be appropriately adjusted by adjusting the type and amount of the polymerizable liquid crystal compound and other components used in the polymerizable liquid crystal composition.
  • the optically anisotropic layer preferably exhibits reverse wavelength dispersion.
  • the optically anisotropic layer preferably satisfies the relationship of the following formula (II).
  • ⁇ n (450) represents the difference in refractive index between the maximum refractive index direction and the orthogonal direction at a wavelength of 450 nm of the optically anisotropic layer
  • ⁇ n (550) represents the optically anisotropic layer.
  • the uncured layer may be disposed on a support or the like. That is, the optically anisotropic layer produced by the production method of the present invention may constitute a laminate together with layers other than the optically anisotropic layer.
  • the support is not particularly limited, and among them, a long polymer film is preferable in terms of enabling continuous production.
  • polymer films include polyolefin and cyclic olefin resins such as polypropylene and norbornene polymers; polyvinyl alcohol; polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polymethacrylates such as polymethyl methacrylate.
  • the surface on the coating side of the support is smooth when the polymerizable liquid crystal composition is directly applied to the support to form the optically anisotropic layer.
  • the surface roughness Ra is preferably 3 to 50 nm.
  • the polymerizability in the support is prevented from preventing shape transfer and blocking phenomenon between the surfaces of the laminate.
  • Anti-blocking treatment or mat treatment may be performed on the surface opposite to the surface on which the liquid crystal composition is applied.
  • you may provide a knurling in the edge part of a laminated body.
  • the support is peelable.
  • the layer can be peeled off at the interface between the support and the optically anisotropic layer.
  • an orientation layer and / or other layer (intermediate layer) described later is provided between the support and the optically anisotropic layer, an arbitrary layer between the support and the optically anisotropic layer is provided. It is preferable to be able to peel off at the interface or in the layer.
  • ⁇ Alignment film> From the viewpoint that it is easy to obtain an optically anisotropic layer having better orientation, it is preferable to provide an alignment film on the support and further to provide the above-described optically anisotropic layer on the alignment film.
  • a rubbing film made of an organic compound such as a polymer, an oblique deposition film of an inorganic compound, a film having a microgroove, and an organic compound
  • examples thereof include films obtained by accumulating LB films (Langmuir-Blodgett films) formed by the Langmuir-Blodgett method using (for example, ⁇ -tricosanoic acid, dioctadecylmethylammonium chloride, or methyl stearylate).
  • LB films Longmuir-Blodgett films
  • a photo-alignment film is also preferable as the alignment film.
  • Examples of the rubbing alignment film include polyimide, polyvinyl alcohol, a coating film of a polymer having a polymerizable group described in JP-A-9-152509, and JP-A-2005-97377 and JP-A-2005-99228. And alignment films described in JP-A-2005-128503.
  • composition for forming a photo-alignment film used for the photo-alignment film that can be used in the present invention is described in many documents. For example, materials using azo compounds described in WO08 / 056597, JP2008-76839, and JP2009-109831; JP2012-155308A, JP2014-26261A Photoalignable polyorganosiloxane composite materials described in JP-A-2014-123091 and JP-A-2015-26050; cinnamic acid group-containing cellulose ester materials described in JP-A-2012-234146; No.
  • a photo-alignment film using a photoisomerization reaction of an azo group or a photo-alignment film using a photoreaction of a cinnamate compound is preferable.
  • the composition for forming an alignment film may contain a crosslinking agent, a binder, a plasticizer, a sensitizer, a crosslinking catalyst, an adhesion adjusting agent, a leveling agent, and the like, if necessary.
  • the thickness of the alignment film is not particularly limited and can be appropriately selected according to the purpose.
  • the thickness is preferably 10 to 1000 nm, more preferably 10 to 300 nm.
  • the surface roughness of the alignment film is as described above.
  • the laminate may further include other layers as necessary. Examples include a smoothing layer, an easy adhesion layer, an easy release layer, a light shielding layer, a colored layer, a fluorescent layer, an oxygen barrier layer, and a water vapor barrier layer.
  • a layer having one or more functions of such a layer is collectively referred to as an intermediate layer.
  • the intermediate layer may be a layer having a function other than the functions described above.
  • the intermediate layer is provided, for example, between the support and the optically anisotropic layer and / or between the support and the alignment film described above, and various functions can be exhibited.
  • the optically anisotropic layer produced by the production method of the present invention is preferably incorporated into a polarizing plate.
  • the laminate is preferably a polarizing plate.
  • the polarizing plate has at least an optically anisotropic layer and a polarizer manufactured by the manufacturing method of the present invention.
  • the polarizing plate may be a circularly polarizing plate.
  • a polarizer will not be specifically limited if it is a member which has the function to convert light into specific linearly polarized light,
  • a conventionally well-known absorption type polarizer and reflection type polarizer can be utilized.
  • the absorption polarizer an iodine polarizer, a dye polarizer using a dichroic dye, a polyene polarizer, or the like is used.
  • Iodine polarizers and dye polarizers include coating polarizers and stretchable polarizers, both of which can be applied. Polarized light produced by adsorbing iodine or dichroic dye to polyvinyl alcohol and stretching. A child is preferred.
  • Patent No. 5048120, Patent No. 5143918, Patent No. 5048120, Patent No. No. 4691205, Japanese Patent No. 4751481, Japanese Patent No. 4751486, and the like and known techniques relating to these polarizers can also be preferably used.
  • the reflective polarizer a polarizer in which thin films having different birefringence are laminated, a wire grid polarizer, a polarizer in which a cholesteric liquid crystal having a selective reflection region and a quarter wavelength plate are combined, or the like is used.
  • the thickness of the polarizer is not particularly limited, but is preferably 3 to 60 ⁇ m, more preferably 5 to 30 ⁇ m, and further preferably 5 to 15 ⁇ m.
  • the polarizing plate preferably has two or more optically anisotropic layers.
  • at least one of the two or more optically anisotropic layers of the polarizer may be an optically anisotropic layer produced by the production method of the present invention, and the other optical anisotropic
  • the optical layer may be an optically anisotropic layer (also referred to as “other optically anisotropic layer”) manufactured by a method other than the manufacturing method of the present invention.
  • the polarizing plate preferably has a positive A plate and a positive C plate.
  • the positive A plate is preferably an optically anisotropic layer manufactured by the manufacturing method of the present invention
  • the positive C plate is an optically anisotropic layer manufactured by the manufacturing method of the present invention or another optical layer.
  • An anisotropic layer is preferred.
  • the polarizing plate having the positive A plate and the positive C plate may further have another optically anisotropic layer.
  • the optically anisotropic layer may be disposed directly on the polarizer by applying a polymerizable liquid crystal composition on the polarizer. Further, for example, the polarizer and the optically anisotropic layer may be bonded via one or more other layers (such as an adhesive layer or other optically anisotropic layer).
  • the optically anisotropic layer produced by the production method of the present invention may be used for an image display device.
  • the optically anisotropic layer may be used in a form incorporated in the polarizing plate.
  • the display element used in the image display device is not particularly limited, and examples thereof include a liquid crystal cell, an organic electroluminescence (hereinafter abbreviated as “EL”) panel, a plasma display panel, and the like. Among these, a liquid crystal cell or an organic EL display panel is preferable. That is, as the image display device, a liquid crystal display device using a liquid crystal cell as a display element or an organic EL display device using an organic EL panel as a display element is preferable.
  • liquid crystal display device which is an example of the image display device
  • a liquid crystal display device including the above-described polarizing plate and a liquid crystal cell is preferable.
  • the liquid crystal cell include a VA (Virtual Alignment) mode, an OCB (Optical Compensated Bend) mode, an IPS (In-Placed Switching) mode, and a TN (Twisted Nematic). Other methods may also be used.
  • the polarizing plate is preferably used as the polarizing plate on the front side, and the polarizing plate is used as the polarizing plate on the front side and the rear side. Is more preferable.
  • the organic EL display device which is an example of the image display device is preferably an organic EL display device including an organic EL display panel and a circularly polarizing plate disposed on the organic EL display panel.
  • the circularly polarizing plate used here is one form of the polarizing plate described above. By having the circularly polarizing plate, it is possible to suppress a phenomenon in which external light is reflected by the electrodes of the organic EL panel and the like and lower the display contrast, thereby enabling high-quality display.
  • the organic EL panel known configurations can be widely used. Further, a touch panel may be provided.
  • outer layer cellulose acylate dope 10 parts by weight of the following matting agent solution was added to 90 parts by weight of the above core layer cellulose acylate dope to prepare a cellulose acetate solution used as an outer layer cellulose acylate dope.
  • Matting agent solution ------------------------------------------------------------------------------------------ Silica particles having an average particle size of 20 nm (AEROSIL R972, manufactured by Nippon Aerosil Co., Ltd.) 2 parts by mass Methylene chloride (first solvent) 76 parts by mass Methanol (second solvent) 11 parts by mass
  • the above core layer cellulose acylate dope 1 mass Part --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
  • the core layer cellulose acylate dope and the outer layer cellulose acylate dope are filtered through a filter paper having an average pore size of 34 ⁇ m and a sintered metal filter having an average pore size of 10 ⁇ m, and then the core layer cellulose acylate dope and the outer layer cellulose acylate dope on both sides thereof.
  • 3 layers were simultaneously cast on a drum at 20 ° C. from a casting port (band casting machine).
  • the film was peeled off at a solvent content of about 20% by mass, both ends in the width direction of the film were fixed with tenter clips, and dried while being stretched in the transverse direction at a stretch ratio of 1.1.
  • the obtained film was further dried by conveying between rolls of a heat treatment apparatus to produce an optical film having a thickness of 40 ⁇ m, which was designated as cellulose acylate film 1.
  • the core layer of the cellulose acylate film 1 had a thickness of 36 ⁇ m, and the outer layers disposed on both sides of the core layer had a thickness of 2 ⁇ m.
  • the in-plane retardation of the obtained cellulose acylate film 1 at a wavelength of 550 nm was 0 nm.
  • the obtained cellulose acylate film 1 was used as a temporary support for formation.
  • the following coating liquid for forming a photo-alignment film was applied with a # 2 wire bar on the surface of the cellulose acylate film 1 as a temporary support for formation, and dried with 60 ° C. hot air for 60 seconds to prepare a coating film. .
  • a 750 mW / cm 2 ultra-high pressure mercury lamp (UL750, manufactured by HOYA CANDEO OPTRONICS Co., Ltd.)
  • the produced coating film was irradiated with ultraviolet rays vertically in the air.
  • the illuminance of the ultraviolet rays was 5 mW / cm 2 in the UV-A region (integration of wavelengths 320 to 380 nm), and the irradiation amount was 50 mJ / cm 2 in the UV-A region.
  • the polymerizable liquid crystal composition A was applied on the photo-alignment film using a spin coater to form an uncured layer (layer forming step).
  • the number of rotations was adjusted between 1000 and 5000 rpm so as to obtain a desired thickness.
  • the uncured layer was heated to 80 ° C. (first heating temperature) using a hot plate to form a nematic phase, and maintained at that temperature for 10 seconds (first heating holding time) (nematic phase formation) Process).
  • first heating holding time first heating holding time
  • the uncured layer was cooled from the first heating temperature to 65 ° C. (cooling temperature) at a temperature drop rate of 40 ° C./min to form a smectic phase (cooling step).
  • the cooling holding time was set to 10 seconds and held at that temperature.
  • an uncured layer at 65 ° C. is 30 mJ / cm 2 (integrated exposure amount of wavelength 300 to 390 nm) using an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) in a nitrogen atmosphere.
  • the semi-cured layer was heated to 120 ° C. (second heating temperature) at an average temperature rising rate of 100 ° C./min using a hot plate, and the second heating temperature was further increased.
  • Comparative Examples 1 to 5 production of optically anisotropic layers A-2 to A-24
  • films A-2 to A-24 including optically anisotropic layers A-2 to A-24 (films respectively) 2 to 24) were produced.
  • Comparative Example 1 the production of the optically anisotropic layer was completed by the first exposure process.
  • Comparative Example 2 exposure was performed immediately after the nematic phase forming step without passing through the cooling step to complete the production of the optically anisotropic layer.
  • Table 1 shows the thickness, Re (550), Rth (550), and Re (450) / Re (550) of the obtained optically anisotropic layer.
  • the polymerizable liquid crystal composition B was applied on the photo-alignment film using a spin coater to form an uncured layer (layer forming step).
  • film A-25 (including optically anisotropic layer A-25) was prepared in accordance with the production procedure of film 1 except that the conditions of each procedure were changed as shown in Table 1 shown below. Film 25) was produced.
  • Table 1 shows the thickness, Re (550), Rth (550), and Re (450) / Re (550) of the obtained optically anisotropic layer.
  • the phase difference values of the positive C plate C-1 and the positive C plate C-2 were adjusted by adjusting the thickness.
  • TD80UL manufactured by FUJIFILM Corporation
  • alkali saponification treatment The surface of TD80UL (manufactured by FUJIFILM Corporation) as a support was subjected to alkali saponification treatment. Specifically, the support was immersed in an aqueous 1.5 N sodium hydroxide solution at 55 ° C. for 2 minutes, and the taken-out support was washed in a water bath at room temperature and 0.1 N sulfuric acid at 30 ° C. Was neutralized. Thereafter, the obtained support was washed again in a room temperature water tub and further dried with hot air at 100 ° C.
  • a rolled polyvinyl alcohol film having a thickness of 80 ⁇ m was continuously stretched 5 times in an iodine aqueous solution, and the stretched film was dried to obtain a polarizer having a thickness of 20 ⁇ m.
  • the obtained polarizer and a support (TD80UL) subjected to alkali saponification treatment were bonded together to obtain a polarizing plate 0 with the polarizer exposed on one side.
  • the polarizing plate 0 and the film 1 were bonded using an adhesive so that the polarizer of the polarizing plate 0 and the optically anisotropic layer A-1 were opposed to each other.
  • the absorption axis of the polarizer and the slow axis of the optically anisotropic layer A-1 were orthogonal to each other.
  • the temporary support for formation and the photo-alignment film were peeled off from the laminated film 1, and only the optically anisotropic layer A-1 was transferred onto the polarizing plate.
  • the transfer film 1 was bonded onto the optically anisotropic layer via an adhesive so that the optically anisotropic layer A-1 and the positive C plate C-1 were opposed to each other.
  • Polarizing plates P-2 to P-25 were obtained according to the same procedure as described above, using films 2 to 25 containing optically anisotropic layers A-2 to A-25, respectively, instead of film 1.
  • the polarizing plate on the viewing side was peeled off from a liquid crystal cell of iPad (registered trademark, manufactured by Apple) and used as an IPS mode liquid crystal cell. Instead of the peeled polarizing plate, the polarizing plates P-1 to P-25 prepared above were bonded to a liquid crystal cell to prepare a liquid crystal display device. At this time, when observed from a direction perpendicular to the surface of the liquid crystal cell substrate, the absorption axis of the polarizer in each of the polarizing plates P-1 to P-25 and the optical axis of the liquid crystal layer in the liquid crystal cell are perpendicular to each other. They were pasted together in the direction.
  • ⁇ Panel contrast> A value obtained by averaging the maximum values of the black luminance (Cd / m 2 ) in the upward direction (azimuth angle 0 to 175 °, in increments of 5 °) and in the downward direction (azimuth angle 180 to 355 ° in increments of 5 °) (luminance max )
  • luminance max luminance
  • the direct fluorescent lamp backlight source, the upper polarizing plate, the sample (any one of the films A-1 to A-25 prepared above), and the lower polarizing plate are placed on each side in the order from the bottom.
  • the sample and the upper polarizing plate were rotatable.
  • Luminance was measured from a vertical direction by using a luminance meter (for example, BM-5A (manufactured by TOPCON)) from the light emitted from the light source and sequentially transmitted through the upper polarizing plate, the sample, and the lower polarizing plate.
  • the upper polarizing plate and the lower polarizing plate each had a polarization degree of 99.995% or more.
  • the upper polarizing plate was rotated in the absence of the sample, and was adjusted to the position where the luminance was darkest (crossed Nicol state). The sample was inserted, and the sample was rotated under crossed Nicols to measure the minimum brightness. Next, two polarizing plates, an upper polarizing plate and a lower polarizing plate, were arranged in parallel Nicols, and the sample was rotated to measure the maximum luminance. In order to remove the contribution of luminance leakage due to the upper polarizing plate and the lower polarizing plate, the value obtained by the following formula is defined as the contrast of the film. The results are shown in Table 1 below.
  • Contrast 1 / [ ⁇ (Minimum luminance under crossed Nicols at sample setting) / (Maximum luminance under parallel Nicol at sample setting) ⁇ - ⁇ (Minimum luminance under crossed Nicol without sample) / ( Maximum brightness under parallel Nicol without sample) ⁇ ] Based on the calculated contrast value, the film contrast was evaluated according to the following criteria. Note that the greater the contrast value, the better the film contrast.
  • B Contrast is 70,000 or more and less than 100,000
  • Contrast is less than 40,000
  • the film 1 was bonded on a glass plate using an adhesive. Next, the temporary support for formation and the photo-alignment film were peeled from the laminated film 1 to obtain a laminated body in which glass plate / adhesive / optically anisotropic layer was laminated in this order.
  • the optical anisotropy of this laminate was quantified using AxoScan OPMF-1 (manufactured by Optoscience) (Re (550) a). Further, after the same laminate was allowed to pass for 500 hours under 80 ° C. dry conditions, the optical anisotropy was quantified in the same manner as before (Re (550) b).
  • phase difference change rate
  • Phase difference change rate is 0.02 or less
  • Phase difference change rate is 0.04 or more
  • Table 1 The results are shown in Table 1.
  • the column “rising temperature range” indicates the temperature difference between the semi-cured layers before and after the second heat treatment.
  • the column of “temperature rise TSmN temperature difference” indicates the temperature difference between the first heating temperature and TSmN when the uncured layer is heated.
  • the column “Temperature drop TSmN temperature difference” indicates the temperature difference between the cooling temperature and TSmN when the temperature of the uncured layer is lowered.
  • the film contrast of the optically anisotropic layer was more excellent when the temperature decreasing rate in the cooling step was 80 ° C./min or less (more preferably 60 ° C./min or less) (Comparison of Examples 17 to 19). ).
  • the difference between the temperature of the uncured layer in the first exposure process and the temperature of the semi-cured layer in the second exposure process is 40 ° C. or more, it is confirmed that the durability of the optically anisotropic layer is more excellent. (Comparison between Examples 1 and 3).
  • the exposure amount in the second exposure process was 200 mJ / cm 2 or more, it was confirmed that the durability of the optically anisotropic layer was more excellent (comparison with Examples 6 and 7).
  • the surface of the positive C plate C-2 is bonded onto the surface of the optically anisotropic layer using an adhesive, and then the forming temporary support is peeled off from the polarizing plate, and the support / polarization
  • a circularly polarizing plate CP-1 was obtained in which the optical element / adhesive / optically anisotropic layer / adhesive / positive C plate C-2 was laminated in this order.
  • the results are shown in Table 2.
  • the column of “frontal reflection” in the table indicates the evaluation result of the reflection color when visually observed from the front.
  • the column of “45 ° reflection” indicates the evaluation result of the reflection color when observed by visual observation from the polar angle of 45 °.
  • the optically anisotropic layer obtained by the production method of the present invention can be preferably used in an organic EL display device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

The present invention provides a method for manufacturing an optically anisotropic layer which has excellent durability and film contrast, and with which it is possible to produce an image display device having excellent panel contrast. This method for manufacturing an optically anisotropic layer includes: a step A of forming an uncured layer containing a polymerizable liquid crystal compound; a step B of subjecting the uncured layer to heat treatment to form a nematic phase; a step C of subjecting the uncured layer in which the nematic phase has been formed to a cooling treatment to form a smectic phase; a step D of subjecting the uncured layer in which the smectic phase has been formed to a first exposure treatment to form a semi-cured layer; and a step E of subjecting the semi-cured layer to a second exposure treatment under a temperature condition higher than the temperature in the first exposure treatment, to form an optically anisotropic layer.

Description

光学異方性層の製造方法Method for producing optically anisotropic layer
 本発明は、光学異方性層の製造方法に関する。 The present invention relates to a method for producing an optically anisotropic layer.
 光学補償シートおよび位相差フィルム等の光学フィルムは、画像着色解消および/または視野角拡大のために、様々な画像表示装置で用いられている。
 従来、光学フィルムとしては延伸複屈折フィルムが使用されていたが、近年、延伸複屈折フィルムに代えて、液晶化合物を用いて形成される光学異方性層が提案されている。
Optical films such as optical compensation sheets and retardation films are used in various image display devices to eliminate image coloration and / or expand the viewing angle.
Conventionally, a stretched birefringent film has been used as the optical film, but in recent years, an optically anisotropic layer formed using a liquid crystal compound instead of the stretched birefringent film has been proposed.
 例えば、特許文献1には、スメクチック相で固定化された光学異方性層を作製する光学異方性層の製造方法が開示されている。特許文献1の製造方法では、重合性液晶組成物からなる未硬化層に対する、加熱工程、冷却加熱工程、および、重合工程を経て光学異方性層を作製される(請求項1)。 For example, Patent Document 1 discloses a method for producing an optically anisotropic layer for producing an optically anisotropic layer fixed in a smectic phase. In the production method of Patent Document 1, an optically anisotropic layer is produced through a heating process, a cooling heating process, and a polymerization process for an uncured layer made of a polymerizable liquid crystal composition (Claim 1).
特開2017-068005号公報JP 2017-068005 A
 光学異方性層は、電子機器類に組み込まれて使用される場合が多い。そのため、光学異方性層には、高温等の過酷な環境下でも、長期間安定した性能を示せる耐久性が求められている。
 また、薄型化の観点から偏光子上に直接または他の層(例えば、配向膜)を介して光学異方性層を形成する場合、光学異方性層には優れたコントラスト(以下、「フィルムコントラスト」と略す。)も求められている。
 さらに、偏光子と光学異方性層とを含む偏光板を用いた画像表示装置を作製した場合、作製される画像表示装置には優れたコントラスト(以下、「パネルコントラスト」と略す。)が求められている。
The optically anisotropic layer is often used by being incorporated in electronic devices. For this reason, the optically anisotropic layer is required to have durability capable of exhibiting stable performance for a long time even under a severe environment such as a high temperature.
In addition, when an optically anisotropic layer is formed directly on the polarizer or through another layer (for example, an alignment film) from the viewpoint of thinning, the optically anisotropic layer has excellent contrast (hereinafter referred to as “film”). Abbreviated as "contrast").
Further, when an image display device using a polarizing plate including a polarizer and an optically anisotropic layer is produced, the produced image display device is required to have excellent contrast (hereinafter abbreviated as “panel contrast”). It has been.
 そこで、本発明は、優れた耐久性およびフィルムコントラストを有し、優れたパネルコントラストの画像表示装置を作製できる光学異方性層の製造方法を提供することを課題とする。 Therefore, an object of the present invention is to provide a method for producing an optically anisotropic layer having excellent durability and film contrast and capable of producing an image display device having excellent panel contrast.
 本発明者らは、上記課題を解決すべく鋭意検討した結果、以下の構成により上記課題を解決できることを見出した。 As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by the following configuration.
 〔1〕
 重合性液晶化合物を含む未硬化層を形成する工程Aと、
 上記未硬化層に加熱処理を施して、ネマチック相を形成する工程Bと、
 上記ネマチック相を形成した未硬化層に冷却処理を施して、スメクチック相を形成する工程Cと、
 上記スメクチック相を形成した未硬化層に対して、第1露光処理を施し、半硬化層を形成する工程Dと、
 上記第1露光処理時の温度よりも高い温度条件下にて、上記半硬化層に第2露光処理を施し、光学異方性層を形成する工程Eと、を有する光学異方性層の製造方法。
 〔2〕
 上記工程Cにおける上記未硬化層の降温速度が、1~100℃/分である、〔1〕に記載の光学異方性層の製造方法。
 〔3〕
 上記工程Cにおける上記未硬化層の降温速度が、1~60℃/分である、〔1〕または〔2〕に記載の光学異方性層の製造方法。
 〔4〕
 上記工程Cにおいて上記未硬化層の温度が漸減する、〔1〕~〔3〕のいずれかに記載の光学異方性層の製造方法。
 〔5〕
 上記第1露光処理に用いられる光が、紫外線である、〔1〕~〔4〕のいずれかに記載の光学異方性層の製造方法。
 〔6〕
 上記第1露光処理における露光量が、1~60mJ/cmである、〔1〕~〔5〕のいずれかに記載の光学異方性層の製造方法。
 〔7〕
 上記第1露光処理における露光量が、10~30mJ/cmである、〔1〕~〔6〕のいずれかに記載の光学異方性層の製造方法。
 〔8〕
 上記第2露光処理時の温度が上記重合性液晶化合物のスメクチック相とネマチック相との相転移温度よりも高い、〔1〕~〔7〕のいずれかに記載の光学異方性層の製造方法。
 〔9〕
 上記第1露光処理時の温度と、上記第2露光処理時の温度との差が、20℃以上である、〔1〕~〔8〕のいずれかに記載の光学異方性層の製造方法。
 〔10〕
 上記第1露光処理時の温度と、上記第2露光処理時の温度との差が、40℃以上である、〔1〕~〔9〕のいずれかに記載の光学異方性層の製造方法。
 〔11〕
 上記未硬化層がオキシムエステル系重合開始剤を含む、〔1〕~〔10〕のいずれかに記載の光学異方性層の製造方法。
[1]
Step A for forming an uncured layer containing a polymerizable liquid crystal compound,
Step B for forming a nematic phase by subjecting the uncured layer to a heat treatment;
Step C for forming a smectic phase by subjecting the uncured layer on which the nematic phase has been formed to a cooling treatment;
A step D of performing a first exposure treatment on the uncured layer on which the smectic phase has been formed to form a semi-cured layer;
A step E of forming an optically anisotropic layer by subjecting the semi-cured layer to a second exposure process under a temperature condition higher than the temperature during the first exposure process. Method.
[2]
The method for producing an optically anisotropic layer according to [1], wherein the temperature decrease rate of the uncured layer in the step C is 1 to 100 ° C./min.
[3]
The method for producing an optically anisotropic layer according to [1] or [2], wherein the temperature decrease rate of the uncured layer in the step C is 1 to 60 ° C./min.
[4]
The method for producing an optically anisotropic layer according to any one of [1] to [3], wherein the temperature of the uncured layer is gradually decreased in the step C.
[5]
The method for producing an optically anisotropic layer according to any one of [1] to [4], wherein the light used in the first exposure treatment is ultraviolet light.
[6]
The method for producing an optically anisotropic layer according to any one of [1] to [5], wherein an exposure dose in the first exposure treatment is 1 to 60 mJ / cm 2 .
[7]
The method for producing an optically anisotropic layer according to any one of [1] to [6], wherein an exposure dose in the first exposure treatment is 10 to 30 mJ / cm 2 .
[8]
The method for producing an optically anisotropic layer according to any one of [1] to [7], wherein the temperature during the second exposure treatment is higher than the phase transition temperature between the smectic phase and the nematic phase of the polymerizable liquid crystal compound. .
[9]
The method for producing an optically anisotropic layer according to any one of [1] to [8], wherein a difference between the temperature during the first exposure treatment and the temperature during the second exposure treatment is 20 ° C. or more. .
[10]
The method for producing an optically anisotropic layer according to any one of [1] to [9], wherein a difference between the temperature during the first exposure process and the temperature during the second exposure process is 40 ° C. or higher. .
[11]
The method for producing an optically anisotropic layer according to any one of [1] to [10], wherein the uncured layer contains an oxime ester polymerization initiator.
 本発明によれば、優れた耐久性およびフィルムコントラストを有し、優れたパネルコントラストの画像表示装置を作製できる光学異方性層の製造方法を提供できる。 According to the present invention, it is possible to provide a method for producing an optically anisotropic layer having excellent durability and film contrast and capable of producing an image display device having excellent panel contrast.
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされる場合があるが、本発明はそのような実施態様に限定されない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本明細書において、層(後述する未硬化層等)の温度に言及する場合は、層の表面の温度を放射温度計で測定した温度であることを意図する。
 本明細書において、スメクチック相とは、一方向にそろった分子が層構造を有している状態をいい、ネマチック相とは、その構成分子が配向秩序を持つが、三次元的な位置秩序を持たない状態をいう。
 本明細書において、相転移温度は、配向膜上に形成した未硬化層を、セントラルプロセッサー FP90(Mettler TOLEDO)と光学顕微鏡とを用いて、未硬化層を加熱又は冷却しながら観察し、相の変化が生じた温度を相転移温度とした。
 未硬化層については後述する。
Hereinafter, the present invention will be described in detail.
The description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments.
In this specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
In this specification, when referring to the temperature of a layer (such as an uncured layer to be described later), it is intended that the temperature of the surface of the layer is a temperature measured with a radiation thermometer.
In this specification, the smectic phase refers to a state in which molecules aligned in one direction have a layer structure, and the nematic phase refers to a three-dimensional positional order, although the constituent molecules have orientational order. The state that does not have.
In this specification, the phase transition temperature is determined by observing the uncured layer formed on the alignment film using a central processor FP90 (Mettler TOLEDO) and an optical microscope while heating or cooling the uncured layer. The temperature at which the change occurred was defined as the phase transition temperature.
The uncured layer will be described later.
 本発明において、Re(λ)およびRth(λ)は各々、波長λにおける面内のレターデーションおよび厚み方向のレターデーションを表す。例えば、Re(450)は、波長450nmにおける面内レターデーションを表す。特に記載がないときは、波長λは、550nmとする。
 本発明において、Re(λ)およびRth(λ)はAxoScan OPMF-1(オプトサイエンス社製)において、波長λで測定した値である。AxoScanにて平均屈折率((nx+ny+nz)/3)と膜厚(d(μm))を入力することにより、
 遅相軸方向(°)
 Re(λ)=R0(λ)
 Rth(λ)=((nx+ny)/2-nz)×d
が算出される。
 なお、R0(λ)は、特段の記載がない限り、AxoScan OPMF-1で算出される数値として表示されるものであるが、Re(λ)を意味している。
In the present invention, Re (λ) and Rth (λ) represent in-plane retardation and retardation in the thickness direction at a wavelength λ, respectively. For example, Re (450) represents in-plane retardation at a wavelength of 450 nm. Unless otherwise specified, the wavelength λ is 550 nm.
In the present invention, Re (λ) and Rth (λ) are values measured at wavelength λ in AxoScan OPMF-1 (manufactured by Optoscience). By inputting the average refractive index ((nx + ny + nz) / 3) and film thickness (d (μm)) in AxoScan,
Slow axis direction (°)
Re (λ) = R0 (λ)
Rth (λ) = ((nx + ny) / 2−nz) × d
Is calculated.
Note that R0 (λ) represents Re (λ) although it is displayed as a numerical value calculated by AxoScan OPMF-1 unless otherwise specified.
 本明細書において、屈折率nx、ny、および、nzは、アッベ屈折率(NAR-4T、アタゴ(株)製)を使用し、光源にナトリウムランプ(λ=589nm)を用いて測定する。また、波長依存性を測定する場合は、多波長アッベ屈折計DR-M2(アタゴ(株)製)にて、干渉フィルタとの組み合わせで測定できる。
 また、ポリマーハンドブック(JOHN WILEY&SONS,INC)、および、各種光学フィルムのカタログの値を使用できる。主な光学フィルムの平均屈折率の値を以下に例示する:セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、および、ポリスチレン(1.59)。
In this specification, the refractive indexes nx, ny, and nz are measured using an Abbe refractive index (NAR-4T, manufactured by Atago Co., Ltd.) and a sodium lamp (λ = 589 nm) as a light source. Further, when measuring the wavelength dependence, it can be measured with a multiwavelength Abbe refractometer DR-M2 (manufactured by Atago Co., Ltd.) in combination with an interference filter.
Moreover, the value of the catalog of a polymer handbook (John Wiley & Sons, INC) and various optical films can be used. The average refractive index values of main optical films are exemplified below: cellulose acylate (1.48), cycloolefin polymer (1.52), polycarbonate (1.59), polymethyl methacrylate (1.49), And polystyrene (1.59).
 また、本明細書において、表記される二価の基(例えば、-CO-O-)の結合方向は特に限定されず、例えば、後述する一般式(W)中のLが-CO-O-である場合、P側に結合している位置を*1、Sp側に結合している位置を*2とすると、Lは、*1-CO-O-*2であってもよく、*1-O-CO-*2であってもよい。 In this specification, the bonding direction of a divalent group (for example, —CO—O—) represented is not particularly limited. For example, L 1 in the general formula (W) described later is —CO—O. In the case of-, if the position bonded to the P 1 side is * 1, and the position bonded to the Sp 1 side is * 2, L 1 is * 1-CO-O- * 2. It may be * 1-O-CO- * 2.
[光学異方性層の製造方法]
 本発明の光学異方性層の製造方法は、下記工程A~Eを有する。
 工程A:重合性液晶化合物を含む未硬化層を形成する工程(層形成工程)。
 工程B:上記未硬化層に加熱処理を施して、ネマチック相を形成する工程B(ネマチック相形成工程)。
 工程C:上記ネマチック相を形成した未硬化層に冷却処理を施して、スメクチック相を形成する工程(冷却工程)。
 工程D:上記スメクチック相を形成した未硬化層に対して、第1露光処理を施し、半硬化層を形成する工程(第1重合工程)。
 工程E:上記第1露光処理時の温度よりも高い温度条件下にて、上記半硬化層に第2露光処理を施し、光学異方性層を形成する(第2重合工程)。
[Method for producing optically anisotropic layer]
The method for producing an optically anisotropic layer of the present invention includes the following steps A to E.
Step A: Step of forming an uncured layer containing a polymerizable liquid crystal compound (layer formation step).
Step B: Step B (nematic phase forming step) in which the uncured layer is heated to form a nematic phase.
Step C: A step of cooling the uncured layer on which the nematic phase has been formed to form a smectic phase (cooling step).
Step D: A step of performing a first exposure treatment on the uncured layer on which the smectic phase is formed to form a semi-cured layer (first polymerization step).
Step E: The semi-cured layer is subjected to a second exposure treatment under a temperature condition higher than the temperature during the first exposure treatment to form an optically anisotropic layer (second polymerization step).
 このような構成をとることで本発明の課題を解決できる理由は必ずしも明らかではないが、本発明者らは以下のように考えている。
 まず、本発明では、スメクチック相とネマチック相との相転移温度以下まで冷却されてスメクチック相の状態である未硬化層に対して第1露光処理を行うことで、スメクチック相の優れた配向性を固定でき、最終的に得られる光学異方性層の分子のパッキングが良好となる。そのため本発明の光学異方性層はフィルムコントラストに優れ、画像表示装置に組み込んで使用した場合に優れたパネルコントラストの画像表示装置を得られる。
 また、第1露光処理によって未硬化層を半硬化層とした後、第1露光処理をする際よりも高温で得られた半硬化層に対して第2露光処理を施すことで、単に、第1露光処理における温度で露光を続けるよりも、重合率が高く、耐久性に優れる光学異方性層が得られたと考えている。
 以下、本発明の光学異方性層の製造方法が有する各工程について、詳細に説明する。
The reason why the problem of the present invention can be solved by taking such a configuration is not necessarily clear, but the present inventors consider as follows.
First, in the present invention, the first exposure treatment is performed on the uncured layer that is cooled to a temperature lower than the phase transition temperature between the smectic phase and the nematic phase and is in the smectic phase state, thereby providing excellent orientation of the smectic phase. The molecular packing of the optically anisotropic layer finally obtained can be improved. Therefore, the optically anisotropic layer of the present invention is excellent in film contrast, and an image display device with excellent panel contrast can be obtained when incorporated in an image display device.
Moreover, after making an uncured layer into a semi-cured layer by the first exposure process, the second exposure process is performed on the semi-cured layer obtained at a higher temperature than when the first exposure process is performed. It is considered that an optically anisotropic layer having a higher polymerization rate and excellent durability than that obtained by continuing exposure at the temperature in one exposure process was obtained.
Hereinafter, each process which the manufacturing method of the optically anisotropic layer of this invention has is demonstrated in detail.
〔光学異方性層の製造工程〕
<工程A(層形成工程)>
 工程A(層形成工程)は、重合性液晶化合物を含む未硬化層を形成する工程である。
 未硬化層とは、重合性液晶化合物を含み、後述する第1露光処理および第2露光処理等の硬化処理が施されていない層である。後述するように、未硬化層は、等方相よりも低温側にネマチック相およびスメクチック相を、この順に示す。
[Process for producing optically anisotropic layer]
<Process A (layer formation process)>
Step A (layer forming step) is a step of forming an uncured layer containing a polymerizable liquid crystal compound.
The uncured layer is a layer that contains a polymerizable liquid crystal compound and has not been subjected to a curing process such as a first exposure process and a second exposure process described later. As will be described later, the uncured layer shows a nematic phase and a smectic phase in this order on the lower temperature side than the isotropic phase.
 上記未硬化層を形成する際には、重合性液晶化合物を含む重合性液晶組成物を用いて、未硬化層を形成することが好ましい。より具体的には、未硬化層は、例えば、基材上に重合性液晶組成物を塗布して、未硬化層を形成することが好ましい。基材としては、支持体および偏光子が挙げられる。なお、支持体上には、さらに配向膜が配置されていてもよい。
 重合性液晶組成物に含まれる各成分については、後段で詳述する。
 重合性液晶組成物を塗布する方法は特に限定されず、公知の方法を採用できる。例えば、スクリーン印刷法、ディップコーティング法、スプレー塗布法、スピンコーティング法、インクジェット法、グラビアオフセット印刷法、および、フレキソ印刷法が挙げられる。
 なお、重合性液晶組成物を塗布後、必要に応じて、溶剤を除去するための乾燥処理を実施してもよい。
 上記重合性液晶組成物の塗布量としては、所望する光学異方性層の厚みに応じて適宜調整すればよい。例えば、溶剤等が除去された状態における未硬化層の厚みが、0.1~10μmとなる塗付量が好ましく、0.5~5μmとなる塗付量がより好ましい。
When forming the uncured layer, it is preferable to form the uncured layer using a polymerizable liquid crystal composition containing a polymerizable liquid crystal compound. More specifically, the uncured layer is preferably formed by, for example, applying a polymerizable liquid crystal composition on a substrate to form the uncured layer. Examples of the substrate include a support and a polarizer. An alignment film may be further disposed on the support.
Each component contained in the polymerizable liquid crystal composition will be described in detail later.
The method for applying the polymerizable liquid crystal composition is not particularly limited, and a known method can be adopted. Examples include screen printing, dip coating, spray coating, spin coating, ink jet, gravure offset printing, and flexographic printing.
In addition, after apply | coating a polymeric liquid crystal composition, you may implement the drying process for removing a solvent as needed.
What is necessary is just to adjust suitably as the application quantity of the said polymeric liquid crystal composition according to the thickness of the desired optically anisotropic layer. For example, the coating amount is preferably such that the thickness of the uncured layer in a state where the solvent or the like is removed is 0.1 to 10 μm, and more preferably, the coating amount is 0.5 to 5 μm.
<工程B(ネマチック相形成工程)>
 工程B(ネマチック相形成工程)は、上記未硬化層に加熱処理を施して、ネマチック相を形成する工程である。
 ネマチック相形成工程の手順としては、未硬化層の温度をスメクチック相とネマチック相との相転移温度以上の温度にまで加熱して、未硬化層をネマチック相にできれば特に限定はない。
<Process B (nematic phase forming process)>
Step B (nematic phase forming step) is a step in which a heat treatment is performed on the uncured layer to form a nematic phase.
The procedure of the nematic phase forming step is not particularly limited as long as the temperature of the uncured layer is heated to a temperature equal to or higher than the phase transition temperature between the smectic phase and the nematic phase so that the uncured layer can be converted into the nematic phase.
 上記加熱によって調整される未硬化層の温度(第1加熱温度)は、スメクチック相とネマチック相との相転移温度以上である。第1加熱温度は、昇温時におけるスメクチック相とネマチック相との相転移温度に対し、0~83℃高い温度が好ましく、2~53℃高い温度がより好ましく、2~37℃高い温度がさらに好ましい。
 また、未硬化層はネマチック相が形成された状態で一定時間保持されるのが好ましい。このような保持時間は、1秒~10分が好ましく、5秒~5分以下がより好ましく、5~30秒がさらに好ましい。保持時間中、未硬化層の温度は第1加熱温度から±5℃の範囲内に維持されることが好ましい。
The temperature of the uncured layer (first heating temperature) adjusted by the heating is equal to or higher than the phase transition temperature between the smectic phase and the nematic phase. The first heating temperature is preferably 0 to 83 ° C higher than the phase transition temperature between the smectic phase and the nematic phase at the time of temperature rise, more preferably 2 to 53 ° C higher, and further 2 to 37 ° C higher. preferable.
The uncured layer is preferably maintained for a certain period of time in a state where a nematic phase is formed. Such a holding time is preferably 1 second to 10 minutes, more preferably 5 seconds to 5 minutes or less, and even more preferably 5 to 30 seconds. During the holding time, the temperature of the uncured layer is preferably maintained within a range of ± 5 ° C. from the first heating temperature.
 なお、未硬化層の温度を調整する手段に特に限定はなく、例えば、ホットプレートを用いてもよく、オーブンを用いてもよい。以下の工程において説明する、各層の温度操作についても同様である。 The means for adjusting the temperature of the uncured layer is not particularly limited, and for example, a hot plate or an oven may be used. The same applies to the temperature operation of each layer described in the following steps.
<工程C(冷却工程)>
 工程C(冷却工程)は、工程B(ネマチック相形成工程)によってネマチック相を形成した未硬化層に冷却処理を施して、スメクチック相を形成する工程である。
 冷却工程において冷却処理を施された未硬化層の温度(冷却温度)は、未硬化層がスメクチック相を形成できる温度であれば特に限定はなく、未硬化層に結晶が発生しだす温度より高い温度が好ましい。冷却温度は、降温時におけるスメクチック相とネマチック相との相転移温度に対し、0~60℃低い温度が好ましく、2~25℃低い温度がより好ましく、5~15℃低い温度がさらに好ましい。
 光学異方性層のフィルムコントラスト、および、パネルコントラストがより優れる画像表示装置を得られる点から、冷却工程において冷却する際の未硬化層の降温速度(降温レート)は、0.5~200℃/分が好ましく、1~100℃/分がより好ましく、1~80℃/分がさらに好ましく、1~60℃/分が特に好ましい。
 なお、降温レートは、上記第1加熱温度と上記冷却温度との温度差を、冷却処理の開始から冷却温度に到達するまでかかった時間で除して求められる。
 また、冷却工程において、未硬化層の温度が漸減するのが好ましい。なお、「温度が漸減する」とは、冷却工程において未硬化層の温度が全体として低下する一方であることを意図する。言い換えると、降温の開始から冷却温度に到達するまで、未硬化層に有意な温度上昇が生じないことを意図する。
<Process C (cooling process)>
Step C (cooling step) is a step of forming a smectic phase by subjecting the uncured layer on which the nematic phase has been formed in step B (nematic phase forming step) to a cooling treatment.
The temperature (cooling temperature) of the uncured layer that has been subjected to the cooling treatment in the cooling step is not particularly limited as long as the uncured layer can form a smectic phase, and is higher than the temperature at which crystals start to be generated in the uncured layer. Is preferred. The cooling temperature is preferably 0 to 60 ° C. lower than the phase transition temperature between the smectic phase and the nematic phase when the temperature is lowered, more preferably 2 to 25 ° C., and even more preferably 5 to 15 ° C.
From the viewpoint of obtaining an image display device having an excellent film contrast and panel contrast of the optically anisotropic layer, the temperature decrease rate (temperature decrease rate) of the uncured layer during cooling in the cooling step is 0.5 to 200 ° C. / Min is preferable, 1 to 100 ° C./min is more preferable, 1 to 80 ° C./min is more preferable, and 1 to 60 ° C./min is particularly preferable.
The temperature drop rate is obtained by dividing the temperature difference between the first heating temperature and the cooling temperature by the time taken to reach the cooling temperature from the start of the cooling process.
In the cooling step, it is preferable that the temperature of the uncured layer is gradually decreased. Note that “the temperature gradually decreases” means that the temperature of the uncured layer is decreasing as a whole in the cooling step. In other words, it is intended that no significant temperature increase occurs in the uncured layer from the start of the temperature drop until the cooling temperature is reached.
 冷却処理の方法に特に限定はなく、ネマチック層を形成している未硬化層をスメクチック相にできればよい。例えば、ネマチック層を形成している未硬化層を、結晶相とスメクチック相との相転移温度よりも高く、かつ、スメクチック相とネマチック相との相転移温度よりも低く設定したホットプレート上に置いて、未硬化層にスメクチック相を形成する方法が挙げられる。 There is no particular limitation on the cooling treatment method, and it is sufficient that the uncured layer forming the nematic layer can be made into a smectic phase. For example, the uncured layer forming the nematic layer is placed on a hot plate set higher than the phase transition temperature between the crystalline phase and the smectic phase and lower than the phase transition temperature between the smectic phase and the nematic phase. And a method of forming a smectic phase in the uncured layer.
<工程D(第1重合工程)>
 工程D(第1重合工程)は、工程Cでスメクチック相を形成した未硬化層に対して、第1露光処理を施し、半硬化層を形成する工程である。
 第1露光処理を実施する時点で、未硬化層全体でスメクチック相が形成されるのが好ましい。
<Step D (first polymerization step)>
Step D (first polymerization step) is a step of forming a semi-cured layer by performing a first exposure process on the uncured layer in which the smectic phase is formed in Step C.
It is preferable that a smectic phase is formed in the entire uncured layer when the first exposure treatment is performed.
 第1露光処理に用いられる光は、紫外線が好ましく、上記紫外線は波長365nmの光を含む紫外線が好ましい。
 露光光源としては、例えば、メタルハライドランプ、水銀灯(中圧水銀灯、高圧水銀灯、超高圧水銀灯等)、キセノンランプ、カーボンアーク灯、蛍光灯(紫外用蛍光灯等)、LED(LED:light emitting diode、紫外LED等)、および、LD(LD:laser diode、紫外LD等)が挙げられる。
 露光光源から得た光に対して、干渉フィルタまたは色フィルタ等を用いて、照射する波長範囲を限定してもよい。また、これらの露光光源からの光に対して、偏光フィルタまたは偏光プリズム等を用いて偏光としてもよい。
 第1露光処理における露光量は特に限定されず、後述するように、重合性液晶化合物に含まれる一部の重合性基を重合させて半硬化層を形成できればよい。中でも、光学異方性層の耐久性およびフィルムコントラスト、並びに、光学異方性層を画像表示装置に組み込んで場合のパネルコントラストがバランス良く優れる点から、第1露光処理における露光量(好ましくは波長300~390nmの積算露光量)は、0.5~100mJ/cmが好ましく、1~60mJ/cmがより好ましく、10~30mJ/cmがさらに好ましい。
 また、第1露光処理は、均一な重合反応を進行させる観点から、窒素ガス等の不活性ガス雰囲気下で実施するのが好ましい。
The light used for the first exposure treatment is preferably ultraviolet light, and the ultraviolet light is preferably ultraviolet light containing light having a wavelength of 365 nm.
Examples of the exposure light source include metal halide lamps, mercury lamps (medium pressure mercury lamps, high pressure mercury lamps, ultra high pressure mercury lamps, etc.), xenon lamps, carbon arc lamps, fluorescent lamps (ultraviolet fluorescent lamps, etc.), LEDs (LED: light emitting diode, UV LED, etc.) and LD (LD: laser diode, ultraviolet LD, etc.).
You may limit the wavelength range to irradiate with respect to the light obtained from the exposure light source using an interference filter or a color filter. Further, the light from these exposure light sources may be polarized using a polarizing filter or a polarizing prism.
The exposure amount in the first exposure treatment is not particularly limited as long as a semi-cured layer can be formed by polymerizing a part of the polymerizable groups contained in the polymerizable liquid crystal compound, as will be described later. Among them, the exposure amount (preferably the wavelength in the first exposure process) is preferred because the durability and film contrast of the optically anisotropic layer and the panel contrast when the optically anisotropic layer is incorporated in an image display device are excellent in a balanced manner. integrated exposure amount of 300 ~ 390 nm) is preferably 0.5 ~ 100mJ / cm 2, more preferably 1 ~ 60mJ / cm 2, more preferably 10 ~ 30mJ / cm 2.
Moreover, it is preferable to implement 1st exposure process in inert gas atmosphere, such as nitrogen gas, from a viewpoint of advancing a uniform polymerization reaction.
 上述した第1露光処理によって、半硬化層が得られる。半硬化層とは、重合性液晶化合物に含まれる一部の重合性基を重合させて得られる層であり、半硬化層中には重合性液晶化合物由来の重合性基が残存している。中でも、第1露光処理後における重合性液晶化合物由来の重合性基の残存率は、10%以上が好ましく、20%以上がより好ましい。上限は第2露光処理後の耐久性を良化させるために、第1露光処理後における重合性基の残存率は、90%以下の場合が好ましく、80%以下がより好ましい。
 上記残存率は、第1露光処理後の半硬化層中における重合性液晶化合物由来の重合性基の量と、第1露光処理前の未硬化層中における重合性液晶化合物由来の重合性基の量とを比較することにより算出される。具体的には、赤外分光光度計によって、未硬化層中における、重合性基由来のピークと、露光前後で強度が変化しない重合性液晶化合物中の構造(例えば、カルボニル基)由来のピークとの比Xを算出する。同様に、半硬化層中における、重合性基由来のピークと、露光前後で強度が変化しない重合性液晶化合物中の構造(例えば、カルボニル基)由来のピークとの比Yを算出する。次に、式:比Y/比X×100により、上記残存率を算出できる。
A semi-cured layer is obtained by the first exposure process described above. The semi-cured layer is a layer obtained by polymerizing a part of the polymerizable group contained in the polymerizable liquid crystal compound, and the polymerizable group derived from the polymerizable liquid crystal compound remains in the semi-cured layer. Among them, the residual ratio of the polymerizable group derived from the polymerizable liquid crystal compound after the first exposure treatment is preferably 10% or more, and more preferably 20% or more. In order to improve the durability after the second exposure treatment, the upper limit is preferably 90% or less, more preferably 80% or less, after the first exposure treatment.
The residual ratio is the amount of the polymerizable group derived from the polymerizable liquid crystal compound in the semi-cured layer after the first exposure treatment and the polymerizable group derived from the polymerizable liquid crystal compound in the uncured layer before the first exposure treatment. Calculated by comparing the quantity. Specifically, by an infrared spectrophotometer, a peak derived from a polymerizable group in an uncured layer and a peak derived from a structure (for example, a carbonyl group) in a polymerizable liquid crystal compound whose intensity does not change before and after exposure. The ratio X is calculated. Similarly, the ratio Y between the peak derived from the polymerizable group in the semi-cured layer and the peak derived from the structure (for example, carbonyl group) in the polymerizable liquid crystal compound whose intensity does not change before and after exposure is calculated. Next, the residual ratio can be calculated by the formula: ratio Y / ratio X × 100.
<工程E(第2重合工程)>
 工程E(第2重合工程)は、第1露光処理時の温度よりも高い温度条件下にて、上記半硬化層に第2露光処理を施し、光学異方性層を形成する工程である。
 第1露光処理時の温度よりも高い温度条件下とは、第2露光処理が施される際の半硬化層の温度が、第1露光処理が施される際の未硬化層の温度よりも高い状態となる環境下であれば限定はない。
 通常、上記温度条件を達成するために、第2重合工程では、第1重合工程を経て得られた半硬化層に加熱処理(第2加熱処理)が施される。第2露光処理は、第2加熱処理と同時に開始してもよいし、第2加熱処理によって半硬化層が所定の温度になってから実施してもよい。
 第2露光処理は、半硬化層の温度を上昇させながら実施してもよいし、半硬化層の温度を一定に保ちながら実施してもよい。
<Step E (second polymerization step)>
Step E (second polymerization step) is a step of forming an optically anisotropic layer by subjecting the semi-cured layer to a second exposure treatment under a temperature condition higher than the temperature during the first exposure treatment.
The temperature condition higher than the temperature during the first exposure process means that the temperature of the semi-cured layer when the second exposure process is performed is higher than the temperature of the uncured layer when the first exposure process is performed. There is no limitation as long as the environment is high.
Usually, in order to achieve the temperature condition, in the second polymerization step, a heat treatment (second heat treatment) is performed on the semi-cured layer obtained through the first polymerization step. The second exposure process may be started simultaneously with the second heat treatment, or may be performed after the semi-cured layer reaches a predetermined temperature by the second heat treatment.
The second exposure treatment may be performed while increasing the temperature of the semi-cured layer, or may be performed while keeping the temperature of the semi-cured layer constant.
 第2加熱処理によって上昇する半硬化層の温度(第2加熱処理前後の半硬化層の温度差。言い換えれば、第1露光処理時の温度と、第2露光処理時の温度との差。)は、得られる光学異方性層の耐久性がより優れる点から、10℃以上が好ましく、20℃以上がより好ましく、40℃以上がさらに好ましい。上限は、160℃以下が好ましい。
 第2露光処理時の半硬化層の温度(第2加熱温度)は、得られる光学異方性層の耐久性がより優れる点から、未硬化層の昇温時におけるスメクチック相とネマチック相との相転移温度以上が好ましい。
 第2加熱処理で半硬化層が加熱される際の昇温速度(昇温レート)は、0.5~250℃/分が好ましく、50~200℃/分がより好ましく、75~150℃/分がさらに好ましい。
 なお、昇温レートは、第2加熱処理前後の半硬化層の温度差を、第2加熱処理にかかった時間で除して求められる。
The temperature of the semi-cured layer rising by the second heat treatment (temperature difference between the semi-cured layers before and after the second heat treatment. In other words, the difference between the temperature during the first exposure treatment and the temperature during the second exposure treatment). Is preferably 10 ° C. or higher, more preferably 20 ° C. or higher, and even more preferably 40 ° C. or higher from the viewpoint that the durability of the obtained optically anisotropic layer is more excellent. The upper limit is preferably 160 ° C. or lower.
The temperature of the semi-cured layer at the time of the second exposure treatment (second heating temperature) is the difference between the smectic phase and the nematic phase at the time of raising the temperature of the uncured layer because the durability of the obtained optically anisotropic layer is more excellent. Above the phase transition temperature is preferred.
The rate of temperature increase (temperature increase rate) when the semi-cured layer is heated in the second heat treatment is preferably 0.5 to 250 ° C./min, more preferably 50 to 200 ° C./min, and 75 to 150 ° C./min. Minutes are more preferred.
The temperature increase rate is obtained by dividing the temperature difference of the semi-cured layer before and after the second heat treatment by the time taken for the second heat treatment.
 第2露光処理に用いられる光は、紫外線が好ましく、上記紫外線は波長365nmの光を含む紫外線が好ましい。
 露光光源としては、第1露光処理の説明の中で挙げたのと同様の露光光源が例示される。
 露光光源から得た光に対して、干渉フィルタまたは色フィルタ等を用いて、照射する波長範囲を限定してもよい。また、これらの露光光源からの光に対して、偏光フィルタまたは偏光プリズム等を用いて偏光としてもよい。
 第2露光処理における露光量(好ましくは波長300~390nmの積算露光量)は、100~10000mJ/cmが好ましく、200~5000mJ/cmがより好ましく、400~1500mJ/cmがさらに好ましい。
 また、第2露光処理は、均一な重合反応を進行させる観点から、窒素ガス等の不活性ガス雰囲気下で実施するのが好ましい。
The light used for the second exposure treatment is preferably ultraviolet light, and the ultraviolet light is preferably ultraviolet light containing light having a wavelength of 365 nm.
As the exposure light source, the same exposure light source as exemplified in the description of the first exposure process is exemplified.
You may limit the wavelength range to irradiate with respect to the light obtained from the exposure light source using an interference filter or a color filter. Further, the light from these exposure light sources may be polarized using a polarizing filter or a polarizing prism.
Exposure amount in the second exposure process (integrated exposure amount of preferably wavelengths 300 ~ 390 nm) is preferably 100 ~ 10000 mJ / cm 2, more preferably 200 ~ 5000 mJ / cm 2, more preferably 400 ~ 1500mJ / cm 2.
Moreover, it is preferable to implement 2nd exposure processing in inert gas atmosphere, such as nitrogen gas, from a viewpoint of advancing a uniform polymerization reaction.
 上記第2露光処理が施されて得られた光学異方性層中には、実質的に、重合性液晶化合物由来の重合性基は含まれていない。上記「実質的に」は、重合性液晶化合物由来の重合性基の残存率が、5%以下であることを意味する。なお、残存率は、光学異方性層中における重合性液晶化合物由来の重合性基の量と、第1露光処理前の未硬化層中における重合性液晶化合物由来の重合性基の量とを比較することにより算出される。具体的には、上述した赤外分光光度計を用いた方法が挙げられる。 The optically anisotropic layer obtained by performing the second exposure treatment substantially contains no polymerizable group derived from the polymerizable liquid crystal compound. The term “substantially” means that the residual ratio of the polymerizable group derived from the polymerizable liquid crystal compound is 5% or less. The residual rate is determined by the amount of the polymerizable group derived from the polymerizable liquid crystal compound in the optically anisotropic layer and the amount of the polymerizable group derived from the polymerizable liquid crystal compound in the uncured layer before the first exposure treatment. Calculated by comparison. Specifically, the method using the infrared spectrophotometer mentioned above is mentioned.
〔重合性液晶組成物〕
 本発明の製造方法においては、重合性液晶組成物を使用することが好ましい。
 以下、重合性液晶組成物について説明する。
(Polymerizable liquid crystal composition)
In the production method of the present invention, it is preferable to use a polymerizable liquid crystal composition.
Hereinafter, the polymerizable liquid crystal composition will be described.
<重合性液晶化合物>
 重合性液晶組成物は、重合性液晶化合物を含む。
 ここで使用される重合性液晶化合物の1種以上は、ネマチック相およびスメクチック相を発現できる重合性液晶化合物が好ましい。
 重合性液晶組成物は、ネマチック相およびスメクチック相を発現できる重合性液晶化合物以外であるその他の重合性液晶化合物を含んでもよいが、重合性液晶組成物全体としては、ネマチック相およびスメクチック相を発現できる未硬化層を形成できる必要がある。
<Polymerizable liquid crystal compound>
The polymerizable liquid crystal composition includes a polymerizable liquid crystal compound.
One or more of the polymerizable liquid crystal compounds used here are preferably polymerizable liquid crystal compounds capable of developing a nematic phase and a smectic phase.
The polymerizable liquid crystal composition may contain other polymerizable liquid crystal compounds other than the polymerizable liquid crystal compound capable of developing a nematic phase and a smectic phase, but the polymerizable liquid crystal composition as a whole exhibits a nematic phase and a smectic phase. An uncured layer that can be formed must be able to be formed.
 重合性液晶化合物とは、重合性基を少なくとも1つ以上有する液晶化合物である。
 一般的に、液晶化合物はその形状から、棒状タイプと円盤状タイプとに分類できる。さらにそれぞれ低分子と高分子とタイプがある。高分子とは一般に重合度が100以上の化合物を指す(高分子物理・相転移ダイナミクス,土井 正男 著,2頁,岩波書店,1992)。
 重合性液晶化合物は、重合性基を有し、スメクチック相を発現できる未硬化層を形成できる限り、いずれの液晶化合物も使用できる。中でも、棒状の重合性液晶化合物を用いるのが好ましい。
The polymerizable liquid crystal compound is a liquid crystal compound having at least one polymerizable group.
In general, liquid crystal compounds can be classified into a rod-shaped type and a disk-shaped type based on their shapes. In addition, there are types of small molecules and polymers. Polymer generally refers to a compound having a degree of polymerization of 100 or more (Polymer Physics / Phase Transition Dynamics, Masao Doi, 2 pages, Iwanami Shoten, 1992).
As the polymerizable liquid crystal compound, any liquid crystal compound can be used as long as it has a polymerizable group and can form an uncured layer capable of expressing a smectic phase. Among these, it is preferable to use a rod-like polymerizable liquid crystal compound.
 重合性液晶化合物は1分子中に重合性基を2以上有するのが好ましい。また、2種以上の重合性液晶化合物を使用する場合、少なくとも1種の重合性液晶化合物が、1分子中に2以上の重合性基を有しているのが好ましい。
 なお、液晶化合物が重合によって固定された後においてはもはや液晶性を示す必要はないが、こうして形成された層は便宜上液晶層と称する場合がある。
The polymerizable liquid crystal compound preferably has two or more polymerizable groups in one molecule. Moreover, when using 2 or more types of polymeric liquid crystal compounds, it is preferable that at least 1 type of polymeric liquid crystal compound has 2 or more polymeric groups in 1 molecule.
In addition, after the liquid crystal compound is fixed by polymerization, it is no longer necessary to exhibit liquid crystallinity, but the layer thus formed may be referred to as a liquid crystal layer for convenience.
 重合性液晶化合物が有する、重合性基の種類は特に限定されず、付加重合反応が可能な官能基が好ましく、重合性エチレン性不飽和基または環重合性基がより好ましい。例えば、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基、エポキシ基、または、オキセタン基が好ましく、中でも重合反応が高速である点で、(メタ)アクリロイル基がより好ましい。 The kind of the polymerizable group which the polymerizable liquid crystal compound has is not particularly limited, and a functional group capable of addition polymerization reaction is preferable, and a polymerizable ethylenically unsaturated group or a ring polymerizable group is more preferable. For example, a (meth) acryloyl group, a vinyl group, a styryl group, an allyl group, an epoxy group, or an oxetane group is preferable, and a (meth) acryloyl group is more preferable because the polymerization reaction is fast.
(スメクチック相を発現できる重合性液晶化合物)
 スメクチック相を発現できる重合性液晶化合物としては、例えば、特開2016-51178号公報、特開2008-214269号公報、特開2008-19240号公報、および、特開2006-276821号公報に記載の化合物が挙げられる。
(Polymerizable liquid crystal compound capable of developing smectic phase)
Examples of the polymerizable liquid crystal compound capable of exhibiting a smectic phase include those described in JP-A-2016-51178, JP-A-2008-214269, JP-A-2008-19240, and JP-A-2006-276721. Compounds.
 また、棒状の重合性液晶化合物として、波長330~380nmの範囲に極大吸収波長を有する重合性液晶化合物が好ましい。
 また、棒状の重合性液晶化合物は、逆波長分散性の重合性液晶化合物が好ましい。
 ここで、本明細書において、重合性液晶化合物が逆波長分散性であるとは、このような重合性液晶化合物を用いて作製された位相差フィルム(光学異方性層等)の特定波長(可視光範囲)における面内のレターデーション(Re)値を測定した際に、測定波長が大きくなるにつれてRe値が同等または高くなる性質をいう。
 例えば、下記式を満たす光学異方性層を形成できる重合性液晶化合物が好ましい。
 Re(450)/Re(550)<1.00
The rod-like polymerizable liquid crystal compound is preferably a polymerizable liquid crystal compound having a maximum absorption wavelength in the wavelength range of 330 to 380 nm.
The rod-like polymerizable liquid crystal compound is preferably a reverse wavelength dispersible polymerizable liquid crystal compound.
Here, in this specification, that the polymerizable liquid crystal compound is reverse wavelength dispersive means that a specific wavelength (such as an optically anisotropic layer) of a retardation film produced using such a polymerizable liquid crystal compound ( When the in-plane retardation (Re) value in the visible light range) is measured, the Re value becomes equal or higher as the measurement wavelength increases.
For example, a polymerizable liquid crystal compound that can form an optically anisotropic layer satisfying the following formula is preferable.
Re (450) / Re (550) <1.00
 中でも、重合性液晶化合物としては一般式(W)で表される化合物が好ましい。
-L-Sp-L-(-A-L-)-MG-(-L-A-)-L-Sp-L-P    (W)
Among these, as the polymerizable liquid crystal compound, a compound represented by the general formula (W) is preferable.
P 1 -L 1 -Sp 1 -L 2 -(-A 1 -L 3- ) m -MG-(-L 4 -A 2- ) n -L 5 -Sp 2 -L 6 -P 2 (W)
 一般式(W)中、mおよびnは、それぞれ独立に、1~3の整数を表す。 In the general formula (W), m and n each independently represents an integer of 1 to 3.
 一般式(W)中、L、L、L、L、L、および、Lは、それぞれ独立に、単結合または2価の連結基を表す。
 上記2価の連結基としては、-CO-O-、-C(=S)O-、-CR-、-CR-CR-、-O-CR-、-CR-O-CR-、-CO-O-CR-、-O-CO-CR-、-CR-O-CO-CR-、-CR-CO-O-CR-、-NR-CR-、または、-CO-NR-が好ましい。R、R、RおよびRは、それぞれ独立に、水素原子、フッ素原子、または、炭素数1~4のアルキル基を表す。
 Lが複数存在する場合、複数存在するLはそれぞれ同一でも異なっていてもよい。Lが複数存在する場合、複数存在するLはそれぞれ同一でも異なっていてもよい。
In General Formula (W), L 1 , L 2 , L 3 , L 4 , L 5 , and L 6 each independently represent a single bond or a divalent linking group.
Examples of the divalent linking group include —CO—O—, —C (═S) O—, —CR 1 R 2 —, —CR 1 R 2 —CR 3 R 4 —, —O—CR 1 R 2. —, —CR 1 R 2 —O—CR 3 R 4 —, —CO—O—CR 1 R 2 —, —O—CO—CR 1 R 2 —, —CR 1 R 2 —O—CO—CR 3 R 4 —, —CR 1 R 2 —CO—O—CR 3 R 4 —, —NR 1 —CR 2 R 3 —, or —CO—NR 1 — is preferred. R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom, a fluorine atom or an alkyl group having 1 to 4 carbon atoms.
When a plurality of L 3 are present, the plurality of L 3 may be the same or different. When a plurality of L 4 are present, the plurality of L 4 may be the same or different.
 上記一般式(W)中、AおよびAは、それぞれ独立に、炭素数6以上の芳香環基、または、炭素数5以上(好ましくは炭素数5~8)の脂環式炭化水素基を表す。
 上記脂環式炭化水素基を構成する-CH-の1個以上が-O-、-S-または-NH-で置換されていてもよい。
 Aが複数存在する場合、複数存在するAはそれぞれ同一でも異なっていてもよい。Aが複数存在する場合、複数存在するAはそれぞれ同一でも異なっていてもよい。
In the general formula (W), A 1 and A 2 are each independently an aromatic ring group having 6 or more carbon atoms or an alicyclic hydrocarbon group having 5 or more carbon atoms (preferably 5 to 8 carbon atoms). Represents.
One or more of —CH 2 — constituting the alicyclic hydrocarbon group may be substituted with —O—, —S— or —NH—.
When a plurality of A 1 are present, the plurality of A 1 may be the same or different. When a plurality of A 2 are present, the plurality of A 2 may be the same or different.
 上記AおよびAが表す炭素数5以上の脂環式炭化水素基としては、5員環または6員環の基が好ましい。また、脂環式炭化水素基は、飽和でも不飽和でもよいが飽和脂環式炭化水素基が好ましい。
 脂環式炭化水素基としては、例えば、シクロヘキサン環基(シクロヘキサン-1,4-ジイル基等)およびシクロヘキセン環基が挙げられる。
 また、脂環式炭化水素基としては、例えば、特開2012-21068号公報の段落[0078]の記載を参酌でき、この内容は本願明細書に組み込まれる。
The alicyclic hydrocarbon group having 5 or more carbon atoms represented by A 1 and A 2 is preferably a 5-membered or 6-membered ring group. The alicyclic hydrocarbon group may be saturated or unsaturated, but is preferably a saturated alicyclic hydrocarbon group.
Examples of the alicyclic hydrocarbon group include a cyclohexane ring group (cyclohexane-1,4-diyl group and the like) and a cyclohexene ring group.
As the alicyclic hydrocarbon group, for example, the description in paragraph [0078] of JP2012-21068A can be referred to, and the contents thereof are incorporated in the present specification.
 上記AおよびAが示す炭素数6以上の芳香環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、および、フェナンスロリン環等の芳香族炭化水素環;フラン環、ピロール環、チオフェン環、ピリジン環、チアゾール環、および、ベンゾチアゾール環等の芳香族複素環;が挙げられる。中でも、ベンゼン環(例えば、1,4-フェニレン基等)が好ましい。 Examples of the aromatic ring having 6 or more carbon atoms represented by A 1 and A 2 include aromatic hydrocarbon rings such as benzene ring, naphthalene ring, anthracene ring, and phenanthroline ring; furan ring, pyrrole ring, thiophene And aromatic heterocycles such as a ring, a pyridine ring, a thiazole ring, and a benzothiazole ring. Of these, a benzene ring (for example, 1,4-phenylene group) is preferable.
 一般式(W)中、SpおよびSpは、それぞれ独立に、単結合、炭素数1~12の直鎖状もしくは分岐状のアルキレン基、または、炭素数1~12の直鎖状もしくは分岐状のアルキレン基を構成する-CH-の1個以上が-O-、-S-、-NH-、-N(Q)-、もしくは、-CO-に置換された2価の連結基を表す。Qは、置換基(アルキル基、アルコキシ基、または、ハロゲン原子等)を表す。 In general formula (W), Sp 1 and Sp 2 are each independently a single bond, a linear or branched alkylene group having 1 to 12 carbon atoms, or a linear or branched group having 1 to 12 carbon atoms. A divalent linking group in which one or more of —CH 2 — constituting the cycloalkylene group is substituted with —O—, —S—, —NH—, —N (Q) —, or —CO—. Represent. Q represents a substituent (such as an alkyl group, an alkoxy group, or a halogen atom).
 上記SpおよびSpが示す炭素数1~12の直鎖状もしくは分岐状のアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、または、ブチレン基等が好ましい。 The linear or branched alkylene group having 1 to 12 carbon atoms represented by Sp 1 and Sp 2 is, for example, preferably a methylene group, an ethylene group, a propylene group, or a butylene group.
 一般式(W)中、PおよびPは、それぞれ独立に、1価の有機基を表し、PおよびPの少なくとも一方は重合性基を表す。ただし、MGが、後述の一般式(Ar-3)で表される芳香環である場合は、PおよびPならびに一般式(Ar-3)中のPおよびPの少なくとも1つが重合性基を表す。 In general formula (W), P 1 and P 2 each independently represent a monovalent organic group, and at least one of P 1 and P 2 represents a polymerizable group. However, when MG is an aromatic ring represented by the following general formula (Ar-3), at least one of P 1 and P 2 and P 3 and P 4 in the general formula (Ar-3) is polymerized. Represents a sex group.
 上記PおよびPが示す重合性基は特に限定されず、ラジカル重合性基またはカチオン重合性基が好ましい。
 ラジカル重合性基としては、一般に知られているラジカル重合性基を使用できる。例えば、アクリロイル基およびメタクリロイル基が挙げられる。この場合、重合速度は一般的にアクリロイル基が速く、生産性向上の観点からアクリロイル基が好ましい。また、メタクリロイル基も高複屈折性液晶の重合性基として同様に使用できる。
 カチオン重合性基としては、一般に知られているカチオン重合性を使用できる。例えば、脂環式エーテル基、環状アセタール基、環状ラクトン基、環状チオエーテル基、スピロオルソエステル基、および、ビニルオキシ基等が挙げられる。中でも、脂環式エーテル基、または、ビニルオキシ基が好ましく、エポキシ基、オキセタニル基、または、ビニルオキシ基がより好ましい。
 特に好ましい重合性基の例としては下記が挙げられる。
 下記重合性基中、黒丸は、結合位置を表す。
The polymerizable group represented by P 1 and P 2 is not particularly limited, and is preferably a radical polymerizable group or a cationic polymerizable group.
As the radical polymerizable group, a generally known radical polymerizable group can be used. For example, an acryloyl group and a methacryloyl group are mentioned. In this case, the polymerization rate is generally high for acryloyl groups, and acryloyl groups are preferred from the viewpoint of improving productivity. A methacryloyl group can also be used as a polymerizable group of a highly birefringent liquid crystal.
As the cationic polymerizable group, generally known cationic polymerizable groups can be used. Examples thereof include an alicyclic ether group, a cyclic acetal group, a cyclic lactone group, a cyclic thioether group, a spiro orthoester group, and a vinyloxy group. Among these, an alicyclic ether group or a vinyloxy group is preferable, and an epoxy group, an oxetanyl group, or a vinyloxy group is more preferable.
Examples of particularly preferred polymerizable groups include the following.
In the following polymerizable group, a black circle represents a bonding position.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式(W)中、MGは、下記一般式(Ar-1)~(Ar-5)で表される基からなる群から選択されるいずれかの芳香環を表す。なお、下記一般式(Ar-1)~(Ar-5)中、*1はLとの結合位置を表し、*2はLとの結合位置を表す。 In the general formula (W), MG represents any aromatic ring selected from the group consisting of groups represented by the following general formulas (Ar-1) to (Ar-5). In the following general formulas (Ar-1) to (Ar-5), * 1 represents a bonding position with L 3, and * 2 represents a bonding position with L 4 .
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 ここで、上記一般式(Ar-1)中、Qは、NまたはCHを表し、Qは、-S-、-O-、または、-N(R)-を表し、Rは、水素原子または炭素数1~6のアルキル基を表し、Yは、置換基を有してもよい、炭素数6~12の芳香族炭化水素基、または、炭素数3~12の芳香族複素環基を表す。
 Rが示す炭素数1~6のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、および、n-ヘキシル基等が挙げられる。
 Yが示す炭素数6~12の芳香族炭化水素基としては、例えば、フェニル基、2,6-ジエチルフェニル基、および、ナフチル基等のアリール基が挙げられる。
 Yが示す炭素数3~12の芳香族複素環基としては、例えば、チエニル基、チアゾリル基、フリル基、および、ピリジル基等のヘテロアリール基が挙げられる。
 また、Yが有していてもよい置換基としては、例えば、アルキル基、アルコキシ基、および、ハロゲン原子等が挙げられる。
 アルキル基としては、例えば、炭素数1~18の直鎖状、分岐鎖状または環状のアルキル基が好ましく、炭素数1~8のアルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、および、シクロヘキシル基等)がより好ましく、炭素数1~4のアルキル基がさらに好ましく、メチル基またはエチル基が特に好ましい。
 アルコキシ基としては、例えば、炭素数1~18のアルコキシ基が好ましく、炭素数1~8のアルコキシ基(例えば、メトキシ基、エトキシ基、n-ブトキシ基、および、メトキシエトキシ基等)がより好ましく、炭素数1~4のアルコキシ基がさらに好ましく、メトキシ基またはエトキシ基が特に好ましい。
 ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、および、ヨウ素原子等が挙げられ、中でも、フッ素原子、または、塩素原子が好ましい。
Here, in the general formula (Ar-1), Q 1 represents N or CH, Q 2 represents —S—, —O—, or —N (R 5 ) —, and R 5 represents Represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and Y 1 is an aromatic hydrocarbon group having 6 to 12 carbon atoms or an aromatic group having 3 to 12 carbon atoms, which may have a substituent. Represents a heterocyclic group.
Examples of the alkyl group having 1 to 6 carbon atoms represented by R 5 include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, and an n-pentyl group. Group, n-hexyl group and the like.
Examples of the aromatic hydrocarbon group having 6 to 12 carbon atoms represented by Y 1 include aryl groups such as a phenyl group, a 2,6-diethylphenyl group, and a naphthyl group.
Examples of the aromatic heterocyclic group having 3 to 12 carbon atoms represented by Y 1 include a heteroaryl group such as a thienyl group, a thiazolyl group, a furyl group, and a pyridyl group.
Examples of the substituent that Y 1 may have include an alkyl group, an alkoxy group, and a halogen atom.
As the alkyl group, for example, a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 8 carbon atoms (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group). N-butyl group, isobutyl group, sec-butyl group, t-butyl group, cyclohexyl group and the like, more preferably an alkyl group having 1 to 4 carbon atoms, and particularly preferably a methyl group or an ethyl group.
As the alkoxy group, for example, an alkoxy group having 1 to 18 carbon atoms is preferable, and an alkoxy group having 1 to 8 carbon atoms (for example, a methoxy group, an ethoxy group, an n-butoxy group, and a methoxyethoxy group) is more preferable. Further, an alkoxy group having 1 to 4 carbon atoms is more preferable, and a methoxy group or an ethoxy group is particularly preferable.
As a halogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc. are mentioned, for example, Among these, a fluorine atom or a chlorine atom is preferable.
 また、上記一般式(Ar-1)~(Ar-5)中、Z、ZおよびZは、それぞれ独立に、水素原子、炭素数1~20の1価の脂肪族炭化水素基、炭素数3~20の1価の脂環式炭化水素基、炭素数6~20の1価の芳香族炭化水素基、ハロゲン原子、シアノ基、ニトロ基、-NR、または、-SRを表し、R~Rは、それぞれ独立に、水素原子または炭素数1~6のアルキル基を表し、ZおよびZは、互いに結合して芳香環を形成してもよい。
 炭素数1~20の1価の脂肪族炭化水素基としては、炭素数1~15のアルキル基が好ましく、炭素数1~8のアルキル基がより好ましく、メチル基、エチル基、イソプロピル基、tert-ペンチル基(1,1-ジメチルプロピル基)、tert-ブチル基、または、1,1-ジメチル-3,3-ジメチル-ブチル基がさらに好ましく、メチル基、エチル基、または、tert-ブチル基が特に好ましい。
 炭素数3~20の1価の脂環式炭化水素基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロデシル基、メチルシクロヘキシル基、および、エチルシクロヘキシル基等の単環式飽和炭化水素基;シクロブテニル基、シクロペンテニル基、シクロヘキセニル基、シクロヘプテニル基、シクロオクテニル基、シクロデセニル基、シクロペンタジエニル基、シクロヘキサジエニル基、シクロオクタジエニル基、および、シクロデカジエン等の単環式不飽和炭化水素基;ビシクロ[2.2.1]ヘプチル基、ビシクロ[2.2.2]オクチル基、トリシクロ[5.2.1.02,6]デシル基、トリシクロ[3.3.1.13,7]デシル基、テトラシクロ[6.2.1.13,6.02,7]ドデシル基、および、アダマンチル基等の多環式飽和炭化水素基;等が挙げられる。
 炭素数6~20の1価の芳香族炭化水素基としては、例えば、フェニル基、2,6-ジエチルフェニル基、ナフチル基、および、ビフェニル基等が挙げられ、炭素数6~12のアリール基(特にフェニル基)が好ましい。
 ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、および、ヨウ素原子等が挙げられ、中でも、フッ素原子、塩素原子、または、臭素原子が好ましい。
 一方、R~Rが示す炭素数1~6のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、および、n-ヘキシル基等が挙げられる。
In the general formulas (Ar-1) to (Ar-5), Z 1 , Z 2 and Z 3 are each independently a hydrogen atom, a monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms, A monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms, a monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms, a halogen atom, a cyano group, a nitro group, —NR 6 R 7 , or —SR And R 6 to R 8 each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and Z 1 and Z 2 may be bonded to each other to form an aromatic ring.
The monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms is preferably an alkyl group having 1 to 15 carbon atoms, more preferably an alkyl group having 1 to 8 carbon atoms, a methyl group, an ethyl group, an isopropyl group, a tert group, -A pentyl group (1,1-dimethylpropyl group), a tert-butyl group, or a 1,1-dimethyl-3,3-dimethyl-butyl group is more preferable, and a methyl group, an ethyl group, or a tert-butyl group Is particularly preferred.
Examples of the monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclodecyl group, methylcyclohexyl group, and Monocyclic saturated hydrocarbon groups such as ethylcyclohexyl group; cyclobutenyl group, cyclopentenyl group, cyclohexenyl group, cycloheptenyl group, cyclooctenyl group, cyclodecenyl group, cyclopentadienyl group, cyclohexadienyl group, cyclooctadienyl group, And monocyclic unsaturated hydrocarbon group such as cyclodecadiene; bicyclo [2.2.1] heptyl group, bicyclo [2.2.2] octyl group, tricyclo [5.2.1.0 2,6 ] Decyl group, tricyclo [3.3.1.1 3,7 ] decyl group, tetracyclyl B [6.2.1.1 3,6 . 0 2,7 ] dodecyl group and polycyclic saturated hydrocarbon group such as adamantyl group; and the like.
Examples of the monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms include a phenyl group, a 2,6-diethylphenyl group, a naphthyl group, and a biphenyl group, and an aryl group having 6 to 12 carbon atoms. (Especially phenyl group) is preferable.
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Among them, a fluorine atom, a chlorine atom, or a bromine atom is preferable.
On the other hand, examples of the alkyl group having 1 to 6 carbon atoms represented by R 6 to R 8 include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group. Group, n-pentyl group, n-hexyl group and the like.
 また、上記一般式(Ar-2)および(Ar-3)中、AおよびAは、それぞれ独立に、-O-、-N(R)-、-S-、および、-CO-からなる群から選択される基を表し、Rは、水素原子または置換基を表す。
 Rが示す置換基としては、上記一般式(Ar-1)中のYが有していてもよい置換基と同様の基が挙げられる。
In the general formulas (Ar-2) and (Ar-3), A 3 and A 4 are each independently —O—, —N (R 9 ) —, —S—, and —CO—. And R 9 represents a hydrogen atom or a substituent.
Examples of the substituent represented by R 9 include the same groups as the substituents that Y 1 in the general formula (Ar-1) may have.
 また、上記一般式(Ar-2)中、Xは、水素原子または置換基が結合していてもよい第14~16族の非金属原子を表す。
 また、Xが示す第14~16族の非金属原子としては、例えば、酸素原子、硫黄原子、置換基を有する窒素原子、および、置換基を有する炭素原子が挙げられ、置換基としては、例えば、アルキル基、アルコキシ基、アルキル置換アルコキシ基、環状アルキル基、アリール基(例えば、フェニル基、ナフチル基等)、シアノ基、アミノ基、ニトロ基、アルキルカルボニル基、スルホ基、および、水酸基等が挙げられる。
In the general formula (Ar-2), X represents a hydrogen atom or a non-metal atom of Groups 14 to 16 to which a substituent may be bonded.
Examples of the non-metal atoms of Group 14 to 16 represented by X include an oxygen atom, a sulfur atom, a nitrogen atom having a substituent, and a carbon atom having a substituent. Examples of the substituent include Alkyl group, alkoxy group, alkyl-substituted alkoxy group, cyclic alkyl group, aryl group (eg, phenyl group, naphthyl group, etc.), cyano group, amino group, nitro group, alkylcarbonyl group, sulfo group, hydroxyl group, etc. Can be mentioned.
 また、上記一般式(Ar-3)中、LおよびLは、それぞれ独立に、単結合、-CO-O-、-C(=S)O-、-CR-、-CR-CR-、-O-CR-、-CR-O-CR-、-CO-O-CR-、-O-CO-CR-、-CR-O-CO-CR-、-CR-CO-O-CR-、-NR-CR-、または、-CO-NR-を表す。R、R、RおよびRは、それぞれ独立に、水素原子、フッ素原子、または、炭素数1~4のアルキル基を表す。 In the general formula (Ar-3), L 7 and L 8 are each independently a single bond, —CO—O—, —C (═S) O—, —CR 1 R 2 —, —CR. 1 R 2 —CR 3 R 4 —, —O—CR 1 R 2 —, —CR 1 R 2 —O—CR 3 R 4 —, —CO—O—CR 1 R 2 —, —O—CO—CR 1 R 2 —, —CR 1 R 2 —O—CO—CR 3 R 4 —, —CR 1 R 2 —CO—O—CR 3 R 4 —, —NR 1 —CR 2 R 3 —, or — CO—NR 1 — is represented. R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom, a fluorine atom or an alkyl group having 1 to 4 carbon atoms.
 また、上記一般式(Ar-3)中、SPおよびSPは、それぞれ独立に、単結合、炭素数1~12の直鎖状もしくは分岐状のアルキレン基、または、炭素数1~12の直鎖状もしくは分岐状のアルキレン基を構成する-CH-の1個以上が-O-、-S-、-NH-、-N(Q)-、もしくは、-CO-に置換された2価の連結基を表し、Qは、置換基を表す。置換基としては、上記一般式(Ar-1)中のYが有していてもよい置換基と同様の基が挙げられる。 In the general formula (Ar-3), each of SP 3 and SP 4 is independently a single bond, a linear or branched alkylene group having 1 to 12 carbon atoms, or a group having 1 to 12 carbon atoms. 2 in which one or more of —CH 2 — constituting a linear or branched alkylene group is substituted with —O—, —S—, —NH—, —N (Q) —, or —CO—. Represents a valent linking group, and Q represents a substituent. Examples of the substituent include the same groups as the substituents that Y 1 in the general formula (Ar-1) may have.
 また、上記一般式(Ar-3)中、PおよびPは、それぞれ独立に1価の有機基を表し、重合性基が好ましい。重合性基の例は、上述のPおよびPに関連して説明した通りである。ただし、上述の通りMGが、一般式(Ar-3)で表される芳香環である場合は、PおよびPならびに一般式(Ar-3)中のPおよびPの少なくとも1つが重合性基を表す。 In the general formula (Ar-3), P 3 and P 4 each independently represent a monovalent organic group, and a polymerizable group is preferable. Examples of the polymerizable group are as described in connection with P 1 and P 2 described above. However, as described above, when MG is an aromatic ring represented by the general formula (Ar-3), at least one of P 1 and P 2 and P 3 and P 4 in the general formula (Ar-3) is Represents a polymerizable group.
 また、上記一般式(Ar-4)~(Ar-5)中、Axは、芳香族炭化水素環および芳香族複素環からなる群から選ばれる少なくとも1つの芳香環を有する、炭素数2~30の有機基を表す。
 また、上記一般式(Ar-4)~(Ar-5)中、Ayは、水素原子、置換基を有していてもよい炭素数1~6のアルキル基、または、芳香族炭化水素環および芳香族複素環からなる群から選択される少なくとも1つの芳香環を有する、炭素数2~30の有機基を表す。
 ここで、AxおよびAyにおける芳香環は、置換基を有していてもよく、AxとAyとが結合して環を形成していてもよい。
 また、Qは、水素原子、または、置換基を有していてもよい炭素数1~6のアルキル基を表す。
 AxおよびAyとしては、特許文献3(国際公開第2014/010325号)の段落[0039]~[0095]に記載された基が挙げられる。
 また、Qが示す炭素数1~6のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、および、n-ヘキシル基等が挙げられ、置換基としては、上記一般式(Ar-1)中のYが有していてもよい置換基と同様の基が挙げられる。
In the general formulas (Ar-4) to (Ar-5), Ax has at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring, and has 2 to 30 carbon atoms. Represents an organic group.
In the general formulas (Ar-4) to (Ar-5), Ay represents a hydrogen atom, an optionally substituted alkyl group having 1 to 6 carbon atoms, an aromatic hydrocarbon ring, and An organic group having 2 to 30 carbon atoms and having at least one aromatic ring selected from the group consisting of aromatic heterocycles.
Here, the aromatic ring in Ax and Ay may have a substituent, and Ax and Ay may combine to form a ring.
Q 3 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent.
Examples of Ax and Ay include groups described in paragraphs [0039] to [0095] of Patent Document 3 (International Publication No. 2014/010325).
Examples of the alkyl group having 1 to 6 carbon atoms represented by Q 3 include, for example, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n -Pentyl group, n-hexyl group and the like can be mentioned, and examples of the substituent include the same groups as the substituent which Y 1 in the general formula (Ar-1) may have.
 上記一般式(W)で表される液晶化合物の好ましい例を以下に示すが、これらの液晶化合物に限定されない。なお、下記式中の1,4-シクロヘキシレン基は、いずれもトランス-1,4-シクロヘキシレン基である。また、下記式中nは1~12の整数を表す。 Preferred examples of the liquid crystal compound represented by the general formula (W) are shown below, but are not limited to these liquid crystal compounds. Note that all 1,4-cyclohexylene groups in the following formulas are trans-1,4-cyclohexylene groups. In the following formula, n represents an integer of 1 to 12.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005

 なお、上記式中、「*」は結合位置を表す。
Figure JPOXMLDOC01-appb-C000005

In the above formula, “*” represents a bonding position.
Figure JPOXMLDOC01-appb-C000006

 なお、上記式II-2-8およびII-2-9中のアクリロイルオキシ基に隣接する基は、プロピレン基(メチル基がエチレン基に置換した基)を表し、メチル基の位置が異なる位置異性体の混合物を表す。
Figure JPOXMLDOC01-appb-C000006

In the above formulas II-2-8 and II-2-9, the group adjacent to the acryloyloxy group represents a propylene group (a group in which a methyl group is substituted with an ethylene group), and is a regioisomer having a different methyl group position. Represents a mixture of bodies.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 重合性液晶組成物中、重合性液晶化合物の含有量は、重合性液晶組成物中の液晶化合物の全質量に対して、50~100質量%が好ましく、60~98質量%がより好ましく、65~95質量%がさらに好ましい。
 なお、上記液晶化合物の全質量とは、重合性液晶組成物が非重合性の液晶化合物をも含む場合は、その質量をも算入した質量である。
 重合性液晶化合物を2種以上使用する場合は、その合計含有量は、上記範囲内が好ましい。
In the polymerizable liquid crystal composition, the content of the polymerizable liquid crystal compound is preferably 50 to 100% by mass, more preferably 60 to 98% by mass, with respect to the total mass of the liquid crystal compound in the polymerizable liquid crystal composition, 65 More preferably, it is 95% by mass.
In addition, the total mass of the liquid crystal compound is a mass including the mass when the polymerizable liquid crystal composition also includes a non-polymerizable liquid crystal compound.
When using 2 or more types of polymeric liquid crystal compounds, the total content is preferably within the above range.
 重合性液晶組成物中、重合性液晶化合物の含有量は、重合性液晶組成物の全固形分の質量に対して、50~99.99質量%が好ましく、65~99.9質量%がより好ましく、80~99.5質量%がさらに好ましい。
 重合性液晶化合物を2種以上使用する場合は、その合計含有量は、上記範囲内が好ましい。
 なお、全固形分とは、光学異方性層を形成する成分を意図し、溶剤は含まれない。また、光学異方性層を形成する成分であれば、その性状が液体状であっても、固形分とみなす。
In the polymerizable liquid crystal composition, the content of the polymerizable liquid crystal compound is preferably 50 to 99.99% by mass and more preferably 65 to 99.9% by mass with respect to the total solid content of the polymerizable liquid crystal composition. 80 to 99.5% by mass is more preferable.
When using 2 or more types of polymeric liquid crystal compounds, the total content is preferably within the above range.
The total solid content means a component that forms an optically anisotropic layer, and does not include a solvent. Moreover, if it is a component which forms an optically anisotropic layer, even if the property is a liquid form, it will be considered as solid content.
<光重合開始剤>
 重合性液晶組成物は、光重合開始剤を含むのが好ましい。
 使用する重合開始剤は、紫外線照射によって重合反応を開始可能な光重合開始剤が好ましい。
 光重合開始剤としては、例えば、オキシムエステル系重合開始剤、α-カルボニル系重合開始剤(例えば、米国特許第2367661号、同2367670号の各明細書記載)、アシロインエーテル系重合開始剤(例えば、米国特許第2448828号明細書記載)、α-炭化水素置換芳香族アシロイン系重合開始剤(例えば、米国特許第2722512号明細書記載)、多核キノン系重合開始剤(例えば、米国特許第3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせた重合開始剤(例えば、米国特許第3549367号明細書記載)、アクリジンおよびフェナジン系重合開始剤(例えば、特開昭60-105667号公報、米国特許第4239850号明細書記載)、オキサジアゾール系重合開始剤(例えば、米国特許第4212970号明細書記載)、および、アシルフォスフィンオキシド系重合開始剤(例えば、特公昭63-40799号公報、特公平5-29234号公報、特開平10-95788号公報、特開平10-29997号公報記載)等が挙げられる。
 中でも、露光された際に均一に硬化が進行し、より配向性に優れる光学異方性層を得られる点から、オキシムエステル系重合開始剤が好ましい。
 重合性液晶組成物中、光重合開始剤の含有量は、重合性液晶組成物中の重合性液晶化合物の全質量に対して、0.01~20質量%が好ましく、0.1~8質量%がより好ましい。
 重合開始剤は、1種単独で使用してもよく、2種以上使用してもよい。
 重合開始剤を2種以上使用する場合は、その合計含有量は、上記範囲内が好ましい。
<Photopolymerization initiator>
The polymerizable liquid crystal composition preferably contains a photopolymerization initiator.
The polymerization initiator used is preferably a photopolymerization initiator capable of initiating a polymerization reaction by ultraviolet irradiation.
Examples of the photopolymerization initiator include oxime ester polymerization initiators, α-carbonyl polymerization initiators (for example, described in the specifications of US Pat. Nos. 2,367,661 and 2,367,670), acyloin ether polymerization initiators ( For example, U.S. Pat. No. 2,448,828), α-hydrocarbon-substituted aromatic acyloin-based polymerization initiator (for example, U.S. Pat. No. 2,722,512), polynuclear quinone-based polymerization initiator (for example, U.S. Pat. No. 3,046,127). No. 2951758), a polymerization initiator comprising a combination of triarylimidazole dimer and p-aminophenyl ketone (for example, U.S. Pat. No. 3,549,367), acridine and phenazine polymerization initiator ( For example, JP-A-60-105667, US Pat. No. 4,239,850 Oxadiazole-based polymerization initiator (for example, described in US Pat. No. 4,221,970), and acylphosphine oxide-based polymerization initiator (for example, Japanese Patent Publication No. 63-40799, Japanese Patent Publication No. 5) -29234, JP-A-10-95788, JP-A-10-29997) and the like.
Among these, an oxime ester polymerization initiator is preferable from the viewpoint that the curing proceeds uniformly when exposed and an optically anisotropic layer having more excellent orientation can be obtained.
In the polymerizable liquid crystal composition, the content of the photopolymerization initiator is preferably 0.01 to 20% by mass, and preferably 0.1 to 8% by mass with respect to the total mass of the polymerizable liquid crystal compound in the polymerizable liquid crystal composition. % Is more preferable.
A polymerization initiator may be used individually by 1 type, and may be used 2 or more types.
When using 2 or more types of polymerization initiators, the total content is preferably within the above range.
<界面活性剤>
 重合性液晶組成物は、未硬化層を形成した際の空気界面側の表面を平滑に保ち、より優れた配向性の光学異方性層を得る点から、界面活性剤を含むのが好ましい。
 このような界面活性剤としては、添加量に対するレベリング効果が高い理由から、フッ素系界面活性剤またはケイ素系界面活性剤が好ましく、泣き出し(ブルーム、ブリード)を起こしにくい観点から、フッ素系界面活性剤がより好ましい。
 界面活性剤としては、例えば、特開2007-069471号公報の段落[0079]~[0102]の記載に記載された化合物、特開2013-047204号公報に記載された一般式(I)で表される化合物(特に段落[0020]~[0032]に記載された化合物)、特開2012-211306号公報に記載された一般式(I)で表される化合物(特に段落[0022]~[0029]に記載された化合物)、特開2002-129162号公報に記載された一般式(I)で表される液晶配向促進剤(特に段落[0076]~[0078]および段落[0082]~[0084]に記載された化合物)、並びに、特開2005-099248号公報に記載された一般式(I)、(II)および(III)で表される化合物(特に段落[0092]~[0096]に記載された化合物)等が挙げられる。
<Surfactant>
The polymerizable liquid crystal composition preferably contains a surfactant from the viewpoint of maintaining a smooth surface on the air interface side when an uncured layer is formed and obtaining an optically anisotropic layer having better orientation.
As such a surfactant, a fluorine-based surfactant or a silicon-based surfactant is preferable because of its high leveling effect with respect to the amount added. From the viewpoint of preventing crying (bloom, bleed), the fluorine-based surfactant is used. An agent is more preferable.
Examples of the surfactant include compounds described in paragraphs [0079] to [0102] of JP-A-2007-069471, and compounds represented by general formula (I) described in JP-A-2013-047204. Compounds (especially compounds described in paragraphs [0020] to [0032]), compounds represented by general formula (I) described in JP 2012-211306 A (particularly paragraphs [0022] to [0029] And the liquid crystal alignment accelerator represented by the general formula (I) described in JP-A No. 2002-129162 (particularly, paragraphs [0076] to [0078] and paragraphs [0082] to [0084) And the compounds represented by the general formulas (I), (II) and (III) described in JP-A-2005-099248 (particularly the step) [0092] - the compound described in [0096]), and the like.
<溶剤>
 重合性液晶組成物は、未硬化層の形成時に粘度を下げる等の製造適性を改良するため、溶剤を含んでいてもよい。
 溶剤としては特に限定はされないが、ケトン(シクロペンタノン等の環状ケトンを含む)、エステル、エーテル、アルコール、アルカン、トルエン、クロロホルム、および、メチレンクロライドからなる群の少なくとも1種から選択されるのが好ましく、ケトン、エステル、エーテル、アルコール、および、アルカンからなる群の少なくとも1種から選択されるのがより好ましく、ケトン、エステル、エーテル、および、アルコールからなる群の少なくとも1種から選択されるのがさらに好ましい。
<Solvent>
The polymerizable liquid crystal composition may contain a solvent in order to improve the production suitability such as lowering the viscosity when forming the uncured layer.
The solvent is not particularly limited, but is selected from at least one selected from the group consisting of ketones (including cyclic ketones such as cyclopentanone), esters, ethers, alcohols, alkanes, toluene, chloroform, and methylene chloride. More preferably, it is selected from at least one member selected from the group consisting of ketones, esters, ethers, alcohols, and alkanes, and is selected from at least one member selected from the group consisting of ketones, esters, ethers, and alcohols. Is more preferable.
<その他の成分>
 重合性液晶化合物は、上述した以外のその他の成分を含んでいてもよい。
 その他の成分として、例えば、熱重合開始剤を含んでいてもよい。
 他にも、例えば、光学異方性層の配向性の調整等の点から、カイラル剤等を使用してもよい。
 また、重合性液晶組成物の粘度、相転移温度、配向均一性の調整、光学異方性層の膜物性、および、光学特性の調整等の観点から、非重合性の液晶化合物を使用してもよい。非重合性の液晶化合物は、低分子液晶化合物であってもよい。また、非重合性の液晶化合物は、主鎖型液晶高分子または側鎖型液晶高分子であってもよい。
 重合性液晶組成物のポットライフ付与、および、光学異方性層の耐久性向上等の観点から、重合禁止剤、酸化防止剤、および、紫外線吸収剤等を使用してもよい。
 さらなる機能付与、液物性の調整、および、膜物性の調整等の観点から、可塑剤、レターデーション調整剤、二色性色素、蛍光色素、フォトクロミック色素、サーモクロミック色素、光異性化材料、光二量化材料、ナノ粒子、および、チキソ剤等を添加してもよい。
<Other ingredients>
The polymerizable liquid crystal compound may contain other components other than those described above.
As other components, for example, a thermal polymerization initiator may be included.
In addition, for example, a chiral agent or the like may be used from the viewpoint of adjusting the orientation of the optically anisotropic layer.
In addition, from the viewpoints of adjusting the viscosity, phase transition temperature, alignment uniformity of the polymerizable liquid crystal composition, film properties of the optically anisotropic layer, and adjusting the optical properties, a non-polymerizable liquid crystal compound is used. Also good. The non-polymerizable liquid crystal compound may be a low molecular liquid crystal compound. The non-polymerizable liquid crystal compound may be a main chain type liquid crystal polymer or a side chain type liquid crystal polymer.
From the viewpoints of imparting pot life of the polymerizable liquid crystal composition and improving the durability of the optically anisotropic layer, a polymerization inhibitor, an antioxidant, an ultraviolet absorber, and the like may be used.
From the viewpoints of further functionalization, adjustment of liquid properties, and adjustment of film properties, plasticizers, retardation adjusting agents, dichroic dyes, fluorescent dyes, photochromic dyes, thermochromic dyes, photoisomerization materials, photodimerization Materials, nanoparticles, thixotropic agents and the like may be added.
 このような重合性液晶組成物を用いて形成される未硬化層は、スメクチック相とネマチック相との相転移温度が80℃以下となるのが好ましく、例えば、フィルムコントラストおよびパネルコントラストがより良好となる観点から70℃以上80℃未満となるのがより好ましい。 The uncured layer formed using such a polymerizable liquid crystal composition preferably has a phase transition temperature between a smectic phase and a nematic phase of 80 ° C. or lower, for example, better film contrast and panel contrast. From such a viewpoint, it is more preferably 70 ° C. or higher and lower than 80 ° C.
〔光学異方性層〕
 本発明の製造方法で製造される光学異方性層の厚みは特に限定されないが、0.1~10μmが好ましく、0.5~5μmがより好ましい。
 本発明の製造方法で製造される光学異方性層は、スメクチック相が固定化されてなる層であるのが好ましい。
(Optically anisotropic layer)
The thickness of the optically anisotropic layer produced by the production method of the present invention is not particularly limited, but is preferably 0.1 to 10 μm, and more preferably 0.5 to 5 μm.
The optically anisotropic layer produced by the production method of the present invention is preferably a layer in which a smectic phase is fixed.
 光学異方性層の好適様態として、ポジティブAプレートが挙げられる。ポジティブAプレートを得るには、棒状の重合性液晶化合物を水平配向させて得る方法がある。さらに、その面内レターデーションRe(550)を100~160nm(好ましくは120~150nm)とすると、正の一軸性λ/4プレートとして好適に使用できる。また、Re(550)を250~300nmの範囲として、正の一軸性λ/2プレートとして使用できる。ここで、Re(550)は、光学異方性層の波長550nmにおける面内レターデーションを表す。面内レターデーションの値は、AxoScan OPMF-1(オプトサイエンス社製)を用いて測定できる。 As a preferred embodiment of the optically anisotropic layer, a positive A plate can be mentioned. In order to obtain the positive A plate, there is a method in which a rod-like polymerizable liquid crystal compound is horizontally aligned. Further, when the in-plane retardation Re (550) is 100 to 160 nm (preferably 120 to 150 nm), it can be suitably used as a positive uniaxial λ / 4 plate. Further, Re (550) can be used as a positive uniaxial λ / 2 plate with a range of 250 to 300 nm. Here, Re (550) represents in-plane retardation of the optically anisotropic layer at a wavelength of 550 nm. The value of in-plane retardation can be measured using AxoScan OPMF-1 (manufactured by Opto Science).
 光学異方性層の他の好適様態として、ポジティブCプレートが挙げられる。ポジティブCプレートを得るには、棒状の重合性液晶化合物を垂直配向させて得る方法がある。その厚さ方向レターデーションRth(550)は、例えば、20~200nmであり、種々の光学補償機能および/または視野角向上機能等を付与する観点から、50~120nmが好ましい。 Another preferred embodiment of the optically anisotropic layer is a positive C plate. There is a method for obtaining a positive C plate by vertically aligning a rod-like polymerizable liquid crystal compound. The thickness direction retardation Rth (550) is, for example, 20 to 200 nm, and is preferably 50 to 120 nm from the viewpoint of imparting various optical compensation functions and / or viewing angle enhancement functions.
 その他にも、光学異方性層は、ネガティブAプレートまたはネガティブCプレート等であってもよい。 In addition, the optically anisotropic layer may be a negative A plate or a negative C plate.
 なお、本明細書において、Aプレートは以下のように定義される。
 Aプレートは、ポジティブAプレート(正のAプレート)とネガティブAプレート(負のAプレート)との2種があり、フィルム面内の遅相軸方向(面内での屈折率が最大となる方向)の屈折率をnx、面内の遅相軸と面内で直交する方向の屈折率をny、厚み方向の屈折率をnzとしたとき、ポジティブAプレートは式(A1)の関係を満たすものであり、ネガティブAプレートは式(A2)の関係を満たすものである。なお、ポジティブAプレートはRthが正の値を示し、ネガティブAプレートはRthが負の値を示す。
 式(A1)  nx>ny≒nz
 式(A2)  ny<nx≒nz
 なお、上記「≒」とは、両者が完全に同一である場合だけでなく、両者が実質的に同一である場合も包含する。「実質的に同一」とは、例えば、(ny-nz)×d(ただし、dはフィルムの厚みである)が、-10~10nm、好ましくは-5~5nmの場合も「ny≒nz」に含まれ、(nx-nz)×dが、-10~10nm、好ましくは-5~5nmの場合も「nx≒nz」に含まれる。
 Cプレートは、ポジティブCプレート(正のCプレート)とネガティブCプレート(負のCプレート)との2種があり、ポジティブCプレートは式(C1)の関係を満たすものであり、ネガティブCプレートは式(C2)の関係を満たすものである。なお、ポジティブCプレートはRthが負の値を示し、ネガティブCプレートはRthが正の値を示す。
 式(C1)  nz>nx≒ny
 式(C2)  nz<nx≒ny
 なお、上記「≒」とは、両者が完全に同一である場合だけでなく、両者が実質的に同一である場合も包含する。「実質的に同一」とは、例えば、(nx-ny)×d(ただし、dはフィルムの厚みである)が、0~10nm、好ましくは0~5nmの場合も「nx≒ny」に含まれる。
In the present specification, the A plate is defined as follows.
There are two types of A plates, positive A plate (positive A plate) and negative A plate (negative A plate), and the slow axis direction in the film plane (the direction in which the refractive index in the plane is maximum) ) Is nx, the refractive index in the direction orthogonal to the in-plane slow axis is ny, and the refractive index in the thickness direction is nz, the positive A plate satisfies the relationship of the formula (A1) The negative A plate satisfies the relationship of the formula (A2). The positive A plate shows a positive value for Rth, and the negative A plate shows a negative value for Rth.
Formula (A1) nx> ny≈nz
Formula (A2) ny <nx≈nz
The above “≈” includes not only the case where both are completely the same, but also the case where both are substantially the same. “Substantially the same” means, for example, that (ny−nz) × d (where d is the film thickness) is −10 to 10 nm, preferably −5 to 5 nm, “ny≈nz”. And (nx−nz) × d is also included in “nx≈nz” when −10 to 10 nm, preferably −5 to 5 nm.
There are two types of C plates, a positive C plate (positive C plate) and a negative C plate (negative C plate). The positive C plate satisfies the relationship of the formula (C1), and the negative C plate is The relationship of Formula (C2) is satisfied. The positive C plate shows a negative value for Rth, and the negative C plate shows a positive value for Rth.
Formula (C1) nz> nx≈ny
Formula (C2) nz <nx≈ny
The above “≈” includes not only the case where both are completely the same, but also the case where both are substantially the same. “Substantially the same” means that, for example, (nx−ny) × d (where d is the thickness of the film) is included in “nx≈ny” when 0 to 10 nm, preferably 0 to 5 nm. It is.
 また、重合性液晶組成物に使用する重合性液晶化合物およびその他の成分の種類および使用量等を調整して、光学異方性の波長分散性を適宜調整できる。 Further, the wavelength dispersion of the optical anisotropy can be appropriately adjusted by adjusting the type and amount of the polymerizable liquid crystal compound and other components used in the polymerizable liquid crystal composition.
 また、光学異方性層は、逆波長分散性を示すのが好ましい。例えば、光学異方性層が、下記式(II)の関係を満たすのが好ましい。
Δn(450)/Δn(550)<1.00 ・・・(II)
 ここで、式(II)中、Δn(450)は、光学異方性層の波長450nmにおける屈折率最大方向とその直交方向の屈折率差を表し、Δn(550)は、光学異方性層の波長550nmにおける屈折率最大方向とその直交方向の屈折率差を表す。
The optically anisotropic layer preferably exhibits reverse wavelength dispersion. For example, the optically anisotropic layer preferably satisfies the relationship of the following formula (II).
Δn (450) / Δn (550) <1.00 (II)
Here, in formula (II), Δn (450) represents the difference in refractive index between the maximum refractive index direction and the orthogonal direction at a wavelength of 450 nm of the optically anisotropic layer, and Δn (550) represents the optically anisotropic layer. Represents the difference in refractive index between the maximum refractive index direction and its orthogonal direction at a wavelength of 550 nm.
〔積層体〕
 上述の通り、未硬化層は、支持体等の上に配置されてもよい。つまり、本発明の製造方法で製造される光学異方性層は、光学異方性層以外の層とともに、積層体を構成していてもよい。
[Laminate]
As described above, the uncured layer may be disposed on a support or the like. That is, the optically anisotropic layer produced by the production method of the present invention may constitute a laminate together with layers other than the optically anisotropic layer.
<支持体>
 支持体としては特に限定はなく、中でも、連続生産を可能とする点で、長尺状のポリマーフィルムが好ましい。
 ポリマーフィルムとしては、ポリプロピレン、および、ノルボルネン系ポリマー等のポリオレフィン・環状オレフィン系樹脂;ポリビニルアルコール;ポリエチレンテレフタレート、ポリブチレンテレフタレート、および、ポリエチレンナフタレート等のポリエステル樹脂;ポリメチルメタクリレート等のポリメタクリル酸エステル・ポリアクリル酸エステル;トリアセチルセルロース、ジアセチルセルロース、および、セルロースアセテートプロピオネート等のセルロースエステル;ポリエチレンナフタレート;ポリカーボネート;並びに、これらの共重合体等をフィルム化したポリマーフィルムが挙げられる。これらのポリマーフィルムは、引張弾性率、曲げ弾性率、平行光線透過率、ヘイズ、光学異方性、光学等方性、易剥離性、および、易接着性等の観点に基づいて適宜選択できる。
<Support>
The support is not particularly limited, and among them, a long polymer film is preferable in terms of enabling continuous production.
Examples of polymer films include polyolefin and cyclic olefin resins such as polypropylene and norbornene polymers; polyvinyl alcohol; polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polymethacrylates such as polymethyl methacrylate. -Polyacrylic acid ester; Cellulose ester such as triacetyl cellulose, diacetyl cellulose, and cellulose acetate propionate; polyethylene naphthalate; polycarbonate; and a polymer film obtained by filming these copolymers. These polymer films can be appropriately selected based on viewpoints such as tensile elastic modulus, flexural elastic modulus, parallel light transmittance, haze, optical anisotropy, optical isotropy, easy peelability, and easy adhesion.
 本発明において、配向が均一な光学異方性層を得る点から、重合性液晶組成物を直接支持体に塗布して光学異方性層を形成する場合における、支持体の塗布側表面は平滑なのが好ましく、その表面粗さRaは3~50nmが好ましい。 In the present invention, from the viewpoint of obtaining an optically anisotropic layer having a uniform orientation, the surface on the coating side of the support is smooth when the polymerizable liquid crystal composition is directly applied to the support to form the optically anisotropic layer. The surface roughness Ra is preferably 3 to 50 nm.
 また、長尺状のポリマーフィルムを用いるにあたっては、製造した積層体を巻き取った巻回体の状態において、積層体の表面同士の形状転写およびブロッキング現象等を防ぐ点から、支持体における重合性液晶組成物を塗布した面とは逆側の表面に、アンチブロッキング処理またはマット処理等を行ってもよい。また、積層体の端部にナーリングを設けてもよい。 In addition, when using a long polymer film, in the state of a wound body obtained by winding up the produced laminate, the polymerizability in the support is prevented from preventing shape transfer and blocking phenomenon between the surfaces of the laminate. Anti-blocking treatment or mat treatment may be performed on the surface opposite to the surface on which the liquid crystal composition is applied. Moreover, you may provide a knurling in the edge part of a laminated body.
 また、支持体は、剥離可能であるのも好ましい。この際、支持体上に光学異方性層を直接設けている場合は支持体と光学異方性層との界面にて剥離できるのが好ましい。また、支持体と光学異方性層との間に後述する配向層および/またはその他の層(中間層)が設けられている場合は、支持体と光学異方性層との間の任意の界面もしくは層内で剥離できるのが好ましい。 It is also preferred that the support is peelable. At this time, when the optically anisotropic layer is directly provided on the support, it is preferable that the layer can be peeled off at the interface between the support and the optically anisotropic layer. In addition, when an orientation layer and / or other layer (intermediate layer) described later is provided between the support and the optically anisotropic layer, an arbitrary layer between the support and the optically anisotropic layer is provided. It is preferable to be able to peel off at the interface or in the layer.
<配向膜>
 配向性がより優れる光学異方性層を得やすいという点から、支持体上に配向膜を設け、さらに配向膜上に上述の光学異方性層を設けるのが好ましい。
<Alignment film>
From the viewpoint that it is easy to obtain an optically anisotropic layer having better orientation, it is preferable to provide an alignment film on the support and further to provide the above-described optically anisotropic layer on the alignment film.
 配向膜には、公知の種々の配向膜を使用でき、例えば、ポリマー等の有機化合物からなるラビング膜(ラビング配向膜)、無機化合物の斜方蒸着膜、マイクログルーブを有する膜、および、有機化合物(例えば、ω-トリコサン酸、ジオクタデシルメチルアンモニウムクロライド、または、ステアリル酸メチル等)を用いてラングミュア・ブロジェット法で形成したLB膜(ラングミュア・ブロジェット膜)を累積させた膜等が挙げられる。
 異物に起因する配向欠陥を未然に防ぐ観点から、配向膜としては、光配向膜も好ましい。
As the alignment film, various known alignment films can be used. For example, a rubbing film (rubbing alignment film) made of an organic compound such as a polymer, an oblique deposition film of an inorganic compound, a film having a microgroove, and an organic compound Examples thereof include films obtained by accumulating LB films (Langmuir-Blodgett films) formed by the Langmuir-Blodgett method using (for example, ω-tricosanoic acid, dioctadecylmethylammonium chloride, or methyl stearylate). .
From the viewpoint of preventing alignment defects caused by foreign substances, a photo-alignment film is also preferable as the alignment film.
 ラビング配向膜としては、例えば、ポリイミド、ポリビニルアルコール、特開平9-152509号公報に記載された重合性基を有するポリマー等の塗膜、並びに、特開2005-97377号公報、特開2005-99228号公報、および、特開2005-128503号公報記載の配向膜等が挙げられる。 Examples of the rubbing alignment film include polyimide, polyvinyl alcohol, a coating film of a polymer having a polymerizable group described in JP-A-9-152509, and JP-A-2005-97377 and JP-A-2005-99228. And alignment films described in JP-A-2005-128503.
 本発明に利用可能な光配向膜に用いられる光配向膜形成用組成物としては、多数の文献等に記載がある。例えば、WO08/056597号公報、特開2008-76839号公報、および、特開2009-109831号公報に記載のアゾ化合物を利用した材料;特開2012-155308号公報、特開2014-26261号公報、特開2014-123091号公報、および、特開2015-26050号公報に記載の光配向性ポリオルガノシロキサン複合材料;特開2012-234146に記載の桂皮酸基含有セルロースエステル材料;特開2012-145660号公報、および、特開2013-238717号公報に記載の光フリース転位反応もしくはその類似反応を利用した材料;特開2016-71286号公報、特表2013-518296号公報、特表2014-533376号公報、特表2016-535158号公報、WO10/150748号公報、WO11/126022号公報、WO13/054784号公報、WO14/104320号公報、および、WO16/002722号公報に記載の光二量化可能な化合物(例えば、シンナメート化合物、カルコン化合物、および/または、クマリン化合物を各種ポリマーにペンダントさせた材料)等を、光配向膜形成用組成物に使用できる。
 中でも、光配向に要する照射エネルギーおよび配向規制力等の観点から、アゾ基の光異性化反応を用いる光配向膜、または、シンナメート化合物の光反応を用いる光配向膜が好ましい。
The composition for forming a photo-alignment film used for the photo-alignment film that can be used in the present invention is described in many documents. For example, materials using azo compounds described in WO08 / 056597, JP2008-76839, and JP2009-109831; JP2012-155308A, JP2014-26261A Photoalignable polyorganosiloxane composite materials described in JP-A-2014-123091 and JP-A-2015-26050; cinnamic acid group-containing cellulose ester materials described in JP-A-2012-234146; No. 145660 and a material utilizing the photofleece rearrangement reaction or similar reaction described in JP2013-238717; JP2016-71286A, JP2013-518296A, JP2014-533376A Gazette, Special Table 2016-535158 , WO10 / 150748, WO11 / 126022, WO13 / 054784, WO14 / 104320, and WO16 / 002722, which are photodimerizable compounds (for example, cinnamate compounds, chalcone compounds, and (Or a material in which a coumarin compound is pendant to various polymers) can be used for the composition for forming a photo-alignment film.
Among these, from the viewpoint of irradiation energy required for photo-alignment, alignment regulating force, and the like, a photo-alignment film using a photoisomerization reaction of an azo group or a photo-alignment film using a photoreaction of a cinnamate compound is preferable.
 配向膜形成用組成物は、必要に応じ、架橋剤、バインダー、可塑剤、増感剤、架橋触媒、密着力調整剤、および、レベリング剤等を含んでいてもよい。 The composition for forming an alignment film may contain a crosslinking agent, a binder, a plasticizer, a sensitizer, a crosslinking catalyst, an adhesion adjusting agent, a leveling agent, and the like, if necessary.
 配向膜の厚みは特に限定はなく、目的に応じて適宜選択でき、例えば、10~1000nmが好ましく、10~300nmがより好ましい。配向膜の表面粗さは先述したとおりである。 The thickness of the alignment film is not particularly limited and can be appropriately selected according to the purpose. For example, the thickness is preferably 10 to 1000 nm, more preferably 10 to 300 nm. The surface roughness of the alignment film is as described above.
<その他の層(中間層)>
 上記積層体は、必要に応じさらにその他の層を含んでもよい。例えば、平滑化層、易接着層、易剥離層、遮光層、着色層、蛍光層、酸素バリア層、および、水蒸気バリア層等が挙げられる。このような層の機能を1つ以上有する層を中間層と総称する。中間層は、上述したような機能以外の機能を有する層であってもよい。
 中間層を、例えば、支持体と光学異方性層との間、および/または、支持体と上述の配向膜との間等に設けて、種々の機能を発現させられる。
<Other layers (intermediate layer)>
The laminate may further include other layers as necessary. Examples include a smoothing layer, an easy adhesion layer, an easy release layer, a light shielding layer, a colored layer, a fluorescent layer, an oxygen barrier layer, and a water vapor barrier layer. A layer having one or more functions of such a layer is collectively referred to as an intermediate layer. The intermediate layer may be a layer having a function other than the functions described above.
The intermediate layer is provided, for example, between the support and the optically anisotropic layer and / or between the support and the alignment film described above, and various functions can be exhibited.
〔偏光板〕
 本発明の製造方法で製造される光学異方性層は、偏光板に組み込んで使用するのも好ましい。言い換えると、上記積層体が偏光板であるのも好ましい。
 上記偏光板は、少なくとも本発明の製造方法で製造される光学異方性層と偏光子とを有する。上記偏光板は、円偏光板であってもよい。
〔Polarizer〕
The optically anisotropic layer produced by the production method of the present invention is preferably incorporated into a polarizing plate. In other words, the laminate is preferably a polarizing plate.
The polarizing plate has at least an optically anisotropic layer and a polarizer manufactured by the manufacturing method of the present invention. The polarizing plate may be a circularly polarizing plate.
<偏光子>
 偏光子は、光を特定の直線偏光に変換する機能を有する部材であれば特に限定されず、従来公知の吸収型偏光子および反射型偏光子を利用できる。
 吸収型偏光子としては、ヨウ素系偏光子、二色性染料を利用した染料系偏光子、およびポリエン系偏光子等が用いられる。ヨウ素系偏光子および染料系偏光子には、塗布型偏光子と延伸型偏光子があり、いずれも適用できるが、ポリビニルアルコールにヨウ素または二色性染料を吸着させ、延伸して作製される偏光子が好ましい。
 また、基材上にポリビニルアルコール層を形成した積層フィルムの状態で延伸および染色を施して偏光子を得る方法として、特許第5048120号公報、特許第5143918号公報、特許第5048120号公報、特許第4691205号公報、特許第4751481号公報、および、特許第4751486号公報等を挙げられ、これらの偏光子に関する公知の技術も好ましく利用できる。
 反射型偏光子としては、複屈折の異なる薄膜を積層した偏光子、ワイヤーグリッド型偏光子、選択反射域を有するコレステリック液晶と1/4波長板とを組み合わせた偏光子等が用いられる。
<Polarizer>
A polarizer will not be specifically limited if it is a member which has the function to convert light into specific linearly polarized light, A conventionally well-known absorption type polarizer and reflection type polarizer can be utilized.
As the absorption polarizer, an iodine polarizer, a dye polarizer using a dichroic dye, a polyene polarizer, or the like is used. Iodine polarizers and dye polarizers include coating polarizers and stretchable polarizers, both of which can be applied. Polarized light produced by adsorbing iodine or dichroic dye to polyvinyl alcohol and stretching. A child is preferred.
Further, as a method for obtaining a polarizer by stretching and dyeing in the state of a laminated film in which a polyvinyl alcohol layer is formed on a substrate, Patent No. 5048120, Patent No. 5143918, Patent No. 5048120, Patent No. No. 4691205, Japanese Patent No. 4751481, Japanese Patent No. 4751486, and the like, and known techniques relating to these polarizers can also be preferably used.
As the reflective polarizer, a polarizer in which thin films having different birefringence are laminated, a wire grid polarizer, a polarizer in which a cholesteric liquid crystal having a selective reflection region and a quarter wavelength plate are combined, or the like is used.
 偏光子の厚みは特に限定されないが、3~60μmが好ましく、5~30μmがより好ましく、5~15μmがさらに好ましい。 The thickness of the polarizer is not particularly limited, but is preferably 3 to 60 μm, more preferably 5 to 30 μm, and further preferably 5 to 15 μm.
<偏光板が有する光学異方性層>
 上記偏光板は、2種以上の光学異方性層を有しているのが好ましい。
 この場合、偏光子が有する、上記2種以上の光学異方性層のうちの少なくとも1種が本発明の製造方法で製造された光学異方性層であればよく、それ以外の光学異方性層は、本発明の製造方法以外の方法で製造された光学異方性層(「その他の光学異方性層」ともいう)であってもよい。
 例えば、偏光板が、ポジティブAプレートとポジティブCプレートとを有しているのが好ましい。この場合、上記ポジティブAプレートは、本発明の製造方法で製造された光学異方性層が好ましく、上記ポジティブCプレートは、本発明の製造方法で製造された光学異方性層またはその他の光学異方性層が好ましい。
 なお、上記ポジティブAプレートとポジティブCプレートとを有する偏光板が、さらに別の光学異方性層を有していてもよい。
<Optically anisotropic layer of polarizing plate>
The polarizing plate preferably has two or more optically anisotropic layers.
In this case, at least one of the two or more optically anisotropic layers of the polarizer may be an optically anisotropic layer produced by the production method of the present invention, and the other optical anisotropic The optical layer may be an optically anisotropic layer (also referred to as “other optically anisotropic layer”) manufactured by a method other than the manufacturing method of the present invention.
For example, the polarizing plate preferably has a positive A plate and a positive C plate. In this case, the positive A plate is preferably an optically anisotropic layer manufactured by the manufacturing method of the present invention, and the positive C plate is an optically anisotropic layer manufactured by the manufacturing method of the present invention or another optical layer. An anisotropic layer is preferred.
Note that the polarizing plate having the positive A plate and the positive C plate may further have another optically anisotropic layer.
 偏光板を製造するにあたって、偏光子上に重合性液晶組成物を塗布する等して、偏光子上に直接、光学異方性層を配置してもよい。
 また、例えば、偏光子と光学異方性層とが、1以上の他の層(接着層またはその他の光学異方性層等)を介して接合されていてもよい。
In producing the polarizing plate, the optically anisotropic layer may be disposed directly on the polarizer by applying a polymerizable liquid crystal composition on the polarizer.
Further, for example, the polarizer and the optically anisotropic layer may be bonded via one or more other layers (such as an adhesive layer or other optically anisotropic layer).
〔画像表示装置〕
 本発明の製造方法で製造される光学異方性層は、画像表示装置に使用されてもよい。光学異方性層は上記偏光板に組み込まれた形態で使用されてもよい。
 上記画像表示装置に用いられる表示素子は特に限定されず、例えば、液晶セル、有機エレクトロルミネッセンス(以下、「EL」と略す。)パネル、および、プラズマディスプレイパネル等が挙げられる。
 これらのうち、液晶セルまたは有機EL表示パネルが好ましい。すなわち、上記画像表示装置としては、表示素子として液晶セルを用いた液晶表示装置、または、表示素子として有機ELパネルを用いた有機EL表示装置が好ましい。
(Image display device)
The optically anisotropic layer produced by the production method of the present invention may be used for an image display device. The optically anisotropic layer may be used in a form incorporated in the polarizing plate.
The display element used in the image display device is not particularly limited, and examples thereof include a liquid crystal cell, an organic electroluminescence (hereinafter abbreviated as “EL”) panel, a plasma display panel, and the like.
Among these, a liquid crystal cell or an organic EL display panel is preferable. That is, as the image display device, a liquid crystal display device using a liquid crystal cell as a display element or an organic EL display device using an organic EL panel as a display element is preferable.
<液晶表示装置>
 画像表示装置の一例である液晶表示装置は、例えば、上述した偏光板と、液晶セルとを有する液晶表示装置が好ましい。
 液晶セルは、VA(Virtical Alignment)モード、OCB(Optical Compensated Bend)モード、IPS(In-Place-Switching)モード、またはTN(Twisted Nematic)等が挙げられる。またそれ以外の方式であってもよい。液晶セルに合わせた光学補償構成および/または輝度向上構成に、本発明の製造方法で製造される光学異方性層を適用して組み合わせて、優れた広視野角特性、黒表示の光漏れ防止、および、高輝度表示等を実現できる。
 なお、上記画像表示装置においては、液晶セルの両側に設けられる偏光板のうち、フロント側の偏光板として上記偏光板を用いるのが好ましく、フロント側およびリア側の偏光板として上記偏光板を用いるのがより好ましい。
<Liquid crystal display device>
As the liquid crystal display device which is an example of the image display device, for example, a liquid crystal display device including the above-described polarizing plate and a liquid crystal cell is preferable.
Examples of the liquid crystal cell include a VA (Virtual Alignment) mode, an OCB (Optical Compensated Bend) mode, an IPS (In-Placed Switching) mode, and a TN (Twisted Nematic). Other methods may also be used. Combined with an optical compensation structure and / or a brightness enhancement structure suitable for a liquid crystal cell by applying an optically anisotropic layer produced by the production method of the present invention, excellent wide viewing angle characteristics and prevention of light leakage of black display In addition, high brightness display and the like can be realized.
In the image display device, among the polarizing plates provided on both sides of the liquid crystal cell, the polarizing plate is preferably used as the polarizing plate on the front side, and the polarizing plate is used as the polarizing plate on the front side and the rear side. Is more preferable.
<有機EL表示装置>
 画像表示装置の一例である有機EL表示装置は、有機EL表示パネルと、有機EL表示パネル上に配置された円偏光板と、を含む有機EL表示装置が好ましい。ここで使用される円偏光板は、上述した偏光板の一形態である。
 上記円偏光板を有することで、外部光が有機ELパネルの電極等に反射して表示コントラストを低下させる現象を抑制し高画質の表示を可能にできる。
 有機ELパネルとしては公知の構成を広く利用できる。また、さらにタッチパネルを具備していてもよい。
<Organic EL display device>
The organic EL display device which is an example of the image display device is preferably an organic EL display device including an organic EL display panel and a circularly polarizing plate disposed on the organic EL display panel. The circularly polarizing plate used here is one form of the polarizing plate described above.
By having the circularly polarizing plate, it is possible to suppress a phenomenon in which external light is reflected by the electrodes of the organic EL panel and the like and lower the display contrast, thereby enabling high-quality display.
As the organic EL panel, known configurations can be widely used. Further, a touch panel may be provided.
 以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、および、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更できる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されない。 Hereinafter, the present invention will be described in more detail based on examples. The materials, amounts used, ratios, processing contents, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limitedly interpreted by the following examples.
[実施例1]
<光配向膜の形成>
[Example 1]
<Formation of photo-alignment film>
(セルロースアシレートフィルム1の作製)
・コア層セルロースアシレートドープの作製
 下記の組成物をミキシングタンクに投入し、攪拌して、各成分を溶解し、コア層セルロースアシレートドープとして用いるセルロースアセテート溶液を調製した。
---------------------------------
コア層セルロースアシレートドープ
---------------------------------
・アセチル置換度2.88のセルロースアセテート    100質量部
・特開2015-227955号公報の実施例に
 記載されたポリエステル化合物B            12質量部
・下記の化合物G                     2質量部
・メチレンクロライド(第1溶媒)           430質量部
・メタノール(第2溶剤)                64質量部
---------------------------------
(Preparation of cellulose acylate film 1)
-Preparation of core layer cellulose acylate dope The following composition was put into a mixing tank and stirred to dissolve each component to prepare a cellulose acetate solution used as the core layer cellulose acylate dope.
---------------------------------
Core layer cellulose acylate dope -------------------------------
-100 parts by weight of cellulose acetate having an acetyl substitution degree of 2.88-12 parts by weight of polyester compound B described in Examples of JP-A-2015-227955-2 parts by weight of the following compound G-Methylene chloride (first solvent) 430 parts by mass, methanol (second solvent) 64 parts by mass -------------------------------
 化合物G Compound G
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
・外層セルロースアシレートドープの作製
 上記のコア層セルロースアシレートドープ90質量部に下記のマット剤溶液を10質量部加え、外層セルロースアシレートドープとして用いるセルロースアセテート溶液を調製した。
---------------------------------
マット剤溶液
---------------------------------
平均粒子サイズ20nmのシリカ粒子
(AEROSIL R972、日本アエロジル(株)製)   2質量部
メチレンクロライド(第1溶媒)             76質量部
メタノール(第2溶剤)                 11質量部
上記のコア層セルロースアシレートドープ          1質量部
---------------------------------
-Preparation of outer layer cellulose acylate dope 10 parts by weight of the following matting agent solution was added to 90 parts by weight of the above core layer cellulose acylate dope to prepare a cellulose acetate solution used as an outer layer cellulose acylate dope.
---------------------------------
Matting agent solution --------------------------------
Silica particles having an average particle size of 20 nm (AEROSIL R972, manufactured by Nippon Aerosil Co., Ltd.) 2 parts by mass Methylene chloride (first solvent) 76 parts by mass Methanol (second solvent) 11 parts by mass The above core layer cellulose acylate dope 1 mass Part --------------------------------
 上記コア層セルロースアシレートドープと上記外層セルロースアシレートドープを平均孔径34μmのろ紙および平均孔径10μmの焼結金属フィルターでろ過した後、上記コア層セルロースアシレートドープとその両側に外層セルロースアシレートドープとを3層同時に流延口から20℃のドラム上に流延した(バンド流延機)。溶剤含有率略20質量%の状態で剥ぎ取り、フィルムの幅方向の両端をテンタークリップで固定し、横方向に延伸倍率1.1倍で延伸しつつ乾燥した。その後、得られたフィルムを熱処理装置のロール間を搬送することにより、さらに乾燥し、厚み40μmの光学フィルムを作製し、これをセルロースアシレートフィルム1とした。セルロースアシレートフィルム1のコア層は厚み36μm、コア層の両側に配置された外層はそれぞれ厚み2μmであった。得られたセルロースアシレートフィルム1の波長550nmにおける面内レターデーションは0nmであった。
 得られたセルロースアシレートフィルム1を形成用仮支持体とした。
The core layer cellulose acylate dope and the outer layer cellulose acylate dope are filtered through a filter paper having an average pore size of 34 μm and a sintered metal filter having an average pore size of 10 μm, and then the core layer cellulose acylate dope and the outer layer cellulose acylate dope on both sides thereof. 3 layers were simultaneously cast on a drum at 20 ° C. from a casting port (band casting machine). The film was peeled off at a solvent content of about 20% by mass, both ends in the width direction of the film were fixed with tenter clips, and dried while being stretched in the transverse direction at a stretch ratio of 1.1. Then, the obtained film was further dried by conveying between rolls of a heat treatment apparatus to produce an optical film having a thickness of 40 μm, which was designated as cellulose acylate film 1. The core layer of the cellulose acylate film 1 had a thickness of 36 μm, and the outer layers disposed on both sides of the core layer had a thickness of 2 μm. The in-plane retardation of the obtained cellulose acylate film 1 at a wavelength of 550 nm was 0 nm.
The obtained cellulose acylate film 1 was used as a temporary support for formation.
(光配向膜の作製)
 形成用仮支持体であるセルロースアシレートフィルム1の表面に、下記の光配向膜形成用塗布液を#2ワイヤーバーで塗布し、60℃の温風で60秒乾燥し、塗膜を作製した。
 750mW/cmの超高圧水銀ランプ(UL750,HOYA CANDEO OPTRONICS株式会社製)を用いて、空気下にて、作製した塗膜に紫外線を垂直に照射した。なお、紫外線の照度はUV-A領域(波長320~380nmの積算)において5mW/cm、照射量はUV-A領域において50mJ/cmとした。
(Preparation of photo-alignment film)
The following coating liquid for forming a photo-alignment film was applied with a # 2 wire bar on the surface of the cellulose acylate film 1 as a temporary support for formation, and dried with 60 ° C. hot air for 60 seconds to prepare a coating film. .
Using a 750 mW / cm 2 ultra-high pressure mercury lamp (UL750, manufactured by HOYA CANDEO OPTRONICS Co., Ltd.), the produced coating film was irradiated with ultraviolet rays vertically in the air. The illuminance of the ultraviolet rays was 5 mW / cm 2 in the UV-A region (integration of wavelengths 320 to 380 nm), and the irradiation amount was 50 mJ / cm 2 in the UV-A region.
---------------------------------
光配向膜形成用塗布液
---------------------------------
下記光配向用素材                     1質量部
水                           16質量部
ブトキシエタノール                   42質量部
プロピレングリコールモノメチルエーテル         42質量部
---------------------------------
---------------------------------
Coating liquid for photo-alignment film formation --------------------------------
The following photo-alignment materials 1 part by weight water 16 parts by weight butoxyethanol 42 parts by weight propylene glycol monomethyl ether 42 parts by weight ----------------------- -------
光配向用素材: Photo-alignment material:
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 <光学異方性層A-1の作製>
 下記の重合性液晶組成物Aをスライドガラスの表面に塗布し、重合性液晶組成物Aから形成された未硬化層を加熱しながら偏光顕微鏡で観察した。その結果、未硬化層の降温時におけるアイソトロピック(等方相)-ネマチック相の転移温度(以下、「TNI」とも表記する。)は128℃、ネマチック相-スメクチック相の相転移温度(以下、「TSmN」とも表記する。)は73℃であった。また、50℃以下の温度に保つことにより、徐々に結晶が発生した。また、昇温時における、TSmNは74℃であった。
 なお、X線回折(X‐ray diffraction:XRD)測定より、このスメクチック相は、層構造と液晶化合物とが直交し、層内で秩序を持たないスメクチックA相であった。
<Preparation of optically anisotropic layer A-1>
The following polymerizable liquid crystal composition A was applied to the surface of a slide glass, and an uncured layer formed from the polymerizable liquid crystal composition A was observed with a polarizing microscope while heating. As a result, the isotropic (isotropic phase) -nematic phase transition temperature (hereinafter also referred to as “TNI”) when the uncured layer is cooled is 128 ° C., the nematic phase-smectic phase transition temperature (hereinafter, “TNI”). "TSmN") was 73 ° C. Further, by maintaining the temperature at 50 ° C. or lower, crystals were gradually generated. Moreover, TSmN at the time of temperature rising was 74 degreeC.
From the X-ray diffraction (XRD) measurement, this smectic phase was a smectic A phase in which the layer structure and the liquid crystal compound were orthogonal to each other, and there was no order in the layer.
---------------------------------
重合性液晶組成物A
---------------------------------
下記液晶化合物L-1                57.5質量部
下記液晶化合物L-2                  30質量部
下記液晶化合物L-3                12.5質量部
光重合開始剤1(下記化合物PI-1)         0.5質量部
下記含フッ素化合物F-1               0.2質量部
シクロペンタノン                 227.1質量部
---------------------------------
---------------------------------
Polymerizable liquid crystal composition A
---------------------------------
The following liquid crystal compound L-1 57.5 parts by mass The following liquid crystal compound L-2 30 parts by mass The following liquid crystal compound L-3 12.5 parts by mass Photopolymerization initiator 1 (the following compound PI-1) 0.5 parts by mass Fluorine compound F-1 0.2 parts by mass cyclopentanone 227.1 parts by mass ------------------------------- -
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 化合物PI-1 Compound PI-1
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 スピンコーターを用いて光配向膜上に重合性液晶組成物Aを塗布し、未硬化層を形成した(層形成工程)。なお、回転数は1000~5000rpmの間で、所望の厚みとなるように調節した。
 次いで、ホットプレートを用いて未硬化層を80℃(第1加熱温度)に加温して、ネマチック相を形成して、その温度で10秒間(第1加熱保持時間)維持した(ネマチック相形成工程)。
 次いで、ホットプレートを用いて、未硬化層を第1加熱温度から降温レート40℃/分で65℃(冷却温度)まで冷却し、スメクチック相を形成した(冷却工程)。
 その後、冷却保持時間を10秒間としてその温度で保持した。
 次いで、65℃(冷却温度)の未硬化層に対して、窒素雰囲気下にて空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて30mJ/cm(波長300~390nmの積算露光量)の紫外線を照射(第1露光処理)して半硬化層とした(第1重合工程)。
 次いで、窒素雰囲気下に保ったまま、ホットプレートを用いて、平均昇温レート100℃/分で、半硬化層を120℃(第2加熱温度)に加温して、さらに第2加熱温度を維持した状態で空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて500mJ/cm(波長300~390nmの積算露光量)の紫外線を照射(第2露光処理)して液晶相の配向状態を固定した(第2重合工程)。これによって、形成用仮支持体、光配向膜、および、光学異方性層A-1を含むフィルムA-1(フィルム1)を得た。
 形成した光学異方性層A-1の厚みは2.3μmであった。また、形成した光学異方性層A-1をAxoScan OPMF-1(オプトサイエンス社製)を用いて光学異方性を測定したところ、Re(550)が144nm、Rth(550)が72nm、Re(450)/Re(550)が0.87であった。
The polymerizable liquid crystal composition A was applied on the photo-alignment film using a spin coater to form an uncured layer (layer forming step). The number of rotations was adjusted between 1000 and 5000 rpm so as to obtain a desired thickness.
Next, the uncured layer was heated to 80 ° C. (first heating temperature) using a hot plate to form a nematic phase, and maintained at that temperature for 10 seconds (first heating holding time) (nematic phase formation) Process).
Next, using a hot plate, the uncured layer was cooled from the first heating temperature to 65 ° C. (cooling temperature) at a temperature drop rate of 40 ° C./min to form a smectic phase (cooling step).
Thereafter, the cooling holding time was set to 10 seconds and held at that temperature.
Next, an uncured layer at 65 ° C. (cooling temperature) is 30 mJ / cm 2 (integrated exposure amount of wavelength 300 to 390 nm) using an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) in a nitrogen atmosphere. Were irradiated with ultraviolet rays (first exposure treatment) to form a semi-cured layer (first polymerization step).
Next, while maintaining the nitrogen atmosphere, the semi-cured layer was heated to 120 ° C. (second heating temperature) at an average temperature rising rate of 100 ° C./min using a hot plate, and the second heating temperature was further increased. With the air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) in the maintained state, ultraviolet rays (second exposure treatment) of 500 mJ / cm 2 (wavelength 300 to 390 nm) are irradiated (second exposure treatment), and the alignment state of the liquid crystal phase Was fixed (second polymerization step). As a result, a film A-1 (film 1) including the temporary support for formation, the photo-alignment film, and the optically anisotropic layer A-1 was obtained.
The thickness of the formed optically anisotropic layer A-1 was 2.3 μm. Further, when the optical anisotropy of the formed optically anisotropic layer A-1 was measured using AxoScan OPMF-1 (manufactured by Optoscience), Re (550) was 144 nm, Rth (550) was 72 nm, Re (450) / Re (550) was 0.87.
[実施例2~19、比較例1~5(光学異方性層A-2~A-24の作製)]
 各手順の条件を後段に示す表1のように変更した以外は、フィルム1の作製手順に従って、光学異方性層A-2~A-24をそれぞれ含むフィルムA-2~A-24(フィルム2~24)を作製した。
 なお、比較例1では、第1露光処理で光学異方性層の作製を完了した。
 比較例2ではネマチック相形成工程の後、冷却工程を経ずに、直ちに露光を行って光学異方性層の作製を完了した。
 得られた光学異方性層の厚み、Re(550)、Rth(550)、および、Re(450)/Re(550)を表1に示す。
[Examples 2 to 19, Comparative Examples 1 to 5 (production of optically anisotropic layers A-2 to A-24)]
Except for changing the conditions of each procedure as shown in Table 1 shown below, according to the production procedure of film 1, films A-2 to A-24 including optically anisotropic layers A-2 to A-24 (films respectively) 2 to 24) were produced.
In Comparative Example 1, the production of the optically anisotropic layer was completed by the first exposure process.
In Comparative Example 2, exposure was performed immediately after the nematic phase forming step without passing through the cooling step to complete the production of the optically anisotropic layer.
Table 1 shows the thickness, Re (550), Rth (550), and Re (450) / Re (550) of the obtained optically anisotropic layer.
[比較例6(光学異方性層A-25の作製)]
<光学異方性層の作製>
 下記の重合性液晶組成物Bを調製した。なお、化合物L-4は特開2011-207765号公報の方法によって合成した。
 次いで、重合性液晶組成物Bをスライドガラスの表面に塗布し、重合性液晶組成物Bから形成された未硬化層を加熱しながら偏光顕微鏡で観察した。その結果、未硬化層の昇温時において、105℃から137℃まで粘性の高い中間相を示した。液晶相の判別は困難であったが、137℃以上で明確なネマチック液晶相を呈した。ネマチック液晶相は180℃以上まであり、降温時においては、61℃までネマチック相を呈し結晶化した。
[Comparative Example 6 (Production of optically anisotropic layer A-25)]
<Preparation of optically anisotropic layer>
The following polymerizable liquid crystal composition B was prepared. Compound L-4 was synthesized by the method described in JP2011-207765A.
Next, the polymerizable liquid crystal composition B was applied to the surface of the slide glass, and the uncured layer formed from the polymerizable liquid crystal composition B was observed with a polarizing microscope while heating. As a result, an intermediate phase having a high viscosity from 105 ° C. to 137 ° C. was exhibited when the uncured layer was heated. Although it was difficult to discriminate the liquid crystal phase, a clear nematic liquid crystal phase was exhibited at 137 ° C. or higher. The nematic liquid crystal phase is up to 180 ° C. or higher. When the temperature is lowered, the nematic liquid crystal phase exhibits a nematic phase up to 61 ° C. and crystallizes.
---------------------------------
重合性液晶組成物B
---------------------------------
下記液晶化合物L-4                29.1質量部
光重合開始剤1(イルガキュア819、BASF社製) 0.87質量部
上記含フッ素化合物F-1              0.02質量部
シクロペンタノン                    70質量部
---------------------------------
---------------------------------
Polymerizable liquid crystal composition B
---------------------------------
Liquid crystal compound L-4 29.1 parts by mass Photopolymerization initiator 1 (Irgacure 819, manufactured by BASF) 0.87 parts by mass Fluorine-containing compound F-1 0.02 parts by mass Cyclopentanone 70 parts by mass ------------------------------
(液晶化合物L-4) (Liquid crystal compound L-4)
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 スピンコーターを用いて光配向膜上に重合性液晶組成物Bを塗布し、未硬化層を形成した(層形成工程)。
 得られた未硬化層を用いて、各手順の条件を後段に示す表1のように変更した以外は、フィルム1の作製手順に従って、光学異方性層A-25を含むフィルムA-25(フィルム25)を作製した。
 得られた光学異方性層の厚み、Re(550)、Rth(550)、および、Re(450)/Re(550)を表1に示す。
The polymerizable liquid crystal composition B was applied on the photo-alignment film using a spin coater to form an uncured layer (layer forming step).
Using the obtained uncured layer, film A-25 (including optically anisotropic layer A-25) was prepared in accordance with the production procedure of film 1 except that the conditions of each procedure were changed as shown in Table 1 shown below. Film 25) was produced.
Table 1 shows the thickness, Re (550), Rth (550), and Re (450) / Re (550) of the obtained optically anisotropic layer.
〔ポジティブCプレートの作製〕
 特開2015-200861号公報の段落[0124]に記載のポジティブCプレートと同様の方法で、形成用仮支持体上に設けたポジティブCプレートC-1を有する転写フィルムC1、形成用仮支持体上に設けたポジティブCプレートC-2を有する転写フィルムC2を作製した。AxoScan OPMF-1(オプトサイエンス社製)を用いて位相差を測定したところ、ポジティブCプレートC-1はRe(550)=0nm、Rth(550)=-112nmであり、ポジティブCプレートC-2はRe(550)=0nm、Rth(550)=-69nmであった。ポジティブCプレートC-1およびポジティブCプレートC-2の位相差値の調整は、厚みを調整して行った。
[Preparation of positive C plate]
Transfer film C1 having positive C plate C-1 provided on temporary support for formation in the same manner as positive C plate described in paragraph [0124] of JP-A-2015-200601, temporary support for formation A transfer film C2 having a positive C plate C-2 provided thereon was prepared. When the phase difference was measured using AxoScan OPMF-1 (manufactured by Optoscience), the positive C plate C-1 had Re (550) = 0 nm and Rth (550) =-112 nm, and the positive C plate C-2 Re (550) = 0 nm and Rth (550) = − 69 nm. The phase difference values of the positive C plate C-1 and the positive C plate C-2 were adjusted by adjusting the thickness.
〔偏光板の作製〕
 支持体であるTD80UL(富士フイルム社製)の表面を、アルカリ鹸化処理した。具体的には、上記支持体を1.5規定の水酸化ナトリウム水溶液に55℃で2分間浸漬し、取り出した支持体を室温の水洗浴槽中で洗浄し、30℃で0.1規定の硫酸を用いて中和した。その後、再度、得られた支持体を室温の水洗浴槽中で洗浄し、さらに100℃の温風で乾燥した。
 続いて、ヨウ素水溶液中で厚み80μmのロール状ポリビニルアルコールフィルムを連続して5倍に延伸し、延伸後のフィルムを乾燥して、厚み20μmの偏光子を得た。
 得られた偏光子と、アルカリ鹸化処理が施された支持体(TD80UL)とを貼り合わせ、片側に偏光子が露出した偏光板0を得た。
 次に、上記偏光板0の偏光子と、光学異方性層A-1とが対向するように、偏光板0とフィルム1とを粘着剤を用いて貼り合わせた。この際、偏光子の吸収軸と光学異方性層A-1の遅相軸とが直交するようにした。
 続いて、貼り合わされたフィルム1から、形成用仮支持体および光配向膜を剥離して、光学異方性層A-1のみを偏光板上に転写した。
 さらに、上記光学異方性層A-1とポジティブCプレートC-1とが対向するように、上記光学異方性層上に粘着剤を介して転写フィルム1を貼り合わせた。続いて、貼り合わされた転写フィルム1から、形成用仮支持体を剥離して、支持体/偏光子/粘着剤/光学異方性層/粘着剤/ポジティブCプレートC-1がこの順で積層された偏光板P-1を得た。
 上記フィルム1の代わりに、光学異方性層A-2~A-25をそれぞれ含むフィルム2~25を用いて、上記と同様の手順に従って、偏光板P-2~P-25を得た。
[Preparation of polarizing plate]
The surface of TD80UL (manufactured by FUJIFILM Corporation) as a support was subjected to alkali saponification treatment. Specifically, the support was immersed in an aqueous 1.5 N sodium hydroxide solution at 55 ° C. for 2 minutes, and the taken-out support was washed in a water bath at room temperature and 0.1 N sulfuric acid at 30 ° C. Was neutralized. Thereafter, the obtained support was washed again in a room temperature water tub and further dried with hot air at 100 ° C.
Subsequently, a rolled polyvinyl alcohol film having a thickness of 80 μm was continuously stretched 5 times in an iodine aqueous solution, and the stretched film was dried to obtain a polarizer having a thickness of 20 μm.
The obtained polarizer and a support (TD80UL) subjected to alkali saponification treatment were bonded together to obtain a polarizing plate 0 with the polarizer exposed on one side.
Next, the polarizing plate 0 and the film 1 were bonded using an adhesive so that the polarizer of the polarizing plate 0 and the optically anisotropic layer A-1 were opposed to each other. At this time, the absorption axis of the polarizer and the slow axis of the optically anisotropic layer A-1 were orthogonal to each other.
Subsequently, the temporary support for formation and the photo-alignment film were peeled off from the laminated film 1, and only the optically anisotropic layer A-1 was transferred onto the polarizing plate.
Further, the transfer film 1 was bonded onto the optically anisotropic layer via an adhesive so that the optically anisotropic layer A-1 and the positive C plate C-1 were opposed to each other. Subsequently, the temporary support for formation is peeled from the bonded transfer film 1, and the support / polarizer / adhesive / optical anisotropic layer / adhesive / positive C plate C-1 is laminated in this order. A polarizing plate P-1 was obtained.
Polarizing plates P-2 to P-25 were obtained according to the same procedure as described above, using films 2 to 25 containing optically anisotropic layers A-2 to A-25, respectively, instead of film 1.
〔液晶表示装置の作製〕
 iPad(登録商標、Apple社製)の液晶セルから視認側の偏光板を剥し、IPSモードの液晶セルとして利用した。
 剥がした偏光板の代わりに、上記で作製した偏光板P-1~P-25を液晶セルに貼合し、液晶表示装置を作製した。
 このとき、液晶セル基板面に対して垂直な方向から観察したとき、各偏光板P-1~P-25中の偏光子の吸収軸と、液晶セル内の液晶層の光軸とが垂直な方向になるように貼り合わせた。
[Production of liquid crystal display device]
The polarizing plate on the viewing side was peeled off from a liquid crystal cell of iPad (registered trademark, manufactured by Apple) and used as an IPS mode liquid crystal cell.
Instead of the peeled polarizing plate, the polarizing plates P-1 to P-25 prepared above were bonded to a liquid crystal cell to prepare a liquid crystal display device.
At this time, when observed from a direction perpendicular to the surface of the liquid crystal cell substrate, the absorption axis of the polarizer in each of the polarizing plates P-1 to P-25 and the optical axis of the liquid crystal layer in the liquid crystal cell are perpendicular to each other. They were pasted together in the direction.
〔評価〕
 表示性能の測定は、市販の液晶視野角、色度特性測定装置Ezcontrast(ELDIM社製)を使用し、上記で作製した液晶表示装置を使用した。なお、作製した液晶表示装置中において、上記で作製した偏光板を貼り合わせた液晶セルを、光学異方性層がバックライト側と反対側になるように、設置して測定を行った。結果を下記表1に示す。
[Evaluation]
For the measurement of display performance, a commercially available liquid crystal viewing angle and chromaticity characteristic measuring device Ezcontrast (manufactured by ELDIM) was used, and the liquid crystal display device produced above was used. Note that in the manufactured liquid crystal display device, the liquid crystal cell in which the polarizing plate prepared above was bonded was placed and measured such that the optically anisotropic layer was on the side opposite to the backlight side. The results are shown in Table 1 below.
<パネルコントラスト>
 上方向(方位角0~175°、5°刻み)および下方向(方位角180~355°、5°刻み)のそれぞれの黒輝度(Cd/m2)の最大値を平均した値(輝度max)を求めた。輝度maxの数値が小さいほど黒表示の光漏れが少なく、パネルコントラストが良いこと示し、下記のA、Bの2段階で評価した。
A:0.70以下
B:0.70を超える
<Panel contrast>
A value obtained by averaging the maximum values of the black luminance (Cd / m 2 ) in the upward direction (azimuth angle 0 to 175 °, in increments of 5 °) and in the downward direction (azimuth angle 180 to 355 ° in increments of 5 °) (luminance max ) The smaller the numerical value of luminance max, the smaller the light leakage of black display and the better the panel contrast, and the evaluation was made in the following two stages A and B.
A: 0.70 or less B: Over 0.70
<フィルムコントラスト>
 テーブル上に、下から順に直下型蛍光管バックライト光源、上側偏光板、試料(上記で作製したフィルムA-1~A-25のいずれか)、下側偏光板、を各面が水平になるように設置した。この時、試料と上側偏光板は回転可能とした。光源から出射し、上側偏光板、試料、下側偏光板と順に透過した光を垂直方向から輝度計(例えば、BM-5A(TOPCON製))を用いて輝度を測定した。なお、上側偏光板と下側偏光板には、それぞれ偏光度99.995%以上のものを使用した。
<Film contrast>
On the table, the direct fluorescent lamp backlight source, the upper polarizing plate, the sample (any one of the films A-1 to A-25 prepared above), and the lower polarizing plate are placed on each side in the order from the bottom. Was installed. At this time, the sample and the upper polarizing plate were rotatable. Luminance was measured from a vertical direction by using a luminance meter (for example, BM-5A (manufactured by TOPCON)) from the light emitted from the light source and sequentially transmitted through the upper polarizing plate, the sample, and the lower polarizing plate. The upper polarizing plate and the lower polarizing plate each had a polarization degree of 99.995% or more.
 測定は、まず試料のない状態で上側偏光板を回転させて最も輝度が暗くなる位置に合わせた(クロスニコルの状態)。
 試料を挿入し、クロスニコル下で試料を回転させて最小となる輝度を測定した。次に上側偏光板と下側偏光板の2枚の偏光板を平行ニコル配置にして、試料を回転させて最大となる輝度を測定した。
 上側偏光板および下側偏光板に起因する輝度漏れの寄与を除去するため、下記式により求められる値を、フィルムのコントラストと定義する。結果を下記表1に示す。
 コントラスト=1/〔{(試料設置時のクロスニコル下における最小輝度)/(試料設置時の平行ニコル下における最大輝度)}-{(試料のない状態でのクロスニコル下における最小輝度)/(試料のない状態での平行ニコル下における最大輝度)}〕
 算出されたコントラストの値に基づき、下記基準に照らしてフィルムコントラストを評価した。なお、上記コントラストの値が大きいほどフィルムコントラストが良好である。
 A:コントラストが10万以上
 B:コントラストが7万以上10万未満
 C:コントラストが4万以上7万未満
 D:コントラストが4万未満
In the measurement, first, the upper polarizing plate was rotated in the absence of the sample, and was adjusted to the position where the luminance was darkest (crossed Nicol state).
The sample was inserted, and the sample was rotated under crossed Nicols to measure the minimum brightness. Next, two polarizing plates, an upper polarizing plate and a lower polarizing plate, were arranged in parallel Nicols, and the sample was rotated to measure the maximum luminance.
In order to remove the contribution of luminance leakage due to the upper polarizing plate and the lower polarizing plate, the value obtained by the following formula is defined as the contrast of the film. The results are shown in Table 1 below.
Contrast = 1 / [{(Minimum luminance under crossed Nicols at sample setting) / (Maximum luminance under parallel Nicol at sample setting)}-{(Minimum luminance under crossed Nicol without sample) / ( Maximum brightness under parallel Nicol without sample)}]
Based on the calculated contrast value, the film contrast was evaluated according to the following criteria. Note that the greater the contrast value, the better the film contrast.
A: Contrast is 100,000 or more B: Contrast is 70,000 or more and less than 100,000 C: Contrast is 40,000 or more and less than 70,000 D: Contrast is less than 40,000
<光学異方性層の耐久性>
 粘着剤を用いて、フィルム1をガラス板上に貼り合わせた。次いで、貼り合わされたフィルム1から形成用仮支持体および光配向膜を剥離して、ガラス板/粘着剤/光学異方性層の順に積層された積層体を得た。この積層体をAxoScan OPMF-1(オプトサイエンス社製)を用いて光学異方性を定量した(Re(550)a)。さらに、同じ積層体を80℃乾燥条件下で500時間経過させた後、経過前と同様にして光学異方性を定量した(Re(550)b)。下記式で算出される位相差変化率に対して、下記A~Cの評価基準で評価を行った。結果を表1に示す。
  (位相差変化率)=|Re(550)a-Re(550)b|÷Re(550)a
 A:位相差変化率が0.02以下である
 B:位相差変化率が0.02より大きく、0.04より小さい
 C:位相差変化率が0.04以上である
<Durability of optically anisotropic layer>
The film 1 was bonded on a glass plate using an adhesive. Next, the temporary support for formation and the photo-alignment film were peeled from the laminated film 1 to obtain a laminated body in which glass plate / adhesive / optically anisotropic layer was laminated in this order. The optical anisotropy of this laminate was quantified using AxoScan OPMF-1 (manufactured by Optoscience) (Re (550) a). Further, after the same laminate was allowed to pass for 500 hours under 80 ° C. dry conditions, the optical anisotropy was quantified in the same manner as before (Re (550) b). The phase difference change rate calculated by the following equation was evaluated according to the following evaluation criteria A to C. The results are shown in Table 1.
(Phase difference change rate) = | Re (550) a−Re (550) b | ÷ Re (550) a
A: Phase difference change rate is 0.02 or less B: Phase difference change rate is larger than 0.02 and smaller than 0.04 C: Phase difference change rate is 0.04 or more
 結果を表1に示す。
 表1中、「上昇温度幅」の欄は、第2加熱処理前後の半硬化層の温度の差を示す。
 「昇温時TSmN温度差」の欄は、第1加熱温度と未硬化層の昇温時におけるTSmNとの温度差を示す。
 「降温時TSmN温度差」の欄は、冷却温度と未硬化層の降温時におけるTSmNとの温度差を示す。
The results are shown in Table 1.
In Table 1, the column “rising temperature range” indicates the temperature difference between the semi-cured layers before and after the second heat treatment.
The column of “temperature rise TSmN temperature difference” indicates the temperature difference between the first heating temperature and TSmN when the uncured layer is heated.
The column “Temperature drop TSmN temperature difference” indicates the temperature difference between the cooling temperature and TSmN when the temperature of the uncured layer is lowered.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 表1に示す結果から、本発明の製造方法によれば、優れた耐久性およびフィルムコントラストを有し、優れたパネルコントラストの画像表示装置を作製できる光学異方性層を得られることが確認された。
 中でも、第1露光処理における露光量が10mJ/cm以上である場合、光学異方性層のフィルムコントラストがより優れることが確認された(実施例9と10との比較)。
 第1露光処理における露光量が30mJ/cm以下である場合、光学異方性層の耐久性がより優れることが確認された(実施例1、11、および、12の比較)。
 冷却工程における降温レートが、80℃/分以下(より好ましくは60℃/分以下)である場合、光学異方性層のフィルムコントラストがより優れることが確認された(実施例17~19の比較)。
 第1露光処理の際の未硬化層の温度と、第2露光処理の際の半硬化層の温度の差が40℃以上である場合、光学異方性層の耐久性がより優れることが確認された(実施例1と3との比較)。
 第2露光処理における露光量が200mJ/cm以上である場合、光学異方性層の耐久性がより優れることが確認された(実施例6と7との比較)。
From the results shown in Table 1, it was confirmed that according to the production method of the present invention, an optically anisotropic layer having excellent durability and film contrast and capable of producing an image display device having excellent panel contrast can be obtained. It was.
Especially, when the exposure amount in a 1st exposure process is 10 mJ / cm < 2 > or more, it was confirmed that the film contrast of an optically anisotropic layer is more excellent (comparison with Example 9 and 10).
When the exposure amount in the first exposure treatment was 30 mJ / cm 2 or less, it was confirmed that the durability of the optically anisotropic layer was more excellent (comparison of Examples 1, 11, and 12).
It was confirmed that the film contrast of the optically anisotropic layer was more excellent when the temperature decreasing rate in the cooling step was 80 ° C./min or less (more preferably 60 ° C./min or less) (Comparison of Examples 17 to 19). ).
When the difference between the temperature of the uncured layer in the first exposure process and the temperature of the semi-cured layer in the second exposure process is 40 ° C. or more, it is confirmed that the durability of the optically anisotropic layer is more excellent. (Comparison between Examples 1 and 3).
When the exposure amount in the second exposure process was 200 mJ / cm 2 or more, it was confirmed that the durability of the optically anisotropic layer was more excellent (comparison with Examples 6 and 7).
[実施例101、102]
〔ポジティブCプレート付き円偏光板の作製〕
 上記で作製した偏光板0の偏光子の吸収軸と、光学異方性層の遅相軸とが45°で交差するように、上記偏光板0の偏光子と上記で作製したフィルム1における光学異方性層の表面とを粘着剤を用いて貼り合わせた。続いて形成用仮支持体および光配向膜を貼り合わされたフィルム1中から剥離して、光学異方性層のみを偏光板0上に転写した。
 さらに、ポジティブCプレートC-2の表面を、粘着剤を用いて上述の光学異方性層の表面上に貼り合わせ、続いて形成用仮支持体を偏光板から剥離して、支持体/偏光子/粘着剤/光学異方性層/粘着剤/ポジティブCプレートC-2がこの順で積層された円偏光板CP-1を得た。
[Examples 101 and 102]
[Production of circular polarizing plate with positive C plate]
The polarizer in the polarizer 0 and the optical in the film 1 prepared above so that the absorption axis of the polarizer of the polarizer 0 prepared above and the slow axis of the optically anisotropic layer intersect at 45 °. The surface of the anisotropic layer was bonded using an adhesive. Subsequently, the temporary support for formation and the photo-alignment film were peeled off from the laminated film 1, and only the optically anisotropic layer was transferred onto the polarizing plate 0.
Further, the surface of the positive C plate C-2 is bonded onto the surface of the optically anisotropic layer using an adhesive, and then the forming temporary support is peeled off from the polarizing plate, and the support / polarization A circularly polarizing plate CP-1 was obtained in which the optical element / adhesive / optically anisotropic layer / adhesive / positive C plate C-2 was laminated in this order.
〔有機EL表示装置の作製〕
 有機EL表示パネル搭載のSAMSUNG社製GALAXY S IV(有機EL表示装置)を分解し、円偏光板を剥離して、円偏光板CP-1をそれぞれ有機EL表示パネル上に貼合し、有機EL表示装置を作製した。
[Production of organic EL display device]
Disassemble the GALAXY S IV (organic EL display device) manufactured by SAMSUNG with an organic EL display panel, peel off the circularly polarizing plate, and paste the circularly polarizing plate CP-1 onto the organic EL display panel. A display device was produced.
〔評価〕
<反射色味>
 分解前の有機EL表示装置と、それぞれの円偏光板に換えた有機EL表示装置とを用い、自然光下での黒表示時のパネル反射色味を正面および極角45°方向から視認により観察して以下の基準で評価した。
 A:分解前の有機ELパネルに比べ、反射色味が同等かよりニュートラルな黒に近い
 B:分解前の有機ELパネルに比べ、色味付きが見られる
[Evaluation]
<Reflection color>
Using the organic EL display device before decomposition and the organic EL display device replaced with each circularly polarizing plate, the panel reflection color at the time of black display under natural light is visually observed from the front and polar angle of 45 °. And evaluated according to the following criteria.
A: Compared to the organic EL panel before disassembly, the reflection color is similar or closer to neutral black. B: Compared to the organic EL panel before disassembly
 結果を表2に示す。
 表中「正面反射」の欄は、正面から視認により観察した際の反射色味の評価結果を示す。
「45°反射」の欄は、極角45°方向から視認により観察した際の反射色味の評価結果を示す。
The results are shown in Table 2.
The column of “frontal reflection” in the table indicates the evaluation result of the reflection color when visually observed from the front.
The column of “45 ° reflection” indicates the evaluation result of the reflection color when observed by visual observation from the polar angle of 45 °.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 表2に示す結果から、本発明の製造方法で得られる光学異方性層は、有機EL表示装置にも好ましく使用できることが確認された。 From the results shown in Table 2, it was confirmed that the optically anisotropic layer obtained by the production method of the present invention can be preferably used in an organic EL display device.

Claims (11)

  1.  重合性液晶化合物を含む未硬化層を形成する工程Aと、
     前記未硬化層に加熱処理を施して、ネマチック相を形成する工程Bと、
     前記ネマチック相を形成した未硬化層に冷却処理を施して、スメクチック相を形成する工程Cと、
     前記スメクチック相を形成した未硬化層に対して、第1露光処理を施し、半硬化層を形成する工程Dと、
     前記第1露光処理時の温度よりも高い温度条件下にて、前記半硬化層に第2露光処理を施し、光学異方性層を形成する工程Eと、を有する光学異方性層の製造方法。
    Step A for forming an uncured layer containing a polymerizable liquid crystal compound,
    A step B of subjecting the uncured layer to a heat treatment to form a nematic phase;
    Step C for forming a smectic phase by subjecting the uncured layer that has formed the nematic phase to a cooling treatment;
    A step D of performing a first exposure treatment on the uncured layer on which the smectic phase has been formed to form a semi-cured layer;
    A step E of forming an optically anisotropic layer by subjecting the semi-cured layer to a second exposure process under a temperature condition higher than the temperature during the first exposure process. Method.
  2.  前記工程Cにおける前記未硬化層の降温速度が、1~100℃/分である、請求項1に記載の光学異方性層の製造方法。 The method for producing an optically anisotropic layer according to claim 1, wherein the temperature-decreasing rate of the uncured layer in the step C is 1 to 100 ° C / min.
  3.  前記工程Cにおける前記未硬化層の降温速度が、1~60℃/分である、請求項1または2に記載の光学異方性層の製造方法。 The method for producing an optically anisotropic layer according to claim 1 or 2, wherein the temperature decrease rate of the uncured layer in the step C is 1 to 60 ° C / min.
  4.  前記工程Cにおいて前記未硬化層の温度が漸減する、請求項1~3のいずれか1項に記載の光学異方性層の製造方法。 The method for producing an optically anisotropic layer according to any one of claims 1 to 3, wherein the temperature of the uncured layer gradually decreases in the step C.
  5.  前記第1露光処理に用いられる光が、紫外線である、請求項1~4のいずれか1項に記載の光学異方性層の製造方法。 The method for producing an optically anisotropic layer according to any one of claims 1 to 4, wherein the light used in the first exposure treatment is ultraviolet light.
  6.  前記第1露光処理における露光量が、1~60mJ/cmである、請求項1~5のいずれか1項に記載の光学異方性層の製造方法。 The method for producing an optically anisotropic layer according to any one of claims 1 to 5, wherein an exposure dose in the first exposure treatment is 1 to 60 mJ / cm 2 .
  7.  前記第1露光処理における露光量が、10~30mJ/cmである、請求項1~6のいずれか1項に記載の光学異方性層の製造方法。 The method for producing an optically anisotropic layer according to any one of claims 1 to 6, wherein an exposure dose in the first exposure treatment is 10 to 30 mJ / cm 2 .
  8.  前記第2露光処理時の温度が前記重合性液晶化合物のスメクチック相とネマチック相との相転移温度よりも高い、請求項1~7のいずれか1項に記載の光学異方性層の製造方法。 The method for producing an optically anisotropic layer according to any one of claims 1 to 7, wherein a temperature during the second exposure treatment is higher than a phase transition temperature between a smectic phase and a nematic phase of the polymerizable liquid crystal compound. .
  9.  前記第1露光処理時の温度と、前記第2露光処理時の温度との差が、20℃以上である、請求項1~8のいずれか1項に記載の光学異方性層の製造方法。 The method for producing an optically anisotropic layer according to any one of claims 1 to 8, wherein a difference between the temperature during the first exposure process and the temperature during the second exposure process is 20 ° C or more. .
  10.  前記第1露光処理時の温度と、前記第2露光処理時の温度との差が、40℃以上である、請求項1~9のいずれか1項に記載の光学異方性層の製造方法。 The method for producing an optically anisotropic layer according to any one of claims 1 to 9, wherein a difference between the temperature during the first exposure process and the temperature during the second exposure process is 40 ° C or more. .
  11.  前記未硬化層がオキシムエステル系重合開始剤を含む、請求項1~10のいずれか1項に記載の光学異方性層の製造方法。 The method for producing an optically anisotropic layer according to any one of claims 1 to 10, wherein the uncured layer contains an oxime ester polymerization initiator.
PCT/JP2019/022783 2018-06-12 2019-06-07 Method for manufacturing optically anisotropic layer WO2019240048A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020207035144A KR102532379B1 (en) 2018-06-12 2019-06-07 Manufacturing method of optically anisotropic layer
JP2020525533A JP7182627B2 (en) 2018-06-12 2019-06-07 Method for producing optically anisotropic layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018111864 2018-06-12
JP2018-111864 2018-06-12

Publications (1)

Publication Number Publication Date
WO2019240048A1 true WO2019240048A1 (en) 2019-12-19

Family

ID=68841956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022783 WO2019240048A1 (en) 2018-06-12 2019-06-07 Method for manufacturing optically anisotropic layer

Country Status (3)

Country Link
JP (1) JP7182627B2 (en)
KR (1) KR102532379B1 (en)
WO (1) WO2019240048A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7128932B1 (en) 2021-04-15 2022-08-31 住友化学株式会社 optical laminate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11635559B2 (en) * 2021-08-19 2023-04-25 Fujifilm Corporation Optical film, circularly polarizing plate, and display device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004318062A (en) * 2003-03-31 2004-11-11 Nitto Denko Corp Manufacturing method of wide band cholesteric liquid crystal film, circular polarizing plate, linear polarizing element, illuminating device and liquid crystal display
JP2006526165A (en) * 2003-04-08 2006-11-16 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Polymerized liquid crystal film having retardation or orientation pattern
JP2008090230A (en) * 2006-10-05 2008-04-17 Fujifilm Corp Optical film, and its manufacturing method and its manufacturing device
JP2008096863A (en) * 2006-10-16 2008-04-24 Dainippon Printing Co Ltd Optical element, liquid crystal display device, and method of manufacturing optical element
JP2009069839A (en) * 2008-10-22 2009-04-02 Dainippon Printing Co Ltd Optical element
JP2009251411A (en) * 2008-04-09 2009-10-29 Nippon Oil Corp Method for manufacturing optical film, and liquid crystal display element using the film
JP2009282374A (en) * 2008-05-23 2009-12-03 Konica Minolta Opto Inc Method for manufacturing optical compensation film
JP2010262098A (en) * 2009-05-01 2010-11-18 Fujifilm Corp Crystal display apparatus
JP2015087472A (en) * 2013-10-29 2015-05-07 日本ゼオン株式会社 Production method of article, and counterfeit preventive medium
JP2015200861A (en) * 2013-09-11 2015-11-12 富士フイルム株式会社 Optically anisotropic layer and production method of the same, laminate and production method of laminate, polarizing plate, liquid crystal display device, and organic electroluminescence display device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003177243A (en) 2001-12-10 2003-06-27 Dainippon Printing Co Ltd Optical element
JP2004145071A (en) 2002-10-25 2004-05-20 Fuji Photo Film Co Ltd Optical retardation plate and its manufacturing method
JP2004191832A (en) 2002-12-13 2004-07-08 Dainippon Printing Co Ltd Optical retardation element, display element provided with the same, and production method of optical retardation element
JP2008009403A (en) 2006-05-30 2008-01-17 Nippon Oil Corp Elliptical polarizing plate, method for production of the same, and liquid crystal display device
CN104030969B (en) * 2006-12-20 2016-09-07 三菱化学株式会社 Oxime ester based compound, Photoepolymerizationinitiater initiater, optical polymerism composition, colour filter and liquid crystal indicator
JP2015127793A (en) * 2013-11-26 2015-07-09 Jnc株式会社 Optical anisotropic material and liquid crystal display
JP6149078B2 (en) * 2014-08-29 2017-06-14 富士フイルム株式会社 Retardation film, production method of retardation film, laminate, composition, polarizing plate and liquid crystal display device
JP6636253B2 (en) 2015-03-25 2020-01-29 林テレンプ株式会社 Retardation film, method for producing the same, and optical member having the retardation film
JP6507072B2 (en) 2015-09-30 2019-04-24 富士フイルム株式会社 Method of manufacturing optically anisotropic layer and method of manufacturing polarizing plate

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004318062A (en) * 2003-03-31 2004-11-11 Nitto Denko Corp Manufacturing method of wide band cholesteric liquid crystal film, circular polarizing plate, linear polarizing element, illuminating device and liquid crystal display
JP2006526165A (en) * 2003-04-08 2006-11-16 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Polymerized liquid crystal film having retardation or orientation pattern
JP2008090230A (en) * 2006-10-05 2008-04-17 Fujifilm Corp Optical film, and its manufacturing method and its manufacturing device
JP2008096863A (en) * 2006-10-16 2008-04-24 Dainippon Printing Co Ltd Optical element, liquid crystal display device, and method of manufacturing optical element
JP2009251411A (en) * 2008-04-09 2009-10-29 Nippon Oil Corp Method for manufacturing optical film, and liquid crystal display element using the film
JP2009282374A (en) * 2008-05-23 2009-12-03 Konica Minolta Opto Inc Method for manufacturing optical compensation film
JP2009069839A (en) * 2008-10-22 2009-04-02 Dainippon Printing Co Ltd Optical element
JP2010262098A (en) * 2009-05-01 2010-11-18 Fujifilm Corp Crystal display apparatus
JP2015200861A (en) * 2013-09-11 2015-11-12 富士フイルム株式会社 Optically anisotropic layer and production method of the same, laminate and production method of laminate, polarizing plate, liquid crystal display device, and organic electroluminescence display device
JP2015087472A (en) * 2013-10-29 2015-05-07 日本ゼオン株式会社 Production method of article, and counterfeit preventive medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7128932B1 (en) 2021-04-15 2022-08-31 住友化学株式会社 optical laminate
JP2022164005A (en) * 2021-04-15 2022-10-27 住友化学株式会社 optical laminate

Also Published As

Publication number Publication date
KR102532379B1 (en) 2023-05-12
JP7182627B2 (en) 2022-12-02
KR20210006958A (en) 2021-01-19
JPWO2019240048A1 (en) 2021-06-10

Similar Documents

Publication Publication Date Title
CN114521212B (en) Liquid crystal composition, optically anisotropic layer, optical film, polarizing plate, and image display device
JP6824405B2 (en) Liquid crystal film, optical laminate, circularly polarizing plate, organic electroluminescence display device
CN110462868B (en) Organic electroluminescent display device, retardation film, and circularly polarizing plate
KR102443875B1 (en) Retardation film, production method of retardation film, laminate, composition, polarizing plate and liquid crystal display device
CN107209310B (en) Multilayer film, use thereof, and method for producing same
WO2018101196A1 (en) Polymerizable liquid crystal composition, optically anisotropic membrane, optical film, polarizing plate, image display device, and organic electroluminescent display device
JP7182533B2 (en) Liquid crystal composition, optically anisotropic layer, optical film, polarizing plate and image display device
JP5723077B1 (en) Retardation plate, elliptically polarizing plate and display device using the same
JP7386256B2 (en) Polymerizable liquid crystal compositions, cured products, optical films, polarizing plates, and image display devices
JPWO2020045216A1 (en) Laminate and image display device
JP7282189B2 (en) Optically anisotropic layer, optical film, polarizing plate and image display device
KR20170120586A (en) Transcription body for optical film, optical film, organic electroluminescence display device, and manufacturing method of optical film
JP7573609B2 (en) Optical film, optical laminate and image display device
CN114450330B (en) Optically anisotropic layer, optical film, polarizing plate, and image display device
CN114502692A (en) Optically anisotropic layer, optical film, polarizing plate, and image display device
JP6507072B2 (en) Method of manufacturing optically anisotropic layer and method of manufacturing polarizing plate
JP7182627B2 (en) Method for producing optically anisotropic layer
KR102467640B1 (en) laminate
WO2018101207A1 (en) Polymerizable liquid crystal composition, optically anisotropic membrane, optical film, polarizing plate, image display device, and organic electroluminescent display device
JP7530964B2 (en) Optically anisotropic layer, optical film, polarizing plate and image display device
CN115717078A (en) Liquid crystal composition, cured liquid crystal layer, optical film, polarizing plate, and image display device
JP7158486B2 (en) Retardation film, method for producing retardation film, polarizing plate, and liquid crystal display device
JP2024103258A (en) Liquid crystal composition, cured liquid crystal layer, optical film and image display device
JP2023073123A (en) Polarizer with phase difference layer and image display device with the same
JP2024124169A (en) Optical laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19820191

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020525533

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20207035144

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19820191

Country of ref document: EP

Kind code of ref document: A1