WO2019240028A1 - ガス吸収精製装置 - Google Patents
ガス吸収精製装置 Download PDFInfo
- Publication number
- WO2019240028A1 WO2019240028A1 PCT/JP2019/022704 JP2019022704W WO2019240028A1 WO 2019240028 A1 WO2019240028 A1 WO 2019240028A1 JP 2019022704 W JP2019022704 W JP 2019022704W WO 2019240028 A1 WO2019240028 A1 WO 2019240028A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- concentrated
- liquid
- absorbent
- absorbed
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/18—Absorbing units; Liquid distributors therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/62—Carbon oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/77—Liquid phase processes
- B01D53/78—Liquid phase processes with gas-liquid contact
Definitions
- the present invention relates to a gas absorption and purification apparatus that selectively absorbs and purifies a specific gas component such as carbon dioxide from a gas to be treated by an absorption liquid.
- a method of absorbing a specific gas component in the gas to be absorbed into the absorption liquid by a chemical reaction is called a chemical absorption method, and the specific gas component in the gas to be absorbed is physically dissolved in the absorption liquid.
- the method of absorption is called physical absorption method.
- dilute absorption solution is a state in which the concentration of the undiluted solution becomes relatively thin by absorbing the specific gas component in the gas to be absorbed in the undiluted solution.
- a state in which the concentration of the stock solution is relatively higher than that of the diluted absorbent by separating a specific gas component in the gas to be absorbed from the diluted absorbent is referred to as a concentrated absorbent.
- Patent Documents 1 and 2 disclose apparatuses that absorb and separate a specific gas component such as carbon dioxide with an absorption liquid.
- a specific gas component such as carbon dioxide
- the gas to be treated containing carbon dioxide is absorbed in contact with the absorption liquid in the absorption tower, and the absorption liquid discharged from the absorption tower is regenerated by the rich liquid pump. The carbon dioxide is released by heating the solution in a regeneration tower.
- a gas mixture (treatment target gas) and an absorbent are supplied to an absorption contactor via an ejector venturi nozzle. This eliminates the need for a fan / blower (and its power) for supplying the gas mixture to the absorption contactor.
- Patent Document 1 an absorption liquid that has absorbed carbon dioxide as a specific gas component is transferred to a subsequent process, but a rich liquid pump is required as an apparatus (pump) for the transfer. Moreover, the power for driving this rich liquid pump is required. In addition, when there is a residual gas after absorbing a specific gas component, this residual gas also requires equipment (blower or compressor) and power for transferring to the subsequent process.
- the power to supply the gas mixture is reduced by using the ejector venturi nozzle, but the supply pressure of the absorbent is used as the energy source. Therefore, power is still required to raise the absorbent to a predetermined pressure. Also, the pressure of the absorption contactor (absorption tower) is lower than the supply pressure of the absorbent, and the power consumed to boost the absorbent is used to transfer the absorbed liquid and residual gas after absorption. I can't do it. Therefore, as in Patent Document 1, the pump for transferring the absorbing liquid and residual gas requires the power of the pump.
- the present invention has been made to solve such a problem, and in a gas absorption purification apparatus that selectively absorbs and purifies a specific gas component from a gas to be treated by an absorption liquid, the absorption liquid and residual gas are then removed.
- An object of the present invention is to provide an apparatus such as a pump for transferring to the above process and a gas absorption purification apparatus capable of reducing the power.
- an injector is a device capable of boosting and discharging mixed water with energy held by steam while condensing (condensed) steam by direct contact between steam and water.
- Such an injector functions even if the vapor is replaced with the gas to be absorbed and the water is replaced with the absorbing liquid. Therefore, by using the injector as an absorber, a pressurized absorbing liquid can be obtained and the pump Etc. and their power are unnecessary or can be reduced.
- the present invention is based on such knowledge, and specifically comprises the following configuration.
- the gas absorption refining apparatus brings the gas to be absorbed and the concentrated absorption liquid into contact with each other and pressurizes the gas to absorb a specific gas component in the gas to be absorbed in the concentrated absorption liquid.
- a regeneration tower that regenerates a concentrated absorbent by heating the absorbent and separating the specific gas component; a concentrated absorbent supply line that supplies the concentrated absorbent regenerated in the regeneration tower to the injector; and It is provided with the flow volume adjustment valve which adjusts the flow volume of the thick absorption liquid which is provided in the concentrated absorption liquid supply line and is supplied.
- the gas absorption purification apparatus makes the absorbed gas and the concentrated absorbent liquid contact and pressurizes them so that a specific gas component in the absorbed gas is absorbed by the concentrated absorbent liquid, thereby performing rare absorption.
- a regeneration tower for regenerating the concentrated absorbent by depressurizing the rare absorbent and separating the specific gas component; a concentrated absorbent supply line for supplying the injector with the concentrated absorbent regenerated in the regeneration tower; And a flow rate adjusting device that is provided in the concentrated absorbent supply line and adjusts the flow rate of the concentrated absorbent to be supplied.
- the gas absorption purification apparatus includes an injector for bringing a gas to be absorbed and a concentrated absorption liquid into contact with each other and increasing the pressure so that the specific gas component in the gas to be absorbed is absorbed by the concentrated absorption liquid to form a rare absorption liquid.
- a gas-liquid separator that receives gas-liquid separation by receiving supply of the rare absorption liquid and residual gas pressurized by the injector, and supply of the dilute absorption liquid separated by the gas-liquid separator.
- a regeneration tower that regenerates a concentrated absorbent by heating to separate the specific gas component, a concentrated absorbent supply line that supplies the concentrated absorbent regenerated in the regeneration tower to the injector, and the concentrated absorbent
- a flow rate adjusting valve that is provided in the supply line and adjusts the flow rate of the concentrated absorbent to be supplied, the diluted absorbent that has been pressurized on the outlet side of the injector can be supplied to the gas-liquid separator. For this reason, it is possible to reduce or eliminate a pump, a blower, and the like for transferring the rare absorbent and the residual gas separated in the gas-liquid separator to a subsequent process.
- FIG. 1 is an explanatory diagram of a gas absorption purification apparatus according to Embodiment 1.
- FIG. It is explanatory drawing of the structure and operating principle of the injector used for this Embodiment. It is explanatory drawing of the other aspect of the gas absorption refinement
- FIG. It is explanatory drawing of the gas absorption refinement
- the gas absorption refining apparatus 1 brings a gas to be absorbed into contact with a concentrated absorbent and chemically reacts a specific gas component in the gas to be absorbed with the concentrated absorbent. And the rare gas absorption liquid and the residual gas are boosted, and the gas-liquid separator 5 that receives the supply of the rare gas absorption liquid and the residual gas boosted by the injector 3 and performs gas-liquid separation. And a regenerative tower 7 that receives the supply of the rare absorbent separated by the gas-liquid separator 5 and heats the rare absorbent to separate specific gas components in the gas to be absorbed to regenerate the concentrated absorbent.
- the absorbed gas is, for example, process exhaust gas generated at a thermal power plant, a steel mill, or the like, and is a gas containing carbon dioxide as a specific gas component.
- carbon dioxide will be described as an example of the specific gas component.
- ⁇ Dense absorbent> examples include, but are not limited to, amine-based aqueous solutions such as monoethanolamine and diethanolamin, alkaline aqueous solutions, ionic liquids and aqueous solutions thereof.
- the injector 3 brings the gas to be absorbed into contact with the concentrated absorbent and causes a specific gas component in the gas to be absorbed to react chemically with the concentrated absorbent to absorb it, thereby forming a rare absorbent and the residual liquid. It has the function of boosting gas.
- the basic configuration and operating principle of the injector 3 will be described with reference to FIG.
- the injector 3 is provided so as to cover the cylindrical concentrated absorbent supply unit 13 to which the concentrated absorbent is supplied, the absorbed gas supply unit 15 to which the absorbed gas is supplied, A mixing portion 17 where the concentrated absorbent and the gas to be absorbed are mixed, a throat portion 19 having a diameter reduced on the downstream side of the mixing portion 17, and a diffuser portion 21 having a diameter increased on the downstream side of the throat portion 19 are provided. Yes.
- the injector 3 configured as described above, when the concentrated absorbent is supplied to the concentrated absorbent supply unit 13 and the absorbed gas is supplied to the absorbed gas supply unit 15, the absorbed gas and the concentrated absorbent are mixed in the mixing unit 17. In contact, carbon dioxide in the gas to be absorbed is absorbed by the concentrated absorbent. When the gas to be absorbed is absorbed, the pressure inside the injector 3 (mixing unit 17) is reduced, and an action of sucking the concentrated absorbent and the gas to be absorbed occurs.
- the absorbed gas When the absorbed gas is sucked, it becomes a high-speed flow, and this kinetic energy is transferred to the concentrated absorbent when the carbon dioxide in the absorbed gas is absorbed, accelerating the diluted absorbent.
- the flow rate is reduced in the diffuser portion 21 whose diameter has been expanded after the rare absorbent has passed through the throat portion 19, thereby recovering the pressure, and the rare absorbent is pressurized and discharged.
- the residual gas that is not absorbed by the absorbent is pressurized and discharged together with the rare absorbent.
- the injector 3 mentioned above is provided so that the to-be-absorbed gas supply part 15 may cover the concentrated absorption liquid supply part 13, it is not limited to this,
- the supplied concentrated absorption liquid and to-be-absorbed gas are not limited to this. It suffices if the structures flow out in the same direction while contacting each other. For example, contrary to what was mentioned above, you may provide the concentrated absorption liquid supply part 13 so that the cylindrical to-be-absorbed gas supply part 15 may be covered.
- a drain pipe 22 is provided on the throat portion 19 or on the upstream side of the throat portion 19 so that the fluid flows through the drain pipe 22 only in the direction of flowing out from the injector 3.
- a valve such as a check valve 24 may be provided.
- the injector 3 is made to function as an absorber.
- the absorber since it is desirable that the absorber has a smaller pressure loss, it is preferable to install a plurality of injectors 3 in parallel. By installing a plurality of injectors 3 in parallel, it is possible to obtain an effect of reducing equipment power for transferring while reducing pressure loss as an absorber.
- the gas-liquid separator 5 receives the supply of the rare absorbent and the residual gas pressurized by the injector 3 and separates the gas and liquid into the residual gas and the rare absorbent.
- the regeneration tower 7 heats the introduced rare absorbing liquid by the heating device 25, thereby evaporating and dissipating most of the carbon dioxide absorbed and reacted chemically in the rare absorbing liquid. Separate carbon dioxide from The regeneration tower 7 discharges the regeneration gas containing the diffused carbon dioxide from the upper part, and discharges the concentrated absorbent regenerated by releasing the carbon dioxide from the rare absorbent from the lower part.
- the concentrated absorbent discharged from the regeneration tower 7 is sent to the injector 3 through the concentrated absorbent supply line 9.
- the injector 3 since the injector 3 generates a suction action during operation, it may not be necessary to separately provide a liquid feed pump.
- the concentrated absorbent supply line 9 is a line for supplying the concentrated absorbent regenerated in the regeneration tower 7 to the injector 3.
- the flow rate adjusting valve 11 is provided in the concentrated absorbent supply line 9 and adjusts the flow rate of the concentrated absorbent supplied to the injector 3.
- the operation of the injector 3 is based on the premise that carbon dioxide in the gas to be absorbed is absorbed by the concentrated absorbent, and therefore the flow conditions of the concentrated absorbent and the absorbed gas are important.
- a flow rate adjustment valve 11 is provided in the concentrated absorbent supply line 9 and a specific gas concentration meter 27 for measuring the carbon dioxide concentration in the residual gas is provided. Is input to the control device 29, and the flow rate adjusting valve 11 is adjusted by the control device 29 so that the amount of the concentrated absorbent to be supplied is adjusted to an appropriate amount.
- the concentration of carbon dioxide in the residual gas discharged from the gas-liquid separator 5 is measured and the flow rate of the concentrated absorbent supplied to the injector 3 is adjusted by the flow rate adjustment valve 11 so that the concentration is below a certain value. Good.
- the drain pipe 22 is provided in the injector 3, its outflow end is connected to the discharge side piping of the injector 3 through a check valve 24 that opens only in the direction of outflow from the injector 3. .
- the gas to be absorbed and the concentrated absorbent are supplied to the injector 3, and the carbon dioxide in the gas to be absorbed is absorbed by the concentrated absorbent in the injector 3.
- the concentrated absorbent that has absorbed carbon dioxide in the gas to be absorbed becomes a rare absorbent and is pressurized and supplied to the gas-liquid separator 5.
- the gas that has not been absorbed among the gas to be absorbed is separated and discharged as a residual gas. Further, the rare absorbing liquid from which the residual gas is separated by the gas-liquid separator 5 is sent to the regeneration tower 7.
- the gas-liquid separator 5 Since the rare absorption liquid and the residual gas discharged from the injector 3 are high pressure, the gas-liquid separator 5 has a high internal pressure, and this internal pressure enables the residual gas and the rare absorption liquid to be sent to the subsequent process. And blowers can be omitted or reduced.
- This embodiment is an example in which an injector is used in a chemical absorption method that absorbs carbon dioxide in a gas to be absorbed by a chemical reaction using a concentrated absorbent, but the equilibrium state of a chemical reaction changes when a state variable changes. , The balance moves in a direction to cancel the change. Therefore, when the pressure increases, the chemical reaction proceeds in a direction that cancels the pressure increase, that is, in a direction that promotes gas absorption. For this reason, by using an injector as the gas absorption device as in the present embodiment, the boosting action of the injector can be expected to have an effect of increasing the gas absorption amount in addition to reducing pump power.
- an auxiliary pump may be installed in the liquid feed line from the injector 3 to the regeneration tower 7. Even when an auxiliary pump is installed, by using the injector 3 as an absorber as in the present invention, the power of the auxiliary pump can be reduced by using the pressure boosted by the injector 3, so that the power reduction effect as a whole Is obtained.
- a heat exchanger 31 is provided in the concentrated absorbent supply line 9, and a rare absorbent that is sent from the gas-liquid separator 5 to the regeneration tower 7 and a liquid that is sent from the regeneration tower 7 to the injector 3.
- the concentrated absorbent may be cooled by exchanging heat with the concentrated absorbent.
- the specific gas component that is subject to chemical absorption in this technology is not limited to carbon dioxide.
- this technology can also be used when sulfur compounds such as ammonia and H 2 S are specific gas components. Applicable. Therefore, the absorbed gas is not limited to the exemplified process exhaust gas.
- the absorbing liquid is also selected in accordance with the characteristics of the specific gas component. For example, in the case of H 2 S, an amine-based aqueous solution or the like can be selected as the absorbing liquid.
- an injector is used in a chemical absorption method in which a specific gas component in a gas to be absorbed is absorbed by a chemical reaction using a concentrated absorbent.
- a gas to be absorbed is used.
- the injector is used in a physical absorption method in which the specific gas component in the absorbed gas is physically dissolved in the concentrated absorption liquid using the concentrated absorption liquid and absorbed. It is what is used.
- the absorption liquid composed of a mixed gas and an ionic liquid is individually pressurized to a predetermined pressure by a compressor and a pump and then brought into contact with each other in the mixer. Requires a lot of power.
- the method of contacting the mixed gas and the absorbing liquid there are known a method of dispersing the absorbing liquid in the mixed gas and a method of dispersing the mixed gas in the absorbing liquid.
- the former is a gas-liquid contact in a mixer.
- the latter is easy to increase in size because the efficiency of the latter is low, but although the mixer is compact, the pressure loss in the flow region that forms the gas-liquid two-phase flow increases, so it is necessary to increase the pressure of the mixed gas and absorption liquid. , Energy consumption increases.
- the injector by applying the injector to a mixer (absorber) in the physical absorption method, energy consumption for boosting necessary for physical absorption is reduced and the apparatus is made compact. It is aimed.
- a gas absorption purification device 32 according to the present embodiment will be described with reference to FIG.
- the same parts as those in FIG. This embodiment is different from the first embodiment in that the concentrated absorbent physically absorbs a specific gas component in the gas to be absorbed, and a pressure reducing valve in the line for introducing the rare absorbent into the regeneration tower 7. 33, a heating tower 25 required in the first embodiment in the regeneration tower is unnecessary, and a flow rate adjusting device for adjusting the supply amount of the concentrated absorbent to the concentrated absorbent supply line 9
- the pump 35 is provided.
- the gas absorption purification apparatus 32 according to the present embodiment differences from the first embodiment will be mainly described.
- carbon dioxide is taken as an example of the specific gas component.
- the concentrated absorbing liquid of the present embodiment examples include ionic liquids (imidazolium-based, diglyme-based, etc.) and alcohols (methanol, polyethylene glycol dimethyl ether, etc.), but are not limited thereto.
- Physical absorption absorbs carbon dioxide at a high pressure and recovers carbon dioxide by reducing the pressure, which is advantageous when the gas to be absorbed is at a high pressure (eg, gas field self-injection gas, power plant exhaust gas). Further, in the case of physical absorption, when carbon dioxide is taken out from the concentrated absorbent, it is not necessary to heat it like chemical absorption, and there is an effect of reducing energy consumption.
- the relationship between the pressure of the gas to be absorbed and the amount dissolved in the concentrated absorbent will be described.
- the concentrated absorbent is diglyme
- 10 mol of carbon dioxide per liter of diglyme is dissolved when the pressure of carbon dioxide is 6 MPa
- 3 mol of carbon dioxide is dissolved per liter of diglyme when the pressure is 2 MPa. Therefore, in a system in which carbon dioxide is dissolved at 6 MPa and the pressure is reduced to 2 MPa to separate and recover carbon dioxide, 7 mol of carbon dioxide per liter of diglyme can be separated and recovered.
- the injector 3 is a device capable of discharging mixed water (water and steam condensate) from the pressure of water with the energy held by the steam while condensing the steam by direct contact with water. It is.
- the solubility of a concentrated absorbent (such as an ionic liquid) used in physical absorption has a characteristic proportional to the pressure of the gas to be absorbed. For this reason, conventionally, after boosting the gas to be absorbed and the concentrated absorbent individually, they are brought into contact with each other by a mixer or an absorption tower.
- the injector 3 as a mixer (absorber)
- the gas to be absorbed and the concentrated absorbent are introduced into the injector 3 at a low pressure, and the gas to be absorbed is caused by the action inside the injector 3.
- the concentrated absorbent can be pressurized from the injector inlet, and the carbon dioxide in the gas to be absorbed can be dissolved in the concentrated absorbent.
- the regeneration tower 7 depressurizes the rare absorbent with the pressure reducing valve 33 to evaporate and dissipate most of the carbon dioxide dissolved in the rare absorbent, thereby separating the carbon dioxide from the rare absorbent.
- the pressure reducing valve 33 is adjusted by the controller 39 based on the pressure detected by the pressure gauge 37 provided in the regeneration tower 7 so that the pressure inside the regeneration tower 7 becomes a predetermined constant pressure.
- the regeneration tower 7 discharges the regeneration gas containing the diffused carbon dioxide from the upper part thereof, and from the lower part, the concentrated absorption liquid that is regenerated by releasing the carbon dioxide from the rare absorbent. Is discharged.
- the pump 35 is provided in the concentrated absorbent supply line 9 and functions as a flow rate adjusting device that adjusts the flow rate of the concentrated absorbent supplied to the injector 3.
- the regeneration tower 7 is decompressed by the decompression by the decompression valve 33. Since the pressure of No. 7 is lowered, the liquid is fed by the pump 35.
- the pump 35 adjusts the amount of liquid fed by inverter control, and inputs the measurement value of the specific gas concentration meter 27 to the control device 29, and is inverter-controlled by the control device 29 to be supplied to the injector 3. The amount is adjusted to an appropriate amount.
- the concentrated absorbent is supplied from the concentrated absorbent supply unit 13 and the absorbed gas from the absorbed gas supply unit 15 is introduced at a predetermined pressure and temperature (see FIG. 2).
- the gas to be absorbed is dissolved in the concentrated absorbent at the mixing section 17 in the injector 3, and the pressure in the mixing section 17 is reduced. Due to the pressure drop in the mixing unit 17, the gas to be absorbed flowing into the mixing unit 17 becomes a high-speed flow at the sonic speed level.
- the carbon dioxide in the gas to be absorbed that could not be dissolved at the pressure of the mixing unit 17 forms a high-speed two-phase flow with the concentrated absorbent, and reaches the throat unit 19 that separates the mixing unit 17 and the diffuser unit 21.
- the injector 3 to the mixer (absorber) of the gas absorption purification apparatus 32 by physical absorption. That is, it is possible to reduce the energy consumption related to the pressure increase required for physically absorbing carbon dioxide in the gas to be absorbed in the concentrated absorbent, and the mixing is promoted because the flow inside the injector 3 is high speed, so that the mixer is accelerated.
- the gas-liquid contact of the (absorber) becomes highly efficient and the device can be made compact.
- the pump 35 is provided because the pressure in the regeneration tower 7 becomes low. However, the pressure reduction in the regeneration tower 7 is not so large, and the concentrated absorbent is sent to the injector 3 by the pressure in the regeneration tower 7. If liquid can be used, the flow rate adjusting valve 11 may be provided as a flow rate adjusting device without providing the pump 35 as shown in FIG.
- the measured value of the specific gas concentration meter 27 is input to the control device 29, and the pressure reducing valve 33 is adjusted by the control device 29, thereby adjusting the concentration of the concentrated absorbent, and the injector
- the supply amount to 3 may be a constant flow rate by a pump 41 that sends a constant flow rate.
- the specific gas component that is subject to physical absorption in this technology is not limited to carbon dioxide.
- the present technology can also be used when sulfur compounds such as ammonia and H 2 S are specific gas components. Applicable. Therefore, the absorbed gas is not limited to the exemplified process exhaust gas.
- the absorbing liquid is selected in accordance with the characteristics of the specific gas component. For example, in the case of ammonia, water, ionic liquid, or the like can be selected as the absorbing liquid.
- specific gas components in the gas to be absorbed can be obtained by both chemical reaction and physical dissolution methods, such as a mixture of an ionic liquid having a chemical absorption function and an ionic liquid having a physical absorption function.
- a regeneration tower that separates a specific gas component from the rare absorbent and regenerates it into a concentrated absorbent can be equipped with both means for heating and depressurizing the rare absorbent so that it functions as a gas absorption purification device. it can.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Gas Separation By Absorption (AREA)
- Carbon And Carbon Compounds (AREA)
- Treating Waste Gases (AREA)
Abstract
処理対象ガス中から特定のガス成分を吸収液によって選択的に吸収して精製するガス吸収精製装置において、吸収液や残ガスをその後のプロセスに移送するためのポンプ等の機器やその動力を削減できるガス吸収精製装置を提供する。 本発明に係るガス吸収精製装置1は、被吸収ガスと濃吸収液を接触させると共に昇圧して前記被吸収ガス中の特定のガス成分を前記濃吸収液に吸収させて希吸収液とするインジェクタ3と、インジェクタ3で昇圧された希吸収液及び残ガスの供給を受けて気液分離する気液分離器5と、気液分離器5で分離された希吸収液の供給を受けて該希吸収液を濃吸収液に再生する再生塔7と、再生塔7で再生された濃吸収液をインジェクタ3に供給する濃吸収液供給ライン9と、濃吸収液供給ライン9に設けられて供給する濃吸収液の流量を調整する流量調整弁11とを備えてなる。
Description
本発明は処理対象ガス中から二酸化炭素等の特定のガス成分を吸収液によって選択的に吸収して精製するガス吸収精製装置に関するものである。
本明細書において、被吸収ガス中の特定のガス成分を吸収液に化学反応により吸収する方法を化学吸収法といい、被吸収ガス中の特定のガス成分を吸収液に物理的に溶解させて吸収させる方法を物理吸収法という。
また、化学吸収法、物理吸収法のいずれの場合においても、原液の吸収液に被吸収ガス中の特定のガス成分を吸収させることで原液の濃度が相対的に薄くなった状態を希吸収液といい、希吸収液から被吸収ガス中の特定のガス成分を分離することで希吸収液よりも原液の濃度が相対的に濃くなった状態を濃吸収液という。
本明細書において、被吸収ガス中の特定のガス成分を吸収液に化学反応により吸収する方法を化学吸収法といい、被吸収ガス中の特定のガス成分を吸収液に物理的に溶解させて吸収させる方法を物理吸収法という。
また、化学吸収法、物理吸収法のいずれの場合においても、原液の吸収液に被吸収ガス中の特定のガス成分を吸収させることで原液の濃度が相対的に薄くなった状態を希吸収液といい、希吸収液から被吸収ガス中の特定のガス成分を分離することで希吸収液よりも原液の濃度が相対的に濃くなった状態を濃吸収液という。
二酸化炭素などの特定のガス成分を吸収液で吸収分離する装置が、例えば特許文献1、2に開示されている。
特許文献1に開示された「二酸化炭素回収システム」では、吸収塔において二酸化炭素を含む処理対象ガスを吸収液と接触させて吸収し、吸収塔から排出された吸収液をリッチ液ポンプによって再生塔に移送し、再生塔にて当該溶液を加熱することにより二酸化炭素を放散するようにしている。
特許文献1に開示された「二酸化炭素回収システム」では、吸収塔において二酸化炭素を含む処理対象ガスを吸収液と接触させて吸収し、吸収塔から排出された吸収液をリッチ液ポンプによって再生塔に移送し、再生塔にて当該溶液を加熱することにより二酸化炭素を放散するようにしている。
また、特許文献2に開示された「酸性ガスを除去するためのシステム」では、ガス混合物(処理対象ガス)と吸収剤を、エジェクターベンチュリノズルを介して吸収接触器に供給するようにしている。このため、ガス混合物を吸収接触器に供給するためのファン/ブロアー(及びその動力)が不要となるとしている。
特許文献1に開示のものでは、特定のガス成分としての二酸化炭素を吸収した吸収液は、その後のプロセスに移送されるが、その移送のための機器(ポンプ)としてリッチ液ポンプが必要とされ、またこのリッチ液ポンプを駆動するための動力を要する。
また、特定のガス成分を吸収した後の残ガスがある場合には、この残ガスについても、その後のプロセスに移送するための機器(ブロワーやコンプレッサ)および動力を要する。
また、特定のガス成分を吸収した後の残ガスがある場合には、この残ガスについても、その後のプロセスに移送するための機器(ブロワーやコンプレッサ)および動力を要する。
他方、特許文献2に開示の技術では、エジェクターベンチュリノズルを用いることにより、ガス混合物を供給する動力は低減されるが、そのエネルギー源としては吸収剤の供給圧力が使用されている。そのため、吸収剤を所定の圧力まで高めるためにはやはり動力が必要となる。また、吸収接触器(吸収塔)の圧力は吸収剤の供給圧力より低くなっており、吸収剤を昇圧するために消費された動力を、吸収後の吸収液や残ガスの移送のために利用することはできない。そのため、特許文献1と同様に、吸収液や残ガスの移送のためのポンプは該ポンプの動力を要する。
本発明はかかる課題を解決するためになされたものであり、処理対象ガス中から特定のガス成分を吸収液によって選択的に吸収して精製するガス吸収精製装置において、吸収液や残ガスをその後のプロセスに移送するためのポンプ等の機器やその動力を削減できるガス吸収精製装置を提供することを目的としている。
発明者は上記の課題を解決するため鋭意検討した結果、ガス吸収精製装置の吸収器としてインジェクタを適用することを考えた。一般に、インジェクタは、蒸気と水との直接接触により蒸気を凝縮(復水)しつつ、蒸気の保有するエネルギーで混合水を昇圧して吐出することができる装置である。このようなインジェクタは、蒸気を被吸収ガスに、水を吸収液にそれぞれ置換しても機能することから、インジェクタを吸収器として使用することで、昇圧された吸収液を得ることができ、ポンプ等の機器やその動力が不要又は削減できる。さらに混合水中に気体が残存していても機能することから、インジェクタ下流側に気液分離器を配設することにより、昇圧された吸収液と残存ガスを分離することが可能となる。
本発明はかかる知見に基づくものであり、具体的には以下の構成からなるものである。
本発明はかかる知見に基づくものであり、具体的には以下の構成からなるものである。
(1)本発明に係るガス吸収精製装置は、被吸収ガスと濃吸収液を接触させると共に昇圧して前記被吸収ガス中の特定のガス成分を前記濃吸収液に吸収させて希吸収液とするインジェクタと、該インジェクタで昇圧された希吸収液及び残ガスの供給を受けて気液分離する気液分離器と、該気液分離器で分離された希吸収液の供給を受けて該希吸収液を加熱して前記特定のガス成分を分離することにより濃吸収液に再生する再生塔と、該再生塔で再生された濃吸収液を前記インジェクタに供給する濃吸収液供給ラインと、該濃吸収液供給ラインに設けられて供給する濃吸収液の流量を調整する流量調整弁とを備えてなることを特徴とするものである。
(2)また、上記(1)に記載のものにおいて、前記再生塔に供給する前記希吸収液と前記再生塔で再生され前記インジェクタに供給する濃吸収液との間で熱交換して前記濃吸収液を冷却する熱交換器を備えたことを特徴とするものである。
(3)また、本発明に係るガス吸収精製装置は、被吸収ガスと濃吸収液を接触させると共に昇圧して前記被吸収ガス中の特定のガス成分を前記濃吸収液に吸収させて希吸収液とするインジェクタと、該インジェクタで昇圧された希吸収液及び残ガスの供給を受けて気液分離する気液分離器と、該気液分離器で分離された希吸収液の供給を受けて該希吸収液を減圧して前記特定のガス成分を分離することにより濃吸収液に再生する再生塔と、該再生塔で再生された濃吸収液を前記インジェクタに供給する濃吸収液供給ラインと、該濃吸収液供給ラインに設けられて供給する濃吸収液の流量を調整する流量調整装置とを備えてなることを特徴とするものである。
(4)また、上記(1)乃至(3)のいずれかに記載のものにおいて、前記インジェクタを並列に複数設置したことを特徴とするものである。
本発明に係るガス吸収精製装置は、被吸収ガスと濃吸収液を接触させると共に昇圧して前記被吸収ガス中の特定のガス成分を前記濃吸収液に吸収させて希吸収液とするインジェクタと、該インジェクタで昇圧された希吸収液及び残ガスの供給を受けて気液分離する気液分離器と、該気液分離器で分離された希吸収液の供給を受けて該希吸収液を加熱して前記特定のガス成分を分離することにより濃吸収液に再生する再生塔と、該再生塔で再生された濃吸収液を前記インジェクタに供給する濃吸収液供給ラインと、該濃吸収液供給ラインに設けられて供給する濃吸収液の流量を調整する流量調整弁とを備えてなることにより、インジェクタの出側で昇圧された希吸収液を気液分離器に供給することができる。このため、気液分離器において気液分離された希吸収液や残ガスを後工程に移送するためのポンプやブロワ等を削減もしくは不要とすることができる。
[実施の形態1]
本実施の形態に係るガス吸収精製装置1は、図1に示すように、被吸収ガスと濃吸収液を接触させて被吸収ガス中の特定のガス成分を前記濃吸収液に化学的に反応させて吸収させて希吸収液とし、該希吸収液と残ガスを昇圧するインジェクタ3と、インジェクタ3で昇圧された希吸収液及び残ガスの供給を受けて気液分離する気液分離器5と、気液分離器5で分離された希吸収液の供給を受けて該希吸収液を加熱して被吸収ガス中の特定のガス成分を分離することにより濃吸収液に再生する再生塔7と、再生塔7で再生された濃吸収液をインジェクタ3に供給する濃吸収液供給ライン9と、濃吸収液供給ライン9に設けられて供給する濃吸収液の流量を調整する流量調整弁11とを備えてなるものである。
以下、各構成を詳細に説明する。
本実施の形態に係るガス吸収精製装置1は、図1に示すように、被吸収ガスと濃吸収液を接触させて被吸収ガス中の特定のガス成分を前記濃吸収液に化学的に反応させて吸収させて希吸収液とし、該希吸収液と残ガスを昇圧するインジェクタ3と、インジェクタ3で昇圧された希吸収液及び残ガスの供給を受けて気液分離する気液分離器5と、気液分離器5で分離された希吸収液の供給を受けて該希吸収液を加熱して被吸収ガス中の特定のガス成分を分離することにより濃吸収液に再生する再生塔7と、再生塔7で再生された濃吸収液をインジェクタ3に供給する濃吸収液供給ライン9と、濃吸収液供給ライン9に設けられて供給する濃吸収液の流量を調整する流量調整弁11とを備えてなるものである。
以下、各構成を詳細に説明する。
<被吸収ガス>
被吸収ガスは、例えば火力発電所や製鉄所などで発生するプロセス排ガス等であり、特定のガス成分として二酸化炭素を含むガスである。以下、特定のガス成分として二酸化炭素を例に挙げて説明する。
被吸収ガスは、例えば火力発電所や製鉄所などで発生するプロセス排ガス等であり、特定のガス成分として二酸化炭素を含むガスである。以下、特定のガス成分として二酸化炭素を例に挙げて説明する。
<濃吸収液>
モノエタノールアミン(monoethanolamin)やジエタノールアミン(diethanolamin)などのアミン系水溶液、アルカリ性水溶液、イオン液体やその水溶液などであるが、これらに限定されるものではない。
モノエタノールアミン(monoethanolamin)やジエタノールアミン(diethanolamin)などのアミン系水溶液、アルカリ性水溶液、イオン液体やその水溶液などであるが、これらに限定されるものではない。
<インジェクタ>
インジェクタ3は、被吸収ガスと濃吸収液を接触させて被吸収ガス中の特定のガス成分を前記濃吸収液に化学的に反応させて吸収させて希吸収液とすると共に希吸収液と残ガスを昇圧する機能を有している。
インジェクタ3の基本構成と作動原理を、図2に基づいて説明する。
インジェクタ3は、被吸収ガスと濃吸収液を接触させて被吸収ガス中の特定のガス成分を前記濃吸収液に化学的に反応させて吸収させて希吸収液とすると共に希吸収液と残ガスを昇圧する機能を有している。
インジェクタ3の基本構成と作動原理を、図2に基づいて説明する。
インジェクタ3は、濃吸収液が供給される筒状の濃吸収液供給部13と、濃吸収液供給部13を覆うように設けられ、被吸収ガスが供給される被吸収ガス供給部15と、濃吸収液と被吸収ガスが混合される混合部17と、混合部17の下流側で縮径されたスロート部19と、スロート部19の下流側で拡径されたディフューザ部21とを備えている。
上記のように構成されたインジェクタ3において、濃吸収液供給部13に濃吸収液を、被吸収ガス供給部15に被吸収ガスをそれぞれ供給すると、混合部17において被吸収ガスと濃吸収液が接触して、被吸収ガス中の二酸化炭素が濃吸収液に吸収される。被吸収ガスが吸収されることによってインジェクタ3の内部(混合部17)の圧力が低下することにより、濃吸収液と被吸収ガスを吸引する作用が発生する。
被吸収ガスが吸引される際に高速流となり、この運動エネルギーが、被吸収ガス中の二酸化炭素が吸収される際に濃吸収液に受け渡され、希吸収液を加速する。この希吸収液がスロート部19を通過後に拡径されたディフューザ部21において流速が低下し、これによって圧力回復されて、希吸収液は昇圧されて吐出される。また、希吸収液中に気体が残存していても機能することから、吸収液で吸収されない残ガスも希吸収液と一緒に昇圧されて吐出される。
なお、上述したインジェクタ3は、被吸収ガス供給部15が濃吸収液供給部13を覆うように設けられているが、これに限定されるものではなく、供給された濃吸収液と被吸収ガスが互いに接触しながら同一方向に流出する構造となっていればよい。例えば、上述したものとは逆に、濃吸収液供給部13が筒状の被吸収ガス供給部15を覆うように設けても良い。
また、インジェクタ3の起動時に内部の流体を流出しやすくするために、スロート部19またはその上流側にドレン管22を設け、ドレン管22にインジェクタ3から流出する方向のみに流体を流すような開閉弁、例えば逆止弁24を設けるようにしてもよい。このようにすることで、インジェクタ3の起動を容易にする効果が得られる。
また、インジェクタ3の起動時に内部の流体を流出しやすくするために、スロート部19またはその上流側にドレン管22を設け、ドレン管22にインジェクタ3から流出する方向のみに流体を流すような開閉弁、例えば逆止弁24を設けるようにしてもよい。このようにすることで、インジェクタ3の起動を容易にする効果が得られる。
本実施の形態では、インジェクタ3を吸収器として機能させているが、吸収器は圧損が小さいほうが望ましいので、インジェクタ3を並列に複数設置するのが好ましい。インジェクタ3を並列に複数設置することにより、吸収器としての圧力損失を削減しつつ移送するための機器動力の削減効果を得ることができる。
<気液分離器>
気液分離器5は、インジェクタ3で昇圧された希吸収液及び残ガスの供給を受けて、残ガスと希吸収液とに気液分離する。
気液分離器5は、インジェクタ3で昇圧された希吸収液及び残ガスの供給を受けて、残ガスと希吸収液とに気液分離する。
<再生塔>
再生塔7は、導入された希吸収液を加熱装置25によって加熱することにより、希吸収液中に化学的に反応させて吸収している大部分の二酸化炭素を蒸発放散させて、希吸収液から二酸化炭素を分離する。
再生塔7は、その上部から、放散された二酸化炭素を含む再生ガスを排出し、その下部から、希吸収液から二酸化炭素が放散されて再生された濃吸収液を排出する。
再生塔7は、導入された希吸収液を加熱装置25によって加熱することにより、希吸収液中に化学的に反応させて吸収している大部分の二酸化炭素を蒸発放散させて、希吸収液から二酸化炭素を分離する。
再生塔7は、その上部から、放散された二酸化炭素を含む再生ガスを排出し、その下部から、希吸収液から二酸化炭素が放散されて再生された濃吸収液を排出する。
再生塔7から排出された濃吸収液は、濃吸収液供給ライン9を通じてインジェクタ3に送液される。前述したように、インジェクタ3は運転中には吸引作用を発生するので、送液ポンプを別途設ける必要がない場合もある。
<濃吸収液供給ライン>
濃吸収液供給ライン9は、再生塔7で再生された濃吸収液をインジェクタ3に供給するラインである。
濃吸収液供給ライン9は、再生塔7で再生された濃吸収液をインジェクタ3に供給するラインである。
<流量調整弁>
流量調整弁11は、濃吸収液供給ライン9に設けられてインジェクタ3に供給する濃吸収液の流量を調整する。インジェクタ3の作動には、濃吸収液で被吸収ガス中の二酸化炭素を吸収させることが前提となるため、濃吸収液と被吸収ガスの流量条件が重要となる。この点、本実施の形態では、濃吸収液供給ライン9に流量調整弁11を設けると共に、残ガス中の二酸化炭素濃度を計測する特定ガス濃度計27を設け、特定ガス濃度計27の計測値を制御装置29に入力して、制御装置29によって流量調整弁11を調整して、供給する濃吸収液の量を適切な量に調整するようにしている。例えば、気液分離器5から排出される残ガス中の二酸化炭素濃度を計測し、その濃度が一定値以下となるようにインジェクタ3に供給する濃吸収液の流量を流量調整弁11により調整するとよい。
また、インジェクタ3にドレン管22が備えられている場合には、インジェクタ3から流出する方向のみに開く逆止弁24を介して、その流出端をインジェクタ3の吐出側配管に接続するようにする。
流量調整弁11は、濃吸収液供給ライン9に設けられてインジェクタ3に供給する濃吸収液の流量を調整する。インジェクタ3の作動には、濃吸収液で被吸収ガス中の二酸化炭素を吸収させることが前提となるため、濃吸収液と被吸収ガスの流量条件が重要となる。この点、本実施の形態では、濃吸収液供給ライン9に流量調整弁11を設けると共に、残ガス中の二酸化炭素濃度を計測する特定ガス濃度計27を設け、特定ガス濃度計27の計測値を制御装置29に入力して、制御装置29によって流量調整弁11を調整して、供給する濃吸収液の量を適切な量に調整するようにしている。例えば、気液分離器5から排出される残ガス中の二酸化炭素濃度を計測し、その濃度が一定値以下となるようにインジェクタ3に供給する濃吸収液の流量を流量調整弁11により調整するとよい。
また、インジェクタ3にドレン管22が備えられている場合には、インジェクタ3から流出する方向のみに開く逆止弁24を介して、その流出端をインジェクタ3の吐出側配管に接続するようにする。
以上のように構成された本実施の形態においては、被吸収ガスと濃吸収液がインジェクタ3に供給され、インジェクタ3において被吸収ガス中の二酸化炭素が濃吸収液に吸収される。被吸収ガス中の二酸化炭素を吸収した濃吸収液は希吸収液となって昇圧され、気液分離器5に供給される。気液分離器5では、被吸収ガスのうち吸収されなかったガスが分離され、残ガスとして排出される。また、気液分離器5で残ガスが分離された希吸収液は再生塔7に送液される。
インジェクタ3から排出される希吸収液及び残ガスは高圧であるため、気液分離器5は内圧が高く、この内圧によって残ガス及び希吸収液の後工程への送り出しが可能となり、送液ポンプやブロア等を省略又は削減することができる。
インジェクタ3から排出される希吸収液及び残ガスは高圧であるため、気液分離器5は内圧が高く、この内圧によって残ガス及び希吸収液の後工程への送り出しが可能となり、送液ポンプやブロア等を省略又は削減することができる。
なお、本実施の形態は、濃吸収液を用いて被吸収ガス中の二酸化炭素を化学反応により吸収する化学吸収法にインジェクタを用いる例であるが、化学反応の平衡状態は状態変数が変化すると、その変化を相殺する方向へ平衡は移動する。
したがって、圧力が上昇すると、化学反応は圧力上昇を打ち消す方向、すなわちガス吸収を促進させる方向に反応が進む。このため、本実施の形態のように、ガス吸収装置としてインジェクタを用いることで、インジェクタの昇圧作用にはポンプ動力の低減の他、ガス吸収量を増大させる効果も期待できる。
したがって、圧力が上昇すると、化学反応は圧力上昇を打ち消す方向、すなわちガス吸収を促進させる方向に反応が進む。このため、本実施の形態のように、ガス吸収装置としてインジェクタを用いることで、インジェクタの昇圧作用にはポンプ動力の低減の他、ガス吸収量を増大させる効果も期待できる。
なお、インジェクタ3による昇圧では圧力が不足する場合には、インジェクタ3から再生塔7への送液ラインに補助ポンプを設置するようにしてもよい。補助ポンプを設置する場合であっても、本発明のようにインジェクタ3を吸収器として用いることで、インジェクタ3による昇圧を利用して、補助ポンプの動力の削減ができるので、全体として動力削減効果が得られる。
なお、被吸収ガス中の二酸化炭素を濃吸収液に吸収させる際には、濃吸収液の温度が低い方が効率がよい。そこで、図3に示すように、濃吸収液供給ライン9に熱交換器31を設け、気液分離器5から再生塔7に送液される希吸収液と再生塔7からインジェクタ3に送液される濃吸収液との間で熱交換させて、濃吸収液を冷却するようにしてもよい。
なお、本技術で化学吸収の対象となる特定のガス成分は、二酸化炭素に限定されるわけではなく、例えばアンモニアやH2Sなど硫黄化合物などが特定のガス成分である場合にも本技術は適用可能である。従って、被吸収ガスについても例示したプロセス排ガスに限定されるものではない。また、吸収液もその特定のガス成分の特性に合わせて選定されることになり、例えばH2Sの場合はアミン系水溶液などが吸収液として選定可能である。
なお、本技術で化学吸収の対象となる特定のガス成分は、二酸化炭素に限定されるわけではなく、例えばアンモニアやH2Sなど硫黄化合物などが特定のガス成分である場合にも本技術は適用可能である。従って、被吸収ガスについても例示したプロセス排ガスに限定されるものではない。また、吸収液もその特定のガス成分の特性に合わせて選定されることになり、例えばH2Sの場合はアミン系水溶液などが吸収液として選定可能である。
[実施の形態2]
実施の形態1においては、濃吸収液を用いて被吸収ガス中の特定のガス成分を化学反応により吸収する化学吸収法にインジェクタを用いる例を示したが、本実施の形態は、被吸収ガス中の特定のガス成分を濃吸収液に吸収する方法として、濃吸収液を用いて被吸収ガス中の特定のガス成分を濃吸収液に物理的に溶解させて吸収させる物理吸収法にインジェクタを用いるものである。
実施の形態1においては、濃吸収液を用いて被吸収ガス中の特定のガス成分を化学反応により吸収する化学吸収法にインジェクタを用いる例を示したが、本実施の形態は、被吸収ガス中の特定のガス成分を濃吸収液に吸収する方法として、濃吸収液を用いて被吸収ガス中の特定のガス成分を濃吸収液に物理的に溶解させて吸収させる物理吸収法にインジェクタを用いるものである。
イオン液体を主成分とした濃吸収液を用いて被吸収ガス中の特定のガス成分を濃吸収液に吸収させる物理吸収法については、例えば、特開2008-296211号公報には「ガス分離精製ならびに回収方法及びその装置」が開示されている。
しかし上記の従来方法は、混合ガスおよびイオン液体等からなる吸収液を、それぞれコンプレッサーやポンプによって個別に所定圧力まで昇圧させた後、混合器において両者を接触さるため、混合ガスや吸収液の昇圧に大きな動力を要する。
また、混合ガスと吸収液の接触方法は、混合ガス中に吸収液を分散させる方法と吸収液中に混合ガスを分散させる方法とが知られているが、前者は混合器での気液接触の効率が低いため大型化しやすく、後者は、混合器はコンパクトになるものの、気液二相流を形成する流れ領域の圧力損失が大きくなるため、混合ガスや吸収液のより大きな昇圧が必要となり、エネルギー消費が大きくなる。
また、混合ガスと吸収液の接触方法は、混合ガス中に吸収液を分散させる方法と吸収液中に混合ガスを分散させる方法とが知られているが、前者は混合器での気液接触の効率が低いため大型化しやすく、後者は、混合器はコンパクトになるものの、気液二相流を形成する流れ領域の圧力損失が大きくなるため、混合ガスや吸収液のより大きな昇圧が必要となり、エネルギー消費が大きくなる。
そこで、本実施の形態では、インジェクタを物理吸収法における混合器(吸収器)に適用することにより、物理吸収させるために必要な昇圧に係るエネルギー消費を低減すると共に、装置をコンパクトにすることを目的としている。
本実施の形態に係るガス吸収精製装置32を、図4に基づいて説明する。なお、図4において、図1と同一部分には同一の符号を付して説明を省略する。
本実施の形態が実施の形態1と異なる点は、濃吸収液が被吸収ガス中の特定のガス成分を物理吸収するものであること、再生塔7に希吸収液を導入するラインに減圧弁33を設けている点、及び再生塔において実施の形態1で必要とされた加熱装置25が不要である点、さらに濃吸収液供給ライン9に濃吸収液の供給量を調整する流量調整装置としてポンプ35を設けている点である。
以下、本実施の形態に係るガス吸収精製装置32について、実施の形態1と異なる点を主として説明する。なお、本実施の形態においても実施の形態1と同様に特定のガス成分として二酸化炭素を例に挙げて説明する。
本実施の形態が実施の形態1と異なる点は、濃吸収液が被吸収ガス中の特定のガス成分を物理吸収するものであること、再生塔7に希吸収液を導入するラインに減圧弁33を設けている点、及び再生塔において実施の形態1で必要とされた加熱装置25が不要である点、さらに濃吸収液供給ライン9に濃吸収液の供給量を調整する流量調整装置としてポンプ35を設けている点である。
以下、本実施の形態に係るガス吸収精製装置32について、実施の形態1と異なる点を主として説明する。なお、本実施の形態においても実施の形態1と同様に特定のガス成分として二酸化炭素を例に挙げて説明する。
<濃吸収液>
本実施の形態の濃吸収液は、例えばイオン液体(イミダゾリウム系、ジグライム系など)、アルコール類(メタノール、ポリエチレングリコールジメチルエーテルなど)が挙げられるが、これらに限定されるものではない。
物理吸収は、高圧で二酸化炭素を吸収し、減圧して二酸化炭素を回収するものであり、被吸収ガスが高圧である場合(例:ガス田自噴ガス、発電所排ガス)に有利である。
また、物理吸収の場合、濃吸収液から二酸化炭素を取り出す際に、化学吸収のように加熱する必要がなく、消費エネルギーの低減効果がある。
本実施の形態の濃吸収液は、例えばイオン液体(イミダゾリウム系、ジグライム系など)、アルコール類(メタノール、ポリエチレングリコールジメチルエーテルなど)が挙げられるが、これらに限定されるものではない。
物理吸収は、高圧で二酸化炭素を吸収し、減圧して二酸化炭素を回収するものであり、被吸収ガスが高圧である場合(例:ガス田自噴ガス、発電所排ガス)に有利である。
また、物理吸収の場合、濃吸収液から二酸化炭素を取り出す際に、化学吸収のように加熱する必要がなく、消費エネルギーの低減効果がある。
被吸収ガスの圧力と、濃吸収液への溶解量の関係について説明する。
例えば濃吸収液がジグライムの場合、二酸化炭素圧力6MPaのときにジグライム1L当たり10molの二酸化炭素が溶解し、圧力2MPaのときにジグライム1L当たり3molの二酸化炭素が溶解する。
従って、6MPaで二酸化炭素を溶解し2MPaまで減圧して二酸化炭素を分離回収するシステムでは、ジグライム1L当たり7molの二酸化炭素が分離回収することができる。
例えば濃吸収液がジグライムの場合、二酸化炭素圧力6MPaのときにジグライム1L当たり10molの二酸化炭素が溶解し、圧力2MPaのときにジグライム1L当たり3molの二酸化炭素が溶解する。
従って、6MPaで二酸化炭素を溶解し2MPaまで減圧して二酸化炭素を分離回収するシステムでは、ジグライム1L当たり7molの二酸化炭素が分離回収することができる。
<インジェクタ>
上述したように、インジェクタ3は、蒸気を水との直接接触により凝縮しつつ、蒸気の保有するエネルギーで混合水(水と蒸気復水)を水の圧力より昇圧して吐出することができる装置である。
物理吸収で用いられる濃吸収液(イオン液体等)の溶解度は、被吸収ガスの圧力に比例する特性がある。このため、従来では、被吸収ガスおよび濃吸収液をそれぞれ個別に昇圧した後、混合器や吸収塔で両者を接触させていた。
この点、本実施の形態では、インジェクタ3を混合器(吸収器)として適用することにより、被吸収ガスと濃吸収液を低圧でインジェクタ3に導入し、インジェクタ3内部の作用により被吸収ガスと濃吸収液をインジェクタ流入部から昇圧させ、濃吸収液に被吸収ガス中の二酸化炭素を溶解させることができる。
上述したように、インジェクタ3は、蒸気を水との直接接触により凝縮しつつ、蒸気の保有するエネルギーで混合水(水と蒸気復水)を水の圧力より昇圧して吐出することができる装置である。
物理吸収で用いられる濃吸収液(イオン液体等)の溶解度は、被吸収ガスの圧力に比例する特性がある。このため、従来では、被吸収ガスおよび濃吸収液をそれぞれ個別に昇圧した後、混合器や吸収塔で両者を接触させていた。
この点、本実施の形態では、インジェクタ3を混合器(吸収器)として適用することにより、被吸収ガスと濃吸収液を低圧でインジェクタ3に導入し、インジェクタ3内部の作用により被吸収ガスと濃吸収液をインジェクタ流入部から昇圧させ、濃吸収液に被吸収ガス中の二酸化炭素を溶解させることができる。
<再生塔>
再生塔7は、希吸収液を減圧弁33で減圧することにより、希吸収液中に溶解している大部分の二酸化炭素を蒸発放散させて、希吸収液から二酸化炭素を分離する。
減圧弁33は、再生塔7に設けられた圧力計37の検知圧力に基づいてコントローラ39によって再生塔7の内部の圧力が予め設定した一定の圧力になるように調整される。
再生塔7は、実施の形態1と同様に、その上部から、放散された二酸化炭素を含む再生ガスを排出し、その下部から、希吸収液から二酸化炭素が放散されて再生された濃吸収液を排出する。
再生塔7は、希吸収液を減圧弁33で減圧することにより、希吸収液中に溶解している大部分の二酸化炭素を蒸発放散させて、希吸収液から二酸化炭素を分離する。
減圧弁33は、再生塔7に設けられた圧力計37の検知圧力に基づいてコントローラ39によって再生塔7の内部の圧力が予め設定した一定の圧力になるように調整される。
再生塔7は、実施の形態1と同様に、その上部から、放散された二酸化炭素を含む再生ガスを排出し、その下部から、希吸収液から二酸化炭素が放散されて再生された濃吸収液を排出する。
<ポンプ>
ポンプ35は、濃吸収液供給ライン9に設けられてインジェクタ3に供給する濃吸収液の流量を調整する流量調整装置として機能する。実施の形態1では、再生塔7の圧力が高いので、濃吸収液をインジェクタ3に供給するために別途ポンプ等を設ける必要がなかったが、本実施の形態では減圧弁33による減圧によって再生塔7の圧力が低下していることから、ポンプ35によって送液するようにしている。
ポンプ35はインバータ制御によって送液量が調整されるものであり、特定ガス濃度計27の計測値を制御装置29に入力して、制御装置29によってインバータ制御され、インジェクタ3へ供給する濃吸収液の量を適切な量に調整するようにしている。
ポンプ35は、濃吸収液供給ライン9に設けられてインジェクタ3に供給する濃吸収液の流量を調整する流量調整装置として機能する。実施の形態1では、再生塔7の圧力が高いので、濃吸収液をインジェクタ3に供給するために別途ポンプ等を設ける必要がなかったが、本実施の形態では減圧弁33による減圧によって再生塔7の圧力が低下していることから、ポンプ35によって送液するようにしている。
ポンプ35はインバータ制御によって送液量が調整されるものであり、特定ガス濃度計27の計測値を制御装置29に入力して、制御装置29によってインバータ制御され、インジェクタ3へ供給する濃吸収液の量を適切な量に調整するようにしている。
上記のように構成された本実施の形態の作用について、図4、図2に基づいて説明する。
濃吸収液供給部13から濃吸収液を、被吸収ガス供給部15から被吸収ガスを、それぞれ所定の圧力・温度で導入する(図2参照)。
インジェクタ3における混合部17で被吸収ガスは濃吸収液に溶解し、混合部17の圧力が低下する。混合部17の圧力低下により、混合部17に流入する被吸収ガスは音速レベルの高速な流れとなる。
混合部17の圧力において、溶解しきれなかった被吸収ガス中の二酸化炭素は濃吸収液と高速な二相流を形成し、混合部17とディフューザ部21を分けるスロート部19に達する。
濃吸収液供給部13から濃吸収液を、被吸収ガス供給部15から被吸収ガスを、それぞれ所定の圧力・温度で導入する(図2参照)。
インジェクタ3における混合部17で被吸収ガスは濃吸収液に溶解し、混合部17の圧力が低下する。混合部17の圧力低下により、混合部17に流入する被吸収ガスは音速レベルの高速な流れとなる。
混合部17の圧力において、溶解しきれなかった被吸収ガス中の二酸化炭素は濃吸収液と高速な二相流を形成し、混合部17とディフューザ部21を分けるスロート部19に達する。
ディフューザ部21においては、溶解しきれなかった被吸収ガス中の二酸化炭素と濃吸収液の二相流に急激な圧力上昇が生じ、この急激な圧力上昇によって、混合部17で溶解しきれなかった被吸収ガス中の二酸化炭素は、その圧力の溶解度まで濃吸収液に溶解する。なお、この圧力はインジェクタ3の流入部における濃吸収液や被吸収ガスの圧力よりも高圧である。
以上のように、インジェクタ3を物理吸収によるガス吸収精製装置32の混合器(吸収器)に適用することにより、以下の効果を奏することができる。すなわち、被吸収ガス中の二酸化炭素を濃吸収液に物理吸収させるために必要な昇圧に係るエネルギー消費を低減でき、また、インジェクタ3内部の流れは高速であるため混合が促進されるため混合器(吸収器)の気液接触は高効率となり、装置をコンパクトにできる。
なお、上記の説明では、再生塔7の圧力が低くなるため、ポンプ35を設けるようにしたが、再生塔7における減圧があまり大きくなく、再生塔7の圧力によって濃吸収液をインジェクタ3に送液できる場合には、ポンプ35を設けることなく、図5に示すように、流量調整装置として流量調整弁11を設けるようにしてもよい。
また、図4、図5に示したものは、再生塔7の圧力を一定にして再生するため、再生される濃吸収液の濃度が一定となる例であり、この場合には、インジェクタ3への濃吸収液の供給量をポンプ35又は流量調整弁11で調整するようにしていた。
しかし、物理吸収の場合には、再生塔7の圧力を調整することで、希吸収液から分離回収される二酸化炭素の量が変わり、濃吸収液の濃度を変えることができる。このため、図6に示すように、特定ガス濃度計27の計測値を制御装置29に入力して、制御装置29によって減圧弁33を調整することで、濃吸収液の濃度を調整し、インジェクタ3への供給量は定流量を送液するポンプ41によって一定流量となるようにしてもよい。
しかし、物理吸収の場合には、再生塔7の圧力を調整することで、希吸収液から分離回収される二酸化炭素の量が変わり、濃吸収液の濃度を変えることができる。このため、図6に示すように、特定ガス濃度計27の計測値を制御装置29に入力して、制御装置29によって減圧弁33を調整することで、濃吸収液の濃度を調整し、インジェクタ3への供給量は定流量を送液するポンプ41によって一定流量となるようにしてもよい。
なお、本技術で物理吸収の対象となる特定のガス成分は、二酸化炭素に限定されるわけではなく、例えばアンモニアやH2Sなど硫黄化合物などが特定のガス成分である場合にも本技術は適用可能である。従って、被吸収ガスについても例示したプロセス排ガスに限定されるものではない。また、吸収液もその特定のガス成分の特性に合わせて選定されることになり、例えばアンモニアの場合は水やイオン液体などが吸収液として選定可能である。
また、例えば吸収液が化学吸収機能を有するイオン液体と物理吸収機能を有するイオン液体の混合液のように、化学反応と物理的な溶解の両方の方法で被吸収ガス中の特定のガス成分を吸収する場合は、希吸収液から特定のガス成分を分離し濃吸収液に再生する再生塔に希吸収液の加熱と減圧の両方の手段を備えることで、ガス吸収精製装置として機能させることができる。
1 ガス吸収精製装置(実施の形態1)
3 インジェクタ
5 気液分離器
7 再生塔
9 濃吸収液供給ライン
11 流量調整弁
13 濃吸収液供給部
15 被吸収ガス供給部
17 混合部
19 スロート部
21 ディフューザ部
22 ドレン管
24 逆止弁
25 加熱装置
27 特定ガス濃度計
29 制御装置
31 熱交換器
32 ガス吸収精製装置(実施の形態2)
33 減圧弁
35 ポンプ
37 圧力計
39 コントローラ
41 定流量ポンプ
3 インジェクタ
5 気液分離器
7 再生塔
9 濃吸収液供給ライン
11 流量調整弁
13 濃吸収液供給部
15 被吸収ガス供給部
17 混合部
19 スロート部
21 ディフューザ部
22 ドレン管
24 逆止弁
25 加熱装置
27 特定ガス濃度計
29 制御装置
31 熱交換器
32 ガス吸収精製装置(実施の形態2)
33 減圧弁
35 ポンプ
37 圧力計
39 コントローラ
41 定流量ポンプ
Claims (4)
- 被吸収ガスと濃吸収液を接触させると共に昇圧して前記被吸収ガス中の特定のガス成分を前記濃吸収液に吸収させて希吸収液とするインジェクタと、該インジェクタで昇圧された希吸収液及び残ガスの供給を受けて気液分離する気液分離器と、該気液分離器で分離された希吸収液の供給を受けて該希吸収液を加熱して前記特定のガス成分を分離することにより濃吸収液に再生する再生塔と、該再生塔で再生された濃吸収液を前記インジェクタに供給する濃吸収液供給ラインと、該濃吸収液供給ラインに設けられて供給する濃吸収液の流量を調整する流量調整弁とを備えてなることを特徴とするガス吸収精製装置。
- 前記再生塔に供給する前記希吸収液と前記再生塔で再生され前記インジェクタに供給する濃吸収液との間で熱交換して前記濃吸収液を冷却する熱交換器を備えたことを特徴とする請求項1記載のガス吸収精製装置。
- 被吸収ガスと濃吸収液を接触させると共に昇圧して前記被吸収ガス中の特定のガス成分を前記濃吸収液に吸収させて希吸収液とするインジェクタと、該インジェクタで昇圧された希吸収液及び残ガスの供給を受けて気液分離する気液分離器と、該気液分離器で分離された希吸収液の供給を受けて該希吸収液を減圧して前記特定のガス成分を分離することにより濃吸収液に再生する再生塔と、該再生塔で再生された濃吸収液を前記インジェクタに供給する濃吸収液供給ラインと、該濃吸収液供給ラインに設けられて供給する濃吸収液の流量を調整する流量調整装置とを備えてなることを特徴とするガス吸収精製装置。
- 前記インジェクタを並列に複数設置したことを特徴とする請求項1乃至3のいずれか一項に記載のガス吸収精製装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019556292A JP6658996B1 (ja) | 2018-06-14 | 2019-06-07 | ガス吸収精製装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018113407 | 2018-06-14 | ||
JP2018-113407 | 2018-06-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019240028A1 true WO2019240028A1 (ja) | 2019-12-19 |
Family
ID=68842528
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/022704 WO2019240028A1 (ja) | 2018-06-14 | 2019-06-07 | ガス吸収精製装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6658996B1 (ja) |
WO (1) | WO2019240028A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021221007A1 (ja) * | 2020-05-01 | 2021-11-04 | ||
WO2023008584A1 (ja) * | 2021-07-26 | 2023-02-02 | 晴雄 森重 | ピトー管効果を応用した二酸化炭素回収装置及びエアコン |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4948556A (ja) * | 1972-09-13 | 1974-05-10 | ||
JP2007527791A (ja) * | 2004-03-09 | 2007-10-04 | ビーエーエスエフ アクチェンゲゼルシャフト | 煙道ガスから二酸化炭素を除去するための方法 |
JP2013103985A (ja) * | 2011-11-14 | 2013-05-30 | Hitachi Ltd | ガス精製装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110217218A1 (en) * | 2010-03-02 | 2011-09-08 | Exxonmobil Research And Engineering Company | Systems and Methods for Acid Gas Removal |
-
2019
- 2019-06-07 JP JP2019556292A patent/JP6658996B1/ja active Active
- 2019-06-07 WO PCT/JP2019/022704 patent/WO2019240028A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4948556A (ja) * | 1972-09-13 | 1974-05-10 | ||
JP2007527791A (ja) * | 2004-03-09 | 2007-10-04 | ビーエーエスエフ アクチェンゲゼルシャフト | 煙道ガスから二酸化炭素を除去するための方法 |
JP2013103985A (ja) * | 2011-11-14 | 2013-05-30 | Hitachi Ltd | ガス精製装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021221007A1 (ja) * | 2020-05-01 | 2021-11-04 | ||
JP7203401B2 (ja) | 2020-05-01 | 2023-01-13 | 東邦瓦斯株式会社 | 二酸化炭素回収装置 |
WO2023008584A1 (ja) * | 2021-07-26 | 2023-02-02 | 晴雄 森重 | ピトー管効果を応用した二酸化炭素回収装置及びエアコン |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019240028A1 (ja) | 2020-06-25 |
JP6658996B1 (ja) | 2020-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6420729B2 (ja) | 排ガスから湿分を回収する火力発電設備及びその火力発電設備の回収水の処理方法 | |
JP2010208936A (ja) | 溶剤を用いてco2を捕捉するシステム、方法及び装置 | |
WO2019240028A1 (ja) | ガス吸収精製装置 | |
JP5885614B2 (ja) | 蒸気タービンプラント、その制御方法、およびその制御システム | |
JP5746350B2 (ja) | アンモニアベースのco2吸収性溶液からの不揮発物の除去 | |
JP2012516226A (ja) | 化石燃料発電所設備の排ガスから二酸化炭素を分離するための方法及び装置 | |
JP5272099B1 (ja) | 二酸化炭素回収方法 | |
JP2009519828A (ja) | 統合圧縮機/ストリッパーの構成および方法 | |
EP2230000B1 (en) | Flue gas treatment system and method using ammonia solution | |
JP2007137725A (ja) | 二酸化炭素回収システムおよび二酸化炭素回収方法 | |
KR101899600B1 (ko) | 이산화 탄소 처리장치 | |
KR20150004562A (ko) | 이산화탄소 포집 장치 | |
CN108144420A (zh) | 一种超临界水氧化过量氧回收系统 | |
CN104724776A (zh) | 压力蒸发二次蒸汽掺入压力水中的装置及其方法 | |
JP2008023438A (ja) | 二酸化炭素回収システムおよび二酸化炭素回収方法 | |
JP2011127787A (ja) | 廃蒸気回収装置 | |
JP2019214988A (ja) | 地熱発電装置における蒸気タービン排気蒸気処理装置 | |
KR20130137953A (ko) | 송풍장치를 구비한 이산화탄소 포집장치 및 이를 이용한 이산화탄소 포집방법 | |
WO2019014083A2 (en) | COMBINED SYSTEM FOR REMOVAL OF ACID GASES AND WATER FILTRATION | |
JP2007000841A (ja) | 二酸化炭素回収システムおよび二酸化炭素回収方法 | |
JP2007008732A (ja) | 二酸化炭素回収システムおよび二酸化炭素回収方法 | |
JP6307279B2 (ja) | 二酸化炭素ガス回収装置及び回収方法 | |
JPH0510964B2 (ja) | ||
JP2011163735A (ja) | 廃蒸気回収装置 | |
CA3061855A1 (en) | Method and process for efficient regeneration of co2 rich solvents |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019556292 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19820279 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19820279 Country of ref document: EP Kind code of ref document: A1 |